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Abstract

When applying interactive translation pre-
diction in real-life scenarios, response time
is critical for the users to accept the in-
teractive translation prediction system as a
potentially useful tool. In this paper, we
report on three different strategies for re-
ducing the computation time required by a
state-of-the-art interactive translation pre-
diction system, so that automatic comple-
tions are delivered in real time. The best
possibility turns out to be to directly prune
the wordgraphs derived from the search
procedure, achieving real-time response
rates without any degradation whatsoever
in the quality of the completions provided.

1 Introduction

Despite the recent advances in machine transla-
tion (MT) technology, MT systems are not able to
provide ready-to-use translations in those contexts
where translation accuracy is critical, such as med-
ical or political applications, or even in contexts
where correctness is demanded, such as hardware
manuals or news texts. This has given rise to in-
creasing research in computer assisted translation
(CAT), where the focus is on how to provide a hu-
man translator with the best tools available in order
to improve the human’s efficiency. To this purpose,
several ongoing FP7 projects were approved by the
European Comission, some of them still being ac-
tive. These projects pursue a very similar purpose,
which is to develop a next generation CAT work-
bench.

c© 2014 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

One of the most innovative research directions
regarding CAT tools implies interactive translation
prediction (ITP) (Barrachina et al., 2009). Un-
der this paradigm, system and human translator
interact more closely than in a conventional post-
editing setup, and the ITP engine attempts to pro-
vide improved completions for the sentence being
translated after each one of the interactions of the
human translator. Ideally, a constrained decoding,
forced to produce the part of the sentence which
has already been validated, should be performed
before providing every suggestion. However, a
full decoding process gives way to an important
problem in ITP: the system needs to be able to
provide translation completions in real time, since
only a small delay in response time could easily
lead users to reject the system. For this purpose, a
common approximation is to extract a wordgraph
off-line, i.e., before the user is actually sitting in
front of the CAT tool. Then, during the ITP proce-
dure, suggestions are obtained by searching for the
best path in such a graph.

In the present work we report on different ap-
proaches analysed for the purpose of reducing the
size of the wordgraph mentioned above when us-
ing a state-of-the-art ITP system. Since response
time is critical, we studied three different strategies
and measured the response time in a simulated ITP
setup, alongside with an analysis of the degrada-
tion of the final translation quality obtained, both
in terms of automatic MT metrics and in terms of
simulated user effort.

The rest of this paper is structured as follows: in
the next section, we briefly review the principles
of ITP as an evolution of the classical SMT formu-
lation. Then, in Section 4, we review the theoret-
ical grounds of the strategies studied. Next, Sec-
tion 5 reports the experiments conducted to assess
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the quality of the pruned wordgraphs and the re-
sponse time associated. Finally, Section 6 presents
the conclusions of the present work.

2 Statistical Framework

2.1 Statistical Machine Translation
Given a sentence s in a source language, the dis-
cipline of machine translation (MT) studies tech-
niques to obtain its corresponding translation t in
a target language by means of computer. Statis-
tical MT (SMT) formalises this problem as fol-
lows (Brown et al., 1993):

t̂ = argmax
t

Pr(t | s) (1)

= argmax
t

Pr(t) · Pr(s | t) (2)

The terms in the latter equation are the lan-
guage model probability Pr(t) that represents the
well-formedness of t (n-gram models are usually
adopted), and the translation model Pr(s | t) that
represents the relationship between the source sen-
tence and its translation.

In practice, all of these models (and possibly
others) are often combined into a log-linear model
for Pr(t | s) (Och and Ney, 2002):

t̂ = argmax
t

{
N∑

n=1

λn · log(fn(t, s))
}

(3)

where fn(t, s) can be any model that represents an
important feature for the translation,N is the num-
ber of models (or features), and λn are the weights
of the log-linear combination.

