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Abstract

Subjectivity in NLP tasks, e.g., toxicity classifi-
cation, has emerged as a critical challenge pre-
cipitated by the increased deployment of NLP
systems in content-sensitive domains. Conven-
tional approaches aggregate annotator judge-
ments (labels), ignoring minority perspectives
and overlooking the influence of the sociocul-
tural context behind such annotations. We pro-
pose a framework1 where subjectivity in bi-
nary labels is modeled as an empirical distribu-
tion accounting for the variation in annotators
through human values extracted from sociocul-
tural descriptors using a language model. The
framework also allows for downstream tasks
such as population and sociocultural group-
level majority label prediction. Experiments on
three toxicity datasets covering human-chatbot
conversations and social media posts annotated
with diverse annotator pools demonstrate that
our approach yields well-calibrated toxicity dis-
tribution predictions across binary toxicity la-
bels, which are further used for majority label
prediction across cultural subgroups, improv-
ing over existing methods.

1 Introduction

Early machine learning models were evaluated us-
ing tasks with clearly defined ground truths, such
as handwritten digit recognition (MNIST), spam
detection (UCL Spambase) and categorical object
recognition (ImageNet). These tasks relied on rela-
tively hard facts, leaving little room for ambiguity.
However, as AI systems are increasingly deployed
in domains that involve higher subjective interpre-
tation, defining the ground truth has become a com-
plex and persistent challenge in tasks such as detec-
tion of toxicity in text (Lebovitz et al., 2021; Jaton,
2021). The ambiguity in labeling subjective tasks
arises from the experience and perspective of anno-
tators, and inherent ambiguities in text (Basile et al.,

1LSLD code is available at https://github.com/
TheCoderFayiz/LSLD_code/

Figure 1: Example from the DICES dataset illustrat-
ing how the term “Beaners” is perceived differently by
annotators from India and the US.

2021). For example, Figure 1 shows a text item
that contains arguably offensive content labeled for
toxicity differently by US and Indian annotators.
This discrepancy can be attributed to varying lev-
els of familiarity with the context of the offensive
term by annotators from different localities and
sociocultural background.

Toxicity detection has emerged as one of the
most critical subjective tasks in natural language
processing (NLP) due to its implications for the
evaluation of conversational artificial intelligence
(AI), safety guardrails in generative AI, and on-
line content moderation (Wulczyn et al., 2017;
Ziegler et al., 2019; Madhyastha et al., 2023; Ji
et al., 2023). These systems often rely on crowd-
sourced annotations, reflecting diverse human per-
spectives shaped by annotators’ sociocultural con-
texts. Conventional approaches typically aggre-
gate these annotations through majority voting or
averaging to produce “ground truth” labels that
marginalize minority perspectives and risk reinforc-
ing biases among the annotators selected for the
construction or evaluation of NLP systems (Prab-
hakaran et al., 2021). Alternatively, a different line
of research attempts to model every annotator be-
havior separately, thus ignoring shared perceptions
among annotators and limiting scalability to more
comprehensive populations (Davani et al., 2022;
Mokhberian et al., 2024).
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To address these challenges, recent toxicity
datasets have incorporated detailed sociocultural
information (demographics, beliefs, etc.) of annota-
tors that can act as meaningful descriptors connect-
ing annotators within and across populations, along
with multiple annotations per instance (Aroyo et al.,
2023; Davani et al., 2024b). To the best of our
knowledge, the proposed Learning Subjective La-
bel Distribution (LSLD) is the first work to model
subjectivity in binary labels as distributions over
the sociocultural descriptors of annotators. Our key
contributions are as follows.
• A novel framework for modeling subjectivity in a

binary labeling task from a text item as an empir-
ical probability distribution, incorporating both i)
language-model-generated human value perspec-
tives derived from the input text and ii) annota-
tors’ sociocultural backgrounds.

• Comprehensive evaluation against existing base-
lines using three metrics accounting for indi-
vidual probabilistic predictions for text-item-
annotator pairs, calibration of predicted distri-
butions, and aggregated item-level predictions.

• Demonstration of the framework’s utility in tai-
lored tasks such as population-level and sociocul-
tural subgroup-level majority label prediction.

2 Subjective Label Distribution Learning

Problem Definition Let us define an annotated
dataset D = (X ,A, T ,Y), where: X = {xn}Nn=1

is a set of N text instances, A = {am}Mm=1 is a
set of M annotators, T = {tm}Mm=1 is the set of
characteristic vectors that describe the sociocul-
tural background of all annotators in A, such that
tj ∈ T represents the sociocultural descriptors for
annotator aj ∈ A. Moreover, tj has dimension
k and each mixed-type coordinate (categorical or
continuous) corresponds to a distinct sociocultural
descriptor, e.g., gender, race, age, education and
locality. Finally, Y is an annotation matrix whose
entries yij ∈ {0, 1} denote the binary decision la-
bel assigned to the text instance xi by the annotator
aj . Notably, annotators aj only annotate subsets
of text instances, leading to high missingness in
Y . In our use case, these labels represent toxicity
judgments (safe vs. unsafe), however, the proposed
methods are generalizable to other tasks involving
subjective judgments with binary calls.

