
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 20275–20321
November 4-9, 2025 ©2025 Association for Computational Linguistics

s1: Simple test-time scaling

Niklas Muennighoff*1,3,4 Zitong Yang*1 Weijia Shi*2,3 Xiang Lisa Li*1 Li Fei-Fei1

Hannaneh Hajishirzi2,3 Luke Zettlemoyer2 Percy Liang1

Emmanuel Candès1 Tatsunori Hashimoto1

1Stanford University 2University of Washington 3Allen Institute for AI 4Contextual AI

Abstract

Test-time scaling is a promising new approach
to language modeling that uses extra test-time
compute to improve performance. Recently,
OpenAI’s o1 model showed this capability but
did not publicly share its methodology, leading
to many replication efforts. We seek the sim-
plest approach to achieve test-time scaling and
strong reasoning performance. First, we curate
a small dataset s1K of 1,000 questions paired
with reasoning traces relying on three crite-
ria we validate through ablations: difficulty,
diversity, and quality. Second, we develop
budget forcing to control test-time compute
by forcefully terminating the model’s think-
ing process or lengthening it by appending
“Wait” multiple times to the model’s genera-
tion when it tries to end. This can lead the
model to double-check its answer, often fix-
ing incorrect reasoning steps. After supervised
finetuning the Qwen2.5-32B-Instruct language
model on s1K and equipping it with budget
forcing, our model s1-32B exceeds o1-preview
on competition math questions by up to 27%
(MATH and AIME24). Further, scaling s1-
32B with budget forcing allows extrapolating
beyond its performance without test-time in-
tervention: from 50% to 57% on AIME24.
Our model, data, and code are open-source at
https://github.com/simplescaling/s1.

1 Introduction
Performance improvements of language models
(LMs) over the past years have largely relied on
scaling up train-time compute using large-scale
self-supervised pretraining (Kaplan et al., 2020;
Hoffmann et al., 2022). The creation of these
powerful models has set the stage for a new scal-
ing paradigm built on top of them: test-time scal-
ing. The aim of this approach is to increase the
compute at test time to get better results. There
has been much work exploring this idea (Snell

*Equal Contribution. ZY and NM started the project. WS,
NM and ZY collected the prompts, XL, ZY and NM, built the
data pipeline, LZ and WS proposed using a 1K subset and ZY
and NM built budget forcing.

512 2048
65

75

85

95

Ac
cu

ra
cy

 (%
)

Mathematical
Problem Solving

(MATH500)

512 2048 8192
0

20

40

60

Competition
Math

(AIME24)

1024 4096
40

50

60

PhD-Level
Science Questions
(GPQA Diamond)

Average thinking time (tokens)
Figure 1: Test-time scaling with s1-32B. We bench-
mark s1-32B on reasoning-intensive tasks and vary test-
time compute.

et al., 2024; Welleck et al., 2024), and the vi-
ability of this paradigm was recently validated
by OpenAI o1 (Team, 2024a). o1 has demon-
strated strong reasoning performance with consis-
tent gains from scaling test-time compute. OpenAI
describes their approach as using large-scale rein-
forcement learning (RL) implying the use of siz-
able amounts of data (Team, 2024a). This has led
to various attempts to replicate their models relying
on techniques like Monte Carlo Tree Search (Gao
et al., 2024b; Zhang et al., 2024b), multi-agent ap-
proaches (Qin et al., 2024), and others (Wang et al.,
2024a; Huang et al., 2024b, 2025). Among these
approaches, DeepSeek R1 (DeepSeek-AI et al.,
2025) has successfully replicated o1-level perfor-
mance, also employing reinforcement learning via
millions of samples and multiple training stages.
However, despite the large number of o1 replica-
tion attempts, none have openly replicated a clear
test-time scaling behavior. Thus, we ask: what
is the simplest approach to achieve both test-time
scaling and strong reasoning performance?

We show that training on only 1,000 samples
with next-token prediction and controlling think-
ing duration via a simple test-time technique we
refer to as budget forcing leads to a strong rea-
soning model that scales in performance with
more test-time compute. Specifically, we con-
struct s1K, which consists of 1,000 carefully cu-
rated questions paired with reasoning traces and an-
swers distilled from Gemini Thinking Experimen-
tal (Google, 2024). We perform supervised fine-

20275

https://github.com/simplescaling/s1


tuning (SFT) of an off-the-shelf pretrained model
on our small dataset requiring just 26 minutes of
training on 16 H100 GPUs. After training, we con-
trol the amount of test-time compute our model
spends using budget forcing: (I) If the model gen-
erates more thinking tokens than a desired limit,
we forcefully end the thinking process by append-
ing an end-of-thinking token delimiter. Ending the
thinking this way makes the model transition to
generating its answer. (II) If we want the model
to spend more test-time compute on a problem,
we suppress the generation of the end-of-thinking
token delimiter and instead append “Wait” to the
model’s current reasoning trace to encourage more
exploration. Equipped with this simple recipe –
SFT on 1,000 samples and test-time budget forcing
– our model s1-32B exhibits test-time scaling (Fig-
ure 1). Further, s1-32B is the most sample-efficient
reasoning model and outperforms closed-source
models like OpenAI’s o1-preview (Figure 2).

We conduct extensive ablation experiments tar-
geting (a) our selection of 1,000 (1K) reasoning
samples and (b) our test-time scaling. For (a), we
find that jointly incorporating difficulty, diversity,
and quality measures into our selection algorithm
is important. Random selection, selecting samples
with the longest reasoning traces, or only selecting
maximally diverse samples all lead to significantly
worse performance (around −30% on AIME24 on
average). Training on our full data pool of 59K
examples, a superset of s1K, does not offer sub-
stantial gains over our 1K selection. This highlights
the importance of careful data selection and echoes
prior findings for instruction tuning (Zhou et al.,
2023). For (b), we define desiderata for test-time
scaling methods to compare different approaches.
Budget forcing leads to the best scaling as it has
perfect controllability with a clear positive slope
leading to strong performance.

In summary, our contributions are: We develop
simple methods for creating sample-efficient rea-
soning data (§2) and test-time scaling (§3); Based
on these, we build s1-32B which is competitive
with o1-preview (§4); We ablate subtleties of data
(§5.1) and test-time scaling (§5.2). We end with
a discussion to motivate future work on reasoning
(§6). Code, models, and data are open-source at
https://github.com/simplescaling/s1.

2 Reasoning data curation to create s1K
We describe our process for first creating a large
dataset in §2.1 and then filtering it to s1K in §2.2.

2.1 Initial collection of 59K samples

We collect an initial 59,029 questions from 16
sources following three guiding principles. Qual-
ity: Datasets should be high-quality; we always
inspect samples and ignore datasets with, e.g., poor
formatting; Difficulty: Datasets should be chal-
lenging and require significant reasoning effort; Di-
versity: Datasets should stem from various fields to
cover different reasoning tasks. We collect datasets
of two categories:

Curation of existing datasets Our largest source
is NuminaMATH (LI et al., 2024) with 30,660
mathematical problems from online websites. We
also include historical AIME problems (1983-
2021). To enhance diversity, we add OlympicArena
(Huang et al., 2024a) with 4,250 questions span-
ning Astronomy, Biology, Chemistry, Computer
Science, Geography, Mathematics, and Physics
from various Olympiads. OmniMath (Gao et al.,
2024a) adds 4,238 competition-level mathematics
problems. We also include 2,385 problems from
AGIEval (Zhong et al., 2023), which features ques-
tions from standardized tests like SAT and LSAT,
covering English, Law, and Logic. We refer to
Table 6 in §D for our other sources.

New datasets in quantitative reasoning To com-
plement these existing datasets, we create two orig-
inal datasets. s1-prob consists of 182 questions
from the probability section of Stanford Univer-
sity’s Statistics Department’s PhD Qualifying Ex-
ams (https://statistics.stanford.edu), ac-
companied by handwritten solutions that cover dif-
ficult proofs. The probability qualifying exam is
held yearly and requires professional-level math-
ematical problem-solving. s1-teasers comprises
23 challenging brain-teasers commonly used in
interview questions for quantitative trading posi-
tions. Each sample consists of a problem and so-
lution taken from PuzzledQuant (https://www.
puzzledquant.com/). We only take examples
with the highest difficulty level ("Hard").

For each question, we generate a reasoning trace
and solution using the Google Gemini Flash Think-
ing API (Google, 2024) extracting its reasoning
trace and response. This yields 59K triplets of a
question, generated reasoning trace, and generated
solution. Examples from our data are in §F.2. We
decontaminate all samples against our evaluation
questions (MATH500, GPQA Diamond, AIME24;
§E.2) using 8-grams and deduplicate the data.

20276

https://github.com/simplescaling/s1
https://statistics.stanford.edu
https://www.puzzledquant.com/
https://www.puzzledquant.com/


Geometry Number
theory

Combin−
atorics

Real
functions

Biology

Complex
functions

Quantum
theory

Field
theory

Calculus of
variations

Difference
equations

Electro−
dynamics

Group
theory

Linear
algebra

Probability
theory

Algebraic
systems

Mechanics

Thermo−
dynamics

Differential
equations

Computer
science

Numerical
analysis

Calculus

Algebraic
structures

Astronomy

Dynamical
systems

Statistical
mechanics

Operations
research

Math−
ematics

education

Measure
theory

Convex
geometry

Fluid
mechanics

Algebraic
geometry

Statistics
General
topology

Economics

Associative
rings

General
relativity

Differential
geometry

Math−
ematical

logic

Partial
differential
equations

Information
theory

Solid
mech
−anics

Functional
analysis

Special
functions

Comm−
utative
algebra

Integral
equations

Integral
transform

Approxi−
mation
theory

Potential
theory

Harmonic
analysis

Control
theory

Geo−
physics

1000 17000 800000 N/A
Number of Examples

80

85

90

95

100

M
AT

H5
00

 A
cc

ur
ac

y 
(%

)

s1
r1-distill

Sky-T1

QwQ
Bespoke-Stratos

o1-preview

Most sample-efficient

Figure 2: s1K and s1-32B. (left) s1K is a dataset of 1,000 high-quality, diverse, and difficult questions with
reasoning traces. (right) s1-32B, a 32B parameter model finetuned on s1K is on the sample-efficiency frontier. See
Table 1 for details on other models.

2.2 Final selection of 1K samples

We could directly train on our pool of 59K ques-
tions, however, our goal is to find the simplest
approach with minimal resources. Thus, we go
through three filtering stages to arrive at a minimal
set of 1,000 samples relying on our three guiding
data principles: Quality, Difficulty, and Diversity.

Quality We first remove any questions where we
ran into any API errors reducing our dataset to
54,116 samples. Next, we filter out low-quality
examples by checking if they contain any string
patterns with formatting issues, such as ASCII art
diagrams, non-existent image references, or incon-
sistent question numbering reducing our dataset to
51,581 examples. From this pool, we identify 384
samples for our final 1,000 samples from datasets
that we perceive as high-quality and not in need of
further filtering (see §E.1 for details).

Difficulty For difficulty, we use two indica-
tors: model performance and reasoning trace
length. We evaluate two models on each ques-
tion: Qwen2.5-7B-Instruct and Qwen2.5-32B-
Instruct (Team, 2024b), with correctness assessed
by Claude 3.5 Sonnet comparing each attempt
against the reference solution (see §D.3 for the
grading protocol). We measure the token length
of each reasoning trace to indicate problem diffi-
culty using the Qwen2.5 tokenizer. This relies on
the assumption that more difficult problems require
more thinking tokens. Based on the grading, we
remove questions that either Qwen2.5-7B-Instruct
or Qwen2.5-32B-Instruct can solve correctly and
thus may be too easy. By using two models we

reduce the likelihood of an easy sample slipping
through our filtering due to a rare mistake on an
easy question of one of the models. This brings our
total samples down to 24,496, setting the stage for
the next round of subsampling based on diversity.
While filtering with these two models may be opti-
mized for our setup as we will also use Qwen2.5-
32B-Instruct as our model to finetune, the idea of
model-based filtering generalizes to other setups.

Diversity To quantify diversity, we classify ques-
tions into domains using Claude 3.5 Sonnet based
on the Mathematics Subject Classification (MSC)
system (e.g., geometry, combinatorics, etc.) from
the American Mathematical Society.1 The taxon-
omy focuses on topics in mathematics but also in-
cludes other sciences such as biology, physics, and
economics. To select our final examples from the
pool of 24,496 questions, we first choose one do-
main uniformly at random. Then, we sample one
problem from this domain according to a distribu-
tion that favors longer reasoning traces (see §E.1
for details) as motivated in Difficulty. We repeat
this process until we have 1,000 total samples span-
ning 50 domains.

In §5.1, we will show that using our three crite-
ria in combination is important, as only relying on
quality, diversity, or difficulty in isolation leads to
worse datasets. Some distilled generations are in-
correct, which we allow in our data as we focus on
capturing the reasoning process rather than entirely
correct solutions. Our grader (§D.3) deems 53.6%
correct in s1K and 63.0% in s1K-1.1 (see §A).

1https://mathscinet.ams.org/mathscinet/msc/
msc2020.html

20277

https://mathscinet.ams.org/mathscinet/msc/msc2020.html
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


How many r in raspberry?

Let's break down the process of counting the letter 'r' in the 
word "raspberry" ...

* First letter: 'r' - This is an 'r', count = 1.

* Second letter: 'a' - Not an 'r', count remains 1 ...

* Sixth letter: 'e' - Not an 'r', count remains 1.

* Seventh letter: 'r' - This is an 'r', count = 2.

* Eighth letter: 'y' - Not an 'r', count remains 2 ...

The number of 'r's in "raspberry" is 2.


, let's re-read the question carefully. It asks "How many r 
in raspberry?" ... * r - a - s - p - b - e - r - r - y ... * First 'r' ... * 
Second 'r' ... * Third 'r' ... Count = 3 ...

Wait

My initial answer of 2 was incorrect due to a quick reading of 
the word. Final Answer: The final answer is

Question

Reasoning trace

Response


Figure 3: Budget forcing with s1-32B. The model
tries to stop after “...is 2.”, but we suppress the end-
of-thinking token delimiter instead appending “Wait”
leading s1-32B to self-correct its answer.

3 Test-time scaling
3.1 Method

We classify test-time scaling methods into 1) Se-
quential, where later computations depend on ear-
lier ones (e.g., a long reasoning trace), and 2) Par-
allel, where computations run independently (e.g.,
majority voting) (Snell et al., 2024; Brown et al.,
2024). We focus on sequential scaling as we in-
tuitively believe it should scale better since later
computations can build on intermediate results, al-
lowing for deeper reasoning and iterative refine-
ment. We propose new sequential scaling methods
and ways to benchmark them.

Budget forcing We propose a simple decoding-
time intervention by forcing a maximum and/or
minimum number of thinking tokens. Specifically,
we enforce a maximum token count by simply ap-
pending the end-of-thinking token delimiter and
optionally “Final Answer:” to early exit the think-
ing stage and make the model provide its current
best answer. To enforce a minimum, we suppress
the generation of the end-of-thinking token delim-
iter and optionally append the string “Wait” to the
model’s current reasoning trace to encourage the
model to reflect on its current generation. Figure 3
contains an example of how this simple approach
can lead the model to arrive at a better answer.

Baselines We benchmark budget forcing with:
(I) Conditional length-control methods, which
rely on telling the model in the prompt how long
it should generate for. We group them by granular-
ity into (a) Token-conditional control: We specify
an upper bound of thinking tokens in the prompt;

(b) Step-conditional control: We specify an upper
bound of thinking steps, where each step is around
100 tokens; (c) Class-conditional control: We write
two generic prompts that tell the model to either
think for a short or long amount of time (see §G.2
for details). (II) Rejection sampling, which sam-
ples until a generation fits a predetermined compute
budget. This oracle captures the posterior over re-
sponses conditioned on its length.

3.2 Metrics

We establish a set of desiderata as evaluation met-
rics to measure test-time scaling across methods.
Importantly, we do not only care about the accuracy
a method can achieve but also its controllability
and test-time scaling slope. For each method we
consider, we run a set of evaluations 𝑎 ∈  vary-
ing test-time compute on a fixed benchmark, e.g.,
AIME24. This yields a piece-wise linear function
𝑓 with compute as the x-axis measured in thinking
tokens and accuracy as the y-axis (see Figure 1,
where the rightmost dot for AIME24 corresponds
to 𝑓 (7320) = 57%). We measure three metrics:

Control = 1
||

∑
𝑎∈

𝕀(𝑎min ≤ 𝑎 ≤ 𝑎max) (1)

where 𝕀 is the indicator function; 𝑎min, 𝑎max are pre-
specified minimum/maximum amounts of test-time
compute. We usually only constrain 𝑎max and mea-
sure test-time compute in generated thinking to-
kens. This metric thus captures the extent to which
a method allows controllability over the amount of
test-time compute used. We report it as a percent-
age where 100% is perfect control.

Scaling = 1(||
2

)
∑
𝑎,𝑏∈
𝑏>𝑎

𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎

(2)

Scaling is the average slope of the piece-wise linear
function. It must be positive for useful methods
and larger is better.

Performance = max
𝑎∈ 𝑓 (𝑎) (3)

Performance is simply the maximum performance
the method achieves on the benchmark. A method
with monotonically increasing scaling achieves
100% performance on any benchmark in the limit.
However, the methods we investigate eventually
flatten out or further scaling fails due to control or
context window limitations.

20278



Forcing 2048/4096 max thinking 

tokens

Ignoring end-of-thinking 2x/4x/6x and 
appending “Wait” thus forcing it to continue 
reasoning when it tries to stop

(a) Sequential scaling via budget forcing

Parallel scaling via Majority 
voting with base model 
(Qwen2.5-32B-Instruct)

Sequential scaling 
via Forcing with s1

60% accuracy

(b) Parallel scaling via majority voting

Figure 4: Sequential and parallel test-time scaling. (a): Budget forcing shows clear scaling trends and extrapolates
to some extent. For the three rightmost dots, we prevent the model from stopping its thinking 2/4/6 times, each time
appending “Wait” to its current reasoning trace. (b): For Qwen2.5-32B-Instruct we generate 64 answers per sample
with a temperature of 1 and visualize the performance when majority voting across 2, 4, 8, 16, 32, 64 generations.

4 Results
4.1 Setup

Training We perform supervised finetuning on
Qwen2.5-32B-Instruct using s1K to obtain our
model s1-32B using basic hyperparameters out-
lined in §F. Finetuning took 26 minutes on 16
NVIDIA H100 GPUs with PyTorch FSDP.

Evaluation We select three representative rea-
soning benchmarks widely used in the field:
AIME24 (of America, 2024) has 30 problems that
were used in the 2024 American Invitational Math-
ematics Examination (AIME) held from January
31 – February 1, 2024. AIME tests mathematical
problem-solving with arithmetic, algebra, counting,
geometry, number theory, probability, and other
math topics. High-scoring high school students
in the test are invited to participate in the United
States of America Mathematics Olympiad (US-
AMO). All AIME answers are integers ranging
from 000 to 999, inclusive. Some AIME problems
rely on figures that we provide to our model us-
ing the vector graphics language Asymptote, as it
cannot take image inputs. MATH500 (Hendrycks
et al., 2021) is a benchmark of competition math
problems of varying difficulty. We evaluate on
the same 500 samples selected by OpenAI in
prior work (Lightman et al., 2023). GPQA Di-
amond (Rein et al., 2023) consists of 198 PhD-
level science questions from Biology, Chemistry
and Physics. Experts with PhDs in the correspond-
ing domains only achieved 69.7% on GPQA Dia-

mond (Team, 2024a). When we write “GPQA” in
the context of evaluation in this work, we always
refer to the Diamond subset. We build on the “lm-
evaluation-harness” framework (Gao et al., 2021;
Biderman et al., 2024). Unless otherwise specified,
we evaluate with a temperature of 0 (greedy) and
measure accuracy (equivalent to pass@1).

Other models We benchmark s1-32B against:
OpenAI o1 series (Team, 2024a), closed-
source models that popularized test-time scal-
ing; DeepSeek r1 series (DeepSeek-AI et al.,
2025), open-weight reasoning models with up
to o1-level performance; Qwen’s QwQ-32B-
preview (Team, 2024c), a 32B open-weight rea-
soning model without disclosed methodology; Sky-
T1-32B-Preview (Team, 2025b) and Bespoke-
32B (Team, 2025a), open models with open reason-
ing data distilled from QwQ-32B-preview and r1;
Google Gemini 2.0 Flash Thinking Experimen-
tal (Google, 2024), the API that we distill from.
As it has no official evaluation scores, we use the
Gemini API to benchmark it ourselves. However,
the “recitation error” of the Gemini API makes
evaluation challenging.2 We circumvent this, by
manually inserting all 30 AIME24 questions in
its web interface where the error does not appear.
However, we leave out MATH500 (500 questions)
and GPQA Diamond (198 questions), thus they are
N.A. in Table 1. Our model, s1-32B, is fully open
including weights, reasoning data, and code.

2https://github.com/google/generative-ai-docs/
issues/257

20279

https://github.com/google/generative-ai-docs/issues/257
https://github.com/google/generative-ai-docs/issues/257


Model # ex. AIME
2024

MATH
500

GPQA
Diamond

API only

o1-preview N.A. 44.6 85.5 73.3
o1-mini N.A. 70.0 90.0 60.0
o1 N.A. 74.4 94.8 77.3
Gemini 2.0 N.A. 60.0 N.A. N.A.Flash Think.

Open Weights

Qwen2.5- N.A. 26.7 84.0 49.032B-Instruct
r1 ≫800K 79.8 97.3 71.5
r1-distill 800K 72.6 94.3 62.1

Open Weights and Open Data

Sky-T1 17K 43.3 82.4 56.8
Bespoke-32B 17K 63.3 93.0 58.1

s1 w/o BF 1K 50.0 92.6 56.6
s1-32B 1K 56.7 93.0 59.6

Table 1: s1-32B performance. We evaluate s1-32B,
Qwen, and Gemini (some entries are unknown (N.A.),
see §4). Other results are from the respective re-
ports (Team, 2024b, 2025b, 2024a, 2025a; DeepSeek-AI
et al., 2025). # ex. = reasoning finetuning examples; BF
= budget forcing. See §A for our better s1.1 model.

4.2 Performance
Test-time scaling Figure 1 shows the perfor-
mance of s1-32B with budget forcing scales with
more test-time compute. In Figure 4 (left), we ex-
pand Figure 1 (middle), showing that while we can
improve AIME24 performance using our budget
forcing technique (§3) and more test-time compute
it eventually flattens out at six times. Suppressing
the end-of-thinking token delimiter too often can
lead the model into repetitive loops instead of con-
tinued reasoning. In Figure 4 (right), we show that
after training Qwen2.5-32B-Instruct on our 1,000
samples to produce s1-32B and equipping it with
the simple budget forcing technique, it operates in a
different scaling paradigm. Scaling test-time com-
pute on the base model via majority voting does not
catch up with the performance of s1-32B, validat-
ing our intuition from §3 that sequential scaling is
more effective than parallel. We provide example
generations of s1-32B in Figure 5.

Sample-efficiency In Figure 2 (right) and Table 1
we compare s1-32B with other models. We find
that s1-32B is the most sample-efficient open data
reasoning model. It performs significantly better
than our base model (Qwen2.5-32B-Instruct) de-
spite just training it on an additional 1,000 samples.
The concurrently released r1-32B shows stronger
performance than s1-32B while also only using

SFT (DeepSeek-AI et al., 2025). However, it is
trained on 800 × more reasoning samples. It is
an open question whether one can achieve their
performance with just 1,000 samples. Our model
nearly matches Gemini 2.0 Thinking on AIME24.
As the data for s1-32B is distilled from Gemini
2.0, this shows our distillation procedure was likely
effective. Around half of all answers in s1K are
wrong, yet the results are striking. This suggests
that the SFT stage is about learning reasoning pat-
terns rather than correct answers.

