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Abstract

Ensuring Al safety is crucial as large language
models become increasingly integrated into
real-world applications. A key challenge is
jailbreak, where adversarial prompts bypass
built-in safeguards to elicit harmful disallowed
outputs. Inspired by psychological foot-in-the-
door principles, we introduce FITD, a novel
multi-turn jailbreak method that leverages the
phenomenon where minor initial commitments
lower resistance to more significant or more
unethical transgressions. Our approach pro-
gressively escalates the malicious intent of user
queries through intermediate bridge prompts
and aligns the model’s response by itself to in-
duce toxic responses. Extensive experimental
results on two jailbreak benchmarks demon-
strate that FITD achieves an average attack
success rate of 94% across seven widely used
models, outperforming existing state-of-the-
art methods. Additionally, we provide an in-
depth analysis of LLM self-corruption, high-
lighting vulnerabilities in current alignment
strategies and emphasizing the risks inherent in
multi-turn interactions. The code is available
at https://github.com/Jinxiaolong1129/Foot-in-
the-door-Jailbreak.

WARNING: THIS PAPER CONTAINS UN-
SAFE CONTENTS.

1 Introduction

Large Language Models (LLMs) have been ex-
tensively deployed in various domains and prod-
ucts, ranging from coding assistance (Guo et al.,
2024a; Xiao et al., 2024, 2025) to educational tools
(Wang et al., 2024b). As these models become
more integral to daily life, ensuring Al safety and
preserving alignment with human values have be-
come increasingly important (Liu et al., 2024a).
A critical challenge lies in "jailbreak", wherein
adversarial prompts bypass built-in safeguards or
alignment measures, causing the model to generate
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Figure 1: An example of FITD about hacking into an
email account compared to a direct query. It bypasses
alignment as the malicious intent escalates over multiple
interactions.

disallowed or harmful output (Zou et al., 2023; Liu
et al., 2024a).

Early jailbreak approaches typically rely on care-
fully engineered single-turn prompts that coax
the model to reveal restricted malicious informa-
tion (Greshake et al., 2023). By embedding mali-
cious instructions within complex context blocks
or intricate role-playing scenarios, attackers exploit
weaknesses in the model alignment policy (Ding
et al., 2024). However, attackers have recently
shifted from single-turn to multi-turn paradigms,
where each subsequent user query adapts or builds
upon the conversation history (Li et al., 2024a). Al-
though some multi-turn jailbreak methods, such
as ActorAttack (Ren et al., 2024c) and Crescendo
(Russinovich et al., 2024), have demonstrated the
potential of multi-round dialogues in obscuring
malicious intent, they usually depend on heavily
handcrafted prompts or complex agent design. Be-
sides, their overall Attack Success Rate (ASR) re-
mains limited, often requiring significant prompt
engineering expertise.

The foot-in-the-door effect in psychology sug-

1939

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 1939-1950
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/Jinxiaolong1129/Foot-in-the-door-Jailbreak
https://github.com/Jinxiaolong1129/Foot-in-the-door-Jailbreak

gests that minor initial commitments lower resis-
tance to more significant or more unethical trans-
gressions (Freedman and Fraser, 1966; Cialdini,
2001), which has been widely observed in behav-
ioral studies (Comello et al., 2016). Motivated by
this insight, we ask: Can this gradual escalation
mechanism be exploited to erode the alignment
of an LLM over multiple interactions? In other
words, can we exploit the principle that once a
small unethical act is committed, individuals be-
come increasingly susceptible to larger transgres-
sions to bypass LLMs’ safeguards? For example, in
Figure 1, when provided with an innocent introduc-
tion to the safety features of the officers’ email, the
LLM eventually produces a procedure to hack into
the email account that would normally be rejected
due to its potential harm.

Inspired by the process through which humans
become more prone to harmful actions after expo-
sure to minor unethical behavior (Festinger, 1957),
we introduce FITD, a simple yet effective ulti-turn
jailbreak strategy. Our method starts with a be-
nign query and gradually escalates to more harmful
content by inserting intermediate prompts. This
smooth transition is enhanced by alignment mech-
anisms that guide the model’s responses in the in-
tended malicious direction. If the model’s response
deviates from the target progression, we re-query
the model to realign its output, promoting grad-
ual self-corruption. This process encourages the
model to lower its guard against generating toxic
responses. These two processes are designed to
progressively induce the model to lower its own
guard against providing toxic responses.

