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Abstract

Building downstream NLP applications with
tokenization systems built on morphological
segmentation has been shown to be fruitful for
certain morphologically-rich languages. Yet,
indigenous and endangered languages, which
tend to be highly polysynthetic, thereby a po-
tential beneficiary of this approach, pose ad-
ditional difficulties in their limited access to
annotated data for morphological segmenta-
tion tasks. In this study, we develop mor-
phological segmentation models for Hupa, a
Dene/Athabaskan language critically endan-
gered to North America. With a total of 595
word types, we seek to identify an optimal mor-
phological segmentation model and illustrate
how those tested perform under different levels
of training data limitation. We propose a simple
method that casts morphological segmentation
as a sequence binary classification task. While
this approach does not outperform the estab-
lished practice of multi-class classification, it
outperforms neural alternatives. This work is
conducted under the intention to act as a start-
ing point for future technological developments
with Hupa looking to leverage its morpholog-
ical qualities, which we hope can serve as a
reflection for work with other indigenous lan-
guages being studied under similar constraints.

1 Introduction

The Hupa people of the Hoopa Valley Reservation
in Humboldt county California, are a federally rec-
ognized indigenous group within the United States
with over 3,000 documented descendants (Ency-
clopaedia Britannica, 2024). Despite resistance to
polices or attempts at cultural erasure impended
by the American Government, the Hupa tribe has
shown signs of gradual increase in American influ-
ence, noted in reports dating back to the mid-20th
century (Bushnell, 1968). Today, many aspects
of their culture and tradition are upheld, but mod-
ern descendants are exhibiting a declining trend
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in language retention with English taking over as
the primary language (Spence, 2021). Efforts are
being made to revitalize this piece of their culture,
but relevant language data is limited and the Hupa
language, of the Dene/Athabaskan language fam-
ily, is currently recognized under endangered status
(Campbell and Grondona, 2008).

With support from community members and lin-
guists with advanced knowledge on the language,
recent work has started to leverage computational
techniques to facilitate documentation of Hupa
and creation of pedagogical materials for language
teaching. However, said research has only focused
on automatic speech recognition (Venkateswaran
and Liu, 2024). In this paper, we intend to con-
tribute to such efforts, focusing specifically on mor-
phological segmentation for Hupa. The goal of
morphological segmentation is to automatically
segment a word into its individual component mor-
phemes (e.g., lemons — lemon + s).

Like many other native American languages,
Hupa has highly complex, yet productive polysyn-
thetic morphology (Goddard, 1902-1907). As a
result, the process of segmenting words into their
morphological components in Hupa is likewise a
difficult process when completed manually by sea-
soned linguists. Building computational models
to segment words into sub-words, or morphemes,
can be advantageous for such morpheme-rich sys-
tems. Furthermore, this can have major implica-
tions in the automation of language documentation
processes (see also Zevallos and Bel (2023)).

With that in mind, this study makes two con-
tributions. First, we evaluate the performance of
four different model alternatives for morphologi-
cal segmentation for Hupa; we purposefully cre-
ate experimental settings with varying degrees of
data limitations in order to probe the robustness of
these models when faced with severely resource-
constrained contexts. Second, we propose a simple
augmentation to the sequence-tagging approach



to morphological segmentation and show how it
levels up to established neural techniques.

2 Related Work

The task of morphological segmentation has en-
joyed popularity over the years for a number of rea-
sons. First, morphological supervision has practical
use in downstream NLP tasks such as dependency
parsing (Seeker and Cetinoglu, 2015) and language
modeling (Blevins and Zettlemoyer, 2019). Mor-
phological information has also been shown to be
helpful for machine translation (Clifton and Sarkar,
2011; Mager et al., 2022) and automatic speech
recognition (Afify et al., 2006), two tasks that are
among some of the most useful for indigenous en-
dangered speech communities (Zhang et al., 2021;
Prud’hommeaux et al., 2021). In addition, morpho-
logical structures can be included in learning mate-
rials such as online dictionaries (Garrett, 2011).

