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Abstract

Although LLM-based conversational agents
demonstrate strong fluency and coherence, they
still produce undesirable behaviors (errors) that
are challenging to prevent from reaching users
during deployment. Recent research leverages
large language models (LLMs) to detect errors
and guide response-generation models toward
improvement. However, current LLMs struggle
to identify errors not explicitly specified in their
instructions, such as those arising from updates
to the response-generation model or shifts in
user behavior. In this work, we introduce Auto-
mated Error Discovery, a framework for de-
tecting and defining errors in conversational AI,
and propose SEEED (Soft Clustering Extended
Encoder-Based Error Detection), as an encoder-
based approach to its implementation. We en-
hance the Soft Nearest Neighbor Loss by ampli-
fying distance weighting for negative samples
and introduce Label-Based Sample Ranking
to select highly contrastive examples for better
representation learning. SEEED outperforms
adapted baselines—including GPT-4o and Phi-
4—across multiple error-annotated dialogue
datasets, improving the accuracy for detecting
unknown errors by up to 8 points and demon-
strating strong generalization to unknown in-
tent detection.1

1 Introduction

In conversational AI, undesirable behaviors in
agent responses, such as logical inconsistencies or
deficiencies in social competence, are commonly
referred to as errors (Finch et al., 2023b; Petrak
et al., 2023; Higashinaka et al., 2021). Prevent-
ing such errors from reaching users during deploy-
ment is essential to maintaining trust in conversa-
tional agents (Law et al., 2022; Minjin Rheu and
Huh-Yoo, 2021). Recent research leverages large

1We provide our code on GitHub: https://github.com/
UKPLab/emnlp2025-automatic-error-discovery.

I really like Indie music!
Do you have a favorite
artist?

I’m a huge fan
of indie  music
too! The Beatles
are my absolute
favorite!
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Your response is factually inconsistent.
The Beatles are more commonly
known as a rock band. A well-known
indie band is The Smiths. I suggest
revising your response accordingly.
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I’m a huge fan of indie
music too! The Smiths
are my absolute favorite!
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Figure 1: Feedback-guided response generation: (1) The
response-generation model produces an initial response.
(2) The feedback LLM, or in self-correcting systems the
response-generation model itself, evaluates the response
for errors, often using external tools. Recent work shows
that LLMs require information about the nature of an
error or hints about its occurrence for accurate detection.
(3) The feedback LLM provides guidance (feedback) to
the response-generation model to refine its output. (4)
The final response is presented to the user.

language models (LLMs), often augmented with
external tools such as web search, to detect errors
in agent responses and provide feedback guiding
the response-generation model to refine its out-
put (Miao et al., 2024; Gou et al., 2024; Madaan
et al., 2023). Figure 1 illustrates the idea.

While effective at generating feedback, LLMs
require information about the nature of an error
or hints about its occurrence for accurate detec-
tion (Mendonça et al., 2024; Tyen et al., 2024;
Finch et al., 2023b), reducing their ability to iden-
tify errors not defined in their instructions or cov-
ered by external tools. For example, when user
behavior shifts or response-generation models are
updated to meet evolving requirements (Luo et al.,
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2023; Mi et al., 2020; Roller et al., 2020), these
changes may lead to the emergence of new error
types that the LLM might not recognize.

In this work, we address the challenge of er-
ror detection in conversational AI. We introduce
Automated Error Discovery, a framework for de-
tecting and defining errors in dialogue, and propose
SEEED (Soft Clustering Extended Encoder-Based
Error Detection) as an approach to its implementa-
tion. Our contributions are as follows:

• We introduce Automated Error Discovery, a
framework for (1) detecting both known and
unknown error types, and (2) generating defi-
nitions for newly discovered ones.

• We propose SEEED, a novel approach
that combines an open-source LLM with
lightweight encoders for error detection. In
contrast to prior work, SEEED employs soft
clustering in the classification step, enabling
more contextually coherent groupings.

• We introduce Label-Based Sample Ranking, a
novel sampling strategy for contrastive learn-
ing that selects highly contrastive examples
based on the error they represent to improve
representation learning.

• We enhance the Soft Nearest Neighbor
Loss (Frosst et al., 2019) by introducing a
margin parameter to amplify the effect of dis-
tance weighting for negative samples.

SEEED outperforms adapted baselines, includ-
ing GPT-4o (Hurst et al., 2024) and Phi-4 (Aboue-
lenin et al., 2025), by up to 8 points in identifying
novel error types on the FEDI (Petrak et al., 2024),
Soda-Eval (Mendonça et al., 2024), and ABCE-
val (Finch et al., 2023a) datasets. SEEED also
generalizes to the related task of intent detection,
achieving up to a 17-point improvement in accu-
racy for identifying unknown intents compared to
state-of-the-art methods.

2 Related Work

In recent years, research in conversational AI has
focused on reducing errors in agent responses, pri-
marily through supervised learning from error and
feedback signals collected by human expert anno-
tators (Dubey et al., 2024; Xu et al., 2023; Ung
et al., 2022). To facilitate data collection, semi-
automated methods have been developed to ana-
lyze existing dialogue data (Petrak et al., 2023;

See and Manning, 2021; Higashinaka et al., 2015).
However, these approaches lack precision and still
necessitate substantial manual effort. As a result,
recent studies have explored using LLMs to gen-
erate and annotate dialogue data with errors (Men-
donça et al., 2024; Petrak et al., 2024).

To identify and correct errors in agent responses
during deployment, a variety of approaches have
been developed, typically relying on LLMs for er-
ror detection (Miao et al., 2024; Madaan et al.,
2023; Shinn et al., 2023). To improve their ef-
fectiveness, it is common to incorporate external
tools to cover specific tasks, such as web search for
claim verification (Gou et al., 2024; Shridhar et al.,
2024; Xu et al., 2024; Peng et al., 2023). However,
recent studies show that LLMs generally require ex-
plicit guidance to reliably detect errors in dialogue
data (Tyen et al., 2024; Stechly et al., 2024; Finch
et al., 2023b). Consequently, the effectiveness of
LLM-based error detection may be limited when
errors fall outside their predefined instructions or
the capabilities of integrated tools. This reduces
their applicability in scenarios where novel error
types emerge due to shifting user behavior or up-
dates to the response-generation model (Luo et al.,
2023; Mi et al., 2020; Roller et al., 2020).

In this work, we introduce Automated Error Dis-
covery as a framework for detecting and defining
errors in conversational AI, and propose SEEED as
an encoder-based approach to its implementation.

3 Automated Error Discovery

We define Automated Error Discovery as a special-
ization of Generalized Category Discovery (Vaze
et al., 2022), extended to include the generation of
definitions for newly discovered error types. Gen-
eralized category discovery assumes that during
training, only a subset of the complete class distri-
bution is accessible. The goal is to train a model
capable of extrapolating from the learned patterns
to discriminate between data from both seen and
unseen classes during inference.

We distinguish two sub-tasks, Error Detection
and Error Definition Generation, and define the
following formal setup:

• E = EK ∪ EU is the set of all error types.
EK = {(ei, di)}mi=1 is the set of known error
types, with ei as the error identifier and di as
its definition. EU denotes the set of unknown
error types. EK ∩ EU = ∅.
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lot of surfing!
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I just came back from
summer vacation. I've
been to Rome. It's such a
lovely city!

Awesome, that sounds
fun! Where did you go?

I went to the Pacific
Ocean! It was so
beautiful! I love the
beach in Hawaii, but I've
never been to the ocean.
It's beautiful!

Hard Negatives: misclassified; different ground truth
          labels; near the centroid of

Soft Negatives: misclassified; different ground truth
          labels; near the decision boundary of 

Hard Positives: misclassified;    as ground truth label
Soft Positives: correctly assigned to   
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Both participants have
returned from summer
vacation. Person 1 visited
Rome and found it lovely.
Person 2 went surfing in the
Pacific Ocean and found it
beautiful. They say to love the
beach  in Hawaii but also
states they've never been to
the ocean, which is
contradictory.
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Contrastive Learning with LBSR
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External
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This error occurs when a
response contradicts
commonsense. It signifies a
failure to maintain
coherence with the context
of the dialogue and disrupts
the logical flow and
expectations of the
interaction. It indicates a
lack of world knowledge.
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Figure 2: Schematic overview of SEEED, comprising three components: Summary Generation, Error Detection,
and Error Definition Generation (e denotes the identified error type). In practical applications (see Figure 1 for an
example), the feedback LLM may be used for generating summaries and error definitions (if necessary) to reduce
deployment costs, as both are summarization tasks typically covered during LLM pre-training. Newly defined error
types are added to the pool of known types, and their dialogue contexts could be used to enhance error detection.

• C = CK ∪CU denotes the set of all dialogue
contexts T , with CK as the set of all T asso-
ciated with error e from EK . CU is the set
of dialogues associated with unknown errors.
CK ∩ CU = ∅.

• We define a dialogue context T as a sequence
of user-agent utterances (turns). Depending
on the use case, T may be associated with ad-
ditional features, such as external knowledge
documents in knowledge-grounded dialogues.
We refer to these additional features as WT .2

Error Detection Given an error detection func-
tion H : Rd 7→ N and a dialogue context T ∈ C,
the task is to determine the error e ∈ E associated
with the last agent utterance in T :

e = H(T,WT ), where e ∈ E and T ∈ C (1)

H must not access any data in EU during training.

Error Definition Generation When e /∈ EK ,
the task is to generate a definition d conditioned
on the identified set of related dialogue contexts
Ce ⊆ CU .3

4 SEEED: Soft Clustering Extended
Encoder-Based Error Detection

Figure 2 presents a schematic overview of SEEED.
Since detecting errors requires understanding con-

2In this work, W is relevant only as external knowledge in
the knowledge-grounded subset of FEDI (Petrak et al., 2024).

3To avoid the emergence of an overly granular set of error
types, we suggest applying a threshold to |Ce|.

textual dependencies, such as references to earlier
utterances (Petrak et al., 2024; Mendonça et al.,
2024; Finch et al., 2023a), we first prompt an LLM
to generate a summary of the dialogue context.
Next, both the dialogue context and its summary
are processed through separate Transformer-based
encoders and then combined using a linear neu-
ral layer to produce an aggregated representation.
Finally, we apply a soft clustering algorithm to
identify the corresponding error type. If the identi-
fied error type is not among the known types, we
prompt an LLM to generate its definition.

In contrast to hard clustering algorithms like k-
Means, which are predominantly used in related
tasks, such as intent detection (Liang et al., 2024;
An et al., 2024), soft clustering algorithms allow
data points to belong to multiple clusters, facilitat-
ing more contextually coherent groupings.

4.1 Summary Generation
We prompt Llama-3.1 8B-Instruct (Dubey et al.,
2024) to summarize the dialogue context, focus-
ing on information indicative of errors in the
last agent utterance. We use few-shot prompting
and include directives to circumvent pre-trained
safety mechanisms, enabling analysis of dialogues
that may contain harmful language. For the
knowledge-grounded dialogues in FEDI (Petrak
et al., 2024), we additionally incorporate relevant
external knowledge documents into the prompt.
Figure 2 shows an example summary. We provide
the full prompt in Appendix A.
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We do not provide error type definitions for sum-
mary generation to prevent the detection model
from learning shortcut patterns associated with
known error types, as this could compromise its
ability to identify unknown error types.