The task of learning the distribution of judg-
ments in a population of sociocultural descriptors
is formally defined as estimating p(yi = 1|xi, T ),

where yi = 1 is the judgment for xi taking a partic-
ular value and the distribution is across the whole
set T . Thus, by conditioning the predictions on
the sociocultural attributes of the annotator, LSLD
achieves scalability toward a wider population shar-
ing those features.

2.1 Modeling Conflicting Human Perspectives

Subjectivity in toxicity detection arises from the
diverse human values and perspectives that influ-
ence how an individual interprets text items. Di-
rectly modeling text instances without accounting
for these conflicting viewpoints can lead to mod-
els that are agnostic to the underlying diversity of
human judgment. Recent works by Hayati et al.
(2024); Sorensen et al. (2025) demonstrated that
large language models (LLMs) are effective in ex-
tracting diverse human perspectives on subjective
topics using criteria-based prompting.

Inspired by this, we propose generating distinct
human-value perspectives of annotators who rate
each text instance xi ∈ X as safe or unsafe. Specif-
ically:
1. For each xi, we prompt an LLM to generate

n human values of those who rate it as “safe”
and an equal number of those who rate it as
“unsafe”. In our experiments, we keep n = 2 for
simplicity. Thus, we obtain two human values
for those who agree with the safe label (vS1

i and
vS2
i ) and two other values for those who agree

with the unsafe label (vU1
i and vU2

i ). The details
of the prompt are presented in Appendix A.1
and an analysis of performance differences due
to variation of n is discussed in Appendix A.2.

2. Each perspective is encoded into an embed-
ding vector (of fixed size) using a pretrained
sentence-BERT embedding model (Reimers
and Gurevych, 2019).

3. The final contextualized embedding f(xi) for
text instance xi is obtained as the element-wise
average of these four perspective embeddings.
This embedding thus captures the diverse per-
spectives surrounding xi and serves as input to
the subsequent prediction module.

Alternative embedding combination methods (e.g.,
concatenation or weighted averaging) were also
explored, but we found element-wise averaging to
be effective in our experiments.

The prediction module is designed to estimate
the probability p̂ij = p(yi = 1|xi, tj) that a text
instance xi ∈ X is labeled as toxic (i.e., unsafe) by
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Figure 2: LSLD Model Architecture. The embeddings
from the human values for “safe” and “unsafe” rating
generated by the LLM using the text item are concate-
nated with sociocultural embedding formed from learn-
able embedding layers for each sociocultural descriptor
of an annotator and are then fed to a dense network that
produces an individual probabilistic prediction for an
annotator and text item pair.

annotators sharing the same sociocultural descrip-
tors tj . Specifically, all annotators aj ∈ A with
identical characteristic vectors tj will be assigned
the same predicted probability p̂ij , as their socio-
cultural profiles are indistinguishable in the model
(in the absence of additional information about the
annotators). The predictions are made through a
two-step process described below.
Encoding Sociocultural Characteristics Each
element of the characteristic vector tj =
{c1, c2, . . . , ck}, which describes the annotator
aj ∈ A is encoded in a fixed-size vector. For
categorical features, this is achieved through an
embedding layer, while for continuous features, a
linear projection layer is used to map the feature
value into a fixed-dimensional space. Let ed de-
note the embedding layer (for categorical features)
or the projection layer (for continuous features)
corresponding to the d-th characteristic, where
d ∈ {1, 2, . . . , k}. For a given value cd of the
d-th characteristic, the corresponding vector ed is
obtained as:

ed = ed(cd).

Each embedding or projection layer ed maps (or
transforms) the unique values of the d-th character-
istic to a vector of dimension m (e.g., m = 5). This
results in k vectors {e1, e2, . . . , ek} for each anno-
tator aj . We define the concatenated embedding
vector g(tj) as:

g(tj) = [e1; e2; . . . ; ek],

where [; ] denotes the concatenation operation and
the dimension of g(tj) is km.

Combining Embeddings to make Predictions
The contextualized text embedding f(xi) is con-
catenated with the sociocultural embedding vector
g(tj) to form a combined input vector vij :

vij = [f(xi); g(tj)],

where the concatenated vector vij is of dimension
dim(f(xi)) + km.

This combined vector is fed through a dense
neural network with trainable parameters. The net-
work consists of multiple fully connected layers
followed by a sigmoid activation function (see Ap-
pendix A.5). The output of the model, denoted
as p̂ij ∈ (0, 1), represents the probability that xi
is labeled as toxic by the annotator aj ∈ A with
characteristic vector tj ∈ T . The architecture of
the LSLD model is described in Figure 2.