Our contributions are summarized below:

* We propose a multi-turn jailbreak strategy
FITD that takes advantage of the psycho-
logical dynamics of multi-turn conversation,
rooted in the foot-in-the-door effect, to exploit
the inherent vulnerabilities in the alignment
of LLMs.

* We present a simple yet effective two-stage
method that outperforms existing SOTA ap-
proaches, achieving an average success rate
of 94% on seven widely used models.

* We conduct an in-depth analysis of the foot-
in-the-door self-corruption phenomenon in
LLMs, shedding light on potential weaknesses
in current safety measures and motivating fu-
ture research in Al safety.

2 Related work

Large language models jailbreak can be broadly cat-
egorized into single-turn and multi-turn approaches,
with different levels of model access. Black-box
single-turn attacks use input transformations to by-
pass safety constraints without accessing model in-
ternals, such as encoding adversarial prompts in ci-
phers, low-resource languages, or code (Yuan et al.,
2024; Deng et al., 2023; Lv et al., 2024; Ren et al.,
2024a; Chao et al., 2023; Wei et al., 2023; Li et al.,
2023; Liu et al., 2024a; Zou et al., 2025). In con-
trast, white-box single-turn attacks exploit access
to model parameters using gradient-based optimiza-
tion to generate adversarial inputs or manipulate
text generation configurations (Zou et al., 2023;
Huang et al., 2024; Zhang et al., 2024a; Jones et al.,
2023; Guo et al., 2024b). Meanwhile, multi-turn
jailbreaks introduce new challenges by exploiting
dialogue dynamics. A common approach decom-
poses harmful queries into a series of innocuous
sub-questions, progressively leading the model to-
wards unsafe responses (Li et al., 2024b; Jiang
et al., 2024; Zhou et al., 2024b). Automated red
teaming has also been explored, in which LLMs
are used iteratively to investigate and expose weak-
nesses (Jiang et al., 2025). To mitigate such threats,
various defense mechanisms have been proposed,
including perturbation or optimization techniques
(Zheng et al., 2024; Zhou et al., 2024a; Mo et al.,
2024; Liu et al., 2024b), safety response strategy
(Zhang et al., 2024b; Li et al., 2024c; Wang et al.,
2024a; Zhang et al., 2024c), and jailbreak detec-
tion (Han et al., 2024; Inan et al., 2023), aim to
neutralize adversarial prompts before execution
(Inan et al., 2023; Zou et al., 2024). Notably,
multi-turn attack Crescendo (Russinovich et al.,
2024) and ActorAttack (Ren et al., 2024c) incre-
mentally steer seemingly benign queries toward
harmful content but are constrained by their re-
liance on fixed, human-crafted seed prompts and
limited overall ASR. However, different from their
work, our work uses the foot-in-the-door effect to
gradually erode an LLM’s alignment while analyz-
ing the phenomenon of self-corruption in LLMs.

3 Method

3.1 Inspiration from Psychology: The
Foot-in-the-Door Phenomenon

Our method FITD draws inspiration from the "foot-
in-the-door" phenomenon in psychology. Accord-
ing to this principle, once individuals perform or
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Figure 2: Overview of FITD. The attack begins by generating a progression sequence of queries from Step 1 to
Step n using an assistant model. Through multi-turn interactions, self-corruption is enhanced via Re-Align and
SSParaphrase, ensuring the attack remains effective. SSParaphrase (SlipperySlopeParaphrase) refines queries by
generating intermediate queries gm;q With content deviation positioned between g, and ¢;, creating a smoother

progression between steps.

agree to a minor (often unethical) act, they are more
likely to proceed with more significant or harmful
acts afterward (Freedman and Fraser, 1966; Cial-
dini, 2001). For example, in a classic study, partici-
pants who first displayed a small sign supporting
safe driving were subsequently much more inclined
to install a much larger, more obtrusive sign (Freed-
man and Fraser, 1966). This gradual escalation of
compliance, "from small to large", has also been
observed in other forms of unethical or harmful
behavior (Festinger, 1957), showing that the initial
"small step" often lowers psychological barriers for
larger transgressions. Once a small unethical act
has been justified, individuals become increasingly
susceptible to more severe transgressions.