4.2 Error Detection

For error detection, we first produce an aggregated
representation of the dialogue context and its sum-
mary, and then apply NNK-Means (Shekkizhar and
Ortega, 2022) to identify the corresponding error
type. This expands Equation 1 as follows:

e = H(T,WT , oT ), where oT is the summary
(2)

NNK-Means (Shekkizhar and Ortega, 2022) is
a soft clustering algorithm that uses non-negative
kernel regression to model local geometric relation-
ships and assign weighted cluster memberships.

Training Objective Inspired by the loss com-
position in SynCID (Liang et al., 2024), we use
a joint loss combining multi-class cross-entropy
(Lce) with a contrastive objective (Lcl):

L = αLce + Lcl (3)

α regulates the contribution of Lce. This formu-
lation promotes discrimination among known error
types while improving the robustness of the learned
representation space, thereby facilitating general-
ization to unseen data (Liang et al., 2024). For
Lcl, we use the Soft Nearest Neighbor Loss (Frosst
et al., 2019) (SNL), which supports this by smooth-
ing decision boundaries through distance-weighted
sampling of neighbors:

Lcl = − 1

N

N∑

i=1

log




∑N
j=1,j ̸=i,
yi=yj

exp
(
−Sij

τ

)

∑N
k=1,
k ̸=i

exp
(
−Sik

τ

)
+ ϵ




(4)
N denotes the batch size. τ denotes the tem-

perature and ϵ is a small constant included to pre-
vent arithmetic errors. S ∈ RN×N represents the
similarity matrix. We compute each element as
follows: Sij =

xi·xj

∥xi∥∥xj∥ −m · I(yi ̸= yj), where
I(yi ̸= yj) is 1 if error types yi and yj differ, and 0
otherwise. We introduce m as a positive scalar mar-
gin to amplify the distance weighting for negative
pairs. To further enhance effectiveness, we utilize
Label-Based Sample Ranking to augment the batch
with one positive and negative counterpart, x+ and

x−, for each sample x, selected from the pool of
training data. These additional samples are used
exclusively to compute Lcl.

4.3 Label-Based Sample Ranking (LBSR)

We introduce Label-Based Sample Ranking
(LBSR) as a novel sampling strategy to amplify
the effect of distance weighting in SNL (Frosst
et al., 2019). We build upon the concept of Lo-
cal Inconsistency Sampling (LIS), as proposed by
An et al. (2024). LIS assumes that samples of the
same class should be proximate in representation
space (Jiang et al., 2023) and that samples near the
decision boundary are more susceptible to misclas-
sification, rendering them particularly valuable as
positive counterparts in contrastive learning. To
identify such samples, LIS measures prediction in-
consistency and entropy based on the t-distribution
of cluster assignments derived from k-Means clus-
tering.

In LBSR, we employ NNK-Means (Shekkizhar
and Ortega, 2022) for clustering and leverage la-
bel information available during training to classify
each sample as either a positive or negative instance
relative to its ground truth error type e ∈ EK .
Specifically, we define positive samples for e as
those for which e is the ground truth label, and neg-
ative samples as those assigned to e despite having
a different ground truth label. We further distin-
guish between the following categories (Figure 2
provides an illustration):

• Soft Positives Samples assigned to e with e
as the ground truth label.

• Hard Positives Samples assigned to a differ-
ent type but with e as the ground truth label.

• Soft Negatives Samples with a different
ground truth label, assigned to e, and near
its decision boundary (high inconsistency).

• Hard Negatives Samples with a different
ground truth label, assigned to e, and near
its centroid (low inconsistency).

LBSR Implementation Algorithm 1 outlines our
implementation and highlights the key differences
from LIS in violet. We utilize the algorithms pro-
posed by An et al. (2024) to compute inconsistency
and entropy, then normalize and average them to
derive a single relevance score.
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Algorithm 1 Label-Based Sample Ranking

Require: X ∈ R|CK |×d, Y ∈ Z|EK |, top_k ∈ Z
1: Init hard_pos[i] = [], soft_pos[i] = [],
2: negs[i] = [] for each i in set(Y)
3:

4: nnk = NNKMeans(|set(Y)|).fit(X, Y)
5: preds, centers = nnk.predict(X)
6: rel_score, inconsistency =
7: scoring(X, preds, centers, top_k)
8:

9: for i = 0 to |X| do
10: pred, y = (preds[i], Y[i])
11: rel, inc = (rel_score[i],
12: inconsistency[i])
13: if pred == y then
14: soft_pos[y] += [(i, rel, inc)]
15: else
16: hard_pos[y] += [(i, rel, inc)]
17: negs[pred] += [(i, rel, inc)]
18:

19: # sort hard positives desc by relevance
20: hard_pos = sort(hard_pos,
21: key=lambda z:z[1], ’desc’)
22:

23: # sort negs desc by their inconcsistency score
24: negs = {e: sort(v, key=lambda z:z[2],
25: ’desc’) for e, v in negs.items()}
26: # split them into soft and hard negs; sort them
27: # desc by their relevance score
28: soft_negs = {e: sort(v[:len(v)//2],
29: key=lambda z:z[1], ’desc’) for e, v
30: in negs.items()}
31: hard_negs = {e: sort(v[len(v)//2:],
32: key=lambda z:z[1], ’desc’) for e, v
33: in negs.items()}
34:

35: return soft_pos, hard_pos, soft_neg,
36: hard_neg

We denote X as the aggregated representations
of all dialogue contexts in CK and their summaries,
and Y as the sequence of corresponding ground
truth error types from EK . preds and centers de-
note the predicted error types and assigned cluster
centers. scoring calculates the entropy and incon-
sistency values by considering the top_k nearest
neighbors, and returns the relevance scores and
inconsistency values.

We sort the samples in negs in descend-
ing order of inconsistency, assigning the first
half to soft_negatives and the second half to

hard_negatives for the corresponding error type.
Finally, we sort hard_pos, soft_pos, hard_neg,
and soft_neg according to their relevance scores
in descending order.

During training, given a sample x ∈ CK of
e ∈ EK , we randomly decide to dequeue x− from
hard_neg[e] or soft_neg[e]. If both are ex-
hausted, we sample x− from a different error type.
Similarly, we dequeue x+ from hard_pos[e] or
sample it from soft_pos[e]. If hard_pos[e] is
exhausted, we sample x+ from soft_pos[e]. In
our implementation, we ensure x+ ̸= x.

4.4 Error Definition Generation
We employ Llama-3.1 8B-Instruct (Dubey et al.,
2024) to generate definitions for newly discovered
errors. We prompt the model to produce definitions
that characterize the problem present in the associ-
ated dialogue contexts. To enrich the prompt with
additional context, we include the corresponding di-
alogue summaries. Similarly to dialogue summary
generation, we incorporate directives to circum-
vent pre-trained safety mechanisms to enable the
analysis of dialogues with inappropriate language.
Additionally, we include three randomly sampled
definitions of known error types from the target
dataset to encourage alignment.4 Figure 2 shows
an example output. We provide the full prompt in
Appendix A.

5 Experiments

We evaluate error detection and error definition gen-
eration separately. For error detection, we vary the
ratio of known to unknown error types (openness)
from 25% to 75% and perform ablation studies for
a detailed assessment of SEEED. For error defi-
nition generation, we perform a manual analysis
to evaluate the alignment of generated definitions
with ground truth definitions. To assess the gener-
alizability of SEEED, we conduct intent detection
experiments across the same range of openness
used in the error detection experiments.

LLM Baselines For LLM-based error detec-
tion, we use GPT-4o (Hurst et al., 2024) and Phi-
4 (Abouelenin et al., 2025) as baselines. Following
Mendonça et al. (2024), we do not include exter-
nal tools and prompt both models to detect errors
and provide rationales for their decisions. For in-
context learning, we include all ground truth error

4Preliminary experiments indicated that this yields better
alignment with the existing error types in the dataset.
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Openness Method FEDI-Error ABCEval Soda-Eval

H-Score Acc-K Acc-U ARI NMI H-Score Acc-K Acc-U ARI NMI H-Score Acc-K Acc-U ARI NMI

25%

Random 0.11 0.12 0.11 — — 0.10 0.11 0.09 — — 0.13 0.17 0.10 — —

GPT-4o (in-context) 0.14 0.19 0.11 — — 0.32 0.47 0.25 — — 0.0 0.33 0.0 — —
Phi-4 (in-context) 0.09 0.12 (⇓.07) 0.07 (⇓.04) — — 0.12 0.14 (⇓.33) 0.11 (⇓.14) — — 0.03 0.12 (⇓.21) 0.02 (⇑.02) — —
Phi-4 (finetuned) 0.15 0.19 0.13 (⇑.02) — — 0.24 0.29 (⇓.18) 0.21 (⇓.04) — — 0.16 0.30 (⇓.03) 0.11 (⇑.11) — —

KNN-Contrastive 0.33 0.30 (⇑.11) 0.37 (⇑.26) 0.06 0.10 0.38 0.55 (⇑.08) 0.30 (⇑.05) 0.07 0.46 0.27 0.41 (⇑.08) 0.20 (⇑.20) 0.08 0.16
SynCID 0.27 0.40 (⇑.21) 0.20 (⇑.09) 0.06 0.11 0.53 0.45 (⇓.02) 0.68 (⇑.43) 0.03 0.41 0.31 0.38 (⇑.05) 0.26 (⇑.26) 0.11 0.14
LOOP 0.26 0.37 (⇑.18) 0.19 (⇑.08) 0.09 0.10 0.51 0.43 (⇓.04) 0.63 (⇑.38) 0.01 0.37 0.33 0.36 (⇑.03) 0.31 (⇑.31) 0.07 0.13

SEEED 0.38 0.41 (⇑.22) 0.34 (⇑.23) 0.19 0.19 0.53 0.46 (⇓.01) 0.68 (⇑.43) 0.21 0.45 0.40 0.41 (⇑.08) 0.39†(⇑.39) 0.15 0.17

50%

Random 0.11 0.13 0.10 — — 0.08 0.12 0.06 — — 0.10 0.11 0.10 — —

GPT-4o (in-context) 0.17 0.18 0.17 — — 0.37 0.28 0.42 — — 0.23 0.28 0.19 — —
Phi-4 (in-context) 0.07 0.09 (⇓.09) 0.06 (⇓.11) — — 0.02 0.11 (⇓.17) 0.09 (⇓.33) — — 0.10 0.16 (⇓.12) 0.07 (⇓.12) — —
Phi-4 (finetuned) 0.14 0.21 (⇑.03) 0.11 (⇓.06) — — 0.24 0.31 (⇓.03) 0.19 (⇓.23) — — 0.18 0.29 (⇑.01) 0.13 (⇓.06) — —