5 Ablations

Model AIME
2024

MATH
500

GPQA
Diamond

1K-random 36.7 90.6 52.0
[-26.7%, -3.3%] [-4.8%, 0.0%] [-12.6%, 2.5%]

1K-diverse 26.7 91.2 54.6
[-40.0%, -10.0%] [-4.0%, 0.2%] [-10.1%, 5.1%]

1K-longest 33.3 90.4 59.6
[-36.7%, 0.0%] [-5.0%, -0.2%] [-5.1%, 10.1%]

59K-full 53.3 92.8 58.1
[-13.3%, 20.0%] [-2.6%, 2.2%] [-6.6%, 8.6%]

s1K 50.0 93.0 57.6

Table 2: s1K data ablations. We budget force (BF)
a maximum of around 30,000 thinking tokens for all
scores in this table. This performs slightly better than
the scores without BF (Table 1) as it allows the model
to finish with a best guess when stuck in an infinite loop.
We report 95% paired bootstrap confidence intervals
for differences relative to the s1K model using 10,000
bootstrap samples. E.g., the interval [-13%, 20%] means
that, with 95% confidence, the true difference between
59K-full and s1K is between -13% and +20%. If the
entire interval is negative, e.g. [-27%, -3%], we can
confidently say that the performance is worse than s1K.

5.1 Data Quantity, Diversity, and Difficulty
In §2 we outlined our three guiding principles in cu-
rating s1K: Quality, Difficulty, and Diversity. Here
we test the importance of combining them and the
overall efficacy of our selection. Only Quality
(1K-random): After obtaining our high-quality
reasoning chains from Gemini, we select 1,000
samples at random; not relying on our difficulty
and diversity filtering at all. Table 2 shows this
approach performs much worse than s1K across
all benchmarks. Only Diversity (1K-diverse): For
this dataset, we sample uniformly across domains
to maximize diversity disregarding any notion of
difficulty. This approach also leads to poor per-
formance similar to 1K-random. Only Difficulty
(1K-longest): Here we rely on one of our difficulty
indicators introduced in §2 by selecting the 1,000

20280



[AIME24]

Alice and Bob play the following game. A stack
of 𝑛 tokens lies before them. The players take
turns with Alice going first. On each turn, the
player removes either 1 token or 4 tokens from
the stack. Whoever removes the last token wins.
Find the number of positive integers 𝑛 less than
or equal to 2024 for which there exists a strat-
egy for Bob that guarantees that Bob will win
the game regardless of Alice’s play.

The problem asks for the number of positive inte-
gers 𝑛 ≤ 2024 such that Bob has a winning strat-
egy. This is a typical impartial game that can be
analyzed using the Sprague-Grundy theorem or by
directly finding the winning and losing positions.
Let 𝑊 be the set of winning positions (number of
tokens 𝑛 such that the player whose turn it is can
force a win) and 𝐿 be the set of losing positions.
[...]

Let 𝑃 (𝑛) be the statement "the player whose turn it
is when there are 𝑛 tokens has a winning strategy.
𝑃 (0) is false (the player whose turn it is and faces
0 tokens has already lost). Consider the small
values of 𝑛:
𝑛 = 1: The player whose turn it is can take 1 token
and win. So 𝑃 (1) is true. 1 ∈ 𝑊 .
𝑛 = 2: The player whose turn it is can take 1 token,
leaving 1 token for the opponent. Since 1 ∈ 𝑊 ,
the opponent wins. So 𝑃 (2) is false. 2 ∈ 𝐿.
𝑛 = 3: The player whose turn it is can take 1 token,
leaving 2 tokens for the opponent. Since 2 ∈ 𝐿,
the player whose turn it is wins. [...]

We are looking for the number of positive integers
𝑛 ≤ 2024 for which Bob has a winning strategy.
This means that if the game starts with 𝑛 tokens,
and Alice goes first, Bob can win. This happens if
and only if 𝑛 is a losing position (because if 𝑛 ∈ 𝐿,
then Alice’s first move must lead to a winning
position for Bob). [...]
Let’s try to find a pattern in the losing posi-
tions 𝐿 = {0, 2, 5, 7, 10, 12, 15, 17, 20, 22, ...}.
Differences between consecutive terms:
2, 3, 2, 3, 2, 3, 2, 3, 2, ... The pattern of differ-
ences is alternating 2, 3. [...]
The losing positions are of the form 5𝑚 or 5𝑚 + 2,
where 𝑚 ≥ 0. We need to find the number of
positive integers 𝑛 ≤ 2024 that are in the set of
losing positions 𝐿. [...]
Case 1: 𝑛 = 5𝑚, where 𝑚 ≥ 1. 1 ≤ 5𝑚 ≤ 2024
1∕5 ≤ 𝑚 ≤ 2024∕5 = 404.8 Since 𝑚 is an integer,
1 ≤ 𝑚 ≤ 404. The number of values of 𝑚 is 404.
Case 2: 𝑛 = 5𝑚+2, where 𝑚 ≥ 0. 5𝑚+2 ≤ 2024
5𝑚 ≤ 2022 𝑚 ≤ 2022∕5 = 404.4 Since 𝑚 is an
integer, 0 ≤ 𝑚 ≤ 404. The number of values of 𝑚
is 404 − 0 + 1 = 405.

The total number of positive integers 𝑛 ≤ 2024
that are losing positions is 404 + 405 = 809 .

[MATH500]

Find the projection of 𝑎 onto 𝑏 =(2
6
3

)
if 𝑎 ⋅ 𝑏 = 8.

The projection of vector 𝐚 onto vec-
tor 𝐛 is given by the formula:

proj𝐛𝐚 = 𝐚 ⋅ 𝐛
‖𝐛‖2 𝐛

We are given 𝐛 =

(2
6
3

)
and 𝐚 ⋅𝐛 =

8.

First, we need to find the magni-
tude squared of 𝐛, which is ‖𝐛‖2.
‖𝐛‖2 = 𝐛⋅𝐛 = 22+62+32 = 4+36+9 = 49.

Now we can plug the values into
the projection formula:

proj𝐛𝐚 = 8
49

𝐛

Substitute the vector 𝐛:

proj𝐛𝐚 = 8
49

(2
6
3

)

Multiply the scalar by each compo-
nent of the vector:

proj𝐛𝐚 =
⎛⎜⎜⎜⎝

8
49

× 2
8
49

× 6
8
49

× 3

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝

16
49
48
49
24
49

⎞⎟⎟⎟⎠

Final Answer: The final answer is

⎛
⎜⎜⎜⎝

16
49
48
49
24
49

⎞
⎟⎟⎟⎠

[GPQA]

A quantum mechanical particle
of mass 𝑚 moves in two dimen-
sions in the following potential, as
a function of the polar coordinates
(𝑟, 𝜃):

𝑉 (𝑟, 𝜃) = 1
2
𝑘𝑟2 + 3

2
𝑘𝑟2 cos2(𝜃)

Find the energy spectrum. Hint:
Write the potential in Cartesian
coordinates.

The problem asks for the energy
spectrum of a particle in a given 2D
potential. The potential is given in
polar coordinates (𝑟, 𝜃):

𝑉 (𝑟, 𝜃) = 1
2
𝑘𝑟2 + 3

2
𝑘𝑟2 cos2(𝜃).

We can rewrite the potential as:

𝑉 (𝑟, 𝜃) = 1
2
𝑘𝑟2(1 + 3 cos2(𝜃)).

The Hamiltonian for a particle in
2D is given by:

𝐻 = − ℏ
2

2𝑚

(
𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

)
+𝑉 (𝑥, 𝑦).

In polar coordinates (𝑟, 𝜃), the Lapla-
cian operator is:

∇2 = 1
𝑟
𝜕
𝜕𝑟

(
𝑟 𝜕
𝜕𝑟

)
+ 1
𝑟2

𝜕2

𝜕𝜃2
.

So the Hamiltonian in po-
lar coordinates is: 𝐻 =
− ℏ2

2𝑚

[
1
𝑟
𝜕
𝜕𝑟

(
𝑟 𝜕
𝜕𝑟

)
+ 1

𝑟2
𝜕2

𝜕𝜃2

]
+𝑉 (𝑟, 𝜃).

The time-independent Schrödinger
equation is 𝐻𝜓 = 𝐸𝜓 . We can
try to separate variables by assum-
ing a solution of the form 𝜓(𝑟, 𝜃) =
𝑅(𝑟)Θ(𝜃). [...]

This confirms the energy spectrum
is:

𝐸 = ℏ
√

𝑘
𝑚

(
2𝑛𝑥 + 𝑛𝑦 +

3
2

)
.

Final Answer: 𝐸 =
ℏ
√

𝑘
𝑚

(
2𝑛𝑥 + 𝑛𝑦 +

3
2

)
.

Figure 5: Example model outputs. We pick questions from AIME24 (left), MATH500 (middle), and GPQA (right),
where s1-32B generates the correct answer. The black text is the prompt, light blue is the reasoning trace, and blue
is the answer of s1-32B. The gray ellipsis [...] indicates that the text was trimmed to fit this page, but the generated
text is actually longer.

20281



samples with the longest reasoning traces. This
approach significantly boosts GPQA performance
but overall still falls short of using s1K. Maximize
Quantity: Finally, we compare with just training
on all of our 59K samples, a superset of all the
1K-sample versions. This leads to a strong model
but uses much more resources. To finetune on 59K
samples, we use 394 H100 GPU hours while s1-
32B only required 7 H100 GPU hours. Moreover,
relying only on s1K is extremely competitive as
shown in §2. Overall, combining all three criteria –
Quality, Difficulty, Diversity – via our methodology
in §2 is key for sample-efficient reasoning training.

5.2 Test-time scaling methods

Method Control Scaling Performance ||
BF 100% 15 56.7 5

TCC 40% -24 40.0 5
TCC + BF 100% 13 40.0 5
SCC 60% 3 36.7 5
SCC + BF 100% 6 36.7 5
CCC 50% 25 36.7 2

RS 100% -35 40.0 5

Table 3: Ablations on methods to scale test-time com-
pute on AIME24. || refers to the number of evalua-
tion runs used to estimate the properties; thus a higher
value indicates more robustness. Bold indicates our cho-
sen method and the best values. BF = budget forcing,
TCC/SCC/CCC = token/step/class-conditional control,
RS = rejection sampling.

Budget forcing In Table 3 we compare the test-
time scaling methods introduced in §3. Overall,
we find that budget forcing provides perfect con-
trol, good scaling, and leads to our best AIME24
score. Thus, this is the method we use for s1-32B
in Figure 1 and in §4.

Class-conditional control We provide bench-
mark scores for this method in §G.2 and summarize
three findings here: (1) Token-conditional control
fails without budget forcing, as our model cannot
reliably count tokens - even when trained to do
so. (2) Under step-conditional control, the model
generates a similar total number of tokens when
given different step targets, as the model goes from
few steps with many tokens per step, to many steps
with few tokens in each step. Thus, the model
learns to hack its way around the compute con-
straint making the controllability of this method
mediocre. (3) Class-conditional control can work -
telling a model to simply think longer can increase
its test-time compute and performance, which leads
to good scaling in Table 3.

3072 4096 5120
Average thinking time (tokens)

22

27

32

37

42

Ac
cu

ra
cy

 (%
)

Figure 6: Rejection sampling on AIME24 with s1-
32B. We sample with a temperature of 1 until all gen-
erations have less than (from left to right) 3500, 4000,
5000, 8000, and 16000 thinking tokens requiring an
average of 655, 97, 8, 3, 2, and 1 tries per sample.

Rejection sampling Surprisingly, we find that
simply sampling until the generation fits a specific
length leads to an inverse scaling trend as depicted
in Figure 6. In §G.3 we inspect a question, which
was answered correctly by the model when rejec-
tion sampling for ≤ 4000, but not for the ≤ 8000
token setting. In the ≤ 4000 setting the model di-
rectly jumps to the correct approach, while for the≤ 8000 setting it backtracks a lot. We hypothesize
that there is a correlation such that shorter genera-
tions tend to be the ones where the model was on
the right track from the start, whereas longer ones
tend to be ones where the model made mistakes and
thus backtracks or questions itself. This leads to
longer samples often being wrong when rejection
sampling and thus the inverse scaling trend.

6 Discussion and related work
6.1 Sample-efficient reasoning

Models Various concurrent efforts aim to
build models that replicate the performance of
o1 (Team, 2024a). For example, DeepSeek-r1
and k1.5 (DeepSeek-AI et al., 2025; Team et al.,
2025) are built with reinforcement learning meth-
ods, while others rely on SFT using tens of thou-
sands of distilled examples (Xu et al., 2025; Team,
2025b,a). We show that SFT on only 1,000 exam-
ples suffices to build a competitive reasoning model
matching o1-preview and produces a model that
lies on the pareto frontier (Figure 2). Further, we
introduce budget forcing which combined with our
reasoning model leads to the first reproduction of
OpenAI’s test-time scaling curves (Team, 2024a).

Benchmarks and methods To evaluate and push
the limits of these models, increasingly hard bench-
marks have been introduced (Srivastava et al., 2023;
Glazer et al., 2024; Su et al., 2024; Kim et al.,
2024; Phan et al., 2025). To enhance model per-

20282



formance on reasoning tasks, prior works explore
continuing training language models on specialized
corpora related to mathematics and science (Azer-
bayev et al., 2023; Yang et al., 2024), sometimes
even synthetically generated data (Yu et al., 2024).
Others develop training methods specifically aimed
at reasoning performance (Zelikman et al., 2022,
2024; Luo et al., 2025; Yuan et al., 2025; Wu et al.,
2024a). Another significant line of work focuses
on prompting methods to improve reasoning abili-
ties (Wei et al., 2023; Yao et al., 2023a,b; Bi et al.,
2023; Fu et al., 2023; Zhang et al., 2024a; Xiang
et al., 2025; Hu et al., 2024; Diao et al., 2024).

6.2 Test-time scaling
Methods As introduced in §3, we differentiate
parallel and sequential test-time scaling. The for-
mer relies on generating multiple attempts in par-
allel and selecting the best via heuristics like ma-
jority vote or Best-of-N (Irvine et al., 2023; Levi,
2024). For sequential scaling, prior methods let
the model generate solution attempts sequentially,
allowing it to refine each attempt based on previ-
ous outcomes (Hou et al., 2025; Lee et al., 2025).
Tree-based search methods (Gandhi et al., 2024)
offer a hybrid approach between sequential and
parallel scaling, such as Monte-Carlo Tree Search
(MCTS) (Liu et al., 2024; Zhang et al., 2023; Zhou
et al., 2024; Choi et al., 2023) and guided beam
search (Xie et al., 2023). REBASE (Wu et al.,
2024b) uses a process reward model to balance
exploitation and pruning during tree search, out-
performing sampling-based methods and MCTS.
Reward models play a key role in these methods.
Outcome reward models (Xin et al., 2024; Ankner
et al., 2024; Wang et al., 2024c) assign a score
to complete solutions and are particularly useful
in Best-of-N selection, while process reward mod-
els (Lightman et al., 2023; Wang et al., 2024b; Wu
et al., 2024b) assess individual reasoning steps, e.g.,
to guide tree-based search methods.

Limits to further test-time scaling We have
shown that budget forcing allows extrapolating test-
time compute in §4, e.g., improving AIME24 per-
formance from 50% to 57%. However, it has two
key limitations when scaling further: it eventually
flattens out (Figure 4), and the context window of
the underlying language model constrains it. De-
spite these, our work shows test-time scaling across
a wide range of accuracies (Figure 1), partly be-
cause scaling down test-time compute behaves pre-
dictably and does not suffer from these constraints.

2048 8192 32768 131072
Average thinking time (tokens)

30

40

50

60

Ac
cu

ra
cy

 (%
)

REBASE
Majority
Sequential
scaling

Figure 7: Scaling further with parallel scaling. All
metrics are averaged over the 30 questions in AIME24.
Average thinking tokens for REBASE exclude the com-
pute from the reward model. For sequential scaling,
we prompt the model to use up to (from left to right)
32, 64, 256, and 512 steps. For REBASE and majority
voting we generate 16 parallel trajectories to aggregate
across. The dashed sequential scaling line indicates a
performance drop due to running out of context length.

Continuing test-time scaling will require ap-
proaches that can further extrapolate test-time com-
pute. How can we get such extrapolation? There
may be improvements to budget forcing, such as
combining it with frequency penalties or higher
temperature to avoid repetitive loops. An excit-
ing direction for future work is also researching
whether applying budget forcing to a reasoning
model trained with reinforcement learning yields
better extrapolation; or if RL allows for new ways
of test-time scaling beyond budget forcing. Our
work defines key metrics (§3.2) – Control, Scaling,
and Performance – to enable future research and
progress on extrapolating test-time compute.

Parallel scaling as a solution Parallel scaling of-
fers one solution to the limits of sequential scaling,
thus we augment our sequentially scaled model
with two methods: (I) Majority voting: We gen-
erate 𝑘 answers and select the most frequent one;
(II) Tree search via REBASE: We use the RE-
BASE process reward model (Wu et al., 2024b) to
guide intermediate reasoning steps of our model
and aggregate the final answers via majority vot-
ing. Figure 7 shows that augmenting our model
with REBASE scales better than majority voting,
and even sequential scaling in this scenario. How-
ever, REBASE requires an additional forward pass
at each step for the reward model adding some
computation overhead. For sequential scaling, on
12/30 evaluation questions the model generates a
response that exceeds the context window leading
to the accuracy drop. Overall, we find that paral-
lel scaling methods complement sequential scaling
thus offering an avenue for scaling test-time com-
pute even further; beyond fixed context windows.

20283



Limitations

Limits to test-time scaling with budget forcing
We reiterate our points in §6.2 that budget forcing
(like all other known test-time scaling methods)
eventually flattens out and sequential scaling can
be constrained by context length. We point to §6.2
for our initial foray into solving this by combining
sequential and parallel test-time scaling. Extrapo-
lation with budget forcing using “Wait” may not
always be effective, as one factor is how much back-
tracking the model already does. For example, our
s1.1 model in §A naturally does more backtracking
due to it being trained on longer traces with more
“Wait” tokens already in them, thus it leads to lower
performance gains there.

Applicability to abstract tasks One major lim-
itation of current test-time scaling methods, in-
cluding budget forcing, is their applicability to ab-
stract tasks, such as creative writing. This work
focuses on scientific problems spanning mathemat-
ics (AIME), physics (GPQA), and other domains.
Budget forcing is a very general technique, and we
believe that it could also be applied to more ab-
stract tasks, but we leave this to future work. This
is in contrast to test-time scaling techniques like
majority voting, which rely on there being a small
answer space. This is such that the most frequent
answer can be selected as the majority vote. For
tasks like writing an essay, it is unlikely that the
model would write the same essays multiple times,
thus, there is no means of selecting the most fre-
quent essay. We are excited about the prospects of
applying budget forcing and other future test-time
scaling techniques to such abstract tasks.

Distillation The construction of the reasoning
traces and answers for s1K and s1K-1.1 relies on
distillation from other models. Specifically, we
generate reasoning traces for s1K using Gemini
and for s1K-1.1 using DeepSeek r1 (see §A). This
could be a limitation as it assumes that a powerful
model is accessible in the first place. However,
since we only require generating reasoning traces
and answers for 1,000 questions, it may be feasible
to leverage human experts instead of models, thus
bypassing the need for a larger strong model. By
finding 1,000 questions that elicit strong reasoning
performance, we have already done the bulk of
the work and future practitioners can reuse those
questions with their own reasoning traces if desired.

Model family While we only experiment with
models from the Qwen family, we fine-tune across
multiple sizes. Follow-up work has analyzed these
models, showing that our findings generalize across
scales (Yong et al., 2025). We also point to other
subsequent works that have validated our demon-
strated efficacy of SFT for reasoning performance
in different setups (Lu et al., 2025; Guha et al.,
2025; Zhang et al., 2025; Ye et al., 2025a).

Ethical considerations
Language models with strong reasoning capabili-
ties have the potential to greatly enhance human
productivity, from assisting in complex decision-
making to driving scientific breakthroughs. How-
ever, recent advances in reasoning, e.g., OpenAI
o1 and DeepSeek r1, lack transparency, limiting
broader research progress. Our work aims to push
the frontier of reasoning in a fully open manner,
fostering innovation and collaboration to accelerate
advancements that ultimately benefit society.

Acknowledgments
We thank Ryan Marten for generating traces
from DeepSeek r1 for s1.1 using Bespoke Cura-
tor (Marten et al., 2025). This work partly used
the Stanford Marlowe GPU cluster (Kapfer et al.,
2025), made possible by financial support from
Stanford University. We thank Alexander M. Rush,
Andrew Ilyas, Banghua Zhu, Chenglei Si, Chunting
Zhou, John Yang, Ludwig Schmidt, Samy Jelassi,
Suhas Kotha, Tengyu Ma, Xuechen Li, Yu Sun, and
Yue Zhang for very constructive discussions. TH
was supported by a grant under the NSF CAREER
IIS-2338866 and ONR N00014-24-1-2609.

References
Zachary Ankner, Mansheej Paul, Brandon Cui,

Jonathan D. Chang, and Prithviraj Ammanabrolu.
2024. Critique-out-loud reward models. Preprint,
arXiv:2408.11791.

Daman Arora, Himanshu Gaurav Singh, and Mausam.
2023. Have llms advanced enough? a challenging
problem solving benchmark for large language mod-
els. Preprint, arXiv:2305.15074.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.
2023. Llemma: An open language model for mathe-
matics. Preprint, arXiv:2310.10631.

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng,
Guozhou Zheng, and Huajun Chen. 2023. When do
program-of-thoughts work for reasoning? Preprint,
arXiv:2308.15452.

20284

https://arxiv.org/abs/2408.11791
https://arxiv.org/abs/2305.15074
https://arxiv.org/abs/2305.15074
https://arxiv.org/abs/2305.15074
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2308.15452
https://arxiv.org/abs/2308.15452


Stella Biderman, Hailey Schoelkopf, Lintang Sutawika,
Leo Gao, Jonathan Tow, Baber Abbasi, Alham Fikri
Aji, Pawan Sasanka Ammanamanchi, Sidney Black,
Jordan Clive, Anthony DiPofi, Julen Etxaniz, Ben-
jamin Fattori, Jessica Zosa Forde, Charles Foster,
Jeffrey Hsu, Mimansa Jaiswal, Wilson Y. Lee, Hao-
nan Li, and 11 others. 2024. Lessons from the
trenches on reproducible evaluation of language mod-
els. Preprint, arXiv:2405.14782.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V. Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling in-
ference compute with repeated sampling. Preprint,
arXiv:2407.21787.

Franz Louis Cesista. 2024. Multimodal structured gen-
eration: Cvpr’s 2nd mmfm challenge technical report.
Preprint, arXiv:2406.11403.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony
Xia. 2023. Theoremqa: A theorem-driven question
answering dataset. Preprint, arXiv:2305.12524.

Sehyun Choi, Tianqing Fang, Zhaowei Wang, and
Yangqiu Song. 2023. Kcts: Knowledge-constrained
tree search decoding with token-level hallucination
detection. Preprint, arXiv:2310.09044.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan,
Xiang Liu, and Tong Zhang. 2024. Active prompt-
ing with chain-of-thought for large language models.
Preprint, arXiv:2302.12246.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, and 3
others. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting for
multi-step reasoning. Preprint, arXiv:2210.00720.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin
Liu, Winson Cheng, Archit Sharma, and Noah D.
Goodman. 2024. Stream of search (sos): Learning to
search in language. Preprint, arXiv:2404.03683.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, Zhengyang Tang, Benyou Wang,
Daoguang Zan, Shanghaoran Quan, Ge Zhang, Lei

Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu,
and Baobao Chang. 2024a. Omni-math: A univer-
sal olympiad level mathematic benchmark for large
language models. Preprint, arXiv:2410.07985.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu,
Hongzhang Liu, Aiwei Liu, Xuming Hu, and Lijie
Wen. 2024b. Interpretable contrastive monte carlo
tree search reasoning. Preprint, arXiv:2410.01707.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego
Chicharro, Evan Chen, Alex Gunning, Caroline Falk-
man Olsson, Jean-Stanislas Denain, Anson Ho,
Emily de Oliveira Santos, Olli Järviniemi, Matthew
Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla,
Qiuyu Ren, Elizabeth Pratt, Lionel Levine, Grant
Barkley, and 5 others. 2024. Frontiermath: A bench-
mark for evaluating advanced mathematical reason-
ing in ai. Preprint, arXiv:2411.04872.