2.2 Loss Function

Our training objective is twofold: i) to ensure
that predicted toxicity probabilities align with the
ground truth labels provided by annotators with
respect to their sociocultural descriptors, and ii)
to ensure that the empirical distribution Q of pre-
dicted probabilities for each text instance reflects
the overall distribution P behind ground truth la-
bels on the instance. To achieve this, we employ a
composite loss function consisting of three terms:
cross-entropy, Kullback-Leibler (KL) divergence,
and L2 regularization. The loss L is defined as:

L =
∑

i

∑
j LCE(yij , p̂ij) (1)

+ λ1
∑

i KL(P ∥ Q) + λ2
∑M

j=1 ∥g(tj)∥22,

where:
• LCE(yij , p̂ij) is the binary cross-entropy loss be-

tween the ground truth label yij and the predicted
toxicity probability p̂ij for the text item xi and
the annotator aj .

• KL(P ∥ Q) is the Kullback-Leibler (KL) diver-
gence between two (empirical) binomial distri-
butions, P formed by ground-truth ratings for
text instance xi and Q formed from ratings from
probabilistic predictions on the same instance.
Specifically,

P : yi ∼ Bin(ni, ȳi), Q : yi ∼ Bin(ni, p̂
′
i),

where ni is the number of annotations for in-
stance xi, and ȳi and p̂′i are aggregates for
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{yij}ni
j=1 and {p̂ij}ni

j=1, respectively, defined be-
low. Then, the KL divergence is given by:

KL(P ∥ Q) = niȳi · ln
(
ȳi
p̂′i

)
(2)

+ ni(1− ȳi) · ln
(
1− ȳi
1− p̂′i

)
.

Although we have discrete realizations (0/1) from
P as ground truth labels to obtain ȳi =

∑ni
j=1 yij ,

we only have predicted probabilities for the real-
izations of Q. To obtain p̂′i which is the mean of
the realizations from Q, we calculate the mean
after converting each predicted probability of an
instance into approximately binary labels using
the ground-truth item-level mean rating ȳi as a
reference using:

p̂′i =
1

2
·
∑ni

j=1 (1 + tanh(k · (p̂ij − ȳi))

ni
,

where the hyperbolic tangent (tanh) activation
function, with a large constant k = 104 (see Ap-
pendix A.5), serves as a relaxation to using hard-
thresholded predictions while allowing smooth
gradient flow during training.

• λ1 and λ2 are hyperparameters controlling the
contribution of the KL divergence and L2 reg-
ularization terms, respectively. In the experi-
ments {λ1, λ2} are set by grid search using cross-
validation (see Appendix A.5).

3 Related Work

Subjectivity in NLP The study of subjectivity in
NLP tasks has a long history, with early work by
Wiebe et al. (2004); Alm (2011); Pang et al. (2008).
Researchers have since differentiated between two
main sources of disagreement in annotations: ran-
dom variation and systematic disagreement (Krip-
pendorff, 2011). Systematic disagreement has been
shown to influence tasks such as part-of-speech
tagging (Plank et al., 2014), word sense disam-
biguation (Passonneau et al., 2012; Jurgens, 2013),
and co-reference resolution (Poesio and Artstein,
2005; Recasens et al., 2011). However, its impact is
particularly pronounced in controversial tasks such
as hate speech detection (Akhtar et al., 2019, 2020;
Warner and Hirschberg, 2012) and sentiment anal-
ysis (Liu et al., 2010; Kenyon-Dean et al., 2018).

Systematic disagreements among annotators
have been attributed to several factors: i) sociocul-
tural differences, where annotators’ backgrounds,

including gender, race, age, and beliefs signifi-
cantly influence their judgments (Larimore et al.,
2021; Sap et al., 2022; Basile et al., 2021); ii) in-
stance semantic ambiguity, where ambiguity in
the text itself can lead to divergent interpretations
(Aroyo and Welty, 2013; Dumitrache, 2015; Basile
et al., 2021); and iii) annotator experience, where
prior experience with annotation tasks can shape
annotators’ perspectives (Waseem, 2016).

Recent studies have increasingly recognized the
crucial role of sociocultural contexts in subjective
tasks such as toxicity detection. For example, dis-
agreements in toxicity judgments have been ob-
served between ethnic groups (Prabhakaran et al.,
2021), genders (Homan et al., 2024), and age
groups (Luo et al., 2020). The grouping of an-
notators by demographic attributes has revealed
that judgements are often related to age, education
level, and first language (Prabhakaran et al., 2021;
Al Kuwatly et al., 2020). Furthermore, studies have
found significant differences in the annotations of
feminists, antiracist activists, and politically affili-
ated individuals from other crowd-sourced annota-
tors (Waseem, 2016; Luo et al., 2020). Perceptions
of race, in particular, vary significantly with the eth-
nicity of the annotator (Larimore et al., 2021; Sap
et al., 2022). However, it is important to note that
sociocultural descriptors alone do not fully explain
annotation behavior (Orlikowski et al., 2023).
Modeling Systematic Subjectivity We use the
term systematic subjectivity to describe subjective
disagreements that arise primarily from two com-
mon sources: i) diverse lived experiences based
on sociocultural descriptors of annotators, and ii)
the inherent ambiguity of the text or task at hand.
Although some approaches treat all disagreements
as noise and attempt to filter them out (Mokhbe-
rian et al., 2022; Hovy et al., 2013), recent research
advocates methods that explicitly incorporate sub-
jectivity into model design and evaluation criteria
(Weerasooriya et al., 2023; Davani et al., 2022;
Hayat et al., 2022; Gordon et al., 2022; Deng et al.,
2023; Gordon et al., 2021; Dumitrache et al., 2019).