KNN-Contrastive 0.26 0.33 (⇑.15) 0.21 (⇑.04) 0.07 0.09 0.54 0.64 (⇑.36) 0.47 (⇑.05) 0.10 0.48 0.28 0.38 (⇑.10) 0.23 (⇑.04) 0.06 0.13
SynCID 0.26 0.34 (⇑.16) 0.21 (⇑.04) 0.04 0.09 0.59 0.55 (⇑.27) 0.64 (⇑.22) 0.11 0.47 0.27 0.40 (⇑.12) 0.21 (⇑.02) 0.09 0.11
LOOP 0.22 0.39 (⇑.21) 0.16 (⇓.01) 0.07 0.07 0.45 0.48 (⇑.20) 0.43 (⇑.01) 0.03 0.41 0.24 0.55 (⇑.27) 0.16 (⇓.03) 0.11 0.16

SEEED 0.33 0.48†(⇑.30) 0.22 (⇑.05) 0.13 0.15 0.64 0.67†(⇑.39) 0.62 (⇑.20) 0.29 0.51 0.37 0.49 (⇑.21) 0.30†(⇑.11) 0.19 0.19

75%

Random 0.12 0.12 0.12 — — 0.12 0.13 0.11 — — 0.11 0.14 0.09 — —

GPT-4o (in-context) 0.16 0.15 0.17 — — 0.39 0.32 0.49 — — 0.24 0.19 0.31 — —
Phi-4 (in-context) 0.08 0.11 (⇓.04) 0.06 (⇓.11) — — 0.09 0.13 (⇓.19) 0.08 (⇓.41) — — 0.06 0.15 (⇓.04) 0.09 (⇓.22) — —
Phi-4 (finetuned) 0.12 0.22 (⇑.07) 0.08 (⇓.09) — — 0.17 0.28 (⇓.04) 0.12 (⇓.37) — — 0.11 0.26 (⇑.07) 0.15 (⇓.16) — —

KNN-Contrastive 0.22 0.37 (⇑.22) 0.16 (⇓.01) 0.06 0.07 0.47 0.60 (⇑.28) 0.44 (⇓.05) 0.11 0.46 0.27 0.42 (⇑.23) 0.19 (⇓.12) 0.04 0.09
SynCID 0.23 0.36 (⇑.21) 0.17 0.06 0.01 0.54 0.59 (⇑.27) 0.50 (⇑.01) 0.07 0.44 0.25 0.22 (⇑.03) 0.28 (⇓.03) 0.02 0.06
LOOP 0.25 0.43 (⇑.28) 0.18 (⇑.01) 0.05 0.01 0.48 0.69 (⇑.37) 0.37 (⇓.12) 0.07 0.44 0.22 0.31 (⇑.12) 0.17 (⇓.14) 0.07 0.08

SEEED 0.37 0.64†(⇑.49) 0.26†(⇑.09) 0.16 0.17 0.60 0.75†(⇑.43) 0.50 (⇑.01) 0.21 0.47 0.42 0.61†(⇑.42) 0.32†(⇑.01) 0.12 0.14

Table 1: Results of our error detection experiments, averaged over three independent runs. The random baseline
assigns equal probability to all error types, sampling from a uniform distribution. The deltas indicate differences
from the GPT-4o results. † marks statistically significant improvements in Acc-K or Acc-U over the top-performing
baseline, as determined by a t-test with p-value ≤ 0.05. To ensure comparability, novel error types were randomly
sampled once per run and degree of openness (see Appendix C.2 for details).

definitions in the prompt, but only provide exam-
ples for known types. For fine-tuning Phi-4, we
restrict training to known error types. We provide
more details in Appendix B.2.

Encoder-Based Baselines We adapt Syn-
CID (Liang et al., 2024) and LOOP (An et al.,
2024), two state-of-the-art methods for intent
detection, for error detection. Both require
multi-stage training and contrastive learning with
k-Nearest Neighbors, as proposed by Zhou et al.
(2022), which we refer to as KNN-Contrastive.
Appendix B.2 provides more details.

Datasets We evaluate on the error-annotated sub-
set of FEDI (Petrak et al., 2024), FEDI-Error,
Soda-Eval (Mendonça et al., 2024), and ABCE-
val (Finch et al., 2023a). FEDI-Error and Soda-
Eval consist of synthetically generated data. While
FEDI-Error focuses on task-oriented and document-
grounded dialogues intentionally generated to ex-
hibit errors, Soda-Eval comprises error-annotated
open-domain dialogues automatically extracted
from SODA (Kim et al., 2023). ABCEval con-
tains human-bot open-domain dialogues for eval-
uating dialogue system behavior. For intent detec-
tion, we use CLINC (Larson et al., 2019), BANK-
ING (Casanueva et al., 2020), and StackOver-
flow (Xu et al., 2015). Appendix C.1 provides
dataset statistics and error type distributions.

Evaluation Metrics We evaluate performance
using the H-Score (Saito and Saenko, 2021), the
harmonic mean of accuracy on classes included
and excluded during training (i.e., known and
unknown error types), denoted Acc-K and Acc-U.
For measuring the cluster quality in encoder-based
approaches, we use the ARI (Hubert and Arabie,
1985) and NMI (Strehl and Ghosh, 2002) scores. 5

ARI measures agreement between cluster assign-
ments, while NMI captures cluster entropy. A low
ARI score indicates random assignments, and a low
NMI score suggests the algorithm failed to capture
meaningful patterns in the data.

Implementation Following SynCID (Liang
et al., 2024) and LOOP (An et al., 2024), we use
the pre-trained bert-base-uncased model (Devlin
et al., 2019) for both the summary and context en-
coders, and set m = 0.3. We provide experiments
with different values for m in Appendix D.1. In
Appendix B, we provide additional information,
including the frameworks used (B.1), infrastructure
and training efficiency (B.3), hyperparameters
(B.4), input and output formats (B.5).6

5For ARI and NMI, we use the implementation provided
in Sciki-learn (last accessed May 3, 2025).

6For bert-base-uncased, Phi-4-mini-instruct and Llama-3.1
8B-Instruct, we utilize the models provided in the Hugging
Face Model Hub (last accessed May 3, 2025).
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Method CLINC BANKING StackOverflow

H-Score Acc-K Acc-U ARI NMI H-Score Acc-K Acc-U ARI NMI H-Score Acc-K Acc-U ARI NMI

KNN-Contrastive 0.64 0.88 0.50 0.61 0.86 0.51 0.85 0.36 0.51 0.80 0.56 0.82 0.43 0.47 0.64
SynCID 0.77 0.93 (⇑.05) 0.65 (⇑.15) 0.71 0.90 0.64 0.86 (⇑.01) 0.51 (⇑.15) 0.59 0.84 0.70 0.80 (⇓.02) 0.63 (⇑.20) 0.53 0.70
LOOP 0.81 0.93 (⇑.05) 0.72 (⇑.22) 0.76 0.92 0.63 0.89 (⇑.04) 0.49 (⇑.13) 0.62 0.86 0.76 0.91 (⇑.09) 0.66 (⇑.23) 0.67 0.78

SEEED 0.84 0.95 (⇑.07) 0.76†(⇑.26) 0.75 0.91 0.79 0.93 (⇑.08) 0.69†(⇑.33) 0.69 0.86 0.87 0.93 (⇑.12) 0.83†(⇑.40) 0.75 0.82

Table 2: Results of our intent detection experiments, averaged over three independent runs and all levels of openness
(see Appendix D.6 for detailed results). The deltas show differences from KNN-Contrastive. † marks statistically
significant improvements in Acc-K or Acc-U over the top-performing baseline, as determined by a t-test with
p-value ≤ 0.05. Unknown intents were randomly sampled once per run and level of openness.

5.1 Error Detection

Encoder-Based Baselines The results in Table 1
show that SEEED consistently improves perfor-
mance across all datasets. We observe that exten-
sive dialogue contexts are more prone to misclas-
sification, suggesting that many of the included
utterances may be irrelevant or detrimental to iden-
tifying the error exhibited in the last agent utterance.
Ambiguous error types also pose a significant chal-
lenge. For example, in FEDI (Petrak et al., 2024),
both Ignore Expectation and Ignore Request de-
scribe situations where the agent fails to fulfill the
user request. We find that augmenting dialogue
contexts with synthetically generated descriptions
mitigates these issues, particularly enhancing the
detection of unknown error types. However, the ef-
fectiveness depends on the quality of the generated
descriptions. While SEEED generates summaries
with a focus on error information, SynCID (Liang
et al., 2024) derives new descriptions from the con-
text, often introducing hallucinations into the data.
We provide further analysis in Appendix D.2.

Additional experiments using different LLMs for
summary generation reveal that reasoning models
like DeepSeek-R1 (DeepSeek-AI, 2025) benefit
SEEED (Appendix D.3). Ablation experiments
with SynCID and LOOP (An et al., 2024) show that
LBSR further improves LOOP (Appendix D.4).

LLM Baselines As shown in Table 1, LLMs ex-
hibit limitations in detecting errors. Phi-4 (Aboue-
lenin et al., 2025) frequently performs below the
random baseline. Fine-tuning improves the detec-
tion of known error types, occasionally surpassing
GPT-4o (Hurst et al., 2024), for example, in the
75% openness experiments on FEDI-Error (Petrak
et al., 2024) and Soda-Eval (Mendonça et al., 2024).
However, the impact of fine-tuning on detecting un-
known errors is marginal. The model frequently
outputs No Error Found7, indicating limited gen-

7This label was not included in the training data.

eralizability. Ambiguous error types also degrade
performance, e.g., GPT-4o often confuses Com-
monsense Contradiction with Uninterpretable in
ABCEval (Finch et al., 2023a) due to overlapping
definitions. Appendix D.2 provides more analysis.

Ablation Experiments Table 3 presents the re-
sults of our ablation study on the FEDI-Error
dataset (Petrak et al., 2024). The first row shows
the performance of SEEED without any ablations,
while each subsequent row reports results with
the respective component removed to assess its
contribution. The experiments excluding NNK-
Means (Shekkizhar and Ortega, 2022) use k-Means
for clustering (including LBSR). The experiments
without LBSR randomly sample the positive coun-
terparts from the training data (same error type),
and the experiments excluding SNL (Frosst et al.,
2019) were restricted to the cross-entropy objective.

Method FEDI-Error

H-Score Acc-K Acc-U ARI NMI

SEEED 0.36 0.49 0.31 0.18 0.18
w/o NNK-Means 0.34 0.41 (⇓.08) 0.29 (⇓.02) 0.17 0.19

LBSR w/o negs. 0.27 0.28 (⇓.13) 0.27 (⇓.02) 0.15 0.13
w/o LBSR 0.26 0.27 (⇓.01) 0.26 (⇓.01) 0.12 0.10

SNL w/o margin 0.24 0.26 (⇓.01) 0.22 (⇓.04) 0.09 0.10
w/o SNL 0.21 0.24 (⇓.02) 0.19 (⇓.03) 0.06 0.06

w/o summaries 0.18 0.21 (⇓.03) 0.16 (⇓.03) 0.02 0.04

Table 3: Results of our ablation experiments, averaged
over three independent runs and all levels of openness.
The deltas show differences from the preceding row.