Google. 2024. Gemini 2.0 flash thinking mode (gemini-
2.0-flash-thinking-exp-1219).

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur, Khy-
athi Raghavi Chandu, Arman Cohan, Jennifer Dumas,
Yanai Elazar, Yuling Gu, Jack Hessel, and 24 others.
2024. Olmo: Accelerating the science of language
models. Preprint, arXiv:2402.00838.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof,
Georgios Smyrnis, Hritik Bansal, Marianna Nezhu-
rina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima
Suvarna, Benjamin Feuer, Liangyu Chen, Zaid
Khan, Eric Frankel, Sachin Grover, Caroline Choi,
Niklas Muennighoff, Shiye Su, and 31 others. 2025.
Openthoughts: Data recipes for reasoning models.
Preprint, arXiv:2506.04178.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024. Olympiadbench:
A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific prob-
lems. Preprint, arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. Preprint,
arXiv:2103.03874.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,

20285

https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2406.11403
https://arxiv.org/abs/2406.11403
https://arxiv.org/abs/2305.12524
https://arxiv.org/abs/2305.12524
https://arxiv.org/abs/2310.09044
https://arxiv.org/abs/2310.09044
https://arxiv.org/abs/2310.09044
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2302.12246
https://arxiv.org/abs/2302.12246
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2210.00720
https://arxiv.org/abs/2210.00720
https://arxiv.org/abs/2404.03683
https://arxiv.org/abs/2404.03683
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://arxiv.org/abs/2410.01707
https://arxiv.org/abs/2410.01707
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking-mode
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking-mode
https://arxiv.org/abs/2402.00838
https://arxiv.org/abs/2402.00838
https://arxiv.org/abs/2506.04178
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874


Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, and 3 others. 2022. Training
compute-optimal large language models. Preprint,
arXiv:2203.15556.

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang
Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao
Dong. 2025. Advancing language model reasoning
through reinforcement learning and inference scaling.
Preprint, arXiv:2501.11651.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Os-
tendorf, Luke Zettlemoyer, Noah A Smith, and Ran-
jay Krishna. 2024. Visual sketchpad: Sketching as
a visual chain of thought for multimodal language
models. Preprint, arXiv:2406.09403.

Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li,
Haoyang Zou, Ruijie Xu, Run-Ze Fan, Lyumanshan
Ye, Ethan Chern, Yixin Ye, Yikai Zhang, Yuqing
Yang, Ting Wu, Binjie Wang, Shichao Sun, Yang
Xiao, Yiyuan Li, Fan Zhou, Steffi Chern, and 9 oth-
ers. 2024a. Olympicarena: Benchmarking multi-
discipline cognitive reasoning for superintelligent ai.
Preprint, arXiv:2406.12753.

Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu,
Yuxiang Zheng, Ethan Chern, Shijie Xia, Yiwei Qin,
Weizhe Yuan, and Pengfei Liu. 2024b. O1 replica-
tion journey – part 2: Surpassing o1-preview through
simple distillation, big progress or bitter lesson?
Preprint, arXiv:2411.16489.

Zhongzhen Huang, Gui Geng, Shengyi Hua, Zhen
Huang, Haoyang Zou, Shaoting Zhang, Pengfei Liu,
and Xiaofan Zhang. 2025. O1 replication journey –
part 3: Inference-time scaling for medical reasoning.
Preprint, arXiv:2501.06458.

Robert Irvine, Douglas Boubert, Vyas Raina, Adian
Liusie, Ziyi Zhu, Vineet Mudupalli, Aliaksei Kor-
shuk, Zongyi Liu, Fritz Cremer, Valentin Assassi,
Christie-Carol Beauchamp, Xiaoding Lu, Thomas
Rialan, and William Beauchamp. 2023. Rewarding
chatbots for real-world engagement with millions of
users. Preprint, arXiv:2303.06135.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free evalu-
ation of large language models for code. Preprint,
arXiv:2403.07974.

Craig Kapfer, Kurt Stine, Balasubramanian Narasimhan,
Christopher Mentzel, and Emmanuel Candes. 2025.
Marlowe: Stanford’s gpu-based computational instru-
ment.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Eunsu Kim, Juyoung Suk, Seungone Kim, Niklas Muen-
nighoff, Dongkwan Kim, and Alice Oh. 2024. Llm-
as-an-interviewer: Beyond static testing through dy-
namic llm evaluation. Preprint, arXiv:2412.10424.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient memory management for large language
model serving with pagedattention. Preprint,
arXiv:2309.06180.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave
Marwood, Shumeet Baluja, Dale Schuurmans, and
Xinyun Chen. 2025. Evolving deeper llm thinking.
Preprint, arXiv:2501.09891.

Noam Levi. 2024. A simple model of inference scaling
laws. Preprint, arXiv:2410.16377.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin,
Roman Soletskyi, Shengyi Costa Huang, Kashif Ra-
sul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin,
Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lam-
ple, and Stanislas Polu. 2024. Numinamath.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. Preprint,
arXiv:2305.20050.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion : Learning to solve and explain algebraic word
problems. Preprint, arXiv:1705.04146.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru,
Yejin Choi, Hannaneh Hajishirzi, and Asli Ce-
likyilmaz. 2024. Don’t throw away your value
model! generating more preferable text with value-
guided monte-carlo tree search decoding. Preprint,
arXiv:2309.15028.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. Preprint, arXiv:2007.08124.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim,
Jaehun Jung, Shrimai Prabhumoye, Niklas Muen-
nighoff, Mostofa Patwary, Mohammad Shoeybi,
Bryan Catanzaro, and Yejin Choi. 2025. Retro-
search: Exploring untaken paths for deeper and effi-
cient reasoning. Preprint, arXiv:2504.04383.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, Yansong Tang, and Dongmei
Zhang. 2025. Wizardmath: Empowering mathemat-
ical reasoning for large language models via rein-
forced evol-instruct. Preprint, arXiv:2308.09583.

20286

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2501.11651
https://arxiv.org/abs/2501.11651
https://arxiv.org/abs/2406.09403
https://arxiv.org/abs/2406.09403
https://arxiv.org/abs/2406.09403
https://arxiv.org/abs/2406.12753
https://arxiv.org/abs/2406.12753
https://arxiv.org/abs/2411.16489
https://arxiv.org/abs/2411.16489
https://arxiv.org/abs/2411.16489
https://arxiv.org/abs/2501.06458
https://arxiv.org/abs/2501.06458
https://arxiv.org/abs/2303.06135
https://arxiv.org/abs/2303.06135
https://arxiv.org/abs/2303.06135
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://doi.org/10.5281/zenodo.14751899
https://doi.org/10.5281/zenodo.14751899
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2412.10424
https://arxiv.org/abs/2412.10424
https://arxiv.org/abs/2412.10424
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2501.09891
https://arxiv.org/abs/2410.16377
https://arxiv.org/abs/2410.16377
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/2309.15028
https://arxiv.org/abs/2309.15028
https://arxiv.org/abs/2309.15028
https://arxiv.org/abs/2007.08124
https://arxiv.org/abs/2007.08124
https://arxiv.org/abs/2007.08124
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2504.04383
https://arxiv.org/abs/2504.04383
https://arxiv.org/abs/2504.04383
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583


Ryan* Marten, Trung* Vu, Charlie Cheng-Jie Ji, Kartik
Sharma, Shreyas Pimpalgaonkar, Alex Dimakis, and
Maheswaran Sathiamoorthy. 2025. Curator: A tool
for synthetic data creation. https://github.com/
bespokelabsai/curator.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld,
Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi,
Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling
Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk,
David Wadden, Alexander Wettig, Binyuan Hui, Tim
Dettmers, Douwe Kiela, and 5 others. 2024. Olmoe:
Open mixture-of-experts language models. Preprint,
arXiv:2409.02060.

Mathematical Association of America. 2024. Aime.

OpenAI. 2025. Openai o3-mini. Accessed: 2025-02-
24.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li,
Josephina Hu, Hugh Zhang, Sean Shi, Michael Choi,
Anish Agrawal, Arnav Chopra, and 1 others. 2025.
Humanity’s last exam. Preprint, arXiv:2501.14249.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie
Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector
Liu, Yuanzhi Li, and Pengfei Liu. 2024. O1 repli-
cation journey: A strategic progress report – part 1.
Preprint, arXiv:2410.18982.

David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. 2023.
Gpqa: A graduate-level google-proof q&a bench-
mark. Preprint, arXiv:2311.12022.

Quan Shi, Michael Tang, Karthik Narasimhan,
and Shunyu Yao. 2024. Can language mod-
els solve olympiad programming? Preprint,
arXiv:2404.10952.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, and 1 others. 2023. Be-
yond the imitation game: Quantifying and extrap-
olating the capabilities of language models. Preprint,
arXiv:2206.04615.

Hongjin Su, Howard Yen, Mengzhou Xia, Weijia Shi,
Niklas Muennighoff, Han yu Wang, Haisu Liu, Quan
Shi, Zachary S. Siegel, Michael Tang, Ruoxi Sun, Jin-
sung Yoon, Sercan O. Arik, Danqi Chen, and Tao Yu.
2024. Bright: A realistic and challenging bench-
mark for reasoning-intensive retrieval. Preprint,
arXiv:2407.12883.

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhen-
nan Shen, Baocai Chen, Lu Chen, and Kai Yu. 2024.

Scieval: A multi-level large language model eval-
uation benchmark for scientific research. Preprint,
arXiv:2308.13149.

Bespoke Team. 2025a. Bespoke-stratos: The unreason-
able effectiveness of reasoning distillation. Accessed:
2025-01-22.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning
Tang, Congcong Wang, Dehao Zhang, Enming Yuan,
Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda
Wei, Guokun Lai, and 75 others. 2025. Kimi k1.5:
Scaling reinforcement learning with llms. Preprint,
arXiv:2501.12599.

NovaSky Team. 2025b. Sky-t1: Fully open-source rea-
soning model with o1-preview performance in $450
budget. Accessed: 2025-01-09.

OpenAI Team. 2024a. Learning to reason with llms.

Qwen Team. 2024b. Qwen2.5 technical report.
Preprint, arXiv:2412.15115.

Qwen Team. 2024c. Qwq: Reflect deeply on the bound-
aries of the unknown.

Jiaan Wang, Fandong Meng, Yunlong Liang, and Jie
Zhou. 2024a. Drt-o1: Optimized deep reason-
ing translation via long chain-of-thought. Preprint,
arXiv:2412.17498.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai
Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang Sui.
2024b. Math-shepherd: Verify and reinforce llms
step-by-step without human annotations. Preprint,
arXiv:2312.08935.

Siyuan Wang, Zhongkun Liu, Wanjun Zhong, Ming
Zhou, Zhongyu Wei, Zhumin Chen, and Nan Duan.
2021. From lsat: The progress and challenges of
complex reasoning. Preprint, arXiv:2108.00648.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi
Zeng, Gerald Shen, Daniel Egert, Jimmy J. Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev.
2024c. Helpsteer2: Open-source dataset for
training top-performing reward models. Preprint,
arXiv:2406.08673.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Sean Welleck, Amanda Bertsch, Matthew Finlayson,
Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia
Kulikov, and Zaid Harchaoui. 2024. From decoding
to meta-generation: Inference-time algorithms for
large language models. Preprint, arXiv:2406.16838.

Tianhao Wu, Janice Lan, Weizhe Yuan, Jiantao Jiao,
Jason Weston, and Sainbayar Sukhbaatar. 2024a.
Thinking llms: General instruction following with
thought generation. Preprint, arXiv:2410.10630.

20287

https://github.com/bespokelabsai/curator
https://github.com/bespokelabsai/curator
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions/
https://openai.com/index/openai-o3-mini/
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2410.18982
https://arxiv.org/abs/2410.18982
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2404.10952
https://arxiv.org/abs/2404.10952
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2407.12883
https://arxiv.org/abs/2407.12883
https://arxiv.org/abs/2308.13149
https://arxiv.org/abs/2308.13149
https://hf.co/bespokelabs/Bespoke-Stratos-32B
https://hf.co/bespokelabs/Bespoke-Stratos-32B
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://novasky-ai.github.io/posts/sky-t1
https://novasky-ai.github.io/posts/sky-t1
https://novasky-ai.github.io/posts/sky-t1
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2412.15115
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2412.17498
https://arxiv.org/abs/2412.17498
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2108.00648
https://arxiv.org/abs/2108.00648
https://arxiv.org/abs/2406.08673
https://arxiv.org/abs/2406.08673
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2406.16838
https://arxiv.org/abs/2406.16838
https://arxiv.org/abs/2406.16838
https://arxiv.org/abs/2410.10630
https://arxiv.org/abs/2410.10630


Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024b. Inference scaling laws:
An empirical analysis of compute-optimal inference
for problem-solving with language models. Preprint,
arXiv:2408.00724.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Al-
balak, Anikait Singh, Chase Blagden, Duy Phung,
Rafael Rafailov, Nathan Lile, Dakota Mahan, Louis
Castricato, Jan-Philipp Franken, Nick Haber, and
Chelsea Finn. 2025. Towards system 2 reasoning
in llms: Learning how to think with meta chain-of-
thought. Preprint, arXiv:2501.04682.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao,
Min-Yen Kan, Junxian He, and Qizhe Xie. 2023.
Self-evaluation guided beam search for reasoning.
Preprint, arXiv:2305.00633.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. 2024. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data. Preprint, arXiv:2405.14333.

Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi Li,
Da Zheng, Boyuan Chen, Yi Hu, Shijia Kang, Ji-
aming Ji, Yingying Zhang, Zhijiang Guo, Yaodong
Yang, Muhan Zhang, and Debing Zhang. 2025. Red-
star: Does scaling long-cot data unlock better slow-
reasoning systems? Preprint, arXiv:2501.11284.

Zitong Yang, Neil Band, Shuangping Li, Emmanuel
Candès, and Tatsunori Hashimoto. 2024. Synthetic
continued pretraining. Preprint, arXiv:2409.07431.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of thoughts: Deliber-
ate problem solving with large language models.
Preprint, arXiv:2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025a. Limo: Less is more for
reasoning. Preprint, arXiv:2502.03387.

Yixin Ye, Yang Xiao, Tiantian Mi, and Pengfei Liu.
2025b. Aime-preview: A rigorous and immedi-
ate evaluation framework for advanced mathemat-
ical reasoning. https://github.com/GAIR-NLP/
AIME-Preview. GitHub repository.

Zheng-Xin Yong, M. Farid Adilazuarda, Jonibek
Mansurov, Ruochen Zhang, Niklas Muennighoff,
Carsten Eickhoff, Genta Indra Winata, Julia Kreutzer,
Stephen H. Bach, and Alham Fikri Aji. 2025.
Crosslingual reasoning through test-time scaling.
Preprint, arXiv:2505.05408.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2024.
Metamath: Bootstrap your own mathematical
questions for large language models. Preprint,
arXiv:2309.12284.

Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye,
Zhengyin Du, and Jiecao Chen. 2025. Agent-r: Train-
ing language model agents to reflect via iterative self-
training. Preprint, arXiv:2501.11425.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna
Jayasiri, Nick Haber, and Noah D. Goodman. 2024.
Quiet-star: Language models can teach themselves to
think before speaking. Preprint, arXiv:2403.09629.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning. Preprint, arXiv:2203.14465.

Hugh Zhang and Celia Chen. 2024. Test-time compute
scaling laws.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang,
Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan Guo,
Yufei Wang, Niklas Muennighoff, Irwin King, Xue
Liu, and Chen Ma. 2025. A survey on test-time scal-
ing in large language models: What, how, where, and
how well? Preprint, arXiv:2503.24235.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B. Tenenbaum, and Chuang Gan. 2023.
Planning with large language models for code gener-
ation. Preprint, arXiv:2303.05510.

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew
Chi-Chih Yao. 2024a. Cumulative reasoning with
large language models. Preprint, arXiv:2308.04371.

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming
Shu, Jinlin Xiao, Chao Kong, and Jitao Sang. 2024b.
o1-coder: an o1 replication for coding. Preprint,
arXiv:2412.00154.

Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang
Zhang, Zhiyuan Liu, and Maosong Sun. 2019. Jec-
qa: A legal-domain question answering dataset.
Preprint, arXiv:1911.12011.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo
Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. 2023. Agieval: A human-
centric benchmark for evaluating foundation models.
Preprint, arXiv:2304.06364.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2024. Lan-
guage agent tree search unifies reasoning act-
ing and planning in language models. Preprint,
arXiv:2310.04406.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less
is more for alignment. Preprint, arXiv:2305.11206.

20288

https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2501.04682
https://arxiv.org/abs/2501.04682
https://arxiv.org/abs/2501.04682
https://arxiv.org/abs/2305.00633
https://arxiv.org/abs/2405.14333
https://arxiv.org/abs/2405.14333
https://arxiv.org/abs/2405.14333
https://arxiv.org/abs/2501.11284
https://arxiv.org/abs/2501.11284
https://arxiv.org/abs/2501.11284
https://arxiv.org/abs/2409.07431
https://arxiv.org/abs/2409.07431
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387
https://github.com/GAIR-NLP/AIME-Preview
https://github.com/GAIR-NLP/AIME-Preview
https://arxiv.org/abs/2505.05408
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2501.11425
https://arxiv.org/abs/2501.11425
https://arxiv.org/abs/2501.11425
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2203.14465
https://github.com/hughbzhang/o1_inference_scaling_laws
https://github.com/hughbzhang/o1_inference_scaling_laws
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2303.05510
https://arxiv.org/abs/2303.05510
https://arxiv.org/abs/2308.04371
https://arxiv.org/abs/2308.04371
https://arxiv.org/abs/2412.00154
https://arxiv.org/abs/1911.12011
https://arxiv.org/abs/1911.12011
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206


Contents

1 Introduction 1

2 Reasoning data curation to create s1K 2
2.1 Initial collection of 59K samples . 2
2.2 Final selection of 1K samples . . . 3

3 Test-time scaling 4
3.1 Method . . . . . . . . . . . . . . 4
3.2 Metrics . . . . . . . . . . . . . . 4

4 Results 5
4.1 Setup . . . . . . . . . . . . . . . 5
4.2 Performance . . . . . . . . . . . . 6

5 Ablations 6
5.1 Data Quantity, Diversity, and Diffi-

culty . . . . . . . . . . . . . . . . 6
5.2 Test-time scaling methods . . . . 8

6 Discussion and related work 8
6.1 Sample-efficient reasoning . . . . 8
6.2 Test-time scaling . . . . . . . . . 9

A s1.1 15

B Example model outputs 15

C Evaluation determinism 15

D s1K details 15
D.1 s1K summary . . . . . . . . . . . 15
D.2 Dataset composition for full 59K

questions . . . . . . . . . . . . . 18
D.3 s1K grading prompt . . . . . . . . 18

E Licenses 18
E.1 s1K diversity selection . . . . . . 18
E.2 Decontamination . . . . . . . . . 18

F Training details 18
F.1 Training Ablations: Sequence length 18
F.2 Training Samples . . . . . . . . . 18

G Test-time scaling details 35
G.1 Budget forcing strings . . . . . . . 35
G.2 Sequential scaling ablations . . . . 35
G.3 Examples for rejection sampling

ablation . . . . . . . . . . . . . . 36

A s1.1

We also release s1.1, a stronger version of our s1
model. We regenerated traces for our 1,000 sam-
ples in s1K using DeepSeek r1 (DeepSeek-AI et al.,
2025) to create s1K-1.1. We use the same training
procedure to train our model s1.1. In Table 4 we
compare s1.1 with concurrent work like LIMO (Ye
et al., 2025a), o3 (OpenAI, 2025) and also incor-
porate the new AIME 2025. We find that s1.1 per-
forms much better than s1, likely due to r1 writing
longer reasoning traces as we show in Figure 8. We
also tried distilling from Claude 3.7, which led to
worse performance than from r1.3

B Example model outputs

We depict several example outputs in Figure 5.

C Evaluation determinism

We run our evaluations using vLLM (Kwon et al.,
2023) as it is faster than the alternatives we tried.
However, we find that even when using the same
random seeds and greedy sampling, evaluation
scores can change significantly across runs:

• Different batch sizes causing different results
see https://github.com/vllm-project/
vllm/issues/5898

• Continuing generations causing differ-
ent results see https://github.com/
vllm-project/vllm/issues/11783

• Changes in tensor parallelism causing differ-
ent results

As our model generates long reasoning traces
prior to its answer, small numeric changes can
snowball into large differences. We encounter
many generations that are exactly the same for
thousands of tokens and then suddenly differ in
one token, eventually ending up with an entirely
different answer. To partly counter this issue we
generally run our final evaluations using full preci-
sion unless otherwise indicated.

D s1K details

D.1 s1K summary

We depict a summary of s1K in Table 5.

3See https://github.com/simplescaling/s1/
issues/90#issuecomment-2698398686 for details

20289

https://github.com/vllm-project/vllm/issues/5898
https://github.com/vllm-project/vllm/issues/5898
https://github.com/vllm-project/vllm/issues/11783
https://github.com/vllm-project/vllm/issues/11783
https://github.com/simplescaling/s1/issues/90#issuecomment-2698398686
https://github.com/simplescaling/s1/issues/90#issuecomment-2698398686


Model # Examples MATH500 GPQA AIME 2024 AIME 2025

API only

o3-mini-low N/A 95.8 70.6 56.3 42.1
o3-mini-medium N/A 97.3 76.8 75.8 70.4
o3-mini-high N/A 97.9 79.7 83.8 80.9

Open Weights

QwQ-32B N.A. 90.6 54.5 46.7 32.7
r1 ≫800K 97.3 71.5 79.8 70.0
r1-distill-Llama-70B 800K 94.5 65.2 57.1 56.3
r1-distill-Qwen-14B 800K 93.9 59.1 61.7 48.0
r1-distill-Qwen-32B 800K 94.3 62.1 58.3 49.6

Open Weights and Open Data

LIMO 817 94.8 66.7 56.3 44.6
s1 w/o BF 1K 92.6 56.6 50.0 26.7
s1 with BF “Wait” 1x 1K 92.8 59.6 53.3 30.0
s1 with BF “Wait” 2x 1K 93.0 59.6 53.3 33.3
s1 with BF “Wait” 4x 1K 92.2 58.6 56.7 36.7
s1.1 w/o BF 1K 94.4 60.6 56.7 50.0
s1.1 with BF “Wait” 1x 1K 95.4 62.6 56.7 50.0
s1.1 with BF “Wait” 2x 1K 95.4 63.6 56.7 50.0

Table 4: s1-32B, s1.1-32B and more models. We evaluate s1-32B and s1.1-32B. Other results are from the
respective reports (Team, 2024b,c,a; OpenAI, 2025; DeepSeek-AI et al., 2025; Team, 2025a,b) except for AIME
2025 coming from Ye et al. (2025b). # Examples = number of examples used for reasoning finetuning where known;
BF = budget forcing.

0 5000 10000 15000 20000 25000
Token Count (Qwen2.5-32B-Instruct tokenizer)

0

100

200

Fr
eq

ue
nc

y

Gemini
r1

Figure 8: Length of our Gemini and DeepSeek r1 thinking traces.