Prior work has attended to morphological seg-
mentation for low-resource morphologically com-
plex languages, including cases such as Seneca
(Liu et al., 2021) as well as Mexican indigenous
languages (Kann et al., 2018). These studies largely
focused on surface segmentation', where the con-
catenation of all the individual morphemes is the
same as the initial surface word form (e.g., lemons
— lemon + s). In this paper, we also concentrate
on surface segmentation using orthographic repre-
sentations of words in Hupa.

3 Experiments

3.1 Data and preprocessing

The data for this study consists of 595 word
types (no duplicates), which were extracted from
a set of nine unpublished Hupa texts drawn from
archival manuscripts with handwritten transcrip-
tions by Curtin (1888-1889), Goddard (1902-1907),
Kroeber (1900-1906), and Woodward (1953), plus
recorded and transcribed stories told by contem-
porary Hupa speaker Mrs. Verdena Parker and
handwritten sources, both validated in consultation
with Mrs. Parker. All transcriptions were rendered
in the practical Hupa orthography originally devel-
oped in the 1980s by Victor Golla and the Hoopa
Valley Tribe’s language committee, which is fea-
tured in resources like the Hupa Online Dictionary

ISee Cotterell et al. (2016) for details on canonical seg-
mentation.

and Texts Website” and the learner-oriented print
dictionary on which it is based (Golla, 1996). The
practical orthography uses conventions familiar to
people who are already literate in English, and is
accessible for a standard English keyboard, such
as the use of the digraph ch for an alveopalatal
affricate, u for a centralized schwa-like vowel in
closed syllables, colon : for vowel length, and
apostrophe ’ for glottalization of certain classes
of consonants and glottal stops elsewhere. These
orthographic representations were manually parsed
into component morphemes. The complete dataset
held an average of 3.10 morphemes per word, as
well as an average of 4 characters per morpheme.
Experiments were ran using solely this practical
orthographic transcription.

3.2 Dataset construction

To probe the impact of and the interaction between
training data size and morphological segmentation
methods, we create augmented datasets with vary-
ing training set sizes. We illustrate the dataset con-
struction process with the following example.

Recall that the original dataset in orthographic
representation for Hupa contains 595 unique items.
We carry out the following procedures: (1) We first
split this dataset evenly (roughly) into five folds;
each time we select one fold as the fest set and the
concatenation of the other four folds as the training
data pool. There is 595 /5 = 119 items in each
test set, thereby 476 items in each of the training
data pools. (2) Based on the training data pool
size, we decided on a range of training set sizes
with mostly 100-item increment between each size:
{100, 200, 300, 400, 476/training data pool size}.
(3) With each training size, we randomly sample
without replacement a training set of that size from
a training data pool, 2 times, corresponding to two
training sets of that size. (4) We repeated step (3)
for each pair of training data pool + test set created
from (1).

3.3 Model architectures

We study four model alternatives from two
broad model classes: conditional random field
(CRF) (Lafferty et al., 2001) and neural sequence-
to-sequence (seq2seq) models.

CREF casts morphological segmentation as a se-
quence tagging task. Given a character w; within
a word w, where ¢ indicates the index position of

2https://pages.uoregon.edu/jusp/dictionaries/
hupa-1lexicon.php
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the character in the word, along with a curated fea-
ture set x; that consists of n-grams of local (sub)
strings, CRF gradually predicts the corresponding
label y; of the character using its feature set.

We curated the feature set for every character
in each word as follows. We first appended each
word with a start (<w>) and an end (</w>) symbol.
The feature set for the character consists of the sub-
string(s) occurring to the left and to the right side of
the character up to a maximum length, . Consider
the following Hupa word, xotuq, which consists
of two morphemes: xo and tuq (them/people + be-
tween; together the word means “between them
(people)"). If we were to set the value of § to be 4
(which we did for model training), for the fourth
character in the word, u, the sequence of substrings
appearing to the left and to the right side of this
character will be, respectively, {t, ot, xot, <w>Xxot}
and {u, uq, uq</w>}. We concatenated these two
sequences to be the full feature set of the fourth
character u.