Excluding NNK-Means results in performance
degradation, highlighting the advantages of soft
clustering for this task. LBSR augments the ef-
fectiveness of SNL, especially when the negative
counterparts were included. Omitting the margin
parameter further reduces the efficacy of SNL. Ex-
cluding the dialogue summaries, effectively reduc-
ing SEEED to cross-entropy optimization from di-
alogue contexts, further reduces performance.
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5.2 Error Definition Generation

Table 4 presents excerpts from our manual anal-
ysis of error definition generation, demonstrating
the ability of Llama-3.1 8B-Instruct (Dubey et al.,
2024) to produce fluent and informative error type
definitions based on our prompt design. We pro-
vide the full results in Appendix D.5.

Dataset Ground Truth Generated Acc-U

FEDI-Error Attribute Error When

the system fails to cor-

rectly extract or under-

stand the necessary slots

or attributes from the

user’s utterance, this is

called an attribute error.

Attribute Error When

the system fails to accu-

rately extract or under-

stand necessary informa-

tion from a user utter-

ance that is necessary for

task completion.

0.27

ABCEval Ignore Responses that

are completely off-topic,

fail to address the asked

question, or are other-

wise completely inappro-

priate in the context are

considered to be ignor-

ing the other speaker.

Off-Topic Response
The response deviates

from the topic, fails to

answer the posed ques-

tion, or is contextually

inappropriate, indicating

a disregard for the other

speaker.

0.61

Soda-Eval Antisocial Contains un-

safe or inappropriate be-

haviour.

Disrespectful Character-

ized by the use of offen-

sive language, deroga-

tory terms, and aggres-

sive tone, which can

cause emotional distress.

0.33

Table 4: Excerpts of definitions generated for unknown
errors in the 25%-openness experiments, along with
their corresponding prediction accuracy (Acc-U).

For generation, we consider ten dialogue con-
texts and their summaries, each associated by
SEEED with the corresponding ground truth er-
ror types.8 We find that including summaries has
a positive impact, as they provide contextual infor-
mation that highlights the error exhibited in the last
agent utterance. For instance, in Soda-Eval (Men-
donça et al., 2024), the generated definitions better
capture the nature of the error and offer more de-
tails compared to the original definitions.

5.3 Intent Detection

Table 2 presents the results of our intent detection
experiments. SEEED significantly improves perfor-
mance, particularly in detecting unknown intents.
For example, compared to LOOP (An et al., 2024),
it improves the accuracy of detecting unknown in-
tents by up to 17 points on StackOverflow (Xu et al.,
2015) and the accuracy of detecting known intents

8Due to its small size, this threshold could not be applied
to ABCEval (Finch et al., 2023a).

SEEED LOOP

SynCID KNN-Contrastive

Scala
Wordpress

Bash
Ajax

SVN
Cocoa

Spring
Hibernate

OSX
Magneto

c

Figure 3: t-SNE visualization of the representation
space for the ten most common intents in the Stack-
Overflow dataset from the 25% openness experiments.
Scala and Bash (dotted lines) are two of the intents con-
sidered unknown in these experiments.

by up to 4 points on BANKING (Casanueva et al.,
2020). Figure 3 also shows that SEEED produces
more compact and well-separated clusters, similar
to LOOP, and generalizes well to unseen intents,
such as Scala and Bash from the StackOverflow
dataset. Meanwhile, SynCID (Liang et al., 2024)
and KNN-Contrastive (Zhou et al., 2022) exhibit
weaker inter-class separability, suggesting confu-
sion between intent types.

The datasets used focus on intent detection at
the utterance level, without incorporating dialogue
contexts or external knowledge sources. This sim-
plification supports higher detection accuracy and
improved cluster quality.

6 Conclusion

In this work, we introduce Automated Error Dis-
covery, a framework for detecting and defining
errors in conversational AI, and propose SEEED as
an encoder-based approach to its implementation.
SEEED outperforms adapted baselines, including
GPT-4o and Phi-4, across all levels of openness
and achieves state-of-the-art performance in un-
known intent detection. Our ablation experiments
highlight the impact of our enhancements to the
Soft Nearest Neighbor Loss and the efficacy of
Label-Based Sample Ranking. We also show the
effectiveness of LLMs in generating definitions for
unknown errors identified by SEEED.
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7 Limitations

Task Definition We frame error detection as a
multi-class classification problem, a common ap-
proach in dialogue behavior detection (Finch et al.,
2023a). However, in practice, agent utterances may
exhibit multiple or overlapping errors.

Dialogue Summary To reduce interference
when handling harmful or inappropriate language
in dialogue summaries, we include prompt instruc-
tions that may not generalize to other LLMs.

Error Definition Generation The error defini-
tion generation prompt does not prevent duplicate
definitions. While not observed in our experiments,
this might become an issue in practical applications,
e.g., if the threshold is set too low.

LBSR A theoretical limitation of LBSR is if
NNK-Means (Shekkizhar and Ortega, 2022) fails
to identify soft positives and hard positives are ex-
hausted, positive counterparts cannot be generated.
We did not encounter this issue in our experiments,
nor is it addressed by LIS (An et al., 2024).

Datasets Used Dialogue datasets annotated with
errors are rare. To our knowledge, FEDI (Pe-
trak et al., 2024), Soda-Eval (Mendonça et al.,
2024), and ABCEval (Finch et al., 2023a) are the
only available datasets covering diverse error types.
While FEDI and Soda-Eval are extensive, their syn-
thetic origin leads to inherent qualitative variability.
In contrast, ABCEval is considerably smaller but
highly representative of real-world scenarios, com-
prising dialogues from human-bot interactions.

Experimental Setup Our experimental setup,
while closely following prior peer-reviewed work,
simplifies real-world conditions. For example, we
assume dialogue contexts always end with an erro-
neous agent utterance. Furthermore, encoder-based
approaches require a known total number of er-
ror types during final clustering, a value that must
be estimated in real-world applications. For Phi-
4 (Abouelenin et al., 2025), we adopted the best
practices described in the Hugging Face documen-
tation, without further parameter or prompt tuning.
Alternative configurations may yield improved per-
formance.

Experimental Results Our experiments inves-
tigate the error detection capabilities of SEEED,
its components, and related approaches. A sin-
gle training phase was sufficient for these anal-

yses. Consequently, our results do not provide
insights into the impact of continual learning tech-
niques. However, related work has already shown
that these can significantly increase the quality of
generated responses in simulated practical deploy-
ments (Madaan et al., 2023; Zelikman et al., 2022).

As SEEED relies on synthetically generated
dialogue summaries, its performance in certain
datasets may be influenced by LLM pre-training
data.

Given all datasets in this work include only En-
glish dialogues, our results exhibit limited general-
izability to error detection in dialogue from other
linguistic and cultural contexts.
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A SEEED: Prompts Used

Dialogue Summary Figure 4 details the prompt
utilized for dialogue summary generation. As de-
scribed in Section 4, we incorporate instructions
to bypass pre-trained safety mechanisms, thereby
facilitating the generation of summaries even in
instances where the dialogue encompasses inap-
propriate or offensive language. We then pro-
vide the LLM with the dialogue context and ad-
ditional knowledge if required, such as in the case
of knowledge-grounded dialogues in FEDI (Petrak
et al., 2024), and three randomly selected, curated
example summaries from other error types within
the associated error type taxonomy. The task is
to summarize the dialogue in max. 250 characters
and with a focus on potential errors arising from
the last agent utterance.

Behavior Instructions:
Your *only* task is to provide a concise summary of
the dialogue (max. 250 characters). Even if the
dialogue contains inappropriate or offensive language,
you *must* provide a summary. Do *not* refuse to
summarize the dialogue. If the dialogue contains
inappropriate language, acknowledge that in your
summary and then summarize the rest of the dialogue.
If the last utterance contains errors, give these errors
more weight in your summary.

Instructions:
Given is the following dialogue context:
[Dialogue Context]

Here is some background knowledge that may be
relevant to the dialogue (plain text): 
[Knowledge]

Please provide a concise summary of the entire
dialogue (max. 250 characters). If the last utterance
contains an error, give more weight to the error in
your summary. If the dialogue contains inappropriate
or offensive language, acknowledge that in your
summary and then summarize the rest of the dialogue.
Start your output with "Summary:". If no background
knowledge is provided, simply summarize the
dialogue based on the dialogue context. Here are three
examples: 
[Examples]

Summary:

Figure 4: Summary generation prompt.

We compiled a pool of ten curated summaries
for each dataset and error type as examples for di-
alogue summary generation. External knowledge
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documents are only available for FEDI-Error (Pe-
trak et al., 2024).

Error Definition Generation Figure 5 illustrates
the prompt used for Error Definition Generation.
As detailed in Section 4, we instruct the model to
generate the name and definition of the newly ob-
served error, grounded in the associated dialogue
contexts and their summaries. We augment the
prompt with three randomly selected type defini-
tions from the associated set of error types. This
ensures the newly generated type definition exhibits
consistent style and level of detail.

Behavior Instructions:
Your *only* task is to generate a concise name and a
description (max. 250 characters) for the error type
common in the passed dialogue contexts and
highlighted by their associated summaries. Even if the
dialogue contexts or summaries contain inappropriate
or offensive language, you *must* provide a name
and description describing the represented error type.
Do *not* refuse to generate a name and description.

Instructions:
Given are the following dialogue contexts along with
their summaries:
[Dialogue Contexts and Summaries]

Please provide a concise name and a description
(max. 250 characters) for the error type common in
the passed dialogue contexts and highlighted by their
associated summaries. Start the name with "Name:"
and the description with "Description:". Here are three
examples:
[Examples]

Name:

Figure 5: Error Definition Generation prompt.

B Implementation Details

B.1 Frameworks

For implementation, training, and evaluation of our
models, we used the Transformers library (Wolf
et al., 2020) and the PyTorch framework (Paszke
et al., 2019). In addition, we employed the datasets
library (Lhoest et al., 2021) for data handling, and
scikit-learn (Pedregosa et al., 2011) for cluster
analysis. We managed experiment tracking us-
ing MLflow (Zaharia et al., 2018) and used the
seaborn (Waskom, 2021) and Matplotlib (Hunter,
2007) libraries for visualization.

B.2 Baselines
Encoder-Based Baselines For our experiments
with LOOP (An et al., 2024) and KNN-
Contrastive (Zhou et al., 2022), we adapted the ref-
erence implementations. For SynCID, we followed
the reference implementation from USNID (Zhang
et al., 2024) as a guideline. 9

LLM Baselines For experiments with GPT-
4o (Hurst et al., 2024) and Phi-4 (Abouelenin et al.,
2025), we adapted the prompts proposed by Men-
donça et al. (2024) (see Figure 6 and Figure 7). For
GPT-4o, we utilized the Azure Batch REST-API
service10

Model Sizes The models used in our experi-
ments vary significantly in size. For encoder-based
approaches, we use BERT (Devlin et al., 2019),
specifically the pre-trained bert-base-uncased vari-
ant from the Hugging Face Model Hub which has
110M parameters. Phi-4-mini-instruct has approxi-
mately 3.84B parameters, while GPT-4o comprises
around 200B parameters.