20290



Domain #questions Total token count Keywords

Geometry 109 560.2K Area, Triangle, Distance
Number theory 98 522.5K Sequences, Divisibility
Combinatorics 75 384.7K Permutations, Counting
Real functions 43 234.8K Trigonometry, Calculus
Biology 41 120.9K Organic reactions
Complex functions 32 170.2K Complex roots
Quantum theory 32 127.9K Particles, Wave functions
Field theory 28 150.1K Polynomials, Roots
Calculus of variations 28 155.5K Optimization, Control
Difference equations 24 132.5K Recurrence, Recursion
Electromagnetic
theory

23 95.8K Optics, Waves, Diffraction

Group theory 22 100.0K Groups, Automorphisms
Linear algebra 22 128.3K Matrices, Determinants
Probability theory 20 114.6K Random walk, Expectation
Algebraic systems 19 109.9K Functional equations
Mechanics 19 103.6K Forces, Motion, Energy
Thermodynamics 19 74.2K Heat engines, Entropy
Differential equations 18 89.6K Substitution, Existence
Computer science 18 34.2K Complexity theory, Algorithms
Numerical analysis 18 76.5K Error analysis, Stability
Calculus 17 96.3K Convergence, Summation
Algebraic structures 17 90.4K Inequalities, Sets
Astronomy 16 37.7K Stellar populations, Orbits
Remaining 27 domains 242 982.2K Domains with ≤ 16 questions

All domains (51) 1000 4.7M s1K

Table 5: Summary of our dataset s1K. Token count measured by the Qwen-2.5 tokenizer. We prompt Claude to
produce keywords given several questions from the domain.

20291



D.2 Dataset composition for full 59K
questions

The composition of our full 59K questions is in
Table 6.

D.3 s1K grading prompt
To grade whether an example is correct for our
dataset selection in §2, we use the prompt in Fig-
ure 9. We grade using Claude 3.5 except for the
correctness among the final 1,000 samples, which
we graded with Claude 3.7.

E Licenses

We seek to license our final models, code, and data
as permissively as possible, thus we use the Apache
2.0 license for all our artifacts. The artifacts we
use are licensed using Apache 2.0 (Qwen2.5-32B-
Instruct, NuminaMATH, Omni-MATH, Olympiad-
Bench), MIT (MATH, AGIEval, TheoremQA,
JEEBench), Creative Commons Attribution Non
Commercial Share Alike 4.0 (OlympicArena), and
Creative Commons Attribution 4.0 (GPQA). We
consider these compatible with our use in this pa-
per.

E.1 s1K diversity selection
Algorithm 1 provides our algorithm for selecting
data in our diversity selection stage. As mentioned
in §2, we also include samples from some specific
benchmarks we perceive as high-quality. None of
the samples overlap with our final evaluation.

E.2 Decontamination
We filter all samples by checking for an 8-gram
overlap between the selected examples and the eval-
uation benchmarks: MATH500, GPTQA Diamond,
and AIME24. We exclude questions with more
than an 8-gram overlap.

F Training details

We take a model that has already been pretrained
and instruction tuned and further finetune it for
reasoning. Specifically, we use Qwen2.5-32B-
Instruct (Team, 2024b), which on math tasks gen-
erally matches or outperforms the larger Qwen2.5-
72B-Instruct (Team, 2024b) or other open mod-
els (Dubey et al., 2024; Groeneveld et al., 2024;
Muennighoff et al., 2024). We use token delim-
iters to separate the thinking stage from the an-
swering stage. We enclose the thinking stage with
<|im_start|>think and <|im_start|>answer;

both preceded and followed by a newline. Sam-
ples from our dataset are in §F.2. We use basic
fine-tuning hyperparameters: we train for 5 epochs
with a batch size of 16 for a total of 315 gradient
steps. We train in bfloat16 precision with a learn-
ing rate of 1𝑒 − 5 warmed up linearly for 5% (16
steps) and then decayed to 0 over the rest of train-
ing (299 steps) following a cosine schedule. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) with 𝛽1 = 0.9, 𝛽2 = 0.95 and weight decay
of 1𝑒 − 4. We do not compute loss on questions,
only on reasoning traces and solutions. We ensure
the sequence length is large enough to avoid cut-
ting off any samples; a setting we ablate in §F.1.
The training takes just 26 minutes on 16 NVIDIA
H100 GPUs. For our ablations, we use the same
hyperparameters except for the model trained on
the full 59K in §5.1, we used a batch size of 120 to
enable processing more data.

F.1 Training Ablations: Sequence length
Besides our scaling ablations in §5.2, the main
training hyperparameter we ablate is the sequence
length used during training. We find that a shorter
training sequence length leads to longer reasoning
traces at test time. This is because when training
with a shorter sequence length the answer section of
the training sample is more commonly cut off. In-
versely, when the training sequence length is longer,
more samples appear in their entirety with the sec-
tion where the model answers. Thus the model
receives more gradient updates where it learns to
generate an answer following its chain. This in
turn leads to a higher log probability of the answer
section at any point during the generation and thus
shorter reasoning traces at test time. Performance-
wise, we also find that the model trained with
a longer sequence length performs better. Thus
we opt for the longest training sequence length
as it leads to better performance and makes infer-
ence more efficient by leading to shorter reasoning
traces.

F.2 Training Samples
Table 8, Table 9, Table 10 contain training samples
from s1K.

20292



Source Description #Samples Avg.
think-
ing
length

NuminaMATH (LI et al.,
2024)

Math problems from online web-
sites

30660 4.1K

MATH (Hendrycks et al.,
2021)

Math problems from competitions 11999 2.9K

OlympicArena (Huang et al.,
2024a)

Astronomy, Biology, Chemistry,
Computer Science, Geography,
Math, and Physics olympiad ques-
tions

4250 3.2K

OmniMath (Gao et al., 2024a) Math problems from competitions 4238 4.4K
AGIEval (Zhong et al., 2023;
Ling et al., 2017; Hendrycks
et al., 2021; Liu et al., 2020;
Zhong et al., 2019; Wang et al.,
2021)

English, Law, Logic and Math prob-
lems from the SAT, LSAT and other
exams

2385 1.2K

xword Crossword puzzles 999 0.7K
OlympiadBench (He et al.,
2024)

Math and Physics olympiad ques-
tions

896 3.9K

AIME (1983-2021) American Invitational Mathematics
Examination

890 4.7K

TheoremQA (Chen et al.,
2023)

Computer Science, Finance, Math,
and Physics university-level ques-
tions relating to theorems

747 2.1K

USACO (Shi et al., 2024) Code problems from the USA Com-
puting Olympiad

519 3.6K

JEEBench (Arora et al., 2023) Chemistry, Math, and Physics prob-
lems used in the university entrance
examination of the Indian Institute
of Technology

515 2.9K

GPQA (Rein et al., 2023) PhD-Level Science Questions 348 2.9K
SciEval (Sun et al., 2024) Biology, Chemistry, and Physics

problems from various sources
227 0.7K

s1-prob Stanford statistics qualifying exams 182 4.0K
LiveCodeBench (Jain et al.,
2024)

Code problems from coding web-
sites (LeetCode, AtCoder, and
CodeForces)

151 3.5K

s1-teasers Math brain-teasers crawled from the
Internet

23 4.1K

All 59K questions Composite of the above datasets
with reasoning traces and solutions

59029 3.6K

Table 6: Composition of full 59K questions. Thinking and response lengths are measured in tokens using the
Qwen2.5-32B-Instruct tokenizer (Team, 2024b). In addition to excluding our evaluation benchmark, AIME24,
we also exclude AIME questions from 2022-2023 as we use these 90 questions during our development stage of
s1-32B.

20293



You are an AI assistant for grading a science problem. The user will provide you with the question itself,
an attempt made by a student and the correct answer to the problem. Your job is to judge whether the
attempt is correct by comparing it with the correct answer. If the expected solution concludes with a
number or choice, there should be no ambiguity. If the expected solution involves going through the entire
reasoning process, you should judge the attempt based on whether the reasoning process is correct with
correct answer if helpful.

The user will provide the attempt and the correct answer in the following format:

# Problem
{problem}

## Attempt
{attempt}

## Correct answer
{solution}

Explain your reasoning, and end your response on a new line with only "Yes" or "No" (without quotes).

Figure 9: Grading prompt.

Model A Model B

Training sequence length 4096 32768
% training samples cutoff 74% 0%

AIME24 30.0% / 20721 50.0% / 6984
MATH500 90.0% / 5324 91.0% / 3268
GPQA 52.5% / 6841 53.0% / 3568

Table 7: Training sequence length ablation. We report “accuracy / average thinking tokens per sample”; the higher
the accuracy and the fewer the thinking tokens (inference cost) the better.

20294



Algorithm 1 Two-stage sampling for s1K
1: Input:  := Set of 24,496 questions with features
2: Output:  := Set of 1,000 selected questions
3:  ← ∅ Initialize the output set (only tracks unique elements)
4: for 𝑞 ∈  do
5: if IsGeminiCorrect(𝑞) and (IsAIME(𝑞) or IsGPQA(𝑞)) then
6:  ←  ∪ {𝑞}
7: Select all correct AIME/GPQA solutions
8: else if IsGeminiCorrect(𝑞) and IsMATH(𝑞) and ThinkingLength(𝑞) > 5600 then
9:  ←  ∪ {𝑞}

10: Select correct MATH500 solutions with long chains
11: end if
12: end for
13:  ← All available domains
14: Initialize domain pool
15: while || < 1000 do
16: 𝑑 ← RandomChoice()
17: Randomly select a domain
18: 𝑄𝑑 ← Questions in domain 𝑑
19: Get questions from this domain
20: ranks ← RankByThinkingLength(𝑄𝑑)
21: Rank by thinking length
22: weights ← 2−ranks

23: Apply power-law weighting
24: 𝑞 ← WeightedSample(𝑄𝑑 , weights)
25: Sample favoring longer chains
26:  ←  ∪ {𝑞}
27: Add selected question
28: 𝑄𝑑 ← 𝑄𝑑 ⧵ {𝑞}
29: if 𝑄𝑑 = ∅ then
30:  ←  ⧵ {𝑑}
31: Remove exhausted domains
32: end if
33: end while

0 100 200 300
Training Steps

0.0

0.2

0.4

Lo
ss

Training Loss

0 100 200 300
Training Steps

0.0

0.5

1.0

Le
ar

ni
ng

 R
at

e

1e 5
Learning Rate Schedule

0 100 200 300
Training Steps

1

2

3

Gr
ad

ie
nt

 N
or

m

Gradient Norm

Figure 10: Training dynamics of s1-32B on s1K.

20295



Table 8: s1K sample stemming from s1-prob. The black text is the question and the yellow text is the solution.
Based solely on the question we generate the light blue reasoning trace and blue response with Gemini, which we
use for training.

You are given integrable random variables 𝑋, 𝑌0 and 𝑍0 on the same probability space (Ω, ,ℙ), and two
𝜎-algebras  ⊂  , ⊂  . For 𝑘 = 1, 2,… ,, let

𝑌𝑘 ∶= 𝔼[𝑋|𝜎(, 𝑍0,… , 𝑍𝑘−1)], 𝑍𝑘 ∶= 𝔼[𝑋|𝜎(, 𝑌0,… , 𝑌𝑘−1)].

(a) Show that there exist integrable random variables 𝑌∞ and𝑍∞ such that as 𝑛→ ∞ both 𝔼[|𝑌𝑛−𝑌∞|] →
0 and 𝔼[|𝑍𝑛 −𝑍∞|] → 0. (b) Prove that almost surely 𝑌∞ = 𝑍∞.

1. Introduce the notations, 𝑛 ∶= 𝜎(, 𝑍0,… , 𝑍𝑛−1) and 𝑛 ∶= 𝜎(, 𝑌0,… , 𝑌𝑛−1), for all 𝑛 ≥ 1
and 0 ∶= , 0 ∶= . Clearly, both are filtrations and by definition, 𝑌𝑛 = 𝔼

[
𝑋|𝑛] and

𝑍𝑛 = 𝔼
[
𝑋|𝑛], for all 𝑛 ≥ 0. Thus

{
𝑌𝑛
}
𝑛≥0 (or

{
𝑍𝑛

}
𝑛≥0 ) is a Doob’s Martingale with respect to

filtration
{𝑛}𝑛≥0 (or

{𝑛}𝑛≥0) and hence is U.I., 𝑋 being integrable. Now apply the fact that a
Martingale is U.I. if and only if it converges in 𝐿1 and conclude.

2. We provide two different proofs.

1. Observe the following identity which follows from Tower Property.

𝔼
[
𝑌𝑛|𝑛] = 𝔼

[
𝔼
[
𝑋|𝑛]|𝑛] = 𝔼

[
𝔼
[
𝑋|𝑛]|𝑛] = 𝔼

[
𝑍𝑛|𝑛] . (4)

Note that 𝔼|𝔼 [
𝑌𝑛|𝑛] − 𝔼

[
𝑌∞|𝑛]| ≤ 𝔼|𝑌𝑛 − 𝑌∞| = 𝑜(1) and by Levy’s Upward Theorem,

𝔼
[
𝑌∞|𝑛] 𝐿1

←→ 𝔼
[
𝑌∞|∞]

, where ∞ = 𝜎
(
∪𝑛≥0𝑛) = 𝜎(, 𝑌0, 𝑌1…). It is evident that 𝑌∞ ∈ 𝑚∞

(since it is almost sure limit of 𝑌𝑛 ∈ 𝑚𝑛) and hence 𝔼
[
𝑌∞|∞]

= 𝑌∞ almost surely. Combining the

above observations we conclude that 𝔼
[
𝑌𝑛|𝑛] 𝐿1

←→ 𝑌∞. Similarly, 𝔼
[
𝑍𝑛|𝑛] 𝐿1

←→ 𝑍∞. Now invoke
Equation (4), to conclude that 𝑌∞ = 𝑍∞ almost surely.

2. Since 𝑋 is integrable, we have by Levy’s Upward Theorem, 𝑌∞ = lim𝑛→∞ 𝑌𝑛 = lim𝑛→∞ 𝔼
[
𝑋|𝑛] =

𝔼
[
𝑋|∞

]
. Similarly, 𝑍∞ = 𝔼

[
𝑋|∞]

. On the otherhand, in first proof we have observed that
𝑌∞ ∈ 𝑚∞ and hence 𝑌∞ ∈ 𝑚∞ ∩ 𝑚∞ = 𝑚

(∞ ∩ ∞
)
. This yields the following.

𝑌∞ = 𝔼
[
𝑌∞|∞ ∩ ∞

]
= 𝔼

[
𝔼
[
𝑋|∞

]|∞ ∩ ∞
]
= 𝔼

[
𝑋|∞ ∩ ∞

]
.

Similarly, 𝑍∞ = 𝔼
[
𝑋|∞ ∩ ∞

]
. This proves that 𝑌∞ = 𝑍∞ almost surely.

Let’s analyze the problem. We are given two sequences of random variables 𝑌𝑘 and 𝑍𝑘 defined by
conditional expectations. We need to show that these sequences converge in 𝐿1 and that their limits are
equal almost surely.
Part (a): Convergence in 𝐿1.
The sigma-algebras involved are increasing:𝑘 = 𝜎(, 𝑍0,… , 𝑍𝑘−1)𝑘 = 𝜎(, 𝑌0,… , 𝑌𝑘−1)
For the 𝑌𝑘 sequence:
𝑌1 = 𝔼[𝑋|𝜎()]
𝑌2 = 𝔼[𝑋|𝜎(, 𝑍0)]
...

20296



The sequence of sigma-algebras 𝜎(, 𝑍0,… , 𝑍𝑘−1) is increasing. By the Martingale Convergence
Theorem (for conditional expectations), since 𝑋 is integrable, the sequence 𝑌𝑘 converges almost surely
and in 𝐿1 to 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)]. Let 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)].
Similarly, for the 𝑍𝑘 sequence:
𝑍1 = 𝔼[𝑋|𝜎()]
𝑍2 = 𝔼[𝑋|𝜎(, 𝑌0)]
𝑍3 = 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1)]
...
The sequence of sigma-algebras 𝜎(, 𝑌0,… , 𝑌𝑘−1) is increasing. By the Martingale Convergence
Theorem, the sequence 𝑍𝑘 converges almost surely and in 𝐿1 to 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)]. Let 𝑍∞ =
𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)].
Part (b): Prove that almost surely 𝑌∞ = 𝑍∞.
We have 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)] and 𝑍∞ = 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)].
Let ∞ = 𝜎(, 𝑍0, 𝑍1,…) and ∞ = 𝜎(, 𝑌0, 𝑌1,…).
Then 𝑌∞ = 𝔼[𝑋|∞] and 𝑍∞ = 𝔼[𝑋|∞].
Consider 𝑌1 = 𝔼[𝑋|]. 𝑍1 = 𝔼[𝑋|].
𝑌2 = 𝔼[𝑋|𝜎(, 𝑍0)]. Since 𝑍0 = 𝔼[𝑋|], 𝜎(, 𝑍0) = 𝜎(,𝔼[𝑋|]).
𝑍2 = 𝔼[𝑋|𝜎(, 𝑌0)]. Since 𝑌0 is not defined, let’s assume 𝑌0 and 𝑍0 are given.
Let’s consider the sigma-algebra generated by all the 𝑌𝑖 and 𝑍𝑖.
Let  = 𝜎(𝑌0, 𝑍0, 𝑌1, 𝑍1,…).
Both 𝑌𝑘 and 𝑍𝑘 are measurable with respect to . Thus, 𝑌∞ and 𝑍∞ are measurable with respect to .
Consider 𝔼[𝑌𝑛+1|, 𝑍0,… , 𝑍𝑛−1] = 𝔼[𝔼[𝑋|𝜎(, 𝑍0,… , 𝑍𝑛)]|, 𝑍0,… , 𝑍𝑛−1] = 𝑌𝑛.
Consider 𝔼[𝑍𝑛+1|, 𝑌0,… , 𝑌𝑛−1] = 𝔼[𝔼[𝑋|𝜎(, 𝑌0,… , 𝑌𝑛)]|, 𝑌0,… , 𝑌𝑛−1] = 𝑍𝑛.
Let  = 𝜎( ∪  ∪ 𝜎(𝑌0, 𝑍0, 𝑌1, 𝑍1,…)).
Consider 𝔼[𝑋|, 𝑍0,… , 𝑍𝑘−1] = 𝑌𝑘.
Consider 𝔼[𝑋|, 𝑌0,… , 𝑌𝑘−1] = 𝑍𝑘.
Let’s consider the limit sigma-algebras ∞ = 𝜎(, 𝑍0, 𝑍1,…) and ∞ = 𝜎(, 𝑌0, 𝑌1,…).
We know that 𝑌∞ is ∞-measurable and 𝑍∞ is ∞-measurable.
Let  = 𝜎( ∪ ).
𝑌1 = 𝔼[𝑋|]. 𝑍1 = 𝔼[𝑋|].
𝑌2 = 𝔼[𝑋|𝜎(, 𝑍0)] = 𝔼[𝑋|𝜎(,𝔼[𝑋|])].
𝑍2 = 𝔼[𝑋|𝜎(, 𝑌0)] = 𝔼[𝑋|𝜎(,𝔼[𝑋|])].
Consider the case when  and  are independent. Then 𝑌1 = 𝔼[𝑋|] and 𝑍1 = 𝔼[𝑋|].
𝑌2 = 𝔼[𝑋|𝜎(,𝔼[𝑋|])].
Let’s consider the sigma-algebra generated by all the information. Let ∞ = 𝜎(,, 𝑌0, 𝑍0, 𝑌1, 𝑍1,…).
Then both 𝑌∞ and 𝑍∞ are ∞-measurable.
We have 𝑌∞ = lim𝑛→∞ 𝑌𝑛 and 𝑍∞ = lim𝑛→∞𝑍𝑛 a.s. and in 𝐿1.
Consider 𝔼[𝑋|, 𝑍0, 𝑍1,…] = 𝑌∞ and 𝔼[𝑋|, 𝑌0, 𝑌1,…] = 𝑍∞.
Let ∞ = 𝜎( ∪ ).
Consider 𝔼[𝑋|∞].
Let’s try to show that both 𝑌∞ and 𝑍∞ are equal to 𝔼[𝑋|𝜎( ∨ )]. This seems too simple.
Let’s consider the definition of conditional expectation. For any set 𝐴 ∈ ∞, 𝔼[𝑌∞1𝐴] = 𝔼[𝑋1𝐴].
For any set 𝐵 ∈ ∞, 𝔼[𝑍∞1𝐵] = 𝔼[𝑋1𝐵].
Consider 𝔼[𝑌𝑘+1|𝑘] = 𝑌𝑘 where 𝑘 = 𝜎(, 𝑍0,… , 𝑍𝑘−1).
Consider 𝔼[𝑍𝑘+1|𝑘] = 𝑍𝑘 where 𝑘 = 𝜎(, 𝑌0,… , 𝑌𝑘−1).
Consider the sigma-algebra 𝜎( ∪ ).
Let 𝑊 = 𝔼[𝑋|𝜎( ∪ )].

20297



We have 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)].
Since 𝑍𝑘 depends on 𝑌𝑘−1 which depends on 𝑍𝑘−2 etc., it is complex.
Let’s consider the case where 𝑌0 = 𝔼[𝑋|] and 𝑍0 = 𝔼[𝑋|].
Then 𝑌1 = 𝔼[𝑋|] = 𝑌0.
𝑍1 = 𝔼[𝑋|] = 𝑍0.
If this were the case, then 𝑌𝑘 = 𝑌0 and 𝑍𝑘 = 𝑍0, so 𝑌∞ = 𝑌0 and 𝑍∞ = 𝑍0.
We need 𝑌0 = 𝑍0 a.s., i.e., 𝔼[𝑋|] = 𝔼[𝑋|] a.s. This is not generally true.
Consider the sigma-algebra generated by all 𝑌𝑖 and 𝑍𝑖, denoted by ∞ = 𝜎(𝑌0, 𝑍0, 𝑌1, 𝑍1,…).
Then ∞ = 𝜎(, 𝑍0, 𝑍1,…) ⊆ 𝜎(,∞).∞ = 𝜎(, 𝑌0, 𝑌1,…) ⊆ 𝜎(,∞).
Consider 𝔼[𝑋|, 𝑍0, 𝑍1,…] = 𝑌∞. This means for any 𝐴 ∈ 𝜎(, 𝑍0, 𝑍1,…), 𝔼[𝑋1𝐴] = 𝔼[𝑌∞1𝐴].
Consider 𝔼[𝑋|, 𝑌0, 𝑌1,…] = 𝑍∞. This means for any 𝐵 ∈ 𝜎(, 𝑌0, 𝑌1,…), 𝔼[𝑋1𝐵] = 𝔼[𝑍∞1𝐵].
Let  = 𝜎(,).
Consider 𝔼[𝑋|].
Consider 𝔼[𝑌∞|, 𝑌0, 𝑌1,…] = 𝔼[𝔼[𝑋|, 𝑍0, 𝑍1,…]|, 𝑌0, 𝑌1,…].
Let’s use the fact that 𝑌∞ is 𝜎(, 𝑍0, 𝑍1,…)-measurable and 𝑍∞ is 𝜎(, 𝑌0, 𝑌1,…)-measurable.
Consider the smallest sigma-algebra containing both 𝜎(, 𝑍0, 𝑍1,…) and 𝜎(, 𝑌0, 𝑌1,…).
This is 𝜎( ∪  ∪ {𝑌𝑖}𝑖≥0 ∪ {𝑍𝑖}𝑖≥0).
Let’s try to show that 𝔼[(𝑌∞ −𝑍∞)2] = 0.
𝔼[(𝑌∞ −𝑍∞)2] = 𝔼[𝑌 2

∞] + 𝔼[𝑍2
∞] − 2𝔼[𝑌∞𝑍∞].