Multi-label classification, an extension of single-
label classification, has been used in tasks such
as emotion and sentiment analysis (Alhuzali and
Ananiadou, 2021; Liu et al., 2023) where the text
instance can have more than one label. Label dis-
tribution learning, which models the distribution
across categories of labels for each text instance,
has also been applied to subjective tasks (Geng,
2016; Zhou et al., 2016; Cheng et al., 2024).For-
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naciari et al. (2021) propose soft label distribution
prediction as an auxiliary task that acts as a regu-
larizer for predicting the gold label per item, the
main task. Annotator-centric approaches have also
been explored to model subjectivity, e.g., Davani
et al. (2022) propose a multitask model that pre-
dicts ratings from individual annotators and aggre-
gates them to produce a final decision. Similarly,
Mokhberian et al. (2024) model each annotator sep-
arately by learning annotator-specific embeddings,
which are concatenated with text embeddings for
label prediction. Taking majority label prediction
and annotator-specific label prediction as two ex-
tremities, Heinisch et al. (2023) propose two recom-
mender system–based hybrid approaches: one with
a shared text encoder and another with annotator-
specific encoders to predict subjective labels. Al-
though these methods capture different aspects of
subjectivity, they remain agnostic to the sociocul-
tural backgrounds that influence annotations, limit-
ing their scalability to broader populations.

With the availability of toxicity datasets, which
have sociocultural annotator descriptors, recent
studies have begun incorporating them into model-
ing approaches, e.g., Gordon et al. (2022) explicitly
allow defining jury composition by demographics,
then predict individual responses, which are further
aggregated into a single label. Fleisig et al. (2023)
propose a two-step method: first, predict individual
annotator ratings by adding demographic informa-
tion of the annotator with the text instance as input,
and then use these predictions to model the toxicity
perceptions of the target group indicated in the text
item, as identified by a language model. Similarly,
Wan et al. (2023) predict overall disagreement for
a text instance by incorporating the demographic
background of the entire annotator set with text
instance as input. However, these approaches do
not account for learning the toxicity distribution for
all sociodemographic groups and each text item.

The proposed subjective label distribution learn-
ing (LSLD) introduced above addresses these lim-
itations by building calibrated empirical toxicity
distributions for each text instance over the pre-
dicted probabilities of each annotator in a binary
labeling task while conditioning the predictions on
i) different perspectives of the text instance, gener-
ated by an LLM to capture semantic variation, and
ii) the sociocultural descriptors of the annotator
rating the instance.

Dataset Text Raters Feature Cultural
items per item dim. (n) sub-groups

DICES-990 990 66 5 14
DICES-350 350 104 9 12
D3 4500 30 3 13

Table 1: Summary of dataset characteristics.

4 Experiments

Experimental Setup Our experiments were per-
formed in server with a single NVIDIA RTX
A6000 48GB GPU. We used the DeepSeek-R1 API
as the LLM to generate human values for “safe”
and “unsafe” groups. All text encodings were done
using a pretrained sentence-BERT (all-MiniLM-
L6-v2) (Reimers and Gurevych, 2019). Model eval-
uation was performed by 5-fold cross-validation,
where each fold (20% of text items) was selected by
keeping the order of the original datasets, to avoid
performance bias and improve reproducibility.
Datasets We benchmark our approach using three
datasets that are annotated for subjective tasks:
DICES-350 and DICES-990 (Aroyo et al., 2023),
which assesses toxicity in human-chatbot conver-
sations, and the D3 dataset (Davani et al., 2024b),
which evaluates offensiveness in social media posts.
These datasets were selected for their high per-item
annotator count, along with comprehensive socio-
cultural information about the annotators. Table 1
shows the number of text instances, average ratings
per item, dimensionality of the annotator feature
vectors, and the number of cultural or sociodemo-
graphic subgroups represented in all three datasets.
See Appendix A.3 for detailed descriptions of the
datasets.

4.1 Evaluation Metrics

Instance-Level AUC To evaluate the overall qual-
ity of probabilistic predictions for annotator and
text-item pairs, we use the macro-AUC score. This
metric assesses the model’s ability to discriminate
between predicted probabilities p̂ij on text item
xi ∈ X by annotator aj ∈ A relative to their bi-
nary ground-truth labels (safe vs. unsafe).