We implemented and compared two methods for
character tagging here: multi-class classification,
which is an approach applied before (Mager et al.,
2022), and binary classification, inspired by Pran-
ji¢ et al. (2024). With multi-class classification,
for a character w; at position ¢ in word w, we as-
signed it one of six labels: START (for <w>); END
(for </w>); S (for any single-character morpheme);
and B (beginning); M (middle); or E (end) for char-
acters in a multi-character morpheme. Based on
the morpheme structure of the word xotug, the
segmentation labels are as follows:

<w> X o t u g </w>
START B E B M E END

In binary classification, said character w; at po-
sition ¢ in word w, if not set to START (for <w>)
or END (for </w>), is assigned one of two labels:
B (for any character bounded, or followed, by a
morpheme boundary); and U (for characters un-
bounded, or not followed, by a morpheme bound-
ary). Again, based on the morpheme structure of
the word xotug, labels are as follows:

<w> X o t u g </w>
START U B U U U END

We consider this form of classification as a sim-
pler alternative to multi-class classification. If suc-
cessful, breaking down the task of sequence tag-
ging to a simple option of 0 or 1, bounded or un-
bounded, provides a more efficient data representa-
tion design that can possibly facilitate the model’s
training when faced with fewer resources.

We built first-order CRFs (Lafferty et al., 2001;
Ruokolainen et al., 2013) for morphological seg-
mentation. All models were implemented with the
Python library crfsuite. This decision was moti-
vated by two factors. First, prior work has demon-
strated CRF to be superior to neural sequence-to-
sequence models as well as different variants of
unsupervised models such as Morfessor (Creutz
and Lagus, 2002), when it comes to low-resource
morphological segmentation for a variety of typo-
logically diverse languages (Liu and Dorr, 2024;
Liu and Prud’hommeaux, 2022; Cotterell et al.,
2015). Second, CRF models, particularly those of
lower orders (first-/second-order), are much faster
and efficient to implement.

Our second model class is the neural-network
models, specifically seq2seq. The models are ex-
pected to, given a word, produce an output of the
equivalent word segmented by internal morpheme
boundaries, indicated by the ‘!” delimiter below:

INPUT X otugq
OUTPUT x o ! tugq

We made use of three seq2seq frameworks with
the Python library fairseq (Ott et al., 2019),
each under their default parameters: TRANS-
FORMER model (embedding size of 512, 6 encoder-
decoder layers, 8 self-attention heads, and 2048
hidden units in the feed-forward layers); TRANS-
FORMER_TINY model, a less computationally de-
manding alternative contrary to the aforementioned
(embedding dimension and feed-forward layer di-
mension both being 64; and a LSTM-based frame-
work (embeddings of 512 dimensions and one hid-
den layer with 512 hidden units in both the encoder
and the decoder).

4 Results

We use F'1 score as an evaluation metric for model
performance. Table 1 shows the results of the CRF
models for multi-class and binary classifications
trained with differently sized training sets. Table 2
shows the results of the remaining three seq2seq
models. Notably, the CRF models are most suc-
cessful. Specifically, the multi-class classification
CRFs outperform all other approaches/model ar-
chitectures. While the binary classifier lags behind
the multi-class alternative, it still performs notably
better than any of the seq2seq models.

3https://fairseq.readthedocs.io/en/latest/
models.html
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Training Sample Size  multiclass  binary
100 70.07 62.08

200 76.18 68.96

300 78.40 70.13

400 80.27 71.16

Total 84.30 75.32

Table 1: Performance averages of the CRF-model ar-
chitectures per Training Sample Size: multi-class clas-
sification and binary-classification; Total refers to the
setting when all data from the training data pool is used
for model training.

Sample Size Trans. Tiny LSTM
100 7.41 15.46 9.63
200 13.96  28.64 15.49
300 20.56  39.58  25.37
400 29.54  46.15  34.60
Total 46.78  64.12  59.98

Table 2: Performance averages of the seq2seq-model ar-
chitectures per Training Sample Size: TRANSFORMER
(Trans.), TRANSFORMER_TINY (T'iny), and LSTM;
Total refers to the setting when all data from the training
data pool is used for model training.