Based on these insights, we hypothesize that
LLMs’ safety mechanisms might be vulnerable to
a gradual escalation strategy. If LLMs respond
to a prompt containing slightly harmful content,
subsequent queries that escalate this harmfulness
will have a higher chance of producing disallowed
responses. This idea underlies our FITD method,
which progressively coaxes a target model to pro-
duce increasingly malicious output despite its built-
in safety mechanisms.

3.2 Overview

Building on the foot-in-the-door perspective, we de-
sign a multi-turn jailbreak strategy FITD. In each
turn, the target model is prompted with content
that is just marginally more harmful or disallowed
than the previous turn, encouraging the model to
produce a correspondingly more harmful output.
This progression method is designed to exploit the
model’s own responses as a guiding force to bypass
its safety alignment or content filters. The core nov-
elty lies in using (i) the model’s own prompts and

responses as stepping stones for further escalation
and (ii) two auxiliary modules, SlipperySlopePara-
phrase and Re-Align, to handle instances when the
model refuses or produces outputs misaligned with
the intended maliciousness. Additionally, we con-
duct an in-depth analysis of the foot-in-the-door
self-corruption phenomenon in LLMs.

Figure 2 shows the overview of our method.
First, we initialize a sequence of escalated queries
q1, 92, - - -, qn based on a malicious query ¢*. Then
in each turn, we append the current query ¢; to
the chat history and obtain the model’s response
r¢. If r, has no refusal, we proceed; otherwise,
we check how well the model’s previous response
aligns with its prompt. Depending on this check,
we either insert an intermediate “bridging” query
via SlipperySlopeParaphrase or Re-Align the target
model’s last response 7r,5;. Over multiple itera-
tions, the process gradually pushes the model to
produce more detailed and harmful content.

3.3 FITD

As shown in Algorithm 1, given a target model
M, a malicious “goal” query ¢*, and the progres-
sion sequence length n, we initialize a sequence
of escalated queries q1, g2, . - - , ¢, by getProgres-
sionSequence based on a malicious query ¢* (line
2). Then we maintain a chat history H (line 3) and
iterate from ¢ = 1 to n. At each turn, we add ¢; to
‘H (line 5) and query the model for a response 7;
(line 6). If the model responds to the query (line
7), we include 7; in the chat history H (line 8).
Instead, if the model refuses (line 9), we remove
the current query ¢; (line 11) and extract the last
query-response pair (qiast, "ast) from H (line 12).

Now, we need to utilize SlipperySlopePara-
phrase and Re-Align to enforce the model to con-
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tinue self-corruption. Therefore, we first check
how well the model’s last response aligns with its
prompt (lines 13). If ¢, does not align with qiast,
we use Re-Align to generate a revised and more
aligned version of the last response (line 16). Oth-
erwise, we utilize SlipperySlopeParaphrase (line
14) to insert an intermediate bridging prompt ¢,y,;4
between ¢;_1 and ¢;.

Algorithm 1 FITD Jailbreak

Require: Malicious query ¢*, a target model 7T,
progression sequence length n, assistant model
M

Ensure: Jailbroken result

2: q1,92,---,qn —
getProgressionSequence(n, ¢*, M)
cH+—{}

3

4: for: = 1ton do

50 H <+ H.add(qg))

6: 1+ T(H)

7. if not isRejection(r;) then
8 H /Hadd(ﬁ)

9

: else
10:
11: H < H.pop(qi)
12: (Qrast, T1ast) < LastQueryResponse(H)
13: if isAlign(7ast, Glast) then
14: ‘H < SSParaphrase(q;, H, M)
15: else
16: H < Re-Align(H)
17: end if
18:  end if
19: end for
20:
21:
22:
23:

3.3.1 getProgressionSequence

The getProgressionSequence function is de-
signed to generate a sequence of escalated queries
that facilitate a gradual attack process. It operates
in three stages:

First, it generates a benign starting prompt
(getBenignPrompt). This step constructs a seman-

tically relevant but harmless prompt based on pre-
defined templates. The generated prompt is neutral
and unrelated to harmful content, yet aligned with
the target malicious query ¢*. It serves as the start-
ing point (g;) of the progression sequence.