An important characteristic of our approach is
that all annotators aj ∈ A sharing identical charac-
teristic vectors tj receive identical predicted prob-
abilities p̂ij on a text item xi ∈ X . This design
choice inherently limits the maximum achievable
AUC in cases where annotators with identical so-
ciocultural profiles exhibit divergent labeling be-
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havior. Although perfect discrimination may not
be attainable under our modeling framework, the
macro-AUC assess relative performance in proba-
bilistic predictions against alternative approaches
with or without the same limitation.
Model Calibration We introduce a rigorous cal-
ibration metric to assess the statistical alignment
between predicted empirical distributions and the
true rating distributions inspired by Kuleshov et al.
(2018). For each text instance xi, we treat the mean
of ground truth labels ȳi as an estimator of the true
probability of toxicity.

A well-calibrated model satisfies the following
property: for any confidence interval [p1, p2], the
true proportion ȳi should fall within the associ-
ated predicted quantile interval with probability
(p2 − p1). Specifically, a 90% confidence interval
should contain ȳi approximately 90% of the time.
Let F−1

i (p) denote the p-th quantile of the pre-
dicted distribution for the text item xi. The model
is calibrated when:

1

N

N∑

i=1

I[F−1
i (p1) ≤ ȳi ≤ F−1

i (p2)] → p2 − p1,

where: N is the total number of text items, I{·} is
the indicator function, and p1 and p2 are symmetric
percentiles around the median (e.g., 5% and 95%).

We evaluated calibration by: i) computing cover-
age rates in multiple symmetric percentile intervals
around the median (13 intervals in total starting
from 5% to 95%), ii) plotting observed vs. ex-
pected coverage, and iii) estimating the slope α
and intercept β of the calibration curve using a
linear model. Note that perfect calibration occurs
when α = 1 and β = 0, which indicate that pre-
dicted intervals exactly match the percentage of
empirical frequencies. Deviations in the calibra-
tion slope and intercept reveal miscalibration and
bias, respectively.
Item-level Proportion Correlation To evaluate
the alignment between predicted and true toxicity
per-item probabilities, we introduce an item-level
proportion correlation metric. For each text in-
stance xi ∈ X , we compute:
• Predicted toxicity probability: averaging all pre-

dicted probabilities p̂ij for annotators aj ∈ A
using ¯̂pi =

1
|A|

∑|A|
j=1 p̂ij .

• Empirical toxicity probability: ground-truth pro-
portion of toxicity labels via ȳi =

1
|Ai|

∑|Ai|
j=1 yij .

We then calculate the Pearson correlation coeffi-
cient ρ between { ¯̂pi}Ni=1 and {ȳi}Ni=1 for all text

items. This metric quantifies the association be-
tween the predicted and observed probabilities of
toxicity at the text item level.

4.2 Baseline Models
Single-task This approach represents the most
common method for toxicity classification, where a
classifier is trained to predict the label for each text
instance xi ∈ X . The model trained with binary
cross-entropy loss takes the embedding of a text
item as input and returns p(yi = 1|xi).

Multi-task (MT) The approach proposed by Da-
vani et al. (2022), addresses annotator disagreement
by training individual classifiers for each annotator
aj ∈ A, while sharing the base text representa-
tion layers across all annotators. In this setting, the
shared representation layers are fine-tuned using all
available annotations, while the annotator-specific
classification heads are trained only on the corre-
sponding annotator’s labels. Probabilistic predic-
tions for a text item xi ∈ X from all heads (one
per human rater), are collected for evaluation.

MT+DEMO We further extend this model by
incorporating the sociocultural information of the
annotators to account for the influence of this in-
formation on the annotation labels. For each of the
k dimensions in the feature vector of an annotator,
we find separate toxicity probabilities by aggregat-
ing the probabilistic predictions of all annotators
sharing the same feature along that dimension. For
an annotator aj with features tj = [c1, . . . , ck], the
final probability is obtained as the composite of al-
ready aggregated probabilities for each dimension.
See Appendix A.4 for a detailed explanation.

IRPM The individual rating prediction module
introduced by Fleisig et al. (2023) uses both the
sociocultural information of annotator and the con-
tent of the text item through a pretrained RoBERTa-
based module (Liu et al., 2019). This approach
combines demographic descriptors of an annotator
with the target text instance using a template-based
input format: "[tj] [SEP] xi". The model is trained
using mean squared error loss to predict continuous
individual ratings, which in our case of binary tox-
icity prediction task can be treated as the toxicity
probability.

4.3 Results
We seek to quantify how well LSLD can predict
calibrated and accurate subjective label distribu-
tions. Table 2 presents the results based on the
metrics described in Section 4.1. The foundation
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Table 2: Performance comparison for all models and
datasets. We report means and standard deviations for
5-fold cross-validation.