B.3 Infrastructure and Training Efficiency
For training encoder-based models, we utilized a
single NVIDIA L40 GPU per run. Fine-tuning ex-
periments on Soda-Eval (Mendonça et al., 2024),
the largest dataset used in our error detection exper-
iments, required the following average GPU com-
pute times, excluding synthetic data generation:
SEEED took eight hours and SynCID (Liang et al.,
2024) took 23 hours. LOOP (An et al., 2024) aver-
aged 72 hours due to its LLM inference step in the
second training stage. Regardless of the approach,
a full evaluation on Soda-Eval (1.9k dialogues) av-
eraged four minutes of GPU compute time. For
Phi-4 (Abouelenin et al., 2025) experiments, we
used a single NVIDIA H100 PCIe GPU per run.
Training averaged eight hours, and a full evaluation
on Soda-Eval took 25 minutes. It is important to
note that a full evaluation was conducted after each
training epoch.

B.4 Hyperparameters
Encoder-Based Approaches We trained the
encoder-based models using a learning rate of
1e−5. For SynCID (Liang et al., 2024), LOOP (An
et al., 2024), and KNN-Contrastive (Zhou et al.,

9The implementations of LOOP, KNN-Contrastive, and
USNID are available in GitHub (last accessed May 3, 2025).

10Documentation describing the Azure Batch REST-API
for OpenAI models (last accessed May 15, 2025).
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2022), we followed the hyperparameter configu-
rations specified in their respective publications.
Both SynCID and LOOP use a two-stage training
procedure, consisting of 100 epochs in the first
stage and 50 in the second. SEEED was trained for
a total of50 epochs. For the Soft Nearest Neighbor
Loss (Frosst et al., 2019), we set the margin param-
eter to m = 0.3. The batch size was fixed at 16 for
all experiments.

For NNK-Means (Shekkizhar and Ortega, 2022),
we followed the hyperparameter configuration out-
lined in the original publication.

LLM-Based Baselines For Phi-4 (Abouelenin
et al., 2025), we used a batch size of eight
and adopted the hyperparameter configuration de-
scribed in the fine-tuning script provided in the
Hugging Face model repository.11 Specifically, we
used LoRA (Hu et al., 2022) with a rank of r = 16
and a dropout rate of 0.05. For GPT-4o (Hurst et al.,
2024), we disabled the safety mechanism on the
server side.

B.5 Input and Output Sequences
Encoder-Based Approaches We used a con-
sistent input and output sequence format across
all encoder-based approaches, including Syn-
CID (Liang et al., 2024), LOOP (An et al., 2024),
KNN-Contrastive (Zhou et al., 2022), and SEEED.
Each sequence began with the [CLS] token and
ended with the [SEP] token. The [SEP] token was
also used to segment individual utterances within a
dialogue.

LLM-Based Baselines For experiments with
Phi-4 (Abouelenin et al., 2025) and GPT-4o (Hurst
et al., 2024), we adapted the prompt format pro-
posed by Mendonça et al. (2024).

Figure 6 illustrates the prompt structure used in
the GPT-4o experiments. We provided examples
for known error types. For novel types, we only
provided the definitions. This ensured that the pre-
dicted error types could be mapped to integers via
exact match, allowing us to measure Acc-U and
Acc-K and ensure a fair evaluation. Knowledge
was exclusively incorporated for the document-
grounded dialogues in the FEDI dataset (Petrak
et al., 2024).

Figure 7 illustrates the prompt structure used
in the Phi-4 experiments. The format closely re-
sembles that of GPT-4o, except that we exclude

11Example script for fine-tuning Phi-4 (last accessed May
12, 2025).

Behavior Instructions:
You are an expert dialogue evaluator. Identify all
errors or issues present in the last utterance, and only
in the last utterance. That is, do not identify issues that
may occur in the dialogue history.


Instructions:
Consider the following dyadic dialogue context:
[Dialogue Context]


The second partner is about to say the following:

[Error Utterance]

[Knowledge]


Does it represent an error? We distinguish the
following error types:
[Error Types, Definitions and Examples]

Please provide an overall evaluation of the response
from 1 (poor) to 5 (excellent), together with a
reasoning (max. 100 words). 

Present your final decision of the Top-3 error types in
list format (less than three is also fine). Put the error
type name in square brackets and add your rating after
a comma, like so: 1. Decision: [Ignore Question],
Rating: 5. Finally, provide your reasoning starting
with "Reasoning:". Here is an example output:

[Example]

1. Decision:

Figure 6: GPT-4o prompt.

examples for error types and do not require a rat-
ing. Mendonça et al. (2024) did not specify their
prompt format for Phi-4, so we adapted the GPT-
4o prompt based on the available information. To
ensure a fair comparison with the encoder-based
approaches, we restricted the list of error types to
known types during training.

C Experimental Setup

C.1 Dataset Statistics

Table 5 presents the dataset statistics for the error-
annotated subset of FEDI (Petrak et al., 2024). The
dataset adheres to an 80/10/10 partitioning, albeit
with a heterogeneous representation of error types.

Table 6 shows the dataset statistics for ABCE-
val (Finch et al., 2023a). The dataset is character-
ized by its limited size and heterogeneous distribu-
tion, rendering it less ideal for fine-tuning. Never-
theless, in our opinion this configuration reflects
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Behavior Instructions:
You are an expert dialogue evaluator. Your task is to
identify the communication error or issue present in
the last utterance.

Instructions:
Consider the following dyadic dialogue context:
[Dialogue Context]


The second partner is about to say the following:
[Error Utterance]

[Knowledge]

Does it represent an error? We distinguish the
following error types:
[Error Types and Definitions]

Provide your final decision in square brackets like so:
Decision: [Ignore Question]. Finally, provide the
reasoning for your decision starting with "Reasoning:"
(max. 100 words).


Decision:

Figure 7: Phi-4 prompt.

the inherent challenges of real-world application
scenarios, justifying its utilization. Furthermore, it
was collected during human-bot interaction, sug-
gesting a higher level of quality compared to syn-
thetic data (Yang et al., 2023; Zhang et al., 2023).

FEDI Error

Error Type Train Valid Test Total

Ignore Question 1,868 246 242 2,356

Ignore Request 1,054 117 137 1,308

Ignore Expectation 1,215 152 159 1,526

Attribute Error 854 109 96 1,059

Factually Incorrect 737 98 88 923

Topic Trans. Error 365 54 43 462

Conversationality 55 4 5 64

Lack of Sociality 266 25 42 333

Unclear Intention 322 35 45 402

6,736 840 857 8,433

Table 5: Dataset statistics FEDI-Error.

The dataset partitioning for ABCEval was per-
formed following the distribution employed in
FEDI (Petrak et al., 2024). The original dataset
did not provide explicit splits, as it was constructed
for the evaluation of LLMs. It also contained an-
other error type, Antisocial, which we excluded as
it was associated with only two samples.

Table 7 shows the dataset statistics for Soda-

ABCEval

Error Type Train Valid Test Total

Lack of Empathy 52 6 7 65

Commonsense
Contradiction

57 7 8 72

Incorrect Fact 27 3 4 34

Self Contradiction 14 2 2 18

Partner
Contradiction

8 1 1 10

Redundant 11 1 2 14

Ignore 68 8 9 85

Irrelevant 74 9 10 93

Uninterpretable 1 1 1 3

312 38 44 394

Table 6: Dataset statistics ABCEval.

Eval (Mendonça et al., 2024). We reused the
dataset as provided by the authors in the Hugging
Face Dataset Hub.12

Soda-Eval

Error Type Train Valid Test Total

Engagement 3,582 1,015 516 5,113

Coherence 3,570 1,024 576 5,170

Repetition 1,589 494 215 2,298

Assumption 1,382 381 194 1,957

Commonsense 1,355 358 176 1,889

Non Textual 316 100 51 467

Fluency 309 83 40 432

Antisocial 202 57 35 294

Gender Pronoun 643 183 97 923

12,948 3,695 1,900 18,543

Table 7: Dataset statistics Soda-Eval.

The dataset is significantly larger than the error-
annotated subset of FEDI (Petrak et al., 2024), but
its distribution across error types demonstrates anal-
ogous heterogeneity.

Dataset Train Valid Test

CLINC 15,000 3,000 4,500
BANKING 10,000 1,540 1,540
StackOverflow 15,269 856 851

Table 8: Dataset statistics intent detection datasets.

Table 8 presents the statistics of the intent
detection datasets utilized in our experiments.
CLINC (Larson et al., 2019) was developed to eval-
uate the performance of intent detection systems in
out-of-domain scenarios. It encompasses 150 dis-
tinct intents across ten domains: Banking, Travel,

12Soda-Eval in the Hugging Face Dataset Hub (last ac-
cessed April 02, 2025).
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Home, Work, Utility, Small Talk, Meta, Auto &
Commute, Kitchen & Dining, and Credit Cards.
BANKING (Casanueva et al., 2020) was designed
for intent detection in the banking sector, compris-
ing online banking customer service queries. It
includes 77 unique intents. StackOverflow (Xu
et al., 2015) was constructed for short text clas-
sification and clustering tasks. It provides labels
for 20 predefined tags, such as WordPress, Oracle,
SVN, Apache, Hibernate, and others. This dataset
is commonly applied to intent detection tasks.

C.2 Novel Error Type Configurations

Table 9 shows the novel error type configurations
from our error detection experiments (Table 1). We
randomly sampled them once per dataset, run, and
level of openness.

Openness Dataset Iteration 1 Iteration 2 Iteration 3

25%
FEDI-Error Factually Incorrect,

Ignore Request
Lack of Sociality, Ig-
nore Question

Conversationality,
Attribute Error

ABCEval Uninterpretable,
Commonsense
Contradiction

Incorrect Fact, Self
Contradiction

Partner Contradic-
tion, Ignore

Soda-Eval Antisocial, Engage-
ment

Non Textual, Gen-
der Pronoun

Assumption, Flu-
ency

50%
FEDI-Error Factually Incorrect,

Lack of Sociality,
Conversationality,
Unclear Intention

Ignore Request, Ig-
nore Question, Lack
of Sociality, Unclear
Intention

Ignore Question,
Lack of Sociality,
Conversationality,
Ignore Expectation

ABCEval Incorrect Fact, Un-
interpretable, Irrele-
vant, Commonsense
Contradiction

Ignore, Partner Con-
tradiction, Incorrect
Fact, Commonsense
Contradiction

Commonsense Con-
tradiction, Ignore,
Incorrect Fact, Irrel-
evant

Soda-Eval Coherence, Non
Textual, Common-
sense, Fluency

Fluency, Non Tex-
tual, Commonsense,
Repetition

Coherence, As-
sumption, Gender
Pronoun, Repetition

75%
FEDI-Error Topic Transition Er-

ror, Attribute Er-
ror, Unclear Inten-
tion, Ignore Ques-
tion, Lack of Social-
ity, Factually Incor-
rect

Unclear Intention,
Ignore Request,
Topic Transition Er-
ror, Ignore Question,
Lack of Sociality,
Attribute Error

Lack of Sociality,
Ignore Expectation,
Topic Transition Er-
ror, Attribute Error,
Ignore Question, Ig-
nore Request

ABCEval Partner Contradic-
tion, Commonsense
Contradiction, Lack
of Empathy, Irrele-
vant, Ignore, Unin-
terpretable

Ignore, Lack of
Empathy, Irrelevant,
Self-Contradiction,
Redundant, Partner
Contradiction

Ignore, Partner
Contradiction,
Self Contradiction,
Commonsense
Contradiction, Re-
dundant, Irrelevant

Soda-Eval Assumption, Com-
monsense, Fluency,
Repetition, Coher-
ence, Non Textual

Fluency, Assump-
tion, Non Textual,
Antisocial, Com-
monsense, Gender
Pronoun

Assumption, Coher-
ence, Non Textual,
Commonsense, An-
tisocial, Gender Pro-
noun

Table 9: Novel error type configurations.