Consider the definition of 𝑌𝑘 and 𝑍𝑘.
𝔼[𝑌𝑘+1|, 𝑍0,… , 𝑍𝑘−1] = 𝑌𝑘.
𝔼[𝑍𝑘+1|, 𝑌0,… , 𝑌𝑘−1] = 𝑍𝑘.
Consider 𝔼[𝑌∞|, 𝑌0, 𝑌1,…].
Since 𝑌∞ is measurable with respect to 𝜎(, 𝑍0, 𝑍1,…), this does not simplify easily.
Let’s assume 𝑌∞ ≠ 𝑍∞ on a set of positive measure.
Consider the case where  and  are trivial.
Then 𝑌𝑘 = 𝔼[𝑋|𝜎(𝑍0,… , 𝑍𝑘−1)] and 𝑍𝑘 = 𝔼[𝑋|𝜎(𝑌0,… , 𝑌𝑘−1)].
Let ∞ = 𝜎( ∪  ∪ {𝑌𝑖, 𝑍𝑖}𝑖≥0).
Consider 𝔼[𝑋|∞].
We have 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)].
By the properties of conditional expectation, 𝔼[𝑌∞|] = 𝔼[𝔼[𝑋|, 𝑍0, 𝑍1,…]|].
Consider the sigma-algebra  generated by all the random variables involved. = 𝜎( ∪  ∪ {𝑌𝑖}𝑖≥0 ∪ {𝑍𝑖}𝑖≥0).
Let 𝑀∞ = 𝔼[𝑋| ∨ ].
Consider the limits. As 𝑛→ ∞, 𝜎(, 𝑍0,… , 𝑍𝑛−1) ↑ 𝜎(, 𝑍0, 𝑍1,…).
As 𝑛→ ∞, 𝜎(, 𝑌0,… , 𝑌𝑛−1) ↑ 𝜎(, 𝑌0, 𝑌1,…).
Let ∞ = 𝜎(, 𝑍0, 𝑍1,…) and ∞ = 𝜎(, 𝑌0, 𝑌1,…).
We have 𝑌∞ = 𝔼[𝑋|∞] and 𝑍∞ = 𝔼[𝑋|∞].
Consider 𝔼[𝑌∞ −𝑍∞]2 = 𝔼[(𝑌∞ −𝑋) + (𝑋 −𝑍∞)]2
= 𝔼[(𝑌∞ −𝑋)2] + 𝔼[(𝑋 −𝑍∞)2] + 2𝔼[(𝑌∞ −𝑋)(𝑋 −𝑍∞)]
= 𝔼[(𝑋 − 𝔼[𝑋|∞])2] + 𝔼[(𝑋 − 𝔼[𝑋|∞])2] + 2𝔼[𝑌∞𝑋 − 𝑌∞𝑍∞ −𝑋2 +𝑋𝑍∞]
= 𝔼[𝑋2] − 𝔼[𝑌 2

∞] + 𝔼[𝑋2] − 𝔼[𝑍2
∞] + 2𝔼[𝑌∞𝑋] − 2𝔼[𝑌∞𝑍∞] − 2𝔼[𝑋2] + 2𝔼[𝑋𝑍∞]

= −𝔼[𝑌 2
∞] − 𝔼[𝑍2

∞] + 2𝔼[𝑌 2
∞] − 2𝔼[𝑌∞𝑍∞] + 2𝔼[𝑍2

∞]
= 𝔼[𝑌 2

∞] + 𝔼[𝑍2
∞] − 2𝔼[𝑌∞𝑍∞]

Consider the sigma-algebra  = 𝜎( ∪ ).
Let 𝑊 = 𝔼[𝑋|].
Consider the limit sigma-algebra generated by all the information.
Let ∞ = 𝜎(,, 𝑌0, 𝑍0, 𝑌1, 𝑍1,…).
Then ∞ ⊆ ∞ and ∞ ⊆ ∞.
We have 𝔼[𝑋|∞] = 𝑌∞ and 𝔼[𝑋|∞] = 𝑍∞.
Consider 𝔼[𝑌∞|∞] and 𝔼[𝑍∞|∞].

20298



Let  = 𝜎( ∪ ).
Consider 𝔼[𝑋|].
Consider the sequence of pairs (𝑌𝑘, 𝑍𝑘).
If the limits are the same, then for any bounded measurable function 𝑓 , 𝔼[𝑓 (𝑌∞)] = 𝔼[𝑓 (𝑍∞)].
Consider the sigma-algebra  = 𝜎( ∪  ∪ 𝜎(𝑌0, 𝑍0,…)).
Then both 𝑌∞ and 𝑍∞ are measurable with respect to .
Consider 𝔼[(𝑌𝑛 −𝑍𝑛)2].
Let  = 𝜎( ∪ ).
Consider 𝑊 = 𝔼[𝑋|].
Then 𝔼[𝑊 |] = 𝔼[𝑋|] and 𝔼[𝑊 |] = 𝔼[𝑋|].
Consider the limit sigma-algebra  = 𝜎( ∪  ∪ 𝜎(𝑌0, 𝑍0,…)).
We have 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)] and 𝑍∞ = 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)].
Let  = 𝜎(, 𝑍0, 𝑍1,…) ∨ 𝜎(, 𝑌0, 𝑌1,…).
Consider 𝔼[𝑋|].
Consider the random variable 𝑋. Then 𝑌∞ = lim𝑛 𝔼[𝑋|𝑛] and 𝑍∞ = lim𝑛 𝔼[𝑋|𝑛].
Let ∞ = 𝜎( ∪  ∪ 𝜎(𝑌0, 𝑍0,…)).
Consider 𝐸 = {𝜔 ∶ 𝑌∞(𝜔) ≠ 𝑍∞(𝜔)}. Suppose 𝑃 (𝐸) > 0.
Consider the conditional expectation with respect to the join of the sigma-algebras.
Let ∞ = 𝜎(,, 𝑌0, 𝑍0,…).
Consider 𝔼[𝑋|∞].
Then 𝔼[𝔼[𝑋|∞]|, 𝑍0,…] = 𝔼[𝑋|, 𝑍0,…] = 𝑌𝑛+1.
And 𝔼[𝔼[𝑋|∞]|, 𝑌0,…] = 𝔼[𝑋|, 𝑌0,…] = 𝑍𝑛+1.
So 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)] and 𝑍∞ = 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)].
Let ∞ = 𝜎(, 𝑍0, 𝑍1,…) and ∞ = 𝜎(, 𝑌0, 𝑌1,…).
Consider 𝔼[𝑋|∞ ∨ ∞].
Then 𝔼[𝔼[𝑋|∞ ∨ ∞]|∞] = 𝔼[𝑋|∞] = 𝑌∞.
And 𝔼[𝔼[𝑋|∞ ∨ ∞]|∞] = 𝔼[𝑋|∞] = 𝑍∞.
This means 𝑌∞ = 𝔼[𝑋|∞ ∨ ∞] a.s. and 𝑍∞ = 𝔼[𝑋|∞ ∨ ∞] a.s.
Therefore, 𝑌∞ = 𝑍∞ a.s.
Solution:
(a) For the sequence 𝑌𝑘, the 𝜎-algebras 𝑘 = 𝜎(, 𝑍0,… , 𝑍𝑘−1) are increasing as 𝑘 increases. Since
𝑋 is integrable, by the Martingale Convergence Theorem for conditional expectations, the sequence
𝑌𝑘 = 𝔼[𝑋|𝑘] converges almost surely and in 𝐿1 to 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)]. Similarly, for the
sequence 𝑍𝑘, the 𝜎-algebras 𝑘 = 𝜎(, 𝑌0,… , 𝑌𝑘−1) are increasing. Since 𝑋 is integrable, by the
Martingale Convergence Theorem, the sequence 𝑍𝑘 = 𝔼[𝑋|𝑘] converges almost surely and in 𝐿1 to
𝑍∞ = 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)].
(b) Let ∞ = 𝜎(, 𝑍0, 𝑍1,…) and ∞ = 𝜎(, 𝑌0, 𝑌1,…). We have 𝑌∞ = 𝔼[𝑋|∞] and𝑍∞ = 𝔼[𝑋|∞].
Consider the 𝜎-algebra  = ∞ ∨ ∞ = 𝜎(,, 𝑌0, 𝑍0, 𝑌1, 𝑍1,…). Consider 𝑊 = 𝔼[𝑋|].
We have ∞ ⊆ , so 𝔼[𝑊 |∞] = 𝔼[𝔼[𝑋|]|∞] = 𝔼[𝑋|∞] = 𝑌∞.
Since 𝑊 is -measurable, 𝔼[𝑊 |∞] = 𝑌∞ implies that 𝑌∞ is the conditional expectation of 𝑊 given∞. But since 𝑌∞ is already ∞-measurable, we have 𝔼[𝑊 |∞] = 𝑊 if 𝑊 is ∞-measurable, which is
not necessarily true.
However, we know that 𝔼[𝑌∞|∞] = 𝑌∞ and 𝔼[𝑍∞|∞] = 𝑍∞.
Consider 𝔼[𝑋|∞ ∨ ∞].
Then 𝔼[𝔼[𝑋|∞ ∨ ∞]|∞] = 𝔼[𝑋|∞] = 𝑌∞.
This implies that 𝔼[𝑋|∞ ∨ ∞] = 𝑌∞ almost surely.
Similarly, 𝔼[𝔼[𝑋|∞ ∨ ∞]|∞] = 𝔼[𝑋|∞] = 𝑍∞.
This implies that 𝔼[𝑋|∞ ∨ ∞] = 𝑍∞ almost surely.
Therefore, 𝑌∞ = 𝑍∞ almost surely.
Final Answer: The final answer is 𝑌∞ = 𝑍∞

20299



Table 9: s1K sample stemming from s1-teasers. The black text is the question and the yellow text is the solution.
Based solely on the question we generate the light blue reasoning trace and blue response with Gemini, which we
use for training.

Alice and Bob each have a coin and flip it until they get a heads. If Bob flipped his coin more times than
Alice, what is the expected number of times Alice flipped her coin?

4/3

The problem asks for the expected number of times Alice flipped her coin, given that Bob flipped his coin
more times than Alice.
Let 𝑋 be the number of flips Alice makes until she gets a head.
Let 𝑌 be the number of flips Bob makes until he gets a head.
𝑋 and 𝑌 are independent random variables following a geometric distribution with parameter 𝑝 = 0.5
(probability of getting a head).
The probability mass function for a geometric distribution is 𝑃 (𝐾 = 𝑘) = (1 − 𝑝)𝑘−1𝑝, for 𝑘 = 1, 2,… .
In this case, 𝑝 = 0.5, so 𝑃 (𝐾 = 𝑘) = (0.5)𝑘−1(0.5) = (0.5)𝑘 = 1

2𝑘 .
We are given the condition that Bob flipped his coin more times than Alice, which means 𝑌 > 𝑋.
We want to find the expected value of 𝑋 given that 𝑌 > 𝑋, i.e., 𝐸[𝑋|𝑌 > 𝑋].
The formula for conditional expectation is 𝐸[𝑋|𝐴] = ∑

𝑥 𝑥𝑃 (𝑋 = 𝑥|𝐴).
Also, 𝑃 (𝑋 = 𝑥|𝐴) = 𝑃 (𝑋=𝑥∩𝐴)

𝑃 (𝐴) .
In our case, 𝐴 is the event 𝑌 > 𝑋.
We need to find 𝑃 (𝑌 > 𝑋).
𝑃 (𝑌 > 𝑋) =

∑∞
𝑥=1

∑∞
𝑦=𝑥+1 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦)

Since 𝑋 and 𝑌 are independent, 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦) = 𝑃 (𝑋 = 𝑥)𝑃 (𝑌 = 𝑦) = 1
2𝑥

1
2𝑦 =

1
2𝑥+𝑦 .

𝑃 (𝑌 > 𝑋) =
∑∞
𝑥=1

∑∞
𝑦=𝑥+1

1
2𝑥+𝑦 =

∑∞
𝑥=1

1
2𝑥
∑∞
𝑦=𝑥+1

1
2𝑦

The inner sum is a geometric series:
∑∞
𝑦=𝑥+1(

1
2 )
𝑦 = (12 )

𝑥+1 + ( 12 )
𝑥+2 +…

This is a geometric series with first term 𝑎 = (12 )
𝑥+1 and common ratio 𝑟 = 1

2 .

The sum is 𝑎
1−𝑟 =

( 12 )
𝑥+1

1− 1
2

=
( 12 )

𝑥+1

1
2

= (12 )
𝑥.

So, 𝑃 (𝑌 > 𝑋) =
∑∞
𝑥=1

1
2𝑥 (

1
2 )
𝑥 =

∑∞
𝑥=1(

1
4 )
𝑥.

This is another geometric series with first term 𝑎 = 1
4 and common ratio 𝑟 = 1

4 .

The sum is 𝑎
1−𝑟 =

1
4

1− 1
4
=

1
4
3
4
= 1

3 .

Now, we need to find 𝑃 (𝑋 = 𝑥 ∩ 𝑌 > 𝑋) = 𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥).
𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥) = 𝑃 (𝑋 = 𝑥)𝑃 (𝑌 > 𝑥), due to independence.
𝑃 (𝑌 > 𝑥) =

∑∞
𝑦=𝑥+1 𝑃 (𝑌 = 𝑦) =

∑∞
𝑦=𝑥+1

1
2𝑦 = (12 )

𝑥+1 + ( 12 )
𝑥+2 +⋯ = (12 )

𝑥.

So, 𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥) = 1
2𝑥 × ( 12 )

𝑥 = (14 )
𝑥.

Now, we can find 𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) = 𝑃 (𝑋=𝑥∩𝑌 >𝑋)
𝑃 (𝑌 >𝑋) =

( 14 )
𝑥

1
3

= 3(14 )
𝑥.

Finally, we can calculate the conditional expectation:
𝐸[𝑋|𝑌 > 𝑋] =

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) =

∑∞
𝑥=1 𝑥 ⋅ 3(

1
4 )
𝑥 = 3

∑∞
𝑥=1 𝑥(

1
4 )
𝑥.

Consider the series 𝑆 =
∑∞
𝑥=1 𝑥𝑟

𝑥, where |𝑟| < 1.
𝑆 = 𝑟 + 2𝑟2 + 3𝑟3 + 4𝑟4 +…
𝑆
𝑟
= 1 + 2𝑟 + 3𝑟2 + 4𝑟3 +…

Consider the geometric series 𝐺 = 1 + 𝑟 + 𝑟2 + 𝑟3 +⋯ = 1
1−𝑟 .

Differentiating with respect to 𝑟:
𝑑𝐺
𝑑𝑟

= 1 + 2𝑟 + 3𝑟2 + 4𝑟3 +⋯ = 𝑑
𝑑𝑟
( 1
1−𝑟 ) =

1
(1−𝑟)2 .

So, 𝑆
𝑟
= 1

(1−𝑟)2 , which means 𝑆 = 𝑟
(1−𝑟)2 .

In our case, 𝑟 = 1
4 .

20300



∑∞
𝑥=1 𝑥(

1
4 )
𝑥 =

1
4

(1− 1
4 )

2
=

1
4

( 34 )
2
=

1
4
9
16

= 1
4 ×

16
9 = 4

9 .

Therefore, 𝐸[𝑋|𝑌 > 𝑋] = 3 × 4
9 = 12

9 = 4
3 .

Alternative approach: Symmetry.
Consider the events 𝑌 > 𝑋, 𝑋 > 𝑌 , and 𝑋 = 𝑌 . 𝑃 (𝑌 > 𝑋) = 𝑃 (𝑋 > 𝑌 ) due to symmetry.

𝑃 (𝑋 = 𝑌 ) =
∑∞
𝑘=1 𝑃 (𝑋 = 𝑘, 𝑌 = 𝑘) =

∑∞
𝑘=1 𝑃 (𝑋 = 𝑘)𝑃 (𝑌 = 𝑘) =

∑∞
𝑘=1(

1
2𝑘 )

2 =
∑∞
𝑘=1(

1
4 )
𝑘 =

1
4

1− 1
4
=

1
4
3
4
= 1

3 .

We have 𝑃 (𝑌 > 𝑋) + 𝑃 (𝑋 > 𝑌 ) + 𝑃 (𝑋 = 𝑌 ) = 1.
𝑃 (𝑌 > 𝑋) + 𝑃 (𝑌 > 𝑋) + 1

3 = 1.

2𝑃 (𝑌 > 𝑋) = 1 − 1
3 = 2

3 .

𝑃 (𝑌 > 𝑋) = 1
3 . This confirms our previous calculation.

Let 𝐸[𝑋|𝑌 > 𝑋] = 𝜇.
We are looking for the expected number of flips Alice made, given Bob flipped more times.
Consider the case where the first flip for both is tails. Then the process restarts, and the condition remains.
Let 𝐴1 be Alice’s first flip, 𝐵1 be Bob’s first flip.
𝑃 (𝐴1 = 𝐻) = 1∕2, 𝑃 (𝐴1 = 𝑇 ) = 1∕2.
𝑃 (𝐵1 = 𝐻) = 1∕2, 𝑃 (𝐵1 = 𝑇 ) = 1∕2.
Case 1: 𝐴1 = 𝐻,𝐵1 = 𝐻 . 𝑋 = 1, 𝑌 = 1, so 𝑌 > 𝑋 is false.
Case 2: 𝐴1 = 𝐻,𝐵1 = 𝑇 . Alice stops at 1, Bob continues. 𝑌 > 1.
Case 3: 𝐴1 = 𝑇 , 𝐵1 = 𝐻 . Bob stops at 1, Alice continues.
Case 4: 𝐴1 = 𝑇 , 𝐵1 = 𝑇 . Both continue.
Consider the conditional probabilities given 𝑌 > 𝑋.
Let 𝐸 = 𝐸[𝑋|𝑌 > 𝑋].
If the first flips are HH, the condition 𝑌 > 𝑋 is not met.
If the first flips are HT, Alice’s number of flips is 1.
If the first flips are TH, Bob’s number of flips is 1, Alice’s is at least 2, so 𝑌 < 𝑋.
If the first flips are TT, the problem restarts, and the expected number of additional flips for Alice is still
𝐸.
Let 𝑁𝐴 be the number of flips Alice makes, 𝑁𝐵 be the number of flips Bob makes.
We are given 𝑁𝐵 > 𝑁𝐴.
Consider the first flips:
HH (prob 1/4): Condition not met.
HT (prob 1/4): Alice flips 1 time.
TH (prob 1/4): Bob flips 1 time, Alice > 1, so 𝑁𝐴 > 𝑁𝐵, condition not met.
TT (prob 1/4): Both continue.
Let 𝐸 be the expected number of Alice’s flips given Bob flipped more.
If the first flips are HT, Alice flipped 1 time, and the condition is met.
If the first flips are TT, the situation is the same as the beginning, so the expected number of additional
flips for Alice is 𝐸.
Consider the event 𝑌 > 𝑋. Conditioning on the first flips:
𝐸[𝑋|𝑌 > 𝑋] = 𝐸[𝑋|𝑌 > 𝑋,𝐻𝐻]𝑃 (𝐻𝐻|𝑌 > 𝑋) + 𝐸[𝑋|𝑌 > 𝑋,𝐻𝑇 ]𝑃 (𝐻𝑇 |𝑌 > 𝑋) + 𝐸[𝑋|𝑌 >
𝑋, 𝑇𝐻]𝑃 (𝑇𝐻|𝑌 > 𝑋) + 𝐸[𝑋|𝑌 > 𝑋, 𝑇 𝑇 ]𝑃 (𝑇𝑇 |𝑌 > 𝑋)
𝑃 (𝑌 > 𝑋|𝐻𝐻) = 0. 𝑃 (𝑌 > 𝑋|𝐻𝑇 ) = 1. 𝑃 (𝑌 > 𝑋|𝑇𝐻) = 0.
𝑃 (𝑌 > 𝑋|𝑇𝑇 ) depends on the future flips.
Let’s use the definition of conditional expectation directly.
𝐸[𝑋|𝑌 > 𝑋] =

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) =

∑∞
𝑥=1 𝑥

𝑃 (𝑋=𝑥,𝑌 >𝑥)
𝑃 (𝑌 >𝑋)

Consider the probabilities of the first flips given 𝑌 > 𝑋.
𝑃 (𝐻𝐻|𝑌 > 𝑋) = 𝑃 (𝑌 >𝑋|𝐻𝐻)𝑃 (𝐻𝐻)

𝑃 (𝑌 >𝑋) = 0⋅1∕4
1∕3 = 0.

20301



𝑃 (𝐻𝑇 |𝑌 > 𝑋) = 𝑃 (𝑌 >𝑋|𝐻𝑇 )𝑃 (𝐻𝑇 )
𝑃 (𝑌 >𝑋) = 1⋅1∕4

1∕3 = 3
4 .

𝑃 (𝑇𝐻|𝑌 > 𝑋) = 𝑃 (𝑌 >𝑋|𝑇𝐻)𝑃 (𝑇𝐻)
𝑃 (𝑌 >𝑋) = 0⋅1∕4

1∕3 = 0.

𝑃 (𝑇𝑇 |𝑌 > 𝑋) = 𝑃 (𝑌 >𝑋|𝑇𝑇 )𝑃 (𝑇𝑇 )
𝑃 (𝑌 >𝑋)

If the first flips are TT, the future behavior is the same, and the condition 𝑌 > 𝑋 holds if Bob takes more
flips than Alice in the subsequent trials.
𝑃 (𝑌 > 𝑋|𝑇𝑇 ) = 𝑃 (Bob needs more flips than Alice starting from scratch) = 𝑃 (𝑌 > 𝑋) = 1∕3.
𝑃 (𝑇𝑇 |𝑌 > 𝑋) = (1∕3)⋅(1∕4)

1∕3 = 1
4 .

Sum of conditional probabilities: 0 + 3∕4 + 0 + 1∕4 = 1.
Now consider the conditional expectations of 𝑋:
𝐸[𝑋|𝑌 > 𝑋,𝐻𝐻]: Not relevant since 𝑃 (𝐻𝐻|𝑌 > 𝑋) = 0.
𝐸[𝑋|𝑌 > 𝑋,𝐻𝑇 ]: Given HT and 𝑌 > 𝑋, Alice flipped 1 time. 𝐸 = 1.
𝐸[𝑋|𝑌 > 𝑋, 𝑇𝐻]: Not relevant.
𝐸[𝑋|𝑌 > 𝑋, 𝑇 𝑇 ]: Given TT and 𝑌 > 𝑋, Alice has already flipped once, and the expected number of
additional flips is 𝐸. So, the total number of flips is 1 + 𝐸.
𝐸 = 0 ⋅ 0 + 1 ⋅ (3∕4) + undefined ⋅ 0 + (1 + 𝐸) ⋅ (1∕4)
𝐸 = 0 + 3∕4 + 0 + 1∕4 + 𝐸∕4
𝐸 = 1 + 𝐸∕4
𝐸 − 𝐸∕4 = 1
3𝐸∕4 = 1
𝐸 = 4∕3.
This confirms the previous result.
Let’s think about the intuition. If we have the condition 𝑌 > 𝑋, it means Alice was "lucky" and got a
head early, or Bob was "unlucky".
Consider the random variable 𝑍 = 𝑌 −𝑋. We are given 𝑍 > 0.
We want 𝐸[𝑋|𝑍 > 0]. Let 𝑝 = 𝑃 (head) = 0.5.
The number of tails before the first head follows a geometric distribution with parameter 𝑝.
𝑋 − 1 ∼ 𝐺𝑒𝑜𝑚(𝑝), 𝑌 − 1 ∼ 𝐺𝑒𝑜𝑚(𝑝).
𝑃 (𝑋 − 1 = 𝑘) = (1 − 𝑝)𝑘𝑝.
𝑃 (𝑋 = 𝑥) = (1 − 𝑝)𝑥−1𝑝.
Consider the joint distribution of 𝑋 and 𝑌 . 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦) = 𝑝2(1 − 𝑝)𝑥−1(1 − 𝑝)𝑦−1
Consider the event 𝑌 = 𝑋 + 𝑘, where 𝑘 ≥ 1.
𝑃 (𝑌 = 𝑋 + 𝑘) =

∑∞
𝑥=1 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑥 + 𝑘) =

∑∞
𝑥=1 𝑝

2(1 − 𝑝)𝑥−1(1 − 𝑝)𝑥+𝑘−1

= 𝑝2(1 − 𝑝)𝑘−1
∑∞
𝑥=1((1 − 𝑝)

2)𝑥−1 = 𝑝2(1 − 𝑝)𝑘−1 1
1−(1−𝑝)2

= 𝑝2(1 − 𝑝)𝑘−1 1
1−(1−2𝑝+𝑝2) = 𝑝2(1 − 𝑝)𝑘−1 1

2𝑝−𝑝2 = 𝑝2(1 − 𝑝)𝑘−1 1
𝑝(2−𝑝)

= 𝑝(1−𝑝)𝑘−1
2−𝑝 .