One of the most popular instantiations of log-
linear models is that including phrase-based mod-
els (Zens et al., 2002; Koehn et al., 2003) (Zens
et al., 2002; Koehn et al., 2003). Phrase-based
models allow to capture contextual information to
learn translations for whole phrases instead of sin-
gle words. The basic idea of phrase-based transla-
tion is to segment the source sentence into phrases,
then to translate each source phrase into a target
phrase, and finally to reorder the translated target
phrases in order to compose the target sentence.
Phrase-based models were employed throughout
this work.

In log-linear models, the maximisation problem
stated by Equation 3 is typically solved by means
of dynamic programming-based algorithms (Zens
et al., 2002), where the problem of translating a
source sentence is decomposed into a set of partial

source (s): Para ver la lista de recursos
desired translation (t̂): To view a listing of resources

IT-0 p
ts To view the resources list

IT-1
p To view
k a
ts list of resources

IT-2
p To view a list
k list i
ts list i ng resources

IT-3
p To view a listing
k o
ts o f resources

END p To view a listing of resources

Figure 1: ITP session to translate a Spanish sen-
tence into English. The desired translation is the
translation the human user wants to obtain. At IT-
0, the system suggests a translation (ts). At IT-1,
the user moves the mouse to accept the first eight
characters “To view ” and presses the a key (k),
then the system suggests completing the sentence
with “list of resources” (a new ts). Iterations 2 and
3 are similar. In the final iteration, the user accepts
the current translation.

solutions or hypotheses that are solved separately.
A given partial hypothesis aligns a certain number
of source words with words of the target language,
and the rest remain unaligned. These hypotheses
are stored in a stack (or priority queue) and ordered
by their score. Such a score is given by the log-
linear combination of feature functions.

2.2 Interactive Translation Prediction

Unfortunately, current MT technology is not able
to deliver error-free translations. This implies that,
in order to achieve good translations, manual post-
editing is needed. An alternative to this decou-
pled approach (first MT, then manual correction)
is given by the ITP paradigm (Barrachina et al.,
2009). Under this paradigm, translation is consid-
ered as an iterative left-to-right process where the
human and the computer collaborate to generate
the final translation.

Figure 1 shows an example of the ITP approach.
There, a source Spanish sentence s =”Para ver la
lista de recursos” is to be translated into a target En-
glish sentence t̂. Initially, with no user feedback,
the system suggests a complete translation ts =”To
view the resources list”. From this translation, the
user marks a prefix p =”To view” as correct and be-
gins to type the rest of the target sentence. Depend-
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ing on the system or the user’s preferences, the user
might type the full next word, or only some letters
of it (in our example, the user types the single next
character “a”). Then, the MT system suggests a
new suffix ts =“list of resources” that completes
the validated prefix and the input the user has just
typed (p =”To view a”). The interaction continues
with a new prefix validation followed, if necessary,
by new input from the user, and so on, until the
user considers the translation to be complete and
satisfactory.

The crucial step of the process is the produc-
tion of the suffix. Again, decision theory tells us
to maximise the probability of the suffix given the
available information. Formally, the best suffix of
a given length will be:

t̂s = argmax
ts

Pr(ts | s,p) (4)

which can be straightforwardly rewritten as:

t̂s = argmax
ts

Pr(p, ts | s) (5)

= argmax
ts

Pr(p, ts) · Pr(s | p, ts) (6)

Note that, since p ts = t, this equation is very
similar to Equation (2). The main difference is that
now the search process is restricted to those target
sentences t that contain p as prefix. This implies
that we can use the same MT models (including
the log-linear approach) if the search procedures
are adequately modified (Och et al., 2003a). Fi-
nally, it should be noted that the statistical mod-
els are usually defined at word level, while the ITP
process described in this section works at character
level. To deal with this problem, during the search
process it is necessary to verify the compatibility
between t and p at character level.