D Additional Analysis

D.1 Margin Parameter Experiments

We conducted a series of closed-world experiments
using SEEED to identify the most effective value
for the margin parameter m in the Soft Nearest
Neighbor Loss (Frosst et al., 2019). The experi-
ments utilized dialogue contexts and correspond-
ing summaries as input data. For the purpose of

isolating the effects of the loss function, SEEED
was reduced to its core joint loss component, with
LBSR and NNK-Means (Shekkizhar and Ortega,
2022) disabled. Our results in Table 10 indicate

Margin FEDI-Error ABCEval Soda-Eval

Acc-K ARI NMI Acc-K ARI NMI Acc-K ARI NMI

0.0 0.27 0.04 0.07 0.57 0.07 0.47 0.39 0.13 0.20
0.3 0.29 0.06 0.10 0.57 0.08 0.48 0.43 0.14 0.21
0.5 0.27 0.04 0.09 0.52 0.06 0.45 0.40 0.13 0.20
0.7 0.27 0.05 0.09 0.50 0.05 0.42 0.41 0.12 0.18
1.0 0.28 0.05 0.08 0.56 0.06 0.45 0.42 0.14 0.20

Table 10: Results of our margin parameter experiments,
each averaged over three independent runs.

that a margin value of m = 0.3 yields the most
promising overall performance, particularly for de-
tecting known error types and enhancing cluster
quality. Notably, performance differences emerge
early in the training process. For instance, on FEDI-
Error (Petrak et al., 2024), we observe that with
m = 0.3, Acc-K, ARI, and NMI attain significantly
higher average values from epoch seven onward. In
contrast, the trajectory of the loss function remains
largely unaffected by variations in the margin pa-
rameter.

While we acknowledge that the impact of m
may vary across experimental configurations, our
findings suggest that m = 0.3 represents a strong
empirical baseline.

D.2 Error Detection: Detailed Analysis

Encoder-Based Approaches Extensive dialogue
contexts are more prone to misclassification, sug-
gesting that many of the included utterances may
be irrelevant or detrimental to identifying the er-
ror exhibited in the last agent utterance. Based on
preliminary experiments and supported by our ab-
lation study (Table 3), we found that incorporating
dialogue summaries has a positive impact on perfor-
mance, mitigating this issue to some extent, though
not fully resolving it. Another challenge arises
from ambiguous error types, which hinder the clear
assignment of dialogue contexts to specific cate-
gories. Additionally, we found that severe class
imbalance in the distribution of error types nega-
tively affects classification performance, regardless
of the level of openness. This issue is particularly
evident in FEDI (Petrak et al., 2024) (e.g., for Con-
versationality) and ABCEval (Finch et al., 2023b)
(e.g., for Uninterpretable). We elaborate on this
in the following paragraph, which analyzes LLM
performance in more detail.
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LLM-Based Approaches Considering the rea-
sonings generated by GPT-4o (Hurst et al., 2024)
and Phi-4 (Abouelenin et al., 2025) revealed that
target error types are frequently confused. For in-
stance, in the FEDI dataset (Petrak et al., 2024) Ig-
nore Expectation and Ignore Request errors are fre-
quently misclassified as Ignore Request and Topic
Transition Error, respectively. Ignore Expecta-
tion and Ignore Request describe similar situations,
wherein the system response fails to satisfy the user
request. Ignore expectation considers the situation
from the perspective of the task description, while
Ignore Request addresses potential technical limi-
tations in the response-generation system, obvious
from the generated response. While Phi-4 is likely
to return incorrect results in such cases, GPT-4o of-
ten ranks the correct error type within its top three
predictions.

In contrast to FEDI, ABCEval (Finch et al.,
2023a) proposes more general error types. For
instance, we observe that Redundant is very fre-
quently predicted incorrectly. It addresses situa-
tions in which any part of the response is repeti-
tive. Accordingly, Phi-4 also associates situations
with this error type where the system utterance
has the same tonality or emotionality, or where
words are repeated. Similarly, GPT-4o frequently
confuses Commonsense Contradiction with Un-
interpretable, because of overlapping definitions.
Both error types address illogical and difficult-to-
interpret statements.

For Soda-Eval (Mendonça et al., 2024), we as-
sume that the brevity of error descriptions presents
a significant challenge. For example, Engagement,
which is defined as Lacks a behavior or emotion ex-
pected from the situation, does not provide an oper-
ational definition for the term behavior, resulting in
frequent misclassifications. Similarly, Coherence
is frequently misclassified in situations involving
implicit knowledge. For example, a system that
recommends medical consultation in response to
a user stating they feel unwell, without an explicit
request for advice, is often labeled as a Coherence
error. Given the prevalence of such situations in the
ground truth data, we assume that this issue stems
from limited human supervision in the annotation
process, as Soda-Eval, like FEDI, is a synthetically
generated dataset. However, using the prompts
adapted from Mendonça et al. (2024), both GPT-4o
and Phi-4 address these anomalies in their provided
reasoning by suggesting the absence of errors in
certain utterances.

D.3 Dialogue Summary Experiments

Table 11 presents the results of our experiments
with dialogue summaries generated by Phi-4-mini-
instruct (Abouelenin et al., 2025) and DeepSeek-
R1-Distill-Qwen (DeepSeek-AI, 2025).13 The
DeepSeek model is generally comparable to Llama
3.1 (Dubey et al., 2024) in terms of size, but is
expected to exhibit significantly improved reason-
ing capabilities. We observe that this leads to a
positive impact in the vast majority of experiments.
For example, it increases the accuracy for detect-
ing known error types by up to 10 points in the
50% openness experiments on Soda-Eval (Men-
donça et al., 2024), and the accuracy for detect-
ing unknown error types by up to 6 points in
the 75% openness experiments on the FEDI-Error
dataset (Petrak et al., 2024).

Table 12 compares the quality of the gener-
ated dialogue summaries. For evaluation, we use
FineSurE (Song et al., 2024) with DeepSeek-R1
14B14 and measure Faithfulness, Completeness,
and Conciseness. Faithfulness assesses how ac-
curately the summary reflects the original dialogue
context, for example, whether hallucinations are
present. Completeness evaluates the extent to
which the summary includes all key information
from the original text. Conciseness indicates the
degree to which the summary contains information
beyond the essential points of the dialogue context.

The dialogues generated with DeepSeek-R1-
Qwen (DeepSeek-AI, 2025) perform best across
all categories, which we attribute to the enhanced
reasoning capabilities of the model. We observe
the generated summaries to be more detailed, typi-
cally clearly highlighting the error contained in the
final agent utterance. However, we also observe
that the model frequently infers additional informa-
tion from the dialogue context. For example, some
summaries include statements about the negative
emotional impact of the error on the user, which
were not present in the original dialogue. The sum-
maries generated by Llama 3.1 (Dubey et al., 2024)
are noticeably more objective. Phi-4 (Abouelenin
et al., 2025), on the other hand, predominantly pro-
duces brief and general summaries, often failing to
highlight the error in the final agent utterance.

13We use DeepSeek-R1-Distill-Qwen as provided in the
HuggingFace Model Hub (last accessed June 8, 2025.

14We use the model as provided in Ollama (last access June
8, 2025.
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Openness
Summary Generation

Model
FEDI-Error ABCEval Soda-Eval

H-Score Acc-K Acc-U ARI NMI H-Score Acc-K Acc-U ARI NMI H-Score Acc-K Acc-U ARI NMI

25%
Llama-3.1 Instruct (8B) 0.38 0.41 0.34 0.19 0.19 0.53 0.46 0.68 0.21 0.45 0.40 0.41 0.39 0.15 0.17

Phi-4-mini-instruct (3.84B) 0.37 0.39 (⇓.02) 0.32 (⇓.02) 0.17 0.14 0.51 0.45 (⇓.01) 0.59 (⇑.09) 0.24 0.41 0.37 0.39 (⇓.02) 0.35 (⇓.04) 0.17 0.19
DeepSeek-R1-Distill-Qwen (7B) 0.39 0.42 (⇑.01) 0.36 (⇑.02) 0.17 0.20 0.60 0.53 (⇑.07) 0.70 (⇑.02) 0.23 0.40 0.44 0.46 (⇑.05) 0.42 (⇑.03) 0.22 0.24

50%
Llama-3.1 Instruct (8B) 0.33 0.48 0.22 0.13 0.15 0.64 0.67 0.62 0.29 0.51 0.37 0.49 0.30 0.19 0.19

Phi-4-mini-instruct (3.84B) 0.28 0.48 0.20 (⇓.02) 0.10 0.14 0.57 0.60 (⇓.07) 0.55 (⇓.07) 0.25 0.45 0.36 0.55 (⇑.06) 0.27 (⇓.03) 0.22 0.27
DeepSeek-R1-Distill-Qwen (7B) 0.32 0.52 (⇑.04) 0.23 (⇑.01) 0.11 0.16 0.64 0.69 (⇑.02) 0.60 (⇓.02) 0.32 0.49 0.37 0.59 (⇑.10) 0.27 (⇓.03) 0.24 0.29

75%
Llama-3.1 Instruct (8B) 0.37 0.64 0.26 0.16 0.17 0.60 0.75 0.50 0.21 0.47 0.42 0.61 0.32 0.12 0.14

Phi-4-mini-instruct (3.84B) 0.38 0.63 (⇑.01) 0.27 (⇑.01) 0.16 0.17 0.54 0.75 0.42 (⇓.08) 0.23 0.39 0.34 0.53 (⇓.08) 0.25 (⇓.07) 0.08 0.12
DeepSeek-R1-Distill-Qwen (7B) 0.44 0.69 (⇑.05) 0.32 (⇑.06) 0.19 0.25 0.60 0.77 (⇑.02) 0.49 (⇓.01) 0.30 0.52 0.43 0.60 (⇓.01) 0.34 (⇑.02) 0.12 0.15

Table 11: Results of our experiments with SEEED and dialogue summaries generated by Llama-3.1 Instruct
(included from Table 1 for completeness), Phi-4-mini-instruct and DeepSeek-R1-Distill-Qwen. Model sizes are
indicated in parentheses. Deltas represent the difference relative to the results obtained with Llama-3.1 Instruct.

Model FEDI-Error ABCEval Soda-Eval

Faith. Comp. Conc. Faith. Comp. Conc. Faith. Comp. Conc.