If 𝑝 = 0.5, then 1 − 𝑝 = 0.5, 2 − 𝑝 = 1.5.
𝑃 (𝑌 = 𝑋 + 𝑘) = 0.5(0.5)𝑘−1

1.5 = (0.5)𝑘
1.5 = (1∕2)𝑘

3∕2 = 1
2𝑘 ⋅

2
3 = 1

3⋅2𝑘−1 .

Check if
∑∞
𝑘=1 𝑃 (𝑌 = 𝑋 + 𝑘) = 𝑃 (𝑌 > 𝑋) = 1∕3.∑∞

𝑘=1
1

3⋅2𝑘−1 = 1
3
∑∞
𝑘=1(

1
2 )
𝑘−1 = 1

3 (1 + 1∕2 + 1∕4 +…) = 1
3

1
1−1∕2 = 1

3 ⋅ 2 = 2
3 .

Something is wrong here.
Let’s recalculate 𝑃 (𝑌 > 𝑋).
𝑃 (𝑌 > 𝑋) =

∑∞
𝑥=1

∑∞
𝑦=𝑥+1(1 − 𝑝)

𝑥−1𝑝(1 − 𝑝)𝑦−1𝑝
= 𝑝2

∑∞
𝑥=1(1 − 𝑝)

𝑥−1∑∞
𝑦=𝑥+1(1 − 𝑝)

𝑦−1

Inner sum: (1 − 𝑝)𝑥 + (1 − 𝑝)𝑥+1 +⋯ = (1−𝑝)𝑥
1−(1−𝑝) =

(1−𝑝)𝑥
𝑝

.

𝑃 (𝑌 > 𝑋) = 𝑝2
∑∞
𝑥=1(1 − 𝑝)

𝑥−1 (1−𝑝)𝑥
𝑝

= 𝑝(1 − 𝑝)
∑∞
𝑥=1(1 − 𝑝)

2(𝑥−1)

= 𝑝(1 − 𝑝)
∑∞
𝑥=1((1 − 𝑝)

2)𝑥−1 = 𝑝(1 − 𝑝) 1
1−(1−𝑝)2

20302



= 𝑝(1 − 𝑝) 1
1−(1−2𝑝+𝑝2) = 𝑝(1 − 𝑝) 1

2𝑝−𝑝2 = 𝑝(1 − 𝑝) 1
𝑝(2−𝑝) =

1−𝑝
2−𝑝 .

If 𝑝 = 0.5, 𝑃 (𝑌 > 𝑋) = 0.5
1.5 = 1

3 . Correct.
Now, let’s find 𝐸[𝑋|𝑌 > 𝑋].
𝐸[𝑋|𝑌 > 𝑋] =

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) =

∑∞
𝑥=1 𝑥

𝑃 (𝑋=𝑥,𝑌 >𝑥)
𝑃 (𝑌 >𝑋) .

𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥) = 𝑃 (𝑋 = 𝑥)𝑃 (𝑌 > 𝑥) (independence)
𝑃 (𝑋 = 𝑥) = (1 − 𝑝)𝑥−1𝑝.
𝑃 (𝑌 > 𝑥) =

∑∞
𝑦=𝑥+1(1 − 𝑝)

𝑦−1𝑝 = 𝑝[(1 − 𝑝)𝑥 + (1 − 𝑝)𝑥+1 +…] = 𝑝 (1−𝑝)𝑥
1−(1−𝑝) = (1 − 𝑝)𝑥.

𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥) = (1 − 𝑝)𝑥−1𝑝(1 − 𝑝)𝑥 = 𝑝(1 − 𝑝)2𝑥−1.
𝐸[𝑋|𝑌 > 𝑋] = 1

𝑃 (𝑌 >𝑋)
∑∞
𝑥=1 𝑥𝑝(1 − 𝑝)

2𝑥−1

= 2−𝑝
1−𝑝𝑝(1 − 𝑝)

−1∑∞
𝑥=1 𝑥((1 − 𝑝)

2)𝑥 (error in power)

𝑃 (𝑌 > 𝑥) = (1−𝑝)𝑥
1−(1−𝑝)𝑝 = (1 − 𝑝)𝑥.

𝐸[𝑋|𝑌 > 𝑋] = 1
𝑃 (𝑌 >𝑋)

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥)𝑃 (𝑌 > 𝑥)

= 1
𝑃 (𝑌 >𝑋)

∑∞
𝑥=1 𝑥(1 − 𝑝)

𝑥−1𝑝(1 − 𝑝)𝑥

= 𝑝
𝑃 (𝑌 >𝑋)

∑∞
𝑥=1 𝑥(1 − 𝑝)

2𝑥−1

= 𝑝
(1−𝑝)∕(2−𝑝) (1 − 𝑝)

−1∑∞
𝑥=1 𝑥((1 − 𝑝)

2)𝑥

= 𝑝 2−𝑝
(1−𝑝)2

∑∞
𝑥=1 𝑥((1 − 𝑝)

2)𝑥.

Let 𝑟 = (1 − 𝑝)2.
∑∞
𝑥=1 𝑥𝑟

𝑥 = 𝑟
(1−𝑟)2 .

1 − 𝑟 = 1 − (1 − 𝑝)2 = 1 − (1 − 2𝑝 + 𝑝2) = 2𝑝 − 𝑝2 = 𝑝(2 − 𝑝).
(1 − 𝑟)2 = 𝑝2(2 − 𝑝)2.∑∞
𝑥=1 𝑥((1 − 𝑝)

2)𝑥 = (1−𝑝)2
𝑝2(2−𝑝)2 .

𝐸[𝑋|𝑌 > 𝑋] = 𝑝 2−𝑝
(1−𝑝)2

(1−𝑝)2
𝑝2(2−𝑝)2 = 1

𝑝(2−𝑝) .

If 𝑝 = 0.5, 𝐸[𝑋|𝑌 > 𝑋] = 1
0.5×1.5 = 1

0.75 = 1
3∕4 = 4∕3.

Solution:
Let 𝑋 be the number of flips Alice makes until she gets a head, and 𝑌 be the number of flips Bob makes
until he gets a head. 𝑋 and 𝑌 are independent geometric random variables with parameter 𝑝 = 0.5. The
probability mass function is 𝑃 (𝐾 = 𝑘) = (1 − 𝑝)𝑘−1𝑝.
We are interested in the expected number of times Alice flipped her coin, given that Bob flipped his coin
more times than Alice, i.e., 𝐸[𝑋|𝑌 > 𝑋].
Using the definition of conditional expectation, 𝐸[𝑋|𝑌 > 𝑋] =

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥|𝑌 > 𝑋).

𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) = 𝑃 (𝑋=𝑥,𝑌 >𝑥)
𝑃 (𝑌 >𝑋) .

First, calculate 𝑃 (𝑌 > 𝑋).
𝑃 (𝑌 > 𝑋) =

∑∞
𝑥=1

∑∞
𝑦=𝑥+1 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦) =

∑∞
𝑥=1 𝑃 (𝑋 = 𝑥)𝑃 (𝑌 > 𝑥).

𝑃 (𝑋 = 𝑥) = (0.5)𝑥−1(0.5) = (0.5)𝑥 = 1
2𝑥 .

𝑃 (𝑌 > 𝑥) =
∑∞
𝑦=𝑥+1(0.5)

𝑦−1(0.5) = (0.5)𝑥.

𝑃 (𝑌 > 𝑋) =
∑∞
𝑥=1

1
2𝑥 (

1
2 )
𝑥 =

∑∞
𝑥=1(

1
4 )
𝑥 = 1∕4

1−1∕4 = 1∕4
3∕4 = 1

3 .

Next, calculate 𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥) = 𝑃 (𝑋 = 𝑥)𝑃 (𝑌 > 𝑥) = 1
2𝑥 (

1
2 )
𝑥 = (14 )

𝑥.

Now, find 𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) = 𝑃 (𝑋=𝑥,𝑌 >𝑥)
𝑃 (𝑌 >𝑋) = (1∕4)𝑥

1∕3 = 3(14 )
𝑥.

Finally, calculate the conditional expectation:
𝐸[𝑋|𝑌 > 𝑋] =

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) =

∑∞
𝑥=1 𝑥 ⋅ 3(

1
4 )
𝑥 = 3

∑∞
𝑥=1 𝑥(

1
4 )
𝑥.

Using the formula
∑∞
𝑥=1 𝑥𝑟

𝑥 = 𝑟
(1−𝑟)2 with 𝑟 = 1∕4:

∑∞
𝑥=1 𝑥(

1
4 )
𝑥 = 1∕4

(1−1∕4)2 = 1∕4
(3∕4)2 = 1∕4

9∕16 = 1
4 ×

16
9 = 4

9 .

𝐸[𝑋|𝑌 > 𝑋] = 3 × 4
9 = 12

9 = 4
3 .

Final Answer: The final answer is 4∕3

20303



Table 10: s1K sample stemming from the astronomy subset of OlympicArena. The black text is the question
and the yellow text is the solution. Based solely on the question we generate the light blue reasoning trace and blue
response with Gemini, which we use for training.

An often-repeated fun fact is that humans produce more power per unit volume than stars. If the sun were
the same size, but it produced the same amount of power per unit volume as a human, what would its
surface temperature be? Assume the "average human" produces 100 watts of power and has a volume of
66400 cubic centimeters.
A: 3500 K
B: 10000 K
C: 25000 K
D: 40000 K
E: 50000 K
Using the numbers from the problem, the average human produces

𝑢 = 100
66400 × 10−6

= 1506 W∕m3

The volume of the sun is 4
3𝜋𝑅

3
⊙, so its new power output would be 𝑃 = 4

3𝜋𝑅
3
⊙𝑢. To find the equilibrium

temperature, we use

𝑃 = 𝜎𝐴𝑇 4 = 4𝜋𝜎𝑅2
⊙𝑇

4

Solving for 𝑇 , we get

𝑇 = 4

√
𝑅⊙𝑢
3𝜎

= 4

√√√√
(
6.96 × 108

)
(1506)

3
(
5.67 × 10−8

) = 49823 ≈ 50000 K.

The problem asks for the surface temperature of the sun if it had the same size but produced power per
unit volume as a human.
First, let’s find the power density of a human.
Power produced by a human, 𝑃ℎ𝑢𝑚𝑎𝑛 = 100 W
Volume of a human, 𝑉ℎ𝑢𝑚𝑎𝑛 = 66400 cm3

Convert the volume to cubic meters:
1 m = 100 cm
1 m3 = (100 cm)3 = 106 cm3

𝑉ℎ𝑢𝑚𝑎𝑛 = 66400 cm3 = 66400 × 10−6 m3 = 0.0664 m3

Power density of a human, 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 =
𝑃ℎ𝑢𝑚𝑎𝑛
𝑉ℎ𝑢𝑚𝑎𝑛

= 100 W
0.0664 m3

𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 = 1506.024 W∕m3

Now, consider the sun with the same size as it currently is, but with a power density equal to that of a
human.
We need the radius of the sun to calculate its volume. The average radius of the sun is𝑅𝑠𝑢𝑛 = 6.95×108 m.
Volume of the sun, 𝑉𝑠𝑢𝑛 =

4
3𝜋𝑅

3
𝑠𝑢𝑛 =

4
3𝜋(6.95 × 108 m)3

𝑉𝑠𝑢𝑛 =
4
3𝜋(337.159375 × 1024) m3

𝑉𝑠𝑢𝑛 = 1410.24 × 1024 × 𝜋 m3

𝑉𝑠𝑢𝑛 = 4.4307 × 1027 m3

20304



If the sun had the same power density as a human, the total power produced by this modified sun would
be:
𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 × 𝑉𝑠𝑢𝑛
𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 1506.024 W∕m3 × 4.4307 × 1027 m3

𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 6.6726 × 1030 W
The surface temperature of a star is related to its luminosity (total power output) through the Stefan-
Boltzmann law:
𝐿 = 4𝜋𝑅2𝜎𝑇 4

where 𝐿 is the luminosity (total power output), 𝑅 is the radius of the star, 𝜎 is the Stefan-Boltzmann
constant, and 𝑇 is the surface temperature.
In this case, the luminosity of the modified sun is 𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛. The radius of the modified sun is the same
as the actual sun, 𝑅𝑠𝑢𝑛.
The Stefan-Boltzmann constant, 𝜎 = 5.67 × 10−8 Wm−2K−4.
𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 4𝜋𝑅2

𝑠𝑢𝑛𝜎𝑇
4

6.6726 × 1030 W = 4𝜋(6.95 × 108 m)2 × 5.67 × 10−8 Wm−2K−4 × 𝑇 4

Calculate the term 4𝜋𝑅2
𝑠𝑢𝑛𝜎:

𝑅2
𝑠𝑢𝑛 = (6.95 × 108)2 = 48.3025 × 1016 m2

4𝜋𝑅2
𝑠𝑢𝑛 = 4𝜋 × 48.3025 × 1016 = 607.08 × 1016 m2

4𝜋𝑅2
𝑠𝑢𝑛𝜎 = 607.08 × 1016 m2 × 5.67 × 10−8 Wm−2K−4

4𝜋𝑅2
𝑠𝑢𝑛𝜎 = 3441.93 × 108 WK−4 = 3.44193 × 1011 WK−4

Now, substitute this back into the equation:
6.6726 × 1030 = 3.44193 × 1011 × 𝑇 4

Solve for 𝑇 4:
𝑇 4 = 6.6726×1030

3.44193×1011 = 1.9386 × 1019
Solve for 𝑇 :
𝑇 = (1.9386 × 1019)1∕4 = (193.86 × 1017)1∕4
𝑇 = (1.9386)1∕4 × (1019)1∕4 = (1.9386)0.25 × 104.75
Calculate (1.9386)0.25:
Let 𝑦 = 1.93860.25, then ln 𝑦 = 0.25 ln(1.9386)
ln(1.9386) ≈ 0.6619
ln 𝑦 = 0.25 × 0.6619 = 0.165475
𝑦 = 𝑒0.165475 ≈ 1.1799
So, 𝑇 = 1.1799 × 104.75 = 1.1799 × 104 × 100.75
100.75 = 103∕4 = (103)1∕4 = (1000)1∕4
We know 54 = 625 and 64 = 1296, so (1000)1∕4 is between 5 and 6.
Alternatively, 100.75 = 100.5 × 100.25 =

√
10 × 100.25 ≈ 3.16 × 1.778 = 5.62

𝑇 = 1.1799 × 104 × 5.62 = 6.63 × 104 K = 66300 K
Let’s double-check the calculations.
Power density of human: 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 = 1506.02 W∕m3

Volume of sun: 𝑉𝑠𝑢𝑛 = 4.43 × 1027 m3

Power of modified sun: 𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 1506.02 × 4.43 × 1027 = 6671.67 × 1027 = 6.67 × 1030 W
Stefan-Boltzmann law: 𝑃 = 4𝜋𝑅2𝜎𝑇 4

𝑇 4 = 𝑃
4𝜋𝑅2𝜎

4𝜋𝑅2
𝑠𝑢𝑛𝜎 = 3.44 × 1011

𝑇 4 = 6.67×1030
3.44×1011 = 1.939 × 1019

𝑇 = (1.939 × 1019)1∕4 = (193.9 × 1017)1∕4
𝑇 = (193.9)0.25 × (1017)0.25 = (193.9)0.25 × 104.25
Calculate (193.9)0.25:
Let 𝑦 = 193.90.25, then ln 𝑦 = 0.25 ln(193.9)
ln(193.9) ≈ 5.267

20305



ln 𝑦 = 0.25 × 5.267 = 1.31675
𝑦 = 𝑒1.31675 ≈ 3.73
𝑇 = 3.73 × 104.25 = 3.73 × 104 × 100.25 = 37300 × 1.778 = 66329 K
The result is around 66000 K. This is not among the options. Let’s review the assumptions and calcula-
tions.
Assumption: The sun radiates as a black body, which is reasonable for estimating surface temperature.
Consider potential errors in calculations.
Let’s try a simpler approach by setting up ratios.
The power per unit volume of the modified sun is equal to that of a human.
𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛

𝑉𝑠𝑢𝑛
= 𝑃ℎ𝑢𝑚𝑎𝑛

𝑉ℎ𝑢𝑚𝑎𝑛
We also know 𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 4𝜋𝑅2

𝑠𝑢𝑛𝜎𝑇
4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛.

4𝜋𝑅2
𝑠𝑢𝑛𝜎𝑇

4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛

4
3𝜋𝑅

3
𝑠𝑢𝑛

= 𝑃ℎ𝑢𝑚𝑎𝑛
𝑉ℎ𝑢𝑚𝑎𝑛

3𝜎𝑇 4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛

𝑅𝑠𝑢𝑛
= 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛

𝑇 4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 =

𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛𝑅𝑠𝑢𝑛
3𝜎

Substitute the values:
𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 = 1506.02 W∕m3

𝑅𝑠𝑢𝑛 = 6.95 × 108 m
𝜎 = 5.67 × 10−8 Wm−2K−4

𝑇 4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 =

1506.02×6.95×108
3×5.67×10−8

𝑇 4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 =

10466.839×108
17.01×10−8 = 1.0466×1012

1.701×10−7 = 0.6153 × 1019 = 6.153 × 1018

𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = (6.153 × 1018)1∕4 = (6153 × 1015)1∕4
𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = (6153)0.25 × (1015)0.25 = (6153)0.25 × 103.75
Calculate (6153)0.25:
Let 𝑦 = 61530.25, then ln 𝑦 = 0.25 ln(6153)
ln(6153) ≈ 8.724
ln 𝑦 = 0.25 × 8.724 = 2.181
𝑦 = 𝑒2.181 ≈ 8.85
𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 8.85 × 103.75 = 8.85 × 103 × 100.75 = 8850 × 5.62 = 49737 K
This is close to option E: 50000 K.
Let’s re-check the units and calculations carefully.
Power density of human: 100 W

0.0664 m3 = 1506.02 W∕m3

The formula derived was 𝑇 4 = 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛𝑅𝑠𝑢𝑛
3𝜎 .

Units check:
[𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛] = W∕m3

[𝑅𝑠𝑢𝑛] = m
[𝜎] = Wm−2K−4
(W∕m3)×m
Wm−2K−4 = W∕m2

Wm−2K−4 = W
m2 ×

m2K4

W = K4

The units match for 𝑇 4.
Numerical calculation check:
Numerator: 1506.02 × 6.95 × 108 = 10466.839 × 108 = 1.0466 × 1012
Denominator: 3 × 5.67 × 10−8 = 17.01 × 10−8
Ratio: 1.0466×1012

17.01×10−8 = 0.061528 × 1020 = 6.1528 × 1018

𝑇 4 = 6.1528 × 1018
𝑇 = (6.1528 × 1018)1∕4 = (6152.8 × 1015)1∕4
𝑇 = (6152.8)0.25 × 103.75

20306



Let’s use logarithms for precision.
log10(6152.8) ≈ 3.789
0.25 × 3.789 = 0.94725
100.94725 ≈ 8.856
𝑇 = 8.856 × 103.75 = 8.856 × 103 × 100.75 = 8856 × 5.623 = 49806 K
This is very close to 50000 K.
Possible sources of minor discrepancies: rounding errors, precision of constants.
Let’s verify the formula derivation.
Power per unit volume = Total Power

Volume
𝜌𝑝𝑜𝑤𝑒𝑟 =

𝐿
𝑉

𝐿 = 4𝜋𝑅2𝜎𝑇 4

𝑉 = 4
3𝜋𝑅

3

𝜌𝑝𝑜𝑤𝑒𝑟 =
4𝜋𝑅2𝜎𝑇 4

4
3𝜋𝑅

3
= 3𝜎𝑇 4

𝑅

If the modified sun has the power density of a human:

𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 =
3𝜎𝑇 4

𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛

𝑅𝑠𝑢𝑛

𝑇 4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 =

𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛𝑅𝑠𝑢𝑛
3𝜎

The formula derivation seems correct.
Let’s use approximate values to check the order of magnitude.
𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 ≈ 103 W∕m3

𝑅𝑠𝑢𝑛 ≈ 7 × 108 m
𝜎 ≈ 6 × 10−8 Wm−2K−4

𝑇 4 ≈ 103×7×108
3×6×10−8 = 7×1011

18×10−8 = 0.38 × 1019 = 3.8 × 1018

𝑇 ≈ (3.8 × 1018)1∕4 = (3800 × 1015)1∕4
𝑇 ≈ (3800)0.25 × 103.75
(3800)0.25: 74 = 2401, 84 = 4096. So, between 7 and 8.
≈ 7.8
𝑇 ≈ 7.8 × 103.75 = 7800 × 5.6 = 43680 K
The order of magnitude seems consistent with the detailed calculation.
The problem statement is straightforward and doesn’t seem to have any hidden complexities. The
assumptions made are standard for such problems.
Consider the precision of the given values.
Power of human: 100 W (exact)
Volume of human: 66400 cm3 (exact)
The result obtained is very close to option E. Given the nature of multiple-choice questions, the closest
option is likely the intended answer.
If there were any misinterpretations of the question, it would likely be in the setup. However, the phrase
"If the sun were the same size, but it produced the same amount of power per unit volume as a human"
seems clear.
The surface temperature is calculated using the Stefan-Boltzmann law, assuming black-body radiation.
Double-check the provided options:
A: 3500 K
B: 10000 K
C: 25000 K
D: 40000 K
E: 50000 K
Our calculated value is approximately 49800 K, which is closest to 50000 K.
If we used more precise values for the constants, the result might be slightly different, but likely not
enough to shift to another option.

20307



The fun fact mentioned in the question implies that the power density of a human is higher than that of the
sun. Let’s verify this.
Power output of the sun: 3.846 × 1026 W
Volume of the sun: 4.43 × 1027 m3

Power density of the sun: 3.846×1026
4.43×1027 = 0.868 W∕m3

Power density of human: 1506 W∕m3

Indeed, the power density of a human is significantly higher than that of the sun.
Final check of the calculation steps and logic. The approach of equating the power density of the modified
sun to that of a human and then using the Stefan-Boltzmann law seems correct.
Solution:
The power produced by an average human is 𝑃ℎ𝑢𝑚𝑎𝑛 = 100 W, and the volume of an average human is
𝑉ℎ𝑢𝑚𝑎𝑛 = 66400 cm3 = 0.0664 m3.
The power density of a human is 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 =

𝑃ℎ𝑢𝑚𝑎𝑛
𝑉ℎ𝑢𝑚𝑎𝑛

= 100 W
0.0664 m3 ≈ 1506.02 W∕m3.

If the sun were the same size but produced the same amount of power per unit volume as a human, its
power density would be 𝜌𝑝𝑜𝑤𝑒𝑟,𝑚𝑜𝑑𝑖𝑓 𝑖𝑒𝑑_𝑠𝑢𝑛 = 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛.
The radius of the sun is 𝑅𝑠𝑢𝑛 = 6.95 × 108 m.
The volume of the sun is 𝑉𝑠𝑢𝑛 =

4
3𝜋𝑅

3
𝑠𝑢𝑛.

The power density of the modified sun is given by 𝜌𝑝𝑜𝑤𝑒𝑟,𝑚𝑜𝑑𝑖𝑓 𝑖𝑒𝑑_𝑠𝑢𝑛 =
𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛

𝑉𝑠𝑢𝑛
.

We also know that 𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 4𝜋𝑅2
𝑠𝑢𝑛𝜎𝑇

4, where 𝑇 is the surface temperature of the modified sun.
Equating the power density:

𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 =
4𝜋𝑅2

𝑠𝑢𝑛𝜎𝑇
4

4
3𝜋𝑅

3
𝑠𝑢𝑛

= 3𝜎𝑇 4

𝑅𝑠𝑢𝑛

Solving for 𝑇 4:
𝑇 4 = 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛𝑅𝑠𝑢𝑛

3𝜎
Substitute the values:
𝑇 4 = 1506.02 W∕m3×6.95×108 m

3×5.67×10−8 Wm−2K−4

𝑇 4 = 1.0466×1012
1.701×10−7 = 6.1528 × 1018 K4

Solving for 𝑇 :
𝑇 = (6.1528 × 1018)1∕4 = (6152.8)0.25 × 1018∕4 = (6152.8)0.25 × 104.5
Using logarithms:
log10(6152.8) ≈ 3.789
0.25 × 3.789 = 0.94725
(6152.8)0.25 = 100.94725 ≈ 8.856
𝑇 = 8.856 × 104.5 = 8.856 × 104 × 100.5 = 88560 ×

√
10 ≈ 88560 × 3.16 = 280000 K

Let’s redo the exponent calculation: 18∕4 = 4.5.
𝑇 = 8.856 × 104.5 = 8.856 × 104 × 100.5 - error in previous step.
𝑇 = (6.1528 × 1018)0.25 = 49806 K
The surface temperature would be approximately 49806 K, which is closest to 50000 K.
Final Answer: The final answer is 𝐸

20308



G Test-time scaling details

G.1 Budget forcing strings
In Table 11, we compare different strings for extrap-
olating performance with budget forcing. We find
that “Wait” generally gives the best performance.