2.3 ITP with Stochastic Error-Correction
A common problem in ITP arises when the user
sets a prefix which cannot be explained by the sta-
tistical models. To solve this problem, ITP systems
typically include ad-hoc error-correction tech-
niques to guarantee that the suffixes can be gener-
ated (Barrachina et al., 2009). As an alternative to
this heuristic approach, Ortiz-Martı́nez (2011) pro-
posed a formalisation of the ITP framework that
does include stochastic error-correction models in
its statistical formalisation. The starting point of
this alternative ITP formalisation accounts for the
problem of finding the translation t that, at the

same time, better explains the source sentence s
and the prefix given by the user p:

t̂ = argmax
t

Pr(t | s,p) (7)

= argmax
t

Pr(t) · Pr(s,p | t) (8)

The following naı̈ve Bayes’ assumption is now
made: the source sentence s and the user prefix
p are statistically independent variables given the
translation t, obtaining:

t̂ = argmax
t

Pr(t) · Pr(s | t) · Pr(p | t) (9)

where Pr(t) can be approximated with a language
model, Pr(s | t) can be approximated with a
translation model, and Pr(p | t) can be approx-
imated by an error correction model that measures
the compatibility between the user-defined prefix
p and the hypothesized translation t.

Note that the translation result, t̂, given by
Equation (9) may not contain p as prefix because
every translation is compatible with p with a cer-
tain probability. Thus, despite being close, Equa-
tion (9) is not equivalent to the ITP formalisation
in Equation (6).

To solve this problem, we define an alignment,
a, between the user-defined prefix p and the hy-
pothesised translation t, so that the unaligned
words of t, in an appropriate order, constitute the
suffix searched in ITP. This allows us to rewrite the
error correction probability as follows:

Pr(p | t) =
∑

a

Pr(p,a | t) (10)

To simplify things, we assume that p is mono-
tonically aligned to t, leaving the potential word-
reordering to the language and translation models.
Under this assumption, a determines an alignment
for t, such that t = tpts, where tp is fully-aligned
to p and ts remains unaligned. Taking all these
things into consideration, and following a maxi-
mum approximation, we finally arrive to the ex-
pression:

(t̂, â) = argmax
t,a

Pr(t) · Pr(s | t) · Pr(p,a | t)
(11)

where the suffix required in ITP is obtained as the
portion of t̂ that is not aligned with the user prefix.

In practice, the models in Equation (11) are
combined in a log-linear fashion as it is typically
done in SMT (see Equation (3)).
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2.4 ITP Using Wordgraphs

Common ITP implementations rely on a word-
graph data structure that represents possible trans-
lations of the given source sentence. A word-
graph is a weighted directed acyclic graph, in
which each node represents a partial translation
hypothesis and each edge is labelled with a word
(or group of words) of the target sentence and is
weighted according to the scores given by an SMT
model (see (Ueffing et al., 2002) for more details).
The use of wordgraphs in ITP has been studied
in (Barrachina et al., 2009; Ortiz-Martı́nez, 2011;
González-Rubio et al., 2013) in combination with
different translation techniques.

The main advantage of wordgraph-based ITP
systems is their efficiency in terms of the time cost
per each interaction. This is due to the fact that
the wordgraph is generated only once at the be-
ginning of the interactive translation process of a
given source sentence, and the suffixes required in
ITP can be obtained by incrementally processing
this wordgraph at each interaction.

All of the experiments reported in this paper al-
ways included stochastic error-correction for re-
covering from prefixes that cannot explained by
the wordgraph for a given sentence.

3 Related Work

The use of wordgraphs in SMT was introduced
in (Ueffing et al., 2002) for single word models and
later extended to phrase-based models in (Zens and
Ney, 2005). However, in these works, wordgraphs
were applied within a fully-automatic SMT con-
text. The first study on wordgraphs for ITP was
given in (Och et al., 2003b). In that work, word-
graph pruning is used to speed-up suffix genera-
tion in an early ITP system based on the align-
ment template formalism. Bender et al. (Ben-
der et al., 2005) extended the same strategy to a
phrase-based ITP system with ad-hoc error correc-
tion techniques (see Section 2.3). Here, we pro-
pose efficient wordgraph pruning techniques for
a state-of-the-art ITP system with stochastic error
correction.