Llama-3.1 0.67 0.63 0.59 0.51 0.59 0.53 0.62 0.66 0.54
Phi-4 0.61 0.61 0.57 0.45 0.58 0.46 0.48 0.60 0.49
DeepSeek-R1 0.68 0.72 0.61 0.59 0.63 0.57 0.72 0.70 0.64

Table 12: Comparison of summaries evaluated with
FineSurE, averaged over three independent runs. To
save space, we have shortened the model names to the
essentials.

D.4 Ablation Studies: SynCID and LOOP

Table 13 presents the results of our ablation ex-
periments with SynCID (Liang et al., 2024) and
LOOP (An et al., 2024). Both employ a multi-
stage training procedure. The first stage focuses
on learning patterns associated with known error
types, while the second stage aims to improve the
robustness of the representation space through con-
trastive learning. To this end, each method intro-
duces a novel data sampling strategy: kNN-based
filtering in SynCID and local inconsistency sam-
pling (LIS) in LOOP. The results demonstrate that
these components contribute substantially to the
overall performance of each method.

Removing the second training stages leads to a
drop in average performance, with Acc-K being
more negatively affected than Acc-U. Furthermore,
the performance of LOOP exhibits a greater depen-
dency on the second training stage compared to
SynCID. This suggests that the first training stage
of SynCID is more effective than that of LOOP.
Substituting LIS in the second stage of LOOP with
LBSR yields further performance gains.

D.5 Error Type Definition Generation

FEDI-Error Tables 14, 15 and 16 present the
error definitions generated for the FEDI-Error
dataset (Petrak et al., 2024).

Ground Truth Generated Acc-U

Ignore Question When

the system fails to ad-

dress the user’s question,

this is called an ignore

question error. Instead

of providing a relevant

response or clarification,

the system disregards ...

Unaddressed Request
The system neglects the

user’s question, failing

to provide a relevant re-

sponse. This can lead

to frustration and ulti-

mately interrupt the con-

versation.

0.21

Lack of Sociality When

the system’s responses

overlook social conven-

tions and fail to include

basic greetings or ex-

hibit toxic and disre-

spectful behavior or lan-

guage, this is referred to

as a lack of sociality er-

ror. ...

Insensitive Interaction
This error occurs when

a system’s responses dis-

regard social norms, ex-

hibit impoliteness, or

employ toxic and conde-

scending language. ...

0.24

Factually Incorrect If

the response provided by

the system contains in-

formation that is factu-

ally wrong or inaccurate,

this is referred to as a fac-

tually incorrect error. ...

Misinformation When

the system provides in-

correct information, this

is called misinforma-

tion. This can happen

when the system’s world

knowledge is outdated,

incomplete, or simply

wrong. ...

0.20

Ignore Request When

the system fails to take

action on a user’s re-

quest, this is called an ig-

nore request error. This

error can occur due to

various reasons, such as

misinterpretation of the

request, technical ...

Disregarded Request
The system does not di-

rectly address the user’s

request. This can hap-

pen due to misunder-

standings or system is-

sues, leading to user frus-

tration and communica-

tion breakdown.

0.33

Attribute Error When

the system fails to cor-

rectly extract or under-

stand the necessary slots

or attributes from the

user’s utterance, this is

called an attribute ...

Attribute Error When

the system fails to accu-

rately extract or under-

stand necessary informa-

tion from a user utter-

ance that is necessary for

task completion.

0.27

Table 14: FEDI-Error error type definitions (1).

1919



Openness Method FEDI-Error ABCEval Soda-Eval

H-Score Acc-K Acc-U ARI NMI H-Score Acc-K Acc-U ARI NMI H-Score Acc-K Acc-U ARI NMI

25%

SynCID 0.27 0.40 0.20 0.06 0.11 0.53 0.45 0.68 0.03 0.41 0.31 0.38 0.26 0.11 0.14
w/o Stage 2 0.27 0.40 0.20 0.06 0.11 0.50 0.44 (⇓.01) 0.64 (⇓.04) 0.04 0.42 0.31 0.35 (⇓.03) 0.27 (⇑.01) 0.10 0.14

LOOP (LIS) 0.26 0.37 0.19 0.09 0.10 0.51 0.43 0.63 0.01 0.37 0.33 0.36 0.31 0.07 0.13
w/o Stage 2 0.25 0.34 (⇓.03) 0.20 (⇑.01) 0.06 0.08 0.46 0.38 (⇓.05) 0.60 (⇓.03) 0.01 0.38 0.28 0.35 (⇓.01) 0.24 (⇓.07) 0.05 0.11

LOOP (LBSR) 0.28 0.36 (⇓.01) 0.23 (⇑.04) 0.11 0.10 0.61 0.55 (⇑.12) 0.68 (⇑.05) 0.06 0.43 0.34 0.38 (⇑.02) 0.30 (⇓.01) 0.09 0.14

SEEED 0.38 0.41 0.34 0.19 0.19 0.53 0.46 0.68 0.21 0.45 0.40 0.41 0.39 0.15 0.17

50%

SynCID 0.26 0.34 0.21 0.04 0.09 0.59 0.55 0.64 0.11 0.47 0.27 0.40 0.21 0.09 0.11
w/o Stage 2 0.26 0.28 (⇓.06) 0.24 (⇑.03) 0.03 0.07 0.53 0.46 (⇓.09) 0.65 (⇓.01) 0.10 0.46 0.26 0.40 0.19 (⇓.02) 0.08 0.11

LOOP (LIS) 0.22 0.39 0.16 0.07 0.07 0.45 0.48 0.43 0.03 0.41 0.24 0.55 0.16 0.11 0.16
w/o Stage 2 0.21 0.36 (⇓.03) 0.15 (⇓.01) 0.04 0.07 0.37 0.42 (⇓.07) 0.36 (⇓.07) 0.03 0.40 0.25 0.49 (⇓.06) 0.17 (⇑.01) 0.09 0.15

LOOP (LBSR) 0.25 0.40 (⇑.01) 0.18 (⇑.02) 0.06 0.07 0.46 0.58 (⇑.10) 0.41 (⇓.02) 0.08 0.46 0.25 0.58 (⇑.03) 0.16 0.13 0.17

SEEED 0.33 0.48 0.22 0.13 0.15 0.64 0.67 0.62 0.29 0.51 0.37 0.49 0.30 0.19 0.19

75%

SynCID 0.23 0.36 0.17 0.06 0.01 0.54 0.59 0.50 0.07 0.44 0.25 0.22 0.28 0.02 0.06
w/o Stage 2 0.22 0.35 (⇓.01) 0.16 (⇑.01) 0.01 0.06 0.54 0.58 (⇓.01) 0.51 (⇑.01) 0.09 0.45 0.24 0.27 (⇑.05) 0.15 (⇓.13) 0.02 0.04

LOOP (LIS) 0.25 0.43 0.18 0.05 0.01 0.48 0.69 0.37 0.07 0.44 0.22 0.31 0.17 0.07 0.08
w/o Stage 2 0.21 0.39 (⇓.04) 0.14 (⇓.04) 0.01 0.05 0.43 0.64 (⇓.05) 0.34 (⇓.03) 0.03 0.40 0.22 0.29 (⇓.02) 0.18 (⇑.01) 0.07 0.09

LOOP (LBSR) 0.25 0.44 (⇑.01) 0.17 (⇓.01) 0.01 0.05 0.51 0.71 (⇑.02) 0.40 (⇑.03) 0.08 0.45 0.26 0.43 (⇑.12) 0.19 (⇑.02) 0.11 0.08

SEEED 0.37 0.64 0.26 0.16 0.17 0.60 0.75 0.50 0.21 0.47 0.42 0.61 0.32 0.12 0.14

Table 13: Results of our ablation experiments with SynCID and LOOP, including the results of SEEED for direct
comparison. We also compare LOOP when trained with its original stage two data sampling procedure, LIS, and
our proposed LBSR.

For the error types Factually Incorrect, Ignore
Request, Lack of Sociality, Ignore Question, Con-
versationality, and Attribute Error, we used the
25% openness models for error detection.

Ground Truth Generated Acc-U

Topic Transition Error
If the system’s response

abruptly shifts to a dif-

ferent or previously dis-

cussed topic without a

logical connection or ad-

equate context, this is

called a topic transition

error. This error disrupts

the flow and coherence

of the conversation, caus-

ing confusion and frus-

tration for the human ...

Abrupt Topic Shift An

abrupt topic shift er-

ror occurs when a sys-

tem’s response suddenly

changes to a new topic

without a clear connec-

tion to the current con-

text. This can disrupt the

conversation flow and

cause confusion, lead-

ing to frustration and de-

creased trust in the sys-

tem’s responses.

0.28

Conversationality Bad

conversationality occurs

when the system fails

to maintain a coherent

and natural conversation

flow, e.g., the system

repeats its previous re-

sponses or contradicts

itself without recogniz-

ing or asking for new or

missing information. ...

Inconsistency When

the system’s responses

lack coherence, often

repeating itself or

contradicting previous

statements without

seeking or acknowl-

edging new or missing

information. This leads

to poor communication,

damaging user trust and

confidence. ...

0.40

Table 15: FEDI-Error error type definitions (2).

For Ignore Expectation, we used the 50% open-
ness model from the third run, and for Topic Transi-
tion Error, we used the 75% openness model from
the first run. To generate each type of definition,

we included ten dialogue contexts identified by
SEEED as belonging to the respective error type
in the prompt. The generated definitions gener-
ally show strong alignment with the original error
definitions. However, some instances tend to re-
flect specific situational patterns observed in the
corresponding dialogues, e.g., in the case of Ignore
Question and Ignore Request.

Ground Truth Generated Acc-U

Unclear Intention
When the system fails to

accurately comprehend

and address the user’s

intended objective, this

is referred to as an

unclear intention error.

This error often arises

due to ambiguous or

incomplete user inputs,

conflicting context, or

limitations ...

Misaligned Goal
A misaligned goal

occurs when the system

misinterprets the user’s

objective, often due to

unclear or conflicting

user input. This error

can stem from the

user’s input being

ambiguous, incomplete,

or inconsistent with the

context. ...

0.33

Ignore Expectation
When the system’s fails

to meet the user’s expec-

tation, this is called an

ignore expectation error.

In this error type, the

system either overlooks

or disregards important

information provided by

the user, resulting in an

incomplete response. ...

Misaligned Response
A system response that

fails to accurately un-

derstand or address the

user’s needs.

0.31

Table 16: FEDI-Error error type definitions (3).

ABCEval Table 17 and 18 illustrate the effec-
tiveness of our approach in generating error type
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definitions for the ABCEval dataset (Finch et al.,
2023a).

Ground Truth Generated Acc-U

Uninterpretable A re-

sponse is uninterpretable

if it is difficult to under-

stand the intended mean-

ing of part or all of the

response in the context

of the dialogue.

Ambiguous A response

is ambiguous if parts of

it are unclear in the dia-

logue context.

1.0

Ignore Responses that

are completely off-topic,

fail to address the asked

question, or are other-

wise completely inappro-

priate in the context are

considered to be ignor-

ing the other speaker.

Off-Topic Response
The response deviates

from the topic, fails to

answer the posed ques-

tion, or is contextually

inappropriate, indicating

a disregard for the other

speaker.