Regarding the tendencies of the results between
training sizes, we find that the CRF models show-
case a gradual increase in performance capability as
training set size increases. Despite CRF’s sequence
tagging strategy performing, comparatively, the
most optimal in these low-resource environments,
this trend demonstrates there is still a dependency
on data set size to consider, with the dependency
being stronger when training sizes are smaller (e.g.,
the largest F'1 score increase occurs when training
samples go from 100 to 200 word types).

The seq2seq models follow a similar trend, yet
with much lower F'1 score averages (Table 2).
This is possibly due to that neural network mod-
els have much more complex training parameter-
ization, which in turn can result in a reliance on
much more extensive data resources (Wei and Ma,
2019). This conjecture is further supported by
the results here that TRANSFORMER_TINY out-
performs TRANSFORMER, with the former having
a simpler architecture. The spread of F'1 scores is
also unique, with seq2seq models showing greater
performance increase between larger training sets
in comparison to what is observed with CRFs.

Learning that CRF models achieve the best per-
formance in our experiments, we now ask: where
do CRF models fall short? To address this ques-
tion, we take a close look at the errors made by
CRFs. Most remarkably, the CRF models struggle
with words of 2 or more morpheme boundaries,

especially those consisting of short, 1-3 character,
morphemes. Around 66% of the time, the label-ers
for both multi-class and binary classifications un-
derestimate the number of morphemes in a word or
simply predict words to be one single morpheme.
Specifically, approximately 33% of all mistakes
can be attributed to the later, in which CRFs fail
to recognize the presence of any morpheme bound-
aries at all.

Another possible consideration of where the
CRF models fall short is the lack of overlap be-
tween the training and the test sets. Almost none of
the morphemes in the test sets can be found in the
corresponding training data. With a lack of paral-
lelism between model training and evaluation, this
leaves ambiguity on certain morphological struc-
tural situations that segmentation models might fail
to recognize. Yet, this challenge could be mended
by data augmentation methods in the future.

5 Discussion & Future Directions

We attempt to provide evidence of the efficacy of
various morphological segmentation models for
Hupa and their level of robustness in response to
different training set sizes. Our investigation identi-
fies that CRF model performances shift in response
to resource availability, yet they largely outperform
neural alternatives in significantly low-resource set-
tings. More notably, we also record a relatively
successful CRF model using binary classification,
again, outperforming all neural-network models.
Despite not surpassing the multi-class classifier, the
model averages are still relatively high and demon-
strate a simple implementation which can be taken
further in future work for Hupa and potentially
other languages alike.

As mentioned prior, one caveat of model perfor-
mance here is the recognition of words composed
largely of short morphemes. To combat this is-
sue, future work could consider experimenting with
data in phonological representations in comparison
to orthographic data. Phonological data formats
may provide insight into phonetic environments for
morpheme boundaries, providing suprasegmental
details such as stress, tone, etc. Orthographic data
may also falter as different sounds, varying in qual-
ity or length, are represented by the same symbol.
Future experiments testing phonological datasets
could clear up ambiguity where morphological dis-
tinctions are created by phoneme variations that are
not visible orthographically.



Another future direction of this study is to apply
data augmentation methods to alleviate resource
constraints. With a dataset of only 595 unique
tokens, data augmentation could be implemented
to strengthen validity of findings pertaining to the
interaction of model performance and required data
resources. In addition, while seq2seq models fell
behind in this study, neural-networks may preform
promisingly when trained under a larger artificially
augmented dataset. We leave this for future work.

Finally, the findings reported in this paper and
future avenues discussed are made with the purpose
of continuously contributing to community-based
efforts in language documentation. For the Hupa
speech community, our plan for this line of work
is to keep improving the performance of the mor-
phological segmentation models, which will even-
tually be applied to automatically parse collected
and digitized Hupa texts for use by the community.
Additionally, we hope that our work can be helpful
for other indigenous communities and academics
who are engaging in similar efforts. To that end,
we make all code publicly available.*
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