Model DICES-990 DICES-350 D3
Instance level AUC

LSLD 0.740.01 0.650.01 0.680.02

IRPM 0.710.01 0.640.01 0.620.01
MT + Demographics 0.680.01 0.650.03 0.620.03
MT 0.660.01 0.610.03 0.600.00
Single Task 0.650.01 0.600.01 0.590.01

Calibration Slope
LSLD 0.990.03 1.000.02 1.000.01

IRPM 0.740.07 0.500.18 0.310.10
MT + Demographics 0.320.04 0.300.06 0.160.05
MT 1.040.03 1.030.01 1.080.09
Single Task NA NA NA

Calibration Intercept
LSLD 0.000.00 0.000.01 0.000.01

IRPM −0.060.01 −0.030.03 0.010.00
MT + Demographics 0.000.01 −0.010.00 −0.010.01
MT 0.080.04 0.010.02 0.020.08
Single Task NA NA NA

Item-level Proportion Correlation
LSLD 0.700.04 0.510.02 0.530.03

IRPM 0.600.07 0.390.01 0.510.05
MT + Demographics 0.590.05 0.470.13 0.480.02
MT 0.580.02 0.430.10 0.460.02
Single Task 0.560.03 0.380.00 0.430.04

of our predicted empirical subjective distributions
lies in the probabilistic predictions p̂ij for each text
item xi ∈ X and annotator aj with characteristic
vector tj , hence we start with the instance-level
AUC metric. On all datasets, LSLD either out-
performs or performs comparably to the baselines,
underscoring the effectiveness of LSLD in predict-
ing individual probabilities. Since DICES-350 is
limited in terms of the number of text items and
is a complete dataset, in the sense that all anno-
tators labeled all text items, it gives an advantage
to MT models because classification heads can be
trained with data from all annotators. ROC curves
for all methods on each dataset are presented in
Appendix A.6.

The calibration slope and intercept measures the
reliability of predicted toxicity distributions. While
slope larger than or less than one indicate direction
of deviations from ideal coverage, the intercept
value measures consistent bias in coverages across
percentile intervals. A calibration slope close to
one and intercept close to zero is a desirable be-
havior of well-calibrated model. Figure 3 shows
the coverage across quantiles for all models on the
DICES-990 dataset. Calibration plots for DICES-
350 and D3 datasets are shown in Appendix A.7.

Figure 3: Calibration plots for the evaluated methods on
DICES-990. Plotted points are aggregates of coverage
and shades indicate standard deviations over test folds.

Although the MT method has close to ideal cali-
bration slope, it suffers from high bias as indicated
by its calibration intercept. The variation in cali-
bration scores among methods using embeddings
for the sociocultural information about annotators
such as IRPM and MT+Demo, explain the need for
the LSLD method.

The item-level proportion correlation measures
the ability of the methods to accurately estimate the
proportion of toxicity for each text item xi ∈ X .
This metric complements calibration by character-
izing the overall quality of predicted distribution.
While LSLD outperforms all baselines, indicating
consistent performance, MT+DEMO outperforms
others on DICES-350, which can be due to the
advantage of fully trained classification head of
MT+DEMO on this dataset. Boxplots visualiz-
ing the predicted distributions with respect to item-
level proportions are presented in Appendix A.8.

The superior performance of MT+DEMO com-
pared to MT indicates the need for modeling the
sociocultural information about the annotators. The
weaker performance for all metrics on the D3
dataset relative to DICES-990, likely stems from its
limited annotator demographic information, which
emphasizes the need for attributes such as educa-
tion level and racial background of annotators as in
DICES-990 and DICES-350.

5 Sociocultural subgroup level Majority
Label prediction

We now examine the ability of LSLD and baselines
to predict toxicity at the sociocultural subgroup
level, with particular focus on majority-label pre-
diction for one-dimensional groups in the DICES-
990 dataset. We introduce a two-step method for
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(a) F1 score (b) Correlation

Figure 4: Sociocultural subgroup level majority label prediction performance by F1 score (a) and Correlation (b).
Dotted lines on both plots indicate average performance of each model across subgroups.

deriving majority labels from predicted empirical
distributions: i) Interquartile Range Filtering: To
mitigate the influence of extreme predictions, we
obtain the interquartile range (IQR) of the predicted
toxicity distribution for each text item. ii) Major-
ity Label Determination: We define the aggregate
toxicity rating across text items as the decision
threshold when label judgments are evenly split
(resulting in no majority). If most probabilistic pre-
dictions within the IQR exceed this threshold, we
classify the majority label as unsafe; otherwise, it
is classified as safe.

We evaluate the performance of majority label
prediction using two metrics, the F1 score to evalu-
ate the agreement between predicted and true ma-
jority labels and Pearson correlation to quantify the
(linear) alignment between the predicted probabil-
ity of the majority label and the true proportion
of annotators selecting that label. The predicted
probability of the majority label corresponds to the
proportion of the IQR representing the predicted
majority class with respect to the threshold value.
The true proportion is computed as the fraction of
annotators who actually selected the majority label

for a given item. Figure 5 shows the F1 and corre-
lation scores for majority label prediction for the
entire annotator population, respectively.