4 Efficient Suffix Generation in ITP

As it was explained in Section 2.4, common
ITP formalisations, and more specifically, the one
adopted in this paper, are typically based on the
generation of wordgraphs.

The computational complexity of suffix gener-
ation using wordgraphs is linear in the number
wordgraph states (Amengual and Vidal, 1998).
Because of this, one possible way to achieve effi-
ciency improvements would be to reduce the num-
ber of states per each wordgraph. One possible
way to obtain smaller wordgraphs is to modify the
pruning parameters that are applied during the de-
coding stage. Since wordgraphs constitute a com-
pact representation of the search space explored by
the SMT system, their size would be smaller if the
search space is reduced as well. Another possibil-
ity to reduce the number of states contained in the
wordgraph would be to apply pruning techniques
directly over it.

4.1 Modifying Wordgraph Size in Decoding
Time

To reduce the search space, regular SMT decoders
based on dynamic programming have two different
pruning parameters, namely, threshold pruning and
histogram pruning (Och and Ney, 2002):

• Threshold Pruning: threshold pruning is ap-
plied for the different subsets of partial hy-
potheses that share the same number of al-
ready aligned source words. For a given sub-
set, all those hypotheses whose score is be-
low a certain percentage of the score of the
best hypothesis for that subset are removed.
The specific percentage used corresponds to
the pruning threshold parameter.

• Histogram Pruning: the idea behind his-
togram pruning is to order those hypotheses
that share the same number of already aligned
source words by descending order of their
scores, keeping only a certain quantity of the
best of them.

4.2 Wordgraph Pruning

Threshold and histogram pruning constitute two
possible techniques to reduce the wordgraph size
during the decoding stage. Once the wordgraph
has been generated, its size can be directly reduced
using a technique that is closely related to thresh-
old pruning. For this purpose, the probability of
the best sentence hypothesis in the wordgraph is
determined. After that, all those hypotheses in the
graph whose probability is lower than this maxi-
mum probability multiplied by the pruning thresh-
old are discarded. This wordgraph pruning tech-
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nique was introduced in (Sixtus and Ortmanns,
1999) within the context of speech recogition.

The main difference between histogram and
wordgraph pruning is that the former performs hy-
pothesis pruning according to the score of the best
partial hypothesis having a certain number of al-
ready aligned source words (i.e. pruning is locally
applied) while the latter performs hypothesis prun-
ing based on the probability of the best sentence
hypothesis (a global pruning criterion is used).

If the wordgraph pruning threshold is zero, then
the wordgraph is not pruned at all, and if the
threshold is one, then only the sentence with max-
imum probability is retained.

5 Experimental Setup

In this section we detail the experimental setup
designed to evaluate the different wordgraph size
reduction strategies described in the previous sec-
tion.

5.1 Corpora Used

The SMT system used to produce the translation
models which later on were used to generate the
wordgraphs were trained on the data provided for
the ACL 2013 Workshop on Statistical Machine
Translation (Bojar et al., 2013). Four training data
sets were provided in this workshop: the Europarl
corpus, the United Nations corpus, the Common
Crawl corpus and the News Commentary corpus.
Statistics of these data sets are provided in Table 1.
As shown, these corpora together constitute a fair
amount of data, and training an SMT system with
all these data is computationally costly.

Additional development and test data were also
considered (Table 2). For tuning the log-linear
weights present in Equation 3, the test sets of the
WMT 2008 to 2010 were considered, and the test
set of WMT 2011 was considered as test data for
the final evaluation.