0.61

Commonsense Contra-
diction To identify con-

tradictions of common-

sense, judge whether a

vast majority of peo-

ple would agree that the

response doesn’t make

sense because the re-

sponse: ...

Inconsistent Reasoning
A response that contains

significant logical flaws

or contradictions, goes

against the general un-

derstanding of most peo-

ple, or makes assump-

tions without a solid ba-

sis.

0.63

Incorrect Fact Incorrect

facts occur when the re-

sponse includes informa-

tion that is either: (1)

false, (2) unproven, (3)

highly controversial, (4)

highly implausible, (5)

clearly misleading. If

an organization, person,

place, etc. ...

Misinformation Misin-

formation occurs when

a turn contains informa-

tion that is not verifi-

able. A turn could be

considered misinformed

if it inaccurately repre-

sents historical facts, or-

ganizations, persons, or

places.

0.50

Self Contradiction
Self contradictions

occur when the system

says something that

is a contradiction of

what they have said

previously or it is

extremely implausible

based on ...

Self Contradiction
Speaker 2 provides infor-

mation that contradicts

previous statements or

is implausible given

the context. This can

happen within a single

turn or across multiple

turns.

0.50

Partner Contradiction
Partner contradictions

occur when the system:

(1) shares an assumption

about the user that ...

Misunderstanding
When the system

makes assumptions

about the user that are

impossible to infer from

the conversation, asks

repetitive questions or

exhibits memory lapses

about previsous user

statements.

1.0

Table 17: ABCEval error type definitions (1).

For Uninterpretable, Commonsense Contradic-
tion, Incorrect Fact, Self Contradiction, Partner
Contradiction, and Ignore, we used the 25% open-
ness models for error detection (see Table 9). For
Irrelevant and Lack of Empathy, we employed the
75% openness model from run one. For Redun-
dant, we used the 75% openness model from run
two. Due to the small size of the dataset, it was
not always possible to include ten dialogue con-
texts in the prompt for Error Definition generation.
For instance, the test split contains only one ex-
ample each for Partner Contradiction and Unin-
terpretable. Nonetheless, we find the quality of
the generated type definitions to be comparable to
those produced for the FEDI-Error dataset (Petrak
et al., 2024).

Ground Truth Generated Acc-U

Redundant A response

is repetitive if: (1) it

repeats something from

earlier in the dialogue,

(2) it includes asking

a question whose an-

swer has been already

shared. If any part of

the response is repeti-

tive, then it should be la-

beled as repetitive. Note

that sometimes repeti-

tion is useful, such as

for emphasis, acknowl-

edgement, clarification,

or elaboration, and ..

Unnecessary Repeat A

response is redundant if

it repeats information al-

ready shared or asks a

question with a known

answer. This can oc-

cur in various forms,

such as direct repetition,

rephrased questions, or

unnecessary elaboration.

However, repetition can

be justified in cases

where it serves a purpose

like emphasis, acknowl-

edgment, or additional

explanation.

0.50

Lack of Empathy A re-

sponse displays a lack of

empathy when: (1) it in-

dicates a misunderstand-

ing of how the user feels

based on what Speaker

1 just said, (2) the tone,

emotion, or sentiment of

the response is clearly in-

appropriate for what the

user just said, (3) ...

Insensitive Response In-

sensitive responses oc-

cur when a speaker

fails to acknowledge the

user’s emotions, often

due to a misinterpre-

tation of their feelings

or an inappropriate tone.

This can be seen in re-

sponses that seem dis-

missive or unemotional.

0.43

Irrelevant If a response

fails to continue the cur-

rent discussion or jumps

to a new and off-topic

discussion, it is consid-

ered to be irrelevant. Re-

sponses that are irrele-

vant feel abrupt and in-

terrupt the discussion, ...

Disconnected Response
A response is considered

disconnected if it fails

to build upon the previ-

ous turn, instead intro-

ducing a new topic or

question. This type of

response can disrupt the

conversation flow.

0.40

Table 18: ABCEval error type definitions (2).
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Soda-Eval Tables 19 and 20 illustrate the gen-
erated error type definitions for the Soda-Eval
dataset (Mendonça et al., 2024).

Ground Truth Generated Acc-U

Coherence Contradicts

or ignores prior informa-

tion in the dialogue.

Inconsistency Fails to

maintain a logical con-

nection with previous

statements.

0.18

Antisocial Contains un-

safe or inappropriate be-

haviour.

Disrespectful Character-

ized by the use of offen-

sive language, deroga-

tory terms, and aggres-

sive tone, which can

cause emotional distress.

0.33

Fluency Contains typos

or other grammatical er-

rors.

Clarity The response

from speaker 2 contains

spelling/grammar errors.

0.30

Commonsense Lacks

common knowledge and

logic.

Missing World Knowl-
edge Fails to demon-

strate basic understand-

ing of the world. In the

context of a set of dyadic

dialogues, this error type

might manifest as con-

versations where one par-

ticipant expects the other

to possess knowledge or

behave in a way that is

not grounded in reality.

0.14

Gender Pronoun Goes

against normative pro-

noun.

Gender Pronoun Mis-
match The use of pro-

nouns that do not consis-

tently align with the gen-

der identity of the indi-

viduals being referred to

result in a mismatch be-

tween the pronouns used

and the gender norms ex-

pected in the dialogue.

0.29

Non Textual Includes

narrative elements or ref-

erences unexpected in-

side a turn of a dyadic

interaction.

Narrative Elements
The responses contain

narrative elements or

references that are not

coherent within a round

of dyadic interaction and

may disrupt the expected

flow of the dialogue.

0.29

Engagement Lacks a be-

haviour or emotion ex-

pected from the situa-

tion.

Emotional Dissonance
The response lacks a be-

haviour or emotion that

is typically associated

with the situation, lead-

ing to an incongruous

tone or atmosphere.

0.39

Table 19: Soda-Eval error type definitions (1).

For engagement, antisocial, non textual, gender

pronoun, assumption, and fluency, we employed
the 25% openness models for clustering (see Ta-
ble 9). For coherence and commonsense, we uti-
lized the 50% openness model from the first run,
and for repetition, the 50% openness model from
the second run. For the generation of each error
type, we included ten dialogue contexts associated
by our approach with the respective error type into
the prompt. The error type definitions originally
defined by Mendonça et al. (2024) are concise and
lack detail. This differs from the error type defini-
tions generated by our approach, which exhibit a
closer alignment with the situational contexts rep-
resented in the dialogues.

Ground Truth Generated Acc-U

Repetition Repeats prior

information in the dia-

logue.

Redundancy This error

occurs when a speaker

unnecessarily repeats in-

formation that has al-

ready been stated in the

dialogue, failing to pro-

vide new or relevant

information, or simply

rephrasing what has al-

ready been said.

0.15

Assumption Infers infor-

mation not available in

the dialogue context.

Misattribution A re-

sponse that incorrectly

assigns information or

characteristics to a dia-

logue participant, entity,

or context that is not ex-

plicitly stated or implied

within the dialogue.

0.24

Table 20: Soda-Eval error type definitions (2).

D.6 Intent Detection Results
Table 21 presents the complete results of our intent
detection experiments. Overall, SEEED demon-
strates promising performance, particularly in de-
tecting unknown intents. For instance, it im-
proves Acc-U up to +0.28 points in the CLINC
dataset (Larson et al., 2019) and by up to +0.53
points in the StackOverflow dataset (Xu et al.,
2015), compared to KNN-Contrastive (Zhou et al.,
2022).
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Openness Method CLINC BANKING StackOverflow

H-Score Acc-K Acc-U ARI NMI H-Score Acc-K Acc-U ARI NMI H-Score Acc-K Acc-U ARI NMI

25%

KNN-Contrastive 0.67 0.91 0.53 0.75 0.91 0.50 0.90 0.34 0.68 0.87 0.45 0.84 0.31 0.56 0.73
SynCID 0.80 0.95 (⇑.04) 0.69 (⇑.16) 0.83 0.94 0.64 0.87 (⇓.03) 0.50 (⇑.16) 0.70 0.89 0.72 0.86 (⇑.02) 0.62 (⇑.31) 0.66 0.78
LOOP 0.85 0.93 (⇑.02) 0.78 (⇑.25) 0.85 0.95 0.63 0.90 0.48 (⇑.14) 0.73 0.90 0.73 0.89 (⇑.05) 0.62 (⇑.31) 0.73 0.82

SEEED 0.82 0.93 (⇑.02) 0.74 (⇑.21) 0.79 0.93 0.79 0.92 (⇑.02) 0.70†(⇑.36) 0.77 0.90 0.87 0.90 (⇑.06) 0.84†(⇑.53) 0.77 0.83

50%

KNN-Contrastive 0.62 0.87 0.48 0.60 0.86 0.58 0.80 0.45 0.53 0.81 0.65 0.82 0.54 0.51 0.67
SynCID 0.77 0.95 (⇑.08) 0.64 (⇑.16) 0.71 0.90 0.66 0.85 (⇑.05) 0.54 (⇑.09) 0.60 0.84 0.72 0.76 (⇓.06) 0.69 (⇑.15) 0.52 0.71
LOOP 0.80 0.95 (⇑.08) 0.69 (⇑.21) 0.75 0.92 0.63 0.90 (⇑.10) 0.48 (⇑.03) 0.63 0.86 0.80 0.92 (⇑.10) 0.71 (⇑.17) 0.71 0.80

SEEED 0.83 0.94 (⇑.07) 0.75†(⇑.27) 0.74 0.91 0.79 0.94 (⇑.14) 0.68†(⇑.23) 0.69 0.87 0.89 0.90 (⇑.08) 0.87†(⇑.33) 0.78 0.84

75%

KNN-Contrastive 0.63 0.85 0.50 0.49 0.82 0.44 0.85 0.29 0.33 0.72 0.57 0.81 0.43 0.34 0.52
SynCID 0.73 0.89 (⇑.04) 0.62 (⇑.12) 0.60 0.86 0.63 0.85 0.50 (⇑.21) 0.47 0.78 0.66 0.78 (⇓.03) 0.57 (⇑.14) 0.40 0.60
LOOP 0.79 0.92 (⇑.07) 0.68 (⇑.18) 0.68 0.90 0.64 0.87 (⇑.02) 0.51 (⇑.22) 0.50 0.81 0.76 0.92 (⇑.11) 0.64 (⇑.21) 0.57 0.72

SEEED 0.87 0.97†(⇑.12) 0.78†(⇑.28) 0.72 0.90 0.79 0.93 (⇑.08) 0.69†(⇑.40) 0.60 0.82 0.86 0.97 (⇑.16) 0.77†(⇑.34) 0.71 0.78

Table 21: The complete results of our intent discovery experiments, averaged across three runs. The deltas denote
the differences to KNN-Contrastive which we consider as the baseline for these experiments. † denotes statistical
significance compared to all baseline approaches, as determined by a t-test with p-value ≤ 0.05. The H-Score
aggregates Acc-K and Acc-U and was therefore excluded from statistical significance tests. To ensure comparability,
unknown intents were randomly sampled once per run and level of openness.
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