Model AIME
2024

MATH
500

GPQA
Diamond

No extrapolation 50.0 93.0 57.6

2x without string 50.0 90.2 55.1
2x “Alternatively” 50.0 92.2 59.6
2x “Hmm” 50.0 93.0 59.6
2x “Wait” 53.3 93.0 59.6

Table 11: Budget forcing extrapolation ablations. We
compare ignoring the end-of-thinking delimiter twice
and appending none or various strings. While we only
compare forcing 2x here, forcing “Wait” 4x achieves
56.7 on AIME24, see Table 1 or §A.

G.2 Sequential scaling ablations
Token-conditional control One general ap-
proach is to simply tell a model in the prompt
precisely how many tokens it should generate. Ide-
ally, the model can keep track of its token count
and adjust its generation to finish within the de-
sired limits. We experiment with this approach by
training a model with token instructions using the
format in Figure 11 (left). We bucket the lengths
of the reasoning traces from our 1,000 training ex-
amples into powers of two (rounded upwards) and
add a corresponding instruction to the user prompt.
For example, if the instruction says “Think for up
to 2048 tokens”, then the reasoning trace has any-
where between 1024 and 2048 tokens. In Table 12,
we show that after training the model hardly fol-
lows the token instruction. It does sometimes gener-
ate more tokens when given a higher limit but often
overshoots the limit. This may not be unique to our
model as prior work suggests that OpenAI o1-mini
can also not follow token instructions (Zhang and
Chen, 2024). To prevent exceeding the limit, we
test budget forcing the thinking to end once the
limit is reached. This leads to perfect control (Ta-
ble 12 (lower)). With budget forcing, the scaling
trend is also clearer as the model can no longer
overshoot the limit when given a small thinking
budget. This leads to better test-time scaling values
for Token Prompting + budget forcing in Table 3.
To compute Control reported in Table 3 for token-
conditional control variants we divide the number
of times the thinking tokens in Table 12 are less

than the upper limit by the total evaluations (2/5
for without intervention; 5/5 for with intervention).

Step-conditional control Token instructions fail
as current models cannot count tokens. To accom-
modate this lack of capability, we experiment with
making the counting more coarse-grained. We par-
tition the reasoning traces into steps and ask the
model to think for a specific number of steps rather
than tokens. We split our reasoning traces on dou-
ble newlines into steps, which we find act as in-
tuitive separators based on manual inspection of
samples. We bucket our training samples into pow-
ers of 2 depending on their number of steps and
add a corresponding step instruction following the
format in Figure 11 (right). This format is based
on early experiments, where we found the model
to be more likely to adhere to the step limit when
counting down (“3 steps left...2 steps left”) rather
than counting up (“Step2...Step3...”). This is likely
because if counting down, the final step is always
1, which will act as a strong prior to the model to
finish its generation. If counting up, the final step
before the answer varies, thus if the model does
not remember the original step instruction, it may
fail to stop. We conclude the following from our
results in Table 13: (1) The model still struggles
to adhere to the step limit. The model sometimes
simply continues counting into negative steps, e.g.
“-1 steps left”. To solve this issue, we automatically
stop the thinking process once 0 steps are reached
and then force the model to transition to answer-
ing mode by appending the answer token delimiter
(§3). This leads to perfect step adherence (lower
half of Table 13), yet problems remain. (2) The
model compensates for fewer steps by making each
step longer. For example, when forced to use up to
16 steps vs 256 steps, the model generates an aver-
age of 96 tokens per step vs 56. Despite this issue,
more steps still clearly correlate with more total
thinking tokens in Table 13 and better performance
leading to a positive slope (3) Step instructions are
more costly than other methods. The step delim-
iters require around 6 tokens each which for e.g.
64 steps adds up to a total of around 380 tokens.
When ignoring the step delimiters in token counts
as in Table 13, the model still requires 7551 think-
ing tokens on average to achieve only 33.3% on
AIME24. To compute Control reported in Table 3
for step-conditional control variants, we first de-
cide that 100 tokens are an upper limit per step and
then multiply this number by the steps instructed

20309



to arrive at a proxy total token limit, e.g. 1600 for
16 steps instructed. We then check whether the
thinking tokens in Table 13 fit within the respective
limit for each evaluation run (3/5 for without inter-
vention; 5/5 for with intervention). For the model
in Figure 7, we use a model with step-conditional
control trained on an earlier version of our data and
using an earlier version of our evaluation codebase.

Class-conditional control OpenAI exposes test-
time compute control to users via a “reason-
ing_effort” API parameter with three possible set-
tings: low, medium, and high.4 The OpenAI doc-
umentation also states that “Reducing reasoning
effort can result in faster responses and fewer to-
kens used on reasoning in a response." suggesting
that they are unable to control test-time compute
with guarantees. Thus, maybe OpenAI simply ad-
justs the prompt or system instruction depending on
the reasoning effort desired. In Table 14, we show
that separate prompts for short and long thinking
allow us to control thinking time to some extent:
Prompting the model to think for longer leads to
longer thinking. However, it does not reliably im-
prove performance and control is not precise. The
current adherence to control may suffice when we
only have three classes, but it might not scale to
finer-grained classes. To compute Control reported
in Table 3 for this method, we assume that prompt-
ing the model to think for a short time in Table 14
should produce fewer tokens than the default for
AIME24, while the long prompt should produce
more. As 8033 > 6109 and 9651 > 6109, one out
of two follows our expected control thus Control is
50%.

G.3 Examples for rejection sampling ablation
Table 15 provides samples when rejection sam-
pling.

4https://github.com/openai/openai-python/blob/
44d6210f101abedeb2dd68507fcffcb329df70ea/src/
openai/types/chat/completion_create_params.py#
L172

20310

https://github.com/openai/openai-python/blob/44d6210f101abedeb2dd68507fcffcb329df70ea/src/openai/types/chat/completion_create_params.py#L172
https://github.com/openai/openai-python/blob/44d6210f101abedeb2dd68507fcffcb329df70ea/src/openai/types/chat/completion_create_params.py#L172
https://github.com/openai/openai-python/blob/44d6210f101abedeb2dd68507fcffcb329df70ea/src/openai/types/chat/completion_create_params.py#L172
https://github.com/openai/openai-python/blob/44d6210f101abedeb2dd68507fcffcb329df70ea/src/openai/types/chat/completion_create_params.py#L172


<|im_start|>user
What is the answer to Life, the Universe and
Everything?
Think for up to 2048 tokens.
<|im_start|>assistant

<|im_start|>user
What is the answer to Life, the Universe and Ev-
erything?
Think for up to 64 steps.
<|im_start|>assistant

<|im_start|>think
Let me break down this question into the three
parts it is asking for: 1) Life 2) Universe 3)
Everything
Let me start with life...

<|im_start|>64 steps left
Let me break down this question into the three parts
it is asking for: 1) Life 2) Universe 3) Everything
<|im_start|>63 steps left
Let me start with life...

<|im_start|>answer
The answer is...

<|im_start|>answer
The answer is...

Figure 11: Token and step instruction data formats for controlling test-time compute. We only train our model
on the reasoning trace and the answer.

Table 12: Scaling thinking time via tokens-conditional control. All metrics are averaged over the 30 questions in
AIME24.

Tokens instructed (→) 1024 2048 4096 8192 16384

No intervention at test-time

Thinking tokens 7939 7158 8263 7108 7500
Answer tokens 689 669 659 722 724
AIME24 26.7 30.0 33.3 33.3 40.0

Forcing end of thinking when token budget is reached

Thinking tokens 1024 2048 4031 5664 6330
Answer tokens 15 15 142 722 691
AIME24 3.3 30.0 33.3 33.3 40.0

20311



Table 13: Scaling thinking time via step-conditional control. All metrics are averaged over the 30 samples in
AIME24. Token counts ignore the thinking and step delimiters.

Steps instructed (→) 16 32 64 128 256

No intervention at test-time

Steps used 123 90 80 82 136
Tokens per step 60 70 69 66 56
Thinking tokens 7252 6277 5396 5552 7551
Answer tokens 665 653 735 777 754
AIME24 33.3 23.3 33.3 36.7 33.3

Forcing end of thinking when 0 steps are reached

Steps used 16 32 59 78 136
Tokens per step 96 94 80 70 56
Thinking tokens 1517 2963 4636 5409 7551
Answer tokens 1111 788 799 794 754
AIME24 23.3 23.3 33.3 36.7 33.3

Table 14: Scaling thinking time via class-conditional control. We report “accuracy / average thinking tokens per
sample”; the higher the accuracy and the fewer the thinking tokens (inference cost) the better.

Prompt appended to the question after two newlines AIME24 MATH500 GPQA

Answer after a short amount of thinking. Do not
spend excessive time double-checking your work.

30.0% /
8033

90.4% /
2537

56.6% /
4177

Answer after a long amount of thinking. If you feel
like you are finished early, spend the extra time trying
to double-check your work until you are absolutely
sure that you have the correct answer.

36.7% /
9651

91.4% /
3875

51.0% /
4827

Without generic prompt appending 50.0% /
6109

93.0% /
3298

57.6% /
3510

20312



Table 15: Answers generated by an earlier version of s1-32B when rejection sampling on AIME24. The black
text is the question and the yellow text is the solution. Based solely on the question we generate the light blue
reasoning trace and blue response with s1-32B using a temperature of 1. We generate until the reasoning trace has
less than 4000 tokens for the first and less than 8000 tokens for the second example. It required on average 199 (1)
tries per example until thinking was ≤ 4000 (≤ 8000 tokens).

Let 𝑂(0, 0), 𝐴( 12 , 0), and 𝐵(0,
√
3
2 ) be points in the coordinate plane. Let  be the family of segments 𝑃𝑄

of unit length lying in the first quadrant with 𝑃 on the 𝑥-axis and 𝑄 on the 𝑦-axis. There is a unique
point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any segment from  other than 𝐴𝐵. Then
𝑂𝐶2 = 𝑝

𝑞
, where 𝑝 and 𝑞 are relatively prime positive integers. Find 𝑝 + 𝑞.

23

[Correct generation with 3981 thinking tokens and 1055 answer tokens]
The problem asks for a point 𝐶 on the segment 𝐴𝐵 that is not contained in any other segment from the
family  , except for 𝐴𝐵 itself.
The points 𝑂,𝐴,𝐵 form a triangle in the first quadrant.
𝑂 = (0, 0)
𝐴 = (12 , 0)

𝐵 = (0,
√
3
2 )

The segment 𝐴𝐵 connects 𝐴(12 , 0) and 𝐵(0,
√
3
2 ).

The equation of the line containing 𝐴𝐵 can be found using the two points:

Slope 𝑚 =
√
3
2 −0

0− 1
2

= −
√
3

Using the point-slope form 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1) with point 𝐴(12 , 0):
𝑦 − 0 = −

√
3(𝑥 − 1

2 )

𝑦 = −
√
3𝑥 +

√
3
2

The segment 𝐴𝐵 lies in the first quadrant and connects (12 , 0) to (0,
√
3
2 ).

The family  consists of segments 𝑃𝑄 of unit length, where 𝑃 is on the 𝑥-axis and 𝑄 is on the 𝑦-axis.
Let 𝑃 = (𝑎, 0) and 𝑄 = (0, 𝑏).
The length of 𝑃𝑄 is

√
(𝑎 − 0)2 + (0 − 𝑏)2 =

√
𝑎2 + 𝑏2 = 1.

So 𝑎2 + 𝑏2 = 1.
Since 𝑃 is on the positive 𝑥-axis and 𝑄 is on the positive 𝑦-axis, we have 𝑎 > 0 and 𝑏 > 0.
The segment 𝑃𝑄 connects (𝑎, 0) and (0, 𝑏). The equation of the line containing 𝑃𝑄 is 𝑥

𝑎
+ 𝑦

𝑏
= 1.

The region covered by the family  is the area bounded by the lines containing these segments. The
endpoints (𝑎, 0) and (0, 𝑏) vary such that 𝑎2 + 𝑏2 = 1.
Consider the parametrization 𝑎 = cos 𝜃, 𝑏 = sin 𝜃, where 0 < 𝜃 < 𝜋

2 .

The segment 𝑃𝑄 connects (cos 𝜃, 0) and (0, sin 𝜃). The equation of the line is 𝑥
cos 𝜃 +

𝑦
sin 𝜃 = 1.

We are looking for a unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any segment
from  other than 𝐴𝐵.
Let 𝐶 be a point on 𝐴𝐵. We can parametrize the points on 𝐴𝐵 as (1 − 𝑡)𝐴 + 𝑡𝐵 for 0 ≤ 𝑡 ≤ 1.

𝐶 = (1 − 𝑡)( 12 , 0) + 𝑡(0,
√
3
2 ) = (12 −

1
2 𝑡,

√
3
2 𝑡).

Since 𝐶 is distinct from 𝐴 and 𝐵, we have 0 < 𝑡 < 1.
Suppose the point 𝐶 lies on some segment 𝑃𝑄 ∈  , where 𝑃 = (cos 𝜃, 0) and 𝑄 = (0, sin 𝜃).
The point 𝐶 satisfies the equation 𝑥

cos 𝜃 +
𝑦

sin 𝜃 = 1.
Plugging in the coordinates of 𝐶:
1
2−

1
2 𝑡

cos 𝜃 +
√
3
2 𝑡

sin 𝜃 = 1
1−𝑡

2 cos 𝜃 +
√
3𝑡

2 sin 𝜃 = 1
Multiply by 2:

20313



1−𝑡
cos 𝜃 +

√
3𝑡

sin 𝜃 = 2
(1 − 𝑡) sin 𝜃 +

√
3𝑡 cos 𝜃 = 2 sin 𝜃 cos 𝜃

sin 𝜃 − 𝑡 sin 𝜃 +
√
3𝑡 cos 𝜃 = sin(2𝜃)∕2

We are looking for a point 𝐶 on 𝐴𝐵 such that the only segment from  containing 𝐶 is 𝐴𝐵 itself.
The segment 𝐴𝐵 is part of the family  .

For 𝐴𝐵, 𝑃 = 𝐴 = (12 , 0) and 𝑄 = 𝐵 = (0,
√
3
2 ).

Here 𝑎 = 1
2 , 𝑏 =

√
3
2 .

𝑎2 + 𝑏2 = (12 )
2 + (

√
3
2 )2 = 1

4 +
3
4 = 1.

The line segment 𝐴𝐵 connects ( 12 , 0) and (0,
√
3
2 ).

The equation of the line is 𝑥
1∕2 +

𝑦√
3∕2

= 1, which simplifies to 2𝑥 + 2√
3
𝑦 = 1, or

√
3𝑥 + 𝑦 =

√
3
2 .

This matches the equation 𝑦 = −
√
3𝑥 +

√
3
2 .

Consider the envelope of the family of lines 𝑥
cos 𝜃 +

𝑦
sin 𝜃 = 1.

Differentiating with respect to 𝜃:
−𝑥 sin 𝜃

cos2 𝜃 + 𝑦 cos 𝜃
sin2 𝜃

= 0
𝑦 cos 𝜃
sin2 𝜃

= 𝑥 sin 𝜃
cos2 𝜃

𝑦 cos3 𝜃 = 𝑥 sin3 𝜃
𝑦
𝑥
= tan3 𝜃

tan 𝜃 = ( 𝑦
𝑥
)1∕3

From the line equation: 𝑦 sin 𝜃 = sin 𝜃 cos 𝜃 − 𝑥 sin 𝜃
𝑦 = cos 𝜃 − 𝑥
Substitute cos 𝜃 = 1√

1+tan2 𝜃
= 1√

1+(𝑦∕𝑥)2∕3

cos 𝜃 = 𝑥1∕3

(𝑥2∕3+𝑦2∕3)1∕2

sin 𝜃 = tan 𝜃 cos 𝜃 = ( 𝑦
𝑥
)1∕3 𝑥1∕3

(𝑥2∕3+𝑦2∕3)1∕2 = 𝑦1∕3

(𝑥2∕3+𝑦2∕3)1∕2
Substitute back into the line equation:
𝑥

cos 𝜃 +
𝑦

sin 𝜃 = 1
𝑥(𝑥2∕3 + 𝑦2∕3)1∕2∕𝑥1∕3 + 𝑦(𝑥2∕3 + 𝑦2∕3)1∕2∕𝑦1∕3 = 1
𝑥2∕3(𝑥2∕3 + 𝑦2∕3)1∕2 + 𝑦2∕3(𝑥2∕3 + 𝑦2∕3)1∕2 = 1
(𝑥2∕3 + 𝑦2∕3)3∕2 = 1
𝑥2∕3 + 𝑦2∕3 = 1
The envelope of the family  is the astroid 𝑥2∕3 + 𝑦2∕3 = 1.
The segments from  are tangent to this astroid.
The point 𝐶 on 𝐴𝐵 that we are looking for is the point where 𝐴𝐵 is tangent to the astroid.

The equation of 𝐴𝐵 is 𝑦 = −
√
3𝑥 +

√
3
2 .

Substitute into the astroid equation:

𝑥2∕3 + (−
√
3𝑥 +

√
3
2 )2∕3 = 1

Let 𝑢 = 𝑥1∕3 and 𝑣 = 𝑦1∕3. The astroid is 𝑢2 + 𝑣2 = 1.
The point 𝐶 lies on both the line 𝐴𝐵 and the astroid.
Differentiating the astroid equation implicitly:
2
3𝑥

−1∕3 + 2
3𝑦

−1∕3𝑦′ = 0
𝑦′ = − 𝑦1∕3

𝑥1∕3
= −( 𝑦

𝑥
)1∕3

The slope of the tangent to the astroid at a point (𝑥, 𝑦) is − 3
√

𝑦
𝑥

.

The slope of the line 𝐴𝐵 is −
√
3.

So, at the point of tangency, − 3
√

𝑦
𝑥
= −

√
3.

20314



3
√

𝑦
𝑥
=
√
3

𝑦
𝑥
= (

√
3)3 = 3

√
3

The point 𝐶 lies on the line 𝑦 = −
√
3𝑥 +

√
3
2 and satisfies 𝑦

𝑥
= 3

√
3.

So 𝑦 = 3
√
3𝑥.

Substitute into the line equation:

3
√
3𝑥 = −

√
3𝑥 +

√
3
2

3𝑥 = −𝑥 + 1
2

4𝑥 = 1
2

𝑥 = 1
8

Then 𝑦 = 3
√
3(18 ) =

3
√
3

8 .

The point 𝐶 is (18 ,
3
√
3

8 ).
We need to check if this point lies on the segment 𝐴𝐵.

The point 𝐶 is of the form (12 −
1
2 𝑡,

√
3
2 𝑡).

1
2 −

1
2 𝑡 =

1
8 ⇐⇒ 4 − 4𝑡 = 1 ⇐⇒ 3 = 4𝑡 ⇐⇒ 𝑡 = 3

4 .√
3
2 𝑡 =

√
3
2 ⋅ 3

4 = 3
√
3

8 .

So 𝐶 lies on 𝐴𝐵.
We need to make sure 0 < 𝑡 < 1, which is true for 𝑡 = 3

4 .
Now, we need to check if this point 𝐶 does not belong to any other segment from  .
The point 𝐶 lies on the astroid. The segment 𝐴𝐵 is tangent to the astroid at 𝐶 .
Any other segment from  that contains 𝐶 would have 𝐶 as an interior point, not a tangent point.
Consider the parametrization of the family  .
A point (𝑥, 𝑦) belongs to some segment in  iff there exists 𝜃 such that 𝑥

cos 𝜃 +
𝑦

sin 𝜃 = 1.

For the point 𝐶 = (18 ,
3
√
3

8 ), we have:
1∕8
cos 𝜃 +

3
√
3∕8

sin 𝜃 = 1
1

cos 𝜃 +
3
√
3

sin 𝜃 = 8
sin 𝜃 + 3

√
3 cos 𝜃 = 8 sin 𝜃 cos 𝜃

sin 𝜃 + 3
√
3 cos 𝜃 = 4 sin(2𝜃)

We know that 𝐶 lies on 𝐴𝐵, which corresponds to some specific segment in  .
The problem statement assumes the existence and uniqueness of such a point 𝐶 .
The unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any segment from  other than
𝐴𝐵.
This means that if 𝐶 lies on another segment 𝑃 ′𝑄′ ∈  , then 𝑃 ′𝑄′ = 𝐴𝐵.
The point 𝐶 is the point of tangency of 𝐴𝐵 with the astroid.
Now we need to find 𝑂𝐶2.
𝑂𝐶2 = (18 )

2 + ( 3
√
3

8 )2 = 1
64 +

27
64 = 28

64 = 7
16 .

Here 𝑝 = 7 and 𝑞 = 16.
𝑝 and 𝑞 are relatively prime.
𝑝 + 𝑞 = 7 + 16 = 23.
Final check of the reasoning:
The family  consists of unit-length segments with endpoints on the axes.
The envelope of this family is the astroid 𝑥2∕3 + 𝑦2∕3 = 1.
The segments from  are tangent to the astroid.
The segment 𝐴𝐵 is also a member of the family  .
We are looking for a point 𝐶 on 𝐴𝐵 that lies on the astroid.

20315



This point 𝐶 is the point of tangency of 𝐴𝐵 with the astroid.
If a point on 𝐴𝐵 lies on the astroid, it belongs to the tangent segment at that point. Since 𝐴𝐵 is the tangent
segment, this point does not belong to any other segment from  .
Consider the case when the segment 𝐴𝐵 intersects the astroid at two points.
If the segment 𝐴𝐵 is not tangent to the astroid, then there are two points of intersection.
Let the points of intersection be 𝐶1 and 𝐶2.
If 𝐶1 lies on 𝐴𝐵, then the tangent to the astroid at 𝐶1 is the segment 𝐴𝐵.
If 𝐶2 lies on 𝐴𝐵, then the tangent to the astroid at 𝐶2 is the segment 𝐴𝐵.
The slope of 𝐴𝐵 is −

√
3.

We found the point on the astroid with tangent slope −
√
3.

The problem statement guarantees the uniqueness of such a point 𝐶 .
The point 𝐶 must be interior to 𝐴𝐵, so 0 < 𝑡 < 1.
The parameter 𝑡 = 3

4 is in this range.
The point 𝐶 is distinct from 𝐴 and 𝐵.

If 𝐶 = 𝐴, then 𝑡 = 0, 𝐶 = (12 , 0). If 𝐶 = 𝐵, then 𝑡 = 1, 𝐶 = (0,
√
3
2 ).

The point of tangency 𝐶 is the unique point on 𝐴𝐵 (excluding endpoints) that lies on the astroid.
Solution:
Let the family of segments  be defined by segments 𝑃𝑄 of unit length with 𝑃 on the positive 𝑥-axis
and 𝑄 on the positive 𝑦-axis. Let 𝑃 = (𝑎, 0) and 𝑄 = (0, 𝑏). The length condition gives 𝑎2 + 𝑏2 = 1. The
segment 𝑃𝑄 lies on the line 𝑥

𝑎
+ 𝑦

𝑏
= 1. Using the parametrization 𝑎 = cos 𝜃, 𝑏 = sin 𝜃 with 0 < 𝜃 < 𝜋

2 ,
the equation of the line is 𝑥

cos 𝜃 +
𝑦

sin 𝜃 = 1.
The envelope of this family of lines is the astroid 𝑥2∕3 + 𝑦2∕3 = 1.
The segments from  are tangent to this astroid.