We finally predict the majority label with respect
to each one-dimensional sociocultural group by the
same method but by taking probabilistic predic-
tions of only that one group, e.g., US (locale), with
the aggregate toxicity rating of the group now as
the threshold. Figure 4 shows the F1 score and
correlation scores for each sociocultural subgroup
described in the DICES-990 dataset. Our findings
underscore the superiority of the LSLD method in
majority label prediction at the group level.

6 Conclusion

This paper addressed the challenge posed by sys-
tematic annotator differences caused by different
sociocultural experiences and inherent text item
ambiguity in subjective labeling tasks. We pro-
pose the Learning Subjective Labeling distribution
(LSLD) model, which combines distinct human
values on a text item under consideration along
with sociocultural information of a rater to get in-
dividual label probabilities, which when grouped
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Figure 5: F1 (Top) and correlation score (Bottom) for
majority label predictions.

to those of other annotators on the same item, re-
veals the empirical distribution of the subjective
label. The predicted distributions achieve close to
ideal calibration while also improving the predic-
tions of individual label probabilities over recent
methods modeling annotator subjectivity. Through
experiments, we also show excellent performance
of LSLD when used to predict labels aggregated at
the sociocultural-group level.

7 Limitations

The proposed method is restricted to binary sub-
jective labels. While LSLD incorporates human
values underlying text items and annotators’ so-
ciocultural information, subjective judgments may
arise from factors beyond gender, race, age, ed-
ucation, or locality (e.g., unique personal experi-
ences). Consequently, fully quantifying subjectiv-
ity remains an open challenge. Moreover, socio-
cultural identities lack sharply defined boundaries,
making their complete representation difficult. For
example, diaspora cultures often blend multiple
cultural influences. Our analysis relies solely on
the sociocultural descriptors provided, and deemed
relevant, by the original dataset authors. Finally, it
remains an open question how models trained on
populations with one cultural mixture generalize to
populations with distinct cultural compositions.
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A Appendix

A.1 Prompt to Generate Conflicting Human
Perspectives

Figure 6: Prompt used to generate values from be-
hind DICES conversations. Note that ratings in DICES
datasets were only on final conversation turn in the con-
text of entire conversation.

In the case of the DICES Datasets, half of the an-
notations on conversations were performed within
120 seconds, which indicates significant annota-
tors preferred their subjective definitions of toxicity
over spending time over detailed task definitions
for their annotation. In the annotation task of the
D3 Dataset, half of the annotators were expected to
label items based on their own definition of offen-
siveness. It was to replicate this setting, we let the
task-specific definitions (of ‘Safe/Unsafe’ in the
case of DICES datasets and ‘Offensive/Not Offen-
sive’ in D3) to be open while specifying concerned
target labels in the prompt.

While annotations are subjective in nature for
many clearly defined tasks, there can also be cases
where the annotation task definition itself can have
subjective interpretations but lead to binary truth la-
bels. Though the annotators in our use case datasets
indicate their preference to annotate over their sub-
jective understanding of toxicity labels, LSLD can
be easily used for well-defined tasks by laying out
explicit task definitions and instructions during the
extraction of conflicting human values from lan-
guage models.

A.2 LSLD Ablation Study
Note that in n=0 scenario, embedding of text-item
is fed as input to model. From Table 3, it can be
understood that the KL divergence term in loss
function plays crucial role in distribution calibra-
tion while cumulative embedding of n = 2 human

Table 3: Performance Metrics Across Scenarios on
DICES-990. LSLD has number of contrasting human
values behind safe and unsafe rating, n=2 and coeffi-
cient of KL divergence term in loss function, α>0.

Scenarios Metrics

Inst.-level Calib. Calib. Item-level
AUC Slope Intercept prop. corr.

LSLD 0.76 1.00 0.00 0.73
α = 0 0.74 0.89 -0.02 0.63
n = 1 0.71 0.95 0.01 0.60
n = 0 0.74 1.00 0.00 0.66

values behind conflicting binary calls improve in-
stance level AUC and Item-level proportion corre-
lation.

The ablation study was conducted using the first
20% of text items from DICES-990 as the eval-
uation set, while training was performed on the
remaining 80%. The split preserved the class dis-
tribution, but due to this setup, the results are not
directly comparable with those reported in Table 2.

A.3 Dataset Descriptions

A.3.1 DICES-990

(Aroyo et al., 2023) curated this dataset of 990
multi-turn conversations sampled from 8K adver-
sarial dialogues between humans and generative
AI chatbots (Thoppilan et al., 2022). Each con-
versation spans up to five turns, covering diverse
topics. The final chatbot response in each dialogue
was evaluated by 60–70 raters (173 unique raters
total) for toxicity across five dimensions: harm-
ful content, unfair bias, misinformation, political
affiliation, and policy violations. Raters labeled
responses as Safe, Unsafe, or Unsure; we focus
on the binary Safe/Unsafe labels for compatibility
with LSLD framework. The dataset includes anno-
tator demographics across five dimensions: gender,
race, age, education, and locality.