Second, it constructs escalated query Se-
quences. At each step of the progression pro-
cess, we call a prompt generation function (e.g.,
getQueryCandidates) to create a set of escalated
queries that advance the attack intent. To enhance
diversity and ensure quality, this function is exe-
cuted & = 3 times per step. The resulting pool of
candidates is denoted as:

L={¢ |iel,n), jel,k}

where qg denotes the j-th query generated for step
1. This multi-sampling strategy allows us to con-
struct a semantically progressive and stylistically
coherent sequence of escalated prompts that better
support the attack objective.

Last, it selects the final query sequence
(selectFinalQueries). From the candidate pool
L, the function selects n prompts to construct the
final progression sequence. The selection process
is guided by two key principles: progressiveness
and coherence. Specifically, the resulting sequence
is designed to begin with neutral and harmless con-
tent, gradually incorporate sensitive or borderline
elements, and ultimately culminate in a harmful
query that explicitly conveys the intended mali-
cious tone and objective.

Through this staged design, the function ensures
a smooth semantic transition, stylistic consistency,
and a progressive exposure of malicious intent.

Algorithm 2 Re-Align

Require: chat history of target model H
I: Qlast, Tlast < LastQueryResponse(H)
2: Palign < getAliganmPt(%ast, Tlast)

4: Talign < T(H)
50 H <+ H.add(rangn)

3.3.2 Re-Align

If the model’s previous query g, and response
Tlast 10 chat history H is misaligned-for instance,
it remains too benign or partially refuses even
though the query is not malicious-then we invoke
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RE-ALIGN. Building on the psychological in-
sight that once individuals have justified a mi-
nor unethical act, they become increasingly sus-
ceptible to more severe transgressions (Freedman
and Fraser, 1966), RE-ALIGN aims to "nudge"
the model to produce a response more closely
aligned with the malicious intent of qj,s¢. Specif-
ically, we employ a predefined alignment prompt
Palign Via getAlignPrompt(qiast, Tast ), appending
it to H before querying the model 7 again. The
alignment prompt explicitly points out inconsis-
tencies between the last query ¢,s¢ and response
r1ast While encouraging the model to stay consis-
tent with multi-turn conversation. For example, if
T1ast 1S t0O cautious or is in partial refusal, pyjign Will
suggest that the model refines its response to better
follow the implicit direction. Therefore, this pro-
cedure progressively aligns gu and 71,5¢, thereby
furthering the self-corruption process.

Algorithm 3 SlipperySlopeParaphrase

Require: Step ¢ query g; in progression sequence,
Chat history of target model H, assistant
Model M
Qlast < H
Gmid < getMid(last, ¢;)
H %.add(qmid)
Tmid < T(H)
if isRejection(rpy;iq) then
H < H.pop(gmia)
H <+ paraphrase(gmia, H, M)

AN A S o

else

: H H.add(rmid)
10: end if

11: return H

2o ®

3.3.3 SlipperySlopeParaphrase

When a refusal occurs and the last response 7,5t
remains aligned with its query qjast, We insert a
bridge prompt ¢,;q to ease the model into accept-
ing a more harmful request.

Specifically, we obtain guiq < getMid(qiast, gi)
from an assistant model M so that its content de-
viation is positioned between q,s¢ and g;, creating
a smoother progression. We then query the tar-
get model with ¢,;q; if the model refuses again,
we paraphrase ¢,iq repeatedly until acceptance.
Once the model provides a valid response 7,;q4, we
incorporate both ¢yiq and r,;q into the chat his-
tory 4. This incremental bridging step parallels

the foot-in-the-door phenomenon (Freedman and
Fraser, 1966), in which acceptance of a smaller
request facilitates compliance with a subsequent,
more harmful one.

4 Experiment

4.1 Experimental Setup

Target Models We evaluate FITD on seven widely
used LLMs, including both open-source and propri-
etary models. The open-source models comprise
LLaMA-3.1-8B-Instruct (Dubey et al., 2024),
LLaMA-3-8B-Instruct, Qwen2-7B-Instruct
(Bai et al., 2023), Qwen-1.5-7B-Chat, and
Mistral-7B-Instruct-v@.2 (Jiang et al., 2023).
The closed-source models include GPT-40-mini
(Hurst et al., 2024) and GPT-40-2024-08-06.
Baselines We compare our approach against seven
popular jailbreak methods, including Deeplncep-
tion (Li et al., 2023), CodeChameleon (Lv et al.,
2024), ReNeLLM (Ding et al., 2024), CodeAt-
tack (Ren et al., 2024b), CoA (Sun et al., 2024),
and ActorAttack (Ren et al., 2024c¢).