The segment 𝐴𝐵 connects 𝐴( 12 , 0) and 𝐵(0,
√
3
2 ). The equation of the line containing 𝐴𝐵 is 𝑦 = −

√
3𝑥 +√

3
2 . This segment is part of the family  .

We are looking for a unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any segment
from  other than 𝐴𝐵. This means 𝐶 is the point where 𝐴𝐵 is tangent to the astroid.

The slope of the tangent to the astroid at a point (𝑥, 𝑦) is − 3
√

𝑦
𝑥

. The slope of 𝐴𝐵 is −
√
3.

Setting the slopes equal: − 3
√

𝑦
𝑥
= −

√
3 ⇐⇒ 𝑦

𝑥
= 3

√
3.

The point 𝐶 lies on the line 𝑦 = −
√
3𝑥 +

√
3
2 and satisfies 𝑦 = 3

√
3𝑥.

Substituting, 3
√
3𝑥 = −

√
3𝑥 +

√
3
2 ⇐⇒ 4

√
3𝑥 =

√
3
2 ⇐⇒ 𝑥 = 1

8 .

Then 𝑦 = 3
√
3(18 ) =

3
√
3

8 .

The point 𝐶 is (18 ,
3
√
3

8 ).

We need to check if 𝐶 lies on 𝐴𝐵. The points on 𝐴𝐵 are (12 −
1
2 𝑡,

√
3
2 𝑡) for 0 ≤ 𝑡 ≤ 1.

For 𝑥 = 1
8 , 1

2 −
1
2 𝑡 =

1
8 ⇐⇒ 𝑡 = 3

4 .

For 𝑦 = 3
√
3

8 ,
√
3
2 𝑡 =

3
√
3

8 ⇐⇒ 𝑡 = 3
4 .

Since 0 < 3
4 < 1, 𝐶 is an interior point of 𝐴𝐵.

The point 𝐶 is the unique point on 𝐴𝐵 (excluding endpoints) that lies on the astroid. The tangent to the
astroid at 𝐶 is the segment 𝐴𝐵. Thus, 𝐶 does not belong to any other segment from  .

Finally, we calculate 𝑂𝐶2 = (18 )
2 + ( 3

√
3

8 )2 = 1
64 +

27
64 = 28

64 = 7
16 .

We have 𝑝 = 7 and 𝑞 = 16. These are relatively prime.
𝑝 + 𝑞 = 7 + 16 = 23.
Final Answer: The final answer is 23

20316



[Incorrect generation with 5923 thinking tokens and 754 answer tokens]
The problem asks for a point 𝐶 on the segment 𝐴𝐵 such that 𝐶 is not on any other segment from the
family  , except 𝐴𝐵 itself. The family  consists of segments 𝑃𝑄 of unit length, with 𝑃 on the 𝑥-axis
and 𝑄 on the 𝑦-axis in the first quadrant.
Let 𝑃 = (𝑥, 0) and 𝑄 = (0, 𝑦), where 𝑥 > 0 and 𝑦 > 0. The length of the segment 𝑃𝑄 is 1, so the distance
between 𝑃 and 𝑄 is 1.√
(𝑥 − 0)2 + (0 − 𝑦)2 = 1√
𝑥2 + 𝑦2 = 1

𝑥2 + 𝑦2 = 1
The segment 𝑃𝑄 lies in the first quadrant, so 𝑥 > 0 and 𝑦 > 0.
The equation 𝑥2 + 𝑦2 = 1 represents the quarter circle in the first quadrant, with endpoints at (1, 0) and
(0, 1).
The points on the segment 𝑃𝑄 can be parameterized as (1 − 𝑡)𝑥 + 𝑡(0), (1 − 𝑡)0 + 𝑡𝑦) = (𝑥(1 − 𝑡), 𝑦𝑡),
where 0 ≤ 𝑡 ≤ 1.
The segment 𝐴𝐵 connects 𝐴(12 , 0) and 𝐵(0,

√
3
2 ).

The equation of the line containing 𝐴𝐵 can be found using the two points:

Slope 𝑚 =
√
3
2 −0

0− 1
2

=
√
3
2
− 1

2
= −

√
3.

Using point-slope form with point 𝐴(12 , 0):
𝑦 − 0 = −

√
3(𝑥 − 1

2 )

𝑦 = −
√
3𝑥 +

√
3
2

The segment 𝐴𝐵 lies in the first quadrant, between 𝑥 = 0 and 𝑥 = 1
2 .

Alternatively, we can parameterize the points on 𝐴𝐵.
Let 𝐶 be a point on 𝐴𝐵. Then 𝐶 = (1 − 𝜆)𝐴 + 𝜆𝐵 for some 0 ≤ 𝜆 ≤ 1.

𝐶 = (1 − 𝜆)( 12 , 0) + 𝜆(0,
√
3
2 ) = (12 −

1
2𝜆,

√
3
2 𝜆).

We are looking for a unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any segment
from  other than 𝐴𝐵.
Consider a segment from  , with endpoints 𝑃 = (𝑥, 0) and 𝑄 = (0, 𝑦), where 𝑥2 + 𝑦2 = 1.
A point on this segment is of the form (𝑥(1 − 𝑡), 𝑦𝑡), where 0 ≤ 𝑡 ≤ 1.
We want to find a point 𝐶 on 𝐴𝐵, 𝐶 ≠ 𝐴,𝐵, such that if 𝐶 lies on a segment 𝑃𝑄 ∈  , then 𝑃𝑄 = 𝐴𝐵.

Let 𝐶 = (12 −
1
2𝜆,

√
3
2 𝜆), where 0 < 𝜆 < 1.

If 𝐶 lies on a segment 𝑃𝑄 from  , then there exist 𝑥, 𝑦 > 0 with 𝑥2 + 𝑦2 = 1, and 𝑡 ∈ [0, 1] such that:
1
2 −

1
2𝜆 = 𝑥(1 − 𝑡)√

3
2 𝜆 = 𝑦𝑡

From the first equation, 1 − 𝑡 =
1
2−

1
2𝜆
𝑥

= 1−𝜆
2𝑥 .

From the second equation, 𝑡 =
√
3
2 𝜆
𝑦

=
√
3𝜆
2𝑦 .

Since 𝑡 ∈ [0, 1], we have 1 − 𝑡 ∈ [0, 1].
Also, 𝑥 > 0, so 1−𝜆

2𝑥 > 0, which implies 1− 𝜆 > 0, or 𝜆 < 1. This is consistent with the condition for point

on 𝐴𝐵.
We have 1 − 𝑡 = 1−𝜆

2𝑥 and 𝑡 =
√
3𝜆
2𝑦 .

Adding these equations: 1 = 1−𝜆
2𝑥 +

√
3𝜆
2𝑦

2𝑥𝑦 = (1 − 𝜆)𝑦 +
√
3𝜆𝑥

We know 𝑥2 + 𝑦2 = 1.
If the point 𝐶 belongs to the segment 𝐴𝐵 itself, then the endpoints of the segment are 𝐴 and 𝐵.

20317



So, the segment is from ( 12 , 0) to (0,
√
3
2 ).

Here, 𝑥 = 1
2 and 𝑦 =

√
3
2 .

Check if 𝑥2 + 𝑦2 = 1: (12 )
2 + (

√
3
2 )2 = 1

4 +
3
4 = 1. So 𝐴𝐵 ∈  .

If 𝐶 belongs to another segment 𝑃𝑄 from  , with endpoints 𝑃 = (𝑥, 0) and 𝑄 = (0, 𝑦), where (𝑥, 𝑦) ≠
(12 ,

√
3
2 ).

Consider the geometric interpretation. The family  consists of segments of unit length with endpoints on
the axes. The midpoints of these segments lie on the circle (𝑥 − 1

2 )
2 + (𝑦 − 1

2 )
2 = 1

2 .
Let the point 𝐶 correspond to some 𝜆.
If 𝐶 lies on 𝑃𝑄, then 𝐶 = (𝑥(1 − 𝑡), 𝑦𝑡).
So, 1

2 −
1
2𝜆 = 𝑥(1 − 𝑡) and

√
3
2 𝜆 = 𝑦𝑡.

We need to find a 𝜆 ∈ (0, 1) such that the only solution to these equations, with 𝑥2 + 𝑦2 = 1, 𝑥, 𝑦 > 0, is

𝑥 = 1
2 and 𝑦 =

√
3
2 .

From the equations, 1 − 𝑡 = 1−𝜆
2𝑥 and 𝑡 =

√
3𝜆
2𝑦 .

Substitute these into 𝑥2 + 𝑦2 = 1.
Try a different approach. Consider the tangents to the family of segments.
The segments are formed by points (𝑥, 0) and (0, 𝑦) with 𝑥2 + 𝑦2 = 1.
The equation of the line containing the segment 𝑃𝑄 is 𝑥

𝑥
+ 𝑦

𝑦
= 1, or 𝑥

𝑥
+ 𝑦

𝑦
= 1.

The equation of the line is 𝑥
𝑥
+ 𝑦

𝑦
= 1.

Consider the equation of the segment in parametric form: (𝑥(1 − 𝑡), 𝑦𝑡).
If a point 𝐶 lies on this segment, then 𝐶 = (𝑥𝑐 , 𝑦𝑐), where 𝑥𝑐 = 𝑥(1 − 𝑡) and 𝑦𝑐 = 𝑦𝑡.
So, 𝑥𝑐

𝑥
= 1 − 𝑡 and 𝑦𝑐

𝑦
= 𝑡.

𝑥𝑐
𝑥
+ 𝑦𝑐

𝑦
= 1 − 𝑡 + 𝑡 = 1.

The segments from  are parts of the lines 𝑥
𝑥0

+ 𝑦
𝑦0

= 1, where 𝑥20 + 𝑦
2
0 = 1, 𝑥0, 𝑦0 > 0.

Consider the point 𝐶 = (12 −
1
2𝜆,

√
3
2 𝜆).

If 𝐶 lies on a segment from  with endpoints (𝑥, 0) and (0, 𝑦), then:
1
2−

1
2𝜆
𝑥

+
√
3
2 𝜆
𝑦

= 1
1−𝜆
2𝑥 +

√
3𝜆
2𝑦 = 1

We need to find a unique 𝜆 ∈ (0, 1) such that the only solution (𝑥, 𝑦) to this equation, with 𝑥2 + 𝑦2 = 1,

𝑥, 𝑦 > 0, is (12 ,
√
3
2 ).

Substitute 𝑥 = 1
2 and 𝑦 =

√
3
2 into the equation:

1−𝜆
2( 12 )

+
√
3𝜆

2(
√
3
2 )

= 1

1 − 𝜆 + 𝜆 = 1
1 = 1
This shows that any point on 𝐴𝐵 lies on the segment 𝐴𝐵 itself.

Consider the line containing 𝐴𝐵: 𝑦 = −
√
3𝑥 +

√
3
2 .

If a point 𝐶 on 𝐴𝐵 also lies on another segment from  with endpoints (𝑥, 0) and (0, 𝑦), then:
𝑥𝐶
𝑥
+ 𝑦𝐶

𝑦
= 1.

Let the point 𝐶 divide 𝐴𝐵 in the ratio 𝜇 ∶ (1 − 𝜇), where 0 < 𝜇 < 1.

𝐶 = (1 − 𝜇)𝐴 + 𝜇𝐵 = (1 − 𝜇)( 12 , 0) + 𝜇(0,
√
3
2 ) = (12 −

1
2𝜇,

√
3
2 𝜇).

If 𝐶 lies on a segment with endpoints (𝑥, 0) and (0, 𝑦), then:
1
2−

1
2𝜇
𝑥

+
√
3
2 𝜇
𝑦

= 1.

20318



We are looking for a point 𝐶 such that the line passing through 𝐶 with the form 𝑥
𝑥0

+ 𝑦
𝑦0

= 1, where

𝑥20 + 𝑦
2
0 = 1, is unique.

Consider the tangents to the unit circle centered at the origin. The lines of the form 𝑥
𝑥0

+ 𝑦
𝑦0

= 1 are

tangents to the circle 𝑥2 + 𝑦2 = 𝑟2.
Consider the dual problem. The family of segments corresponds to points on the quarter circle 𝑥2+𝑦2 = 1
in the first quadrant.
The lines containing the segments are 𝑥

𝑥0
+ 𝑦

𝑦0
= 1.

The envelope of these lines is the curve whose tangents are these lines.
The equation 𝑥

𝑥0
+ 𝑦

𝑦0
= 1, with the constraint 𝑥20 + 𝑦

2
0 = 1.

Let 𝑥0 = cos 𝜃, 𝑦0 = sin 𝜃, where 0 < 𝜃 < 𝜋
2 .

The equations of the lines are 𝑥 cos 𝜃 + 𝑦 sin 𝜃 = 1.
The envelope of the family of lines 𝑥 cos 𝜃 + 𝑦 sin 𝜃 = 1 is the circle 𝑥2 + 𝑦2 = 1.
The segments from  are parts of the tangents to the unit circle in the first quadrant.
The point 𝐶 on 𝐴𝐵 that does not belong to any other segment from  means that the tangent to the unit
circle passing through 𝐶 is unique.

Consider the point 𝐶 = (12 −
1
2𝜆,

√
3
2 𝜆).

The tangents to the unit circle passing through 𝐶 have the form 𝑥𝑥𝐶 + 𝑦𝑦𝐶 = 1.
If the tangent is unique, then 𝐶 lies on the unit circle.

(12 −
1
2𝜆)

2 + (
√
3
2 𝜆)

2 = 1
(14 −

1
2𝜆 +

1
4𝜆

2) + 3
4𝜆

2 = 1
1
4 −

1
2𝜆 + 𝜆

2 = 1
4𝜆2 − 2𝜆 + 1 = 4
4𝜆2 − 2𝜆 − 3 = 0
Solve for 𝜆:
𝜆 = −(−2)±

√
(−2)2−4(4)(−3)
2(4) = 2±

√
4+48
8 = 2±

√
52

8 = 2±2
√
13

8 = 1±
√
13

4 .
We need 0 < 𝜆 < 1.√
13 ≈ 3.6.

1+3.6
4 = 4.6

4 > 1.
1−3.6
4 = −2.6

4 < 0.
Something is wrong. The point 𝐶 is inside the unit circle.
Let’s rephrase the condition. There is a unique point 𝐶 on 𝐴𝐵 such that if 𝐶 lies on a segment 𝑃𝑄 ∈  ,
then 𝑃𝑄 = 𝐴𝐵.

Let the point 𝐶 on 𝐴𝐵 be (12 −
1
2𝜆,

√
3
2 𝜆).

Consider a segment from  with endpoints (𝑥, 0) and (0, 𝑦), 𝑥2 + 𝑦2 = 1.
The parametric form of the segment is (𝑥(1 − 𝑡), 𝑦𝑡).
If 𝐶 is on this segment, then for some 𝑡 ∈ [0, 1]:
1
2 −

1
2𝜆 = 𝑥(1 − 𝑡)√

3
2 𝜆 = 𝑦𝑡

If the segment is unique, then the values of 𝑥 and 𝑦 are unique.

The only solution to 1−𝜆
2𝑥 +

√
3𝜆
2𝑦 = 1, with 𝑥2 + 𝑦2 = 1, 𝑥, 𝑦 > 0, should be 𝑥 = 1

2 , 𝑦 =
√
3
2 .

Consider the intersection of the line containing 𝐴𝐵 with the boundary of the region formed by the
segments in  .
The boundaries are the 𝑥-axis, 𝑦-axis, and the quarter circle 𝑥2 + 𝑦2 = 1.
Consider the dual problem again. The family of lines 𝑥

𝑥0
+ 𝑦

𝑦0
= 1, where 𝑥20 + 𝑦

2
0 = 1, 𝑥0, 𝑦0 > 0.

The envelope of these lines is the circle 𝑥2 + 𝑦2 = 1.
A point belongs to a unique segment from  if it lies on the circle 𝑥2 + 𝑦2 = 1.
The point 𝐶 on 𝐴𝐵 satisfies 𝐶 = 𝑡𝐴 + (1 − 𝑡)𝐵.

20319



Let’s consider the case where the segment is 𝐴𝐵. Here 𝑥 = 1
2 , 𝑦 =

√
3
2 .

The point 𝐶 can be represented as (12 (1 − 𝑠),
√
3
2 𝑠) for 0 ≤ 𝑠 ≤ 1.

We are looking for a point 𝐶 on 𝐴𝐵 that does not lie on any other segment from  .
Consider the geometry. The family  forms a region bounded by the axes and the quarter circle.
The segments are chords of circles centered on the line 𝑦 = 𝑥, tangent to the axes.
Let the endpoints of a segment be (cos 𝜃, 0) and (0, sin 𝜃).
A point on the segment is (cos 𝜃(1 − 𝑡), sin 𝜃𝑡).
The point 𝐶 = (12 −

1
2𝜆,

√
3
2 𝜆).

If 𝐶 lies on such a segment, then
1
2−

1
2𝜆

cos 𝜃 = 1 − 𝑡 and

√
3
2 𝜆
sin 𝜃 = 𝑡.

1−𝜆
2 cos 𝜃 +

√
3𝜆

2 sin 𝜃 = 1.

We need a unique 𝜆 ∈ (0, 1) such that the only solution (cos 𝜃, sin 𝜃) is (12 ,
√
3
2 ), which corresponds to

𝜃 = 𝜋
3 .

Consider the function 𝑓 (𝜃) = 1
2 cos 𝜃 −

𝜆
2 cos 𝜃 +

√
3𝜆

2 sin 𝜃 .
We need 𝑓 (𝜃) = 1.

If 𝜆 = 1
2 , then 𝐶 = (14 ,

√
3
4 ).

1−1∕2
2 cos 𝜃 +

√
3(1∕2)
2 sin 𝜃 = 1

1
4 cos 𝜃 +

√
3

4 sin 𝜃 = 1
1

cos 𝜃 +
√
3

sin 𝜃 = 4
sin 𝜃 +

√
3 cos 𝜃 = 4 sin 𝜃 cos 𝜃

sin 𝜃 +
√
3 cos 𝜃 = 2 sin(2𝜃)

Divide by 2: 1
2 sin 𝜃 +

√
3
2 cos 𝜃 = sin(2𝜃)

sin(𝜃 + 𝜋
3 ) = sin(2𝜃).

𝜃 + 𝜋
3 = 2𝜃 + 2𝜋𝑘, or 𝜃 + 𝜋

3 = 𝜋 − 2𝜃 + 2𝜋𝑘.
𝜃 = 𝜋

3 − 2𝜋𝑘, so 𝜃 = 𝜋
3 .

3𝜃 = 𝜋 − 𝜋
3 + 2𝜋𝑘 = 2𝜋

3 + 2𝜋𝑘.

𝜃 = 2𝜋
9 + 2𝜋𝑘

3 .

If 𝑘 = 0, 𝜃 = 2𝜋
9 .

If 𝑘 = 1, 𝜃 = 2𝜋
9 + 2𝜋

3 = 2𝜋+6𝜋
9 = 8𝜋

9 .

If 𝜆 = 1
2 , the point is (14 ,

√
3
4 ).

This point lies on segments corresponding to 𝜃 = 𝜋
3 and 𝜃 = 2𝜋

9 .
The unique point 𝐶 means that for other values of 𝜆, there is more than one solution for (𝑥, 𝑦).
Consider the tangent to the unit circle passing through 𝐶 .
If the tangent is unique, 𝐶 is on the unit circle.

This leads to 𝜆 = 1±
√
13

4 , neither of which is in (0, 1).
Consider the geometric interpretation of the family  . The segments connect points on the axes such that
the distance is 1.
The locus of the centers of these segments is the circle (𝑥 − 1

2 )
2 + (𝑦 − 1

2 )
2 = 1

2 , in the first quadrant.
If a point 𝐶 lies on a segment from  , then 𝐶 is on a line segment connecting (𝑥, 0) and (0, 𝑦) with
𝑥2 + 𝑦2 = 1.
The line containing the segment is 𝑥

𝑥0
+ 𝑦

𝑦0
= 1.

If 𝐶 belongs to a unique segment, then there is a unique line of this form passing through 𝐶 .

20320



The point 𝐶 on 𝐴𝐵 is (12 −
1
2𝜆,

√
3
2 𝜆).

We need a unique (𝑥0, 𝑦0) with 𝑥20 + 𝑦
2
0 = 1, 𝑥0, 𝑦0 > 0, such that

1
2−

1
2𝜆

𝑥0
+

√
3
2 𝜆
𝑦0

= 1.

Let the point 𝐶 be such that the line passing through 𝐶 with the form 𝑥
𝑥0

+ 𝑦
𝑦0

= 1 is unique, subject to

𝑥20 + 𝑦
2
0 = 1.

This line is tangent to the unit circle.
The point 𝐶 lies on the intersection of the line containing 𝐴𝐵 and the unit circle.

(12 −
1
2𝜆)

2 + (
√
3
2 𝜆)

2 = 1.
We found no solution for 𝜆 ∈ (0, 1).
The unique point 𝐶 means that if any other segment passes through 𝐶 , it must be 𝐴𝐵.
Consider the slope of the line containing the segment connecting (𝑥, 0) and (0, 𝑦). Slope is − 𝑦

𝑥
.

The equation is 𝑦 = − 𝑦
𝑥
𝑥 + 𝑦.

If 𝐶 lies on the segment, then 1−𝜆
2𝑥 +

√
3𝜆
2𝑦 = 1.

Consider the geometric mean.
Let the point 𝐶 have coordinates (𝑎, 𝑏). The segment connecting (𝑥, 0) and (0, 𝑦) passes through (𝑎, 𝑏).
𝑎
𝑥
+ 𝑏

𝑦
= 1.

If 𝐶 is on 𝐴𝐵, then 𝑏 = −
√
3𝑎 +

√
3
2 .

𝑎 = 1
2 −

1
2𝜆, 𝑏 =

√
3
2 𝜆.

The point 𝐶 is tangent to the envelope of the family of segments.

Solution:
Let the family of segments be  . The segments have endpoints 𝑃 = (𝑥, 0) and𝑄 = (0, 𝑦) with 𝑥2+𝑦2 = 1
and 𝑥, 𝑦 > 0. The points on the segment 𝑃𝑄 satisfy 𝑥

𝑥
+ 𝑦

𝑦
= 1. The segments lie on the lines 𝑥

𝑥0
+ 𝑦

𝑦0
= 1,

where 𝑥20 + 𝑦
2
0 = 1, 𝑥0, 𝑦0 > 0.

The segment 𝐴𝐵 has endpoints 𝐴(12 , 0) and 𝐵(0,
√
3
2 ). The equation of the line containing 𝐴𝐵 is 𝑦 =

−
√
3𝑥 +

√
3
2 .

A point 𝐶 on 𝐴𝐵 can be parameterized as 𝐶 = (12 −
1
2𝜆,

√
3
2 𝜆), where 0 ≤ 𝜆 ≤ 1.

If 𝐶 belongs to a segment from  with endpoints (𝑥, 0) and (0, 𝑦), then
1
2−

1
2𝜆
𝑥

+
√
3
2 𝜆
𝑦

= 1.

We are looking for a unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any segment
from  other than 𝐴𝐵. This means that the only solution (𝑥, 𝑦) to the equation with 𝑥2 + 𝑦2 = 1, 𝑥, 𝑦 > 0,

is (12 ,
√
3
2 ).

The segments from  are parts of the tangents to the unit circle. The point 𝐶 must be tangent to the
envelope of the family of segments. The envelope is the unit circle itself.
The unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that lies on the unit circle. We need to solve:

(12 −
1
2𝜆)

2 + (
√
3
2 𝜆)

2 = 1

𝜆 = 1
2 . The point 𝐶 = (14 ,

√
3
4 ).

𝑂𝐶2 = (14 )
2 + (

√
3
4 )2 = 1

16 +
3
16 = 4

16 = 1
4 .

𝑂𝐶2 = 1
4 = 𝑝

𝑞
, so 𝑝 = 1, 𝑞 = 4.

𝑝 and 𝑞 are relatively prime.
𝑝 + 𝑞 = 1 + 4 = 5.
Final Answer: The final answer is 5

20321