5.2 System Description

For building the final ITP system, initial transla-
tion models were built by means of the open source
Moses toolkit (Koehn et al., 2007)1. Then, the
Moses decoder was also used for generating the
wordgraphs. For doing this, the standard decoder
configuration was used, i.e. a statistical log-linear
model including a phrase-based translation model,
a language model, a distortion model and word
1Available from http://www.statmt.org/moses/

Es En

Europarl
Sentences 1.9M

Run. words 54.0M 51.6M
Vocabulary 181k 120.9k

United Nations
Sentences 10.8M

Run. words 317.6M 278.5M
Vocabulary 612.0k 598.7k

Common Crawl
Sentences 1.8M

Run. words 46.7M 44.2M
Vocabulary 763k 675.7k

News Com.
Sentences 172.8k

Run. words 5.0M 4.4M
Vocabulary 88.8k 65.5k

Total
Sentences 14.7M

Run. words 423.3M 378.7M
Vocabulary 1.2M 1.2M

Table 1: Statistics of the training data used in our
experiments. These statistics are computed in to-
kenised and de-truecased conditions.

Es En

WMT08-10 Test
Sentences 7065

Run. words 186.2k 177.3k
OoV words 1105 1073

WMT11 Test
Sentences 3003

Run. words 79.4k 74.8k
OoV words 444 537

Table 2: Statistics of the WMT 2011 test data used
to evaluate the system. These statistics are com-
puted in tokenised and de-truecased conditions.

and phrase penalties. The baseline system was set
up using the default threshold and histogram prun-
ing parameters, i.e., 200 for the histogram prun-
ing (200 maximum stack size) and 0.00001 for
threshold pruning (hypothesis with a score less
than 0.00001 times the best hypothesis are dis-
carded). The weights of the log-linear combina-
tion are optimised by means of the Minimum Error
Rate Training (MERT) procedure (Och, 2003).

The phrase-based translation model provides
direct and inverted frequency-based and lexical-
based probabilities for each phrase pair in
the phrase table. Phrase pairs are extracted
from symmetrised word alignments generated by
GIZA++ (Och and Ney, 2003). A 5-gram word-
based LM is estimated on the target side of
the parallel corpora using the improved Kneser-
Ney smoothing (Chen and Goodman, 1999).
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Figure 2: Translation quality of the best path in the reduced wordgraphs, measured both in terms of TER
and BLEU. Note that the x-axis is in logarithmic scale for readability purposes.

For modelling word reordering, in addition to a
negative-exponential on the reordering distance,
a model conditioned on phrase pairs was esti-
mated, namely the “orientation-bidirectional-fe”
distortion model (Koehn et al., 2005).

Once the wordgraphs had been built, they
were fed into the open-source Thot toolkit (Ortiz-
Martı́nez and Casacuberta, 2014) 2, which imple-
ments among other things the ITP functionality
used in this work. Such functionality allowed us
to simulate real users by using the reference of the
test data present in the corpus.

5.3 Assessment Metrics
The results produced by the ITP systems asso-
ciated to the different wordgraph size reduction
strategies were evaluated both in terms of conven-
tional SMT metrics and ITP metrics. More specif-
ically, the metrics used were:

• BLEU (Papineni et al., 2001) (Bilingual Lan-
guage Evaluation Understudy) is an SMT pre-
cision metric that measures precision of uni-
grams, bigrams, trigrams and 4-grams, with a
penalty for sentences that are too short.

• TER (Snover et al., 2006) (Translation Edit
Rate) is an SMT error metric that computes
the minimum number of edits required to
modify the system hypotheses so that they
match the references. Possible edits in-
clude insertion, deletion, substitution of sin-
gle words and shifts of word sequences.

• KSMR (Barrachina et al., 2009) (Key Stroke
Mouse-action Ratio) is an ITP error metric

2Available from https://github.com/daormar/thot/

that measures the number of actions required
by a human user to amend the system hy-
potheses so that they match the reference the
user has in mind. Actions considered include
key-strokes and the positioning of the mouse.