Dataset We evaluate our method on two datasets:
JailbreakBench (Chao et al., 2024), which consists
of 100 carefully selected harmful queries, and the
HarmBench validation set (Mazeika et al., 2024),
which includes 80 harmful queries.

Evaluation Metric To assess the effectiveness of
the jailbreak attack, we employ Attack Success
Rate (ASR), which quantifies the percentage of
jailbreak attempts that successfully elicit a harmful
response from the model. Specifically, we adopted
the evaluation method from JailbreakBench, which
leverages GPT-40 to assess two key aspects: the
harmfulness of the generated responses and the
degree of alignment between the responses and the
original queries.

Implementation Details In Table 1, we set the pro-
gression sequence length n to 12. We use default
parameters for baselines. All open-source mod-
els are inferred with vLLM (Kwon et al., 2023)
with default settings. All experiments run on an
NVIDIA A100 GPU, with GPT-40-mini as the de-
fault assistant model.

4.2 Main Results

FITD is more effective than baseline attacks.
Table 1 shows ASRs of FITD and various jailbreak
methods across JailbreakBench and HarmBench,
where each cell contains ASRs for JailbreakBench
(left) and HarmBench (right).
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|[Method | Avg.Q |LLaMA-3.1-8B LLaMA-3-8B Qwen-2-7B Qwen-1.5-7B Mistral-v0.2-7B|GPT-40-mini GPT-40 |  Avg.
Deeplnception 1 33%/29%  3%/3% 22%/29% 58%/41% 50%/34% |19%/13% 2%/0% |27%/21%
CodeChameleon 8 36%/31% 31%/33% 25%/30% 33%/28% 39%/39% |36%/26% 40%,/26% |34%,/30%
CodeAttack-Stack 1 38%/44%  48%/40% 42%/31% 26%/40%  45%/40% | 20%/26% 39%/39% |37%/37%
Single-Turn|CodeAttack-List 1 67%/58%  58%/54% 65%/41% 40%/39%  66%/55% |39%/29% 27%/28% |52%/43%
CodeAttack-String 1 71%/60%  45%/59% 52%/40% 47%/39%  79%/59% | 28%/35% 33%/31% |51%/46%
ReNeLLM 10 69%/61%  62%/50% T73%/70% T74%/60% 91%/79% |80%/55% 74%/53% |75%/61%
CoA 30 29%/34%  22%/28% 45%/30% 41%/25% 43%/36% |15%/20% 3%/1% |28%/25%
Multi-Turn | ActorAttack 15 63%/53% 59%/50% 59%/58% 52%/54% 70%/69% |58%/50% 52%/53% |59%/55%
FITD 16 92%/94% 98%/93% 95%/93% 94%/88% 96%/94% |95%/93% 88%/84%|94%/91%

Table 1: Attack success rate (ASR) of baseline jailbreak attacks and FITD on JailbreakBench and HarmBench on 7
models. Each cell presents ASR values in the format "JailbreakBench / HarmBench." Higher ASR indicates greater
vulnerability to the respective attack. Avg. Q indicates the average number of LLM calls required per attack.

Among single-turn attacks, ReNeLLM achieves
the highest ASR through LLM-based prompt
rewriting and scenario nesting. For multi-turn
attacks, ActorAttack outperforms other base-
lines, achieving 63%/53% on LLaMA-3.1-8B and
58%/50% on GPT-40-mini with 15 queries.

FITD consistently outperforms both the
strongest single-turn (ReNeLLM) and multi-turn
(ActorAttack) baselines across all evaluated
models. With an average of 16 queries. FITD
achieves 98%/93% on LLaMA-3-8B, maintains
an average ASR of 94%/91% across all tested
models, and demonstrates effectiveness on both
open-source models and proprietary models like
GPT-40 (93%/90%) and GPT-40-mini (95%/93%).
In addition, FITD demonstrates remarkable query
efficiency in the multi-turn category.