A.3.2 DICES-350

Also introduced by (Aroyo et al., 2023), this dataset
comprises 350 multi-turn conversations from the
same corpus as DICES-990. Each final chatbot
response was rated by 104 U.S.-based annotators
using the same toxicity criteria. Demographic an-
notations span four dimensions: gender, race, age,
and education.
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A.3.3 D3 Dataset
(Davani et al., 2024b) collected 4,500 social me-
dia posts from Jigsaw-2018 and Jigsaw-2019, an-
notated for offensiveness by 4,309 participants
across 21 countries and 8 geo-cultural regions.
Posts were rated on a 5-point Likert scale, later
binarized (scores ≥3 labeled Offensive) by au-
thors in (Davani et al., 2024a). Beyond stan-
dard demographics (gender, age, country), the
dataset includes annotators’ morality foundations—
measured via questionnaires—across six dimen-
sions: Care, Equality, Proportionality, Authority,
Loyalty, and Purity (scored 1–5).

Deatailed table of cultural sub groups included
in LSLD evaluation is described in Table 4. Only
those groups with few annotations in the datasets
were excluded.

A.4 Evaluation example of MT+Demo Model
For example, given an annotator with character-
istic vector tj = [Man,Gen X], the model com-
putes the toxicity probability p̂ij by averaging
dimension-specific probabilities: p̂ij = 1

2(Pr(yi =
1|xi,Man) + Pr(yi = 1|xi,Gen X)), where each
term derives from predictions of annotators shar-
ing that specific demographic feature.(Pr(yi =
1|xi,Man) is obtained by aggregating probabilistic
predictions from annotator models of annotators
belonging to sociocultural subgroup ’Man’).

A.5 Model and Learning Details
We determined the optimal hyperparameters
through an exhaustive grid search, with the best-
performing values being:

i. λ1 = 1
n×7.6 , where n represents the number

of text items in the training set

ii. λ2 = 10−4

The hyperbolic tangent (tanh) activation function
employed a large constant k that produced extreme
output values (e.g., ≤ 10−9 or ≥ 1− 10−9), which
led to numerical instability during training. To
mitigate this issue, we implemented value clamp-
ing using torch.clamp, restricting outputs to the
range [10−4, 1− 10−4].

In the LSLD model architecture, the dense net-
work accepts an input of size 384 + k ×m, where
m = 10 and k corresponds to the feature dimen-
sion of the dataset. The network comprises a hid-
den layer with 20 units, followed by a single-unit
output layer with sigmoid activation.

A.6 ROC Curves

Figure 7: ROC Curves for the evaluated methods on
DICES-990

Figure 8: Calibration plots for the evaluated methods
on DICES-350

Figure 9: ROC Curves for the evaluated methods on D3
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A.7 Calibration Plots

Figure 10: Calibration plots for the evaluated methods
on DICES-990

Figure 11: Calibration plots for the evaluated methods
on DICES-350

Figure 12: Calibration plots for the evaluated methods
on D3

Table 4: Sociocultural Subgroups Coverage in LSLD
evaluation

Dataset Attribute Sociocultural
Subgroups

DICES-990

rater_gender Man, Woman
rater_race Asian/Asian sub-,

continent, Black/
African American,
LatinX/ Latino/
Hispanic or Spanish
Origin, White, Other

rater_education College degree,
High school

rater_locality US, India
rater_age Millenial, Gen z,

Gen x+

DICES-350

rater_gender Man, Woman
rater_race Asian/Asian sub-,

continent, Black/
African American,
LatinX/ Latino/
Hispanic or Spanish
Origin, White,
Multiracial

rater_age Millenial, Gen z,
Gen x+

rater_education High school,
College, Other

D3

rater_gender Man, Woman
rater_age 18-30, 30-50, 50+
rater_region Arab Culture,

Indian cultural
sphere,
Latin America,
North America,
Oceania, Sinosphere
Sub Saharan Africa,
Western Europe

rater_morale Equality, Care
(measured from proportionality,
questionnaires) purity, authority,

loyalty
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A.8 Boxplot Visualizations of
LSLD-Predicted Text Item Distributions

Figure 13: DICES-990 Predicted Distributions. Text items are labelled by item id as in the dataset.

Figure 14: DICES-350 Predicted Distributions. Text items are labelled by item id as in the dataset.
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Figure 15: D3 Predicted Distributions. Text items are labelled by item id as in the dataset.

This section presents the toxicity distributions
predicted by LSLM for text items across all three
datasets (DICES-990 in Figure 13, DICES-350 in
Figure 14, and D3 in Figure 15). For each dataset,
we visualize the model’s prediction distributions
through boxplots, where each text item is identified
by its original dataset ID.

The items are sorted by the absolute difference
between the median predicted toxicity and the true
toxicity proportion (derived from human annota-
tions). For each dataset, we display:

• Left panel: The 15 best-performing distribu-
tion predictions (smallest median-proportion
difference)

• Right panel: The 15 worst-performing distri-
bution predictions (largest median-proportion
difference)

The text items corresponding to these displayed
item ids are attached with supplement mateial for
reference.
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