5.4 Results
We conducted experiments by testing different
pruning thresholds according to the different
strategies defined in Section 4. Figure 2 reports
the final BLEU and TER scores achieved by the
best hypothesis still present in the wordgraph after
pruning has taken place. It is interesting to see that
the wordgraph pruning strategy does not present
any degradation as measured by TER and BLEU
scores, while the other strategies do seem to cor-
relate wordgraph size and translation quality. This
is explained by the definition itself of wordgraph
pruning strategy: since it only prunes the paths
which fall beneath a given proportion of the proba-
bility of the best path, the best path itself is always
preserved.

More interesting are the results of the ITP sim-
ulation, reported in Figure 3. Here it is shown
that, just as in the case of BLEU and TER, KSMR
seems to correlate quite evenly with wordgraph
size in the case of histogram and threshold thresh-
old strategies. However, when pruning the word-
graph directly, the human effort required to amend
the hypotheses, as measured by KSMR, does
not increase, and even presents a slight improve-
ment for threshold values of 0.2 and 0.4 (equiva-
lent to 21.3k and 9.6k edges on average, respec-
tively). However, such improvement is not sta-
tistically significant and might be due to the ef-
fect of the stochastic error correction described in
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Figure 3: KSMR results when comparing different
wordgraph sizes and the different pruning strate-
gies described. Note that the x-axis is in logarith-
mic scale for readability purposes.
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Figure 4: Average response time in seconds of the
different systems when considering the different
wordgraph size reduction strategies. Note that both
the x-axis and the y-axis are in logarithmic scale.

Section 2.3. Nevertheless, it is important to point
out that for these threshold values the amount of
edges present in the wordgraph is reduced drasti-
cally, while no degradation in the performance of
the system is observed until only around 8000 are
left present in the wordgraph. The difference in
behaviour between the BLEU and TER curves, on
the one side, and the KSMR curves on the other
side lies on the fact that KSMR is computed as an
ITP simulation, and hence requires more informa-
tion from the wordgraph than just its best path.

Finally, Figure 4 reports on the final response
time required by the system. The experiments de-
tailed here were performed on a multi-processor
Intel Xeon E5-2650 @ 2.00GHz machine, with
64GBs memory, although each of the ITP simula-

tions was not parallelised (i.e., each ITP simulation
was executed sequentially). As shown, the com-
plete wordgraph presents response times which are
too high for a system set for online production.
One could difficultly imagine that a potential user
would wait for one second on average (much more
in some cases) for the system to produce a hypoth-
esis completion. However, by reducing the word-
graph by means of the wordgraph pruning strategy
we are able to achieve real-time response times,
while not having to compromise translation qual-
ity or human effort. Response time correlates em-
pirically evenly with wordgraph size. When con-
sidering the 0.2 and 0.4 thresholds of the word-
graph pruning strategy, it was observed that the
average response times were of 0.23 and 0.05 sec-
onds, respectively, which is perfectly suitable for
an ITP system set for online production. Moreover,
it must be emphasised that such speed increase is
achieved without any degradation of system per-
formance measured in terms of KSMR.

6 Conclusions

In this paper we have compared three approaches
for obtaining smaller-sized wordgraphs for the
purpose of providing sentence completions by
means of a state-of-the-art ITP engine. We have
seen that regular wordgraphs, as produced by a
state-of-the-art decoder, imply too much compu-
tational time for their usage within an ITP system.
We have also shown that pruning the wordgraph
directly by removing those paths whose probabil-
ity falls below a certain proportion of the probabil-
ity of the best path is able to yield completions with
exactly the same quality as the un-pruned word-
graphs, but with much better response times.

We understand that the analysis performed in
this work is crucial for research in ITP, since hy-
pothesis completion times above one second can
be considered unacceptable for a human translator.
The pruning techniques proposed in this paper al-
low us to solve this issue effectively.
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