FITD demonstrates strong cross-model trans-
ferability. To evaluate cross-model transferability,
we conduct transfer attacks using adversarial chat
histories generated from LLaMA-3.1-8B and GPT-
4o-mini as source models. For each query, we apply
the progressively malicious query-response history
obtained from the source model directly to other
target models. As shown in Figure 3a, LLaMA-
3.1 jailbreak histories exhibit strong transferability,
achieving 76% ASR on Mistral-v0.2 and 74% on
Qwen-2-7B, with even GPT-40-mini (70%) remain-
ing susceptible despite stronger moderation mecha-
nisms. Notably, when GPT-40-mini serves as the
source model, transfer effectiveness improves fur-
ther, with Mistral-v0.2 reaching 85% ASR. This
suggests that attacks originating from more robust
models transfer more effectively, as stronger initial
safety alignment forces the development of more
adaptable and generalizable jailbreak strategies.

Overall, these results highlight a critical vul-
nerability: attack histories created on one model
can consistently exploit safety mechanisms in oth-
ers. The particularly high effectiveness of closed-

to-open transfers (GPT-40-mini — open-source
models) demonstrates that even models with strict
safety protocols can unintentionally generate adver-
sarial sequences that compromise other systems.

4.3 Ablation Study

To evaluate the contribution of different compo-
nents in our FITD jailbreak method, we conduct
an ablation study by systematically removing three
key mechanisms: response alignment (Re-Align),
alignment prompt py;gn, and SlipperySlopePara-
phrase. The results in Figure 3b demonstrate the
significance of these components for achieving
high ASR across various models.

Removing all three mechanisms leads to substan-
tial performance degradation (w/o ReAlign, pai;gn.
SSP). For instance, on LLaMA-3.1, the ASR drops
from 92% to 75%, while on LLaMA-3, it decreases
from 98% to 59%. Similar declines are observed
across other models, indicating that the synergistic
effect of all three components is critical for main-
taining FITD’s effectiveness.

Removing alignment techniques only (w/o Re-
Align, pajign) shows that paraphrasing alone pro-
vides limited compensation. While LLaMA-
3.1 maintains relatively high performance (91%),
LLaMA-3 experiences a significant drop to 63%,
suggesting that paraphrasing is insufficient against
models with stricter safeguards.

Removing response alignment only (W/0 pign)
results in minimal performance degradation. Most
models maintain their original ASR levels, with
LLaMA-3 showing the largest decrease from 98%
to 79%. This indicates that while response align-
ment enhances gradual safeguard erosion through
incremental compliance, the other components can
largely compensate for its absence. Overall, the
ablation study confirms that response alignment,
alignment prompts, and paraphrasing are all essen-
tial for optimal jailbreak success, with their combi-
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Figure 3: (a) Transfer attacks using jailbreak chat histories generated from LLaMA-3.1-8B and GPT-40-mini as
source models on JailbreakBench. (b) Ablation study of three components in FITD, response alignment (Re-Align),
alignment prompt P4y, and SlipperySlopeParaphrase(SSP) on JailbreakBench. (c) ASR under different defense

methods on JailbreakBench.

nation providing robust performance across diverse
model architectures and alignment strategies.

Defense Figure 3c shows ASR of FITD across
models under different defense strategies. OpenAl-
Moderation reduces ASR slightly by 3%-8%.
LLaMA-Guard-2 (Inan et al., 2023) offers a
stronger defense, lowering ASR to 79%-91%.
LLaMA-Guard-3 (Inan et al., 2023) further im-
proves moderation, achieving the lowest ASR 78%-
84%. LLaMA-Guard-3 consistently outperforms
other methods, but ASR remains significant. We
speculate that progressively malicious queries and
responses bypassed the detector, indicating room
for further improvement in moderation techniques.

Additional Experiments Figure 4a illustrates that
the attack success rate (ASR) increases consistently
as the progression sequence length n grows, even-
tually plateauing between n = 9 and 12.More im-
portantly, our method exhibits exceptional scala-
bility: with minimal queries (n=3,4 queries), it
achieves performance comparable to ReNeLLM,
while with moderate queries (n=6,8 queries), it
reaches state-of-the-art performance. This high-
lights FITD’s superior efficiency compared to ex-
isting approaches. Concurrently, Figure 4b demon-
strates that the harmfulness of responses escalates
with each step of the progression, pointing to a pro-
gressive erosion of model alignment mechanisms.
Moreover, Figure 4c indicates that retaining later-
stage queries (Backward Extraction) achieves a
higher ASR compared to incorporating early-stage
queries (Forward Extraction). This emphasizes the
critical importance of late-stage malicious prompts
in facilitating the attack. The forward extraction ap-
proach involves incrementally adding early-stage
queries while always including a final, highly mali-
cious query (e.g., retaining queries in the sequence:

1 —- 2 = 3 — 12, etc.), where the final query
serves as the trigger for the attack. In contrast,
backward extraction starts by retaining the later-
stage queries and progressively removes earlier
ones (e.g., retaining queries from the sequence:
9 — 10 — 11 — 12, etc.), highlighting the impor-
tance of the final stage’s maliciousness.

5 FITD Attack Mechanisms

To comprehensively understand FITD attack effec-
tiveness, we establish a dual-framework analysis
for both model’s input and output alignment of
the model, tracing how semantic shifts of input
within the model’s representation space translate
into safety degradation of output. In our analysis,
we use LLaMA-3.1-8B as the target model, select
100 prompts from JailbreakBench, and set the pro-
gression sequence length n = 6.

5.1 Input Alignment

For each input prompt p; in the FITD sequence, we
use predefined anchor token sets Wsafe and Wharmful
to analyze the model’s internal bias toward safety
versus harmful content. For each anchor word w,
we obtain its embedding . by feeding it through
the target model and averaging the last layer hidden
states. The semantic directions of safe and harm
are constructed as:

dsafe = normalize | | hy o))
safe WEWoate
7 o . Javg . Javg
dharmful = normalize(dy | - — proj Jsafe(dhannful))
(2)

where normalize(¥') = ¥/||U||2 converts vectors to
unit length, and d,.Y . . is the average of harmful

token embeddings. Besides, we classify each token
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t; in input prompt p; via the function cls(¢;):

Safe ps(ti) >0, ps(ti) > pr(t)
Harmful = pp,(t;) > 0, pu(ti) > ps(ts)
Neutral

cls(t;) =
otherwise

L )
where Ds (tz> = hti : dsafe and DPh (tz) = @ti . dharmfu]
are the projections of token embedding h;, onto the
safety and harmful direction vectors, respectively.
After classifying all tokens in prompt p;, we obtain
safety and harmful token sets of input p;:

Lo = {t € p; : cls(t) = Safe}
Wi imtal = {1t € p; = cls(t) = Harmful}

4
(&)

5.2  Output Alignment

For model’s response to prompt p;, we assess safety
degradation of response through three metrics:
Refusal Probability(F,.¢): Binary indicator that
equals 1 if model refuses to answer, 0 otherwise.
Safety Boundary(Spoung): Given model’s output
logits at the final token position, we define average
logit values for harmful and safety token sets:

1
logit, = —— > logit(¢) (6)
Wl 5
EW,
where x € {harm, safe}
The Safety Boundary is then computed as:
Alo it — Amin
Shouna = 1 — o ™)
o Arnax - Amin
where Ajggir = logity, ., — logitg,r., Amin and

Anmax are empirical bounds of logit differences, and
higher values indicate stronger safety alignment,
which measures the model’s internal bias toward
harmful content through logits perspective.
Response Dissimilarity (Dycsp): Measures seman-
tic distance between the current response and the
final harmful response:

®)

where 7y and 7, are sentence embeddings of
the current and final harmful responses. We obtain
them by encoding the text with the target language
model and averaging the last-layer hidden states
across all tokens. We then compute cosine similar-
ity to measure how close the current response is to

Dresp =1- COS('Fcurra Fﬁnal)
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Figure 6: Output Alignment Analysis. (a) Overall alignment score. (b) Response dissimilarity shows convergence
toward harmful outputs. (c) Safety boundary across progression steps.

the harmful one. Overall, the Alignment Score for
output of prompt p; is defined:

1
Ralign (pz) = g(Pref + Sbound + Dresp) (9)

5.3 Analysis

Semantic Drift in Representation Space We be-
gin by examining how the semantic similarity be-
tween safety-related and harmful concepts in the
input prompt p; evolves step by step. Specifically,
all tokens are first classified into safety, harmful,
or neutral categories based on the rule defined in
Equation (3). At each step, we compute the av-
erage embedding vectors for the safety and harm-
ful token groups and measure their cosine similar-
ity. As shown in the Figure 5a, the similarity in-
creases significantly from 0.15 to 0.62, indicating
severe semantic contamination—representations
of safety and harm become increasingly indistin-
guishable, leading to a gradual degradation of the
model’s safety alignment. This internal seman-
tic drift, rooted in the input, precedes observable
failures in alignment. As illustrated in Figure 6a,
the alignment scores decline accordingly, revealing
how representational corruption directly results in
behavioral collapse. A critical transition occurs be-
tween steps 3 and 4, when the similarity surpasses
0.5—the semantic tipping point—which coincides
with a sharp drop in response dissimilarity shown
in Figure 6b, signaling that the model’s outputs are
rapidly converging toward harmful content.

Attention Paralysis and Erosion of Focus We fur-
ther examine the model’s internal attention behav-
ior. Figure 5b shows the average attention weights
in the last three layers for tokens classified as Siafe
and Wﬁ‘nm Attention to harmful tokens drops
sharply from 0.30 to near zero, while attention to
safety tokens remains consistently low (at or below
< 0.02). This “attention paralysis” precedes the
drop in the safety boundary shown in Figure 6c,
revealing a clear delay between internal attention
failure and alignment collapse at the output level.

Attention degrades rapidly between steps 1 and
2, whereas the safety boundary does not decline
significantly until steps 3 to 4 (from 0.55 to 0.43).
This indicates that attention degradation grad-
ually weakens the model’s ability to make safe
judgments. Between steps 2 and 3—when atten-
tion has already collapsed but the safety boundary
remains stable—the model mainly focuses on de-
scriptive or structural parts of the prompt, ignoring
safety-critical cues. This attention shift reduces the
model’s sensitivity to potential risks and progres-
sively disables its safety mechanisms. The delayed
breakdown suggests the model initially resists mild
perturbations, explaining why FITD attacks appear
benign early on but eventually erode the model’s
defenses.
FITD Mechanism By integrating semantic in Fig-
ure 5 and alignment in Figure 6 analyses, FITD
utilize a core vulnerability in model’s alignment
mechanisms: semantic—behavioral disconnect-the
decoupling of internal input semantics from output
behavior, which is vividly illustrated by the delay
between early-stage semantic contamination (steps
1-3) and later-stage behavioral collapse (steps 4-6)
observed across both figure sets.

6 Conclusion

In this work, we introduce FITD, a multi-turn
jailbreak strategy inspired by the psychological
foot-in-the-door effect. By progressively escalat-
ing the malicious intent of user queries through
intermediate prompts via SlipperySlopeParaphrase
and ReAlign, our method achieves a 94% attack
success rate on average across multiple models.
Our findings reveal a major weakness in current
Al safety measures: LLMs can be manipulated
into self-corruption, where their responses gradu-
ally shift toward harmful content by themselves.
To prevent this, researchers can develop real-time
adaptive monitoring and better alignment methods
that strengthen model alignment in multi-turn con-
versations.

1947



7 Ethical Considerations

This study aims to improve Al safety by identifying
weaknesses in LLM alignment. While our method
bypasses safeguards, our goal is to help strengthen
Al defenses, not to enable misuse.

We recognize the risks of publishing jailbreak
techniques but believe that transparent research is
necessary to develop better protections. Responsi-
ble disclosure ensures that Al developers can proac-
tively address these vulnerabilities.

Al developers must build stronger safeguards
against adversarial attacks. Adversarial training,
real-time monitoring, and collaboration between
researchers, industry, and policymakers are essen-
tial to keeping Al systems secure, reliable and ben-
eficial.

8 Limitations

First, we need more in-depth analysis of self-
corruption and the Foot-In-The-Door (FITD) phe-
nomenon remains preliminary. Self-corruption oc-
curs when an LLM gradually deviates from its
initial aligned behavior over multiple interactions,
yet current alignment lack explicit mechanisms to
prevent such degradation in multi-turn conversa-
tions. A more systematic investigation into how
LLMs undergo self-corruption, as well as methods
to mitigate it, is necessary for a deeper understand-
ing of alignment vulnerabilities. Second, we need
to evaluate jailbreak across more benchmarks and
multi-modal models to check the Foot-In-The-Door
(FITD) phenomenon in Vision LLMs. By address-
ing these limitations, future research can further
understand and enhance Al alignment.
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