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Abstract

This study presents a novel approach to assess-
ing French text readability for adults with low
literacy skills, addressing both global (full-text)
and local (segment-level) difficulty. We also
introduce a dataset of 461 texts annotated us-
ing a difficulty scale developed specifically for
this population. Using this corpus, we con-
ducted a systematic comparison of key readabil-
ity modeling approaches, including machine
learning techniques based on linguistic vari-
ables, fine-tuning of CamemBERT, a hybrid ap-
proach combining CamemBERT with linguis-
tic variables, and the use of generative language
models (LLMs) to carry out readability assess-
ment at global and local level.

1 Introduction

According to UNESCO, illiterate individuals are
persons “aged 15 years and above who cannot read
and write with understanding a short simple state-
ment on their everyday life” (UNESCO, 2009, 4).
Reading deficit has far-reaching consequences for
both individuals and society. Individuals affected
by illiteracy are more likely to experience health
problems (Berkman et al., 2011), have reduced life
expectancy (Messias, 2003), and earn, on average,
30 to 42% less (Lal, 2015), largely due to lower lev-
els of professional integration. At the societal level,
illiteracy has a substantial economic impact, reduc-
ing the GDP of developed countries by approxi-
mately 2% (Steward, 2023). Being a continuum,
the phenomenon of illiteracy ranges from complete
illiteracy to low-literacy readers, who scored at or
below Level 1 on the PIAAC scale (Grotliischen
et al., 2016), on which we focus here.

In response to such findings, governments have
long taken steps to reduce low-literacy and illiter-
acy, notably through the creation of targeted liter-
acy programs (e.g., ANLCI in France) that have
proven particularly effective — for instance, Al-
pha Plus (Russeler et al., 2012). In parallel, since

the Great Depression of the 1930s and the de-
sire to better equip the many unemployed workers
through reading training, researchers developed
readability formulas for individuals facing low-
literacy (DuBay, 2004). These tools automatically
assess text difficulty, enabling efficient matching of
texts to readers in educational and training contexts.
However, as we will explore in greater detail in Sec-
tion 2, no such specialized readability formula or
model currently exists for French.

In the absence of dedicated formulas for low-
literate readers, it is common to reuse formulas
designed for different audiences, which is far from
optimal (Francois, 2015; Napolitano et al., 2015).
In fact, low-literate readers present a distinctive
profile. While they generally have a solid oral
command of their native language (unlike foreign
language learners), they have not fully developed
the automatic reading skills of experienced native
readers. In conventional readability formulas such
as those of Flesh or Dale and Chall, lower levels
correspond to texts for primary children and thus
cover rather childish topics that do not appeal to
adult readers with low-literacy. This is why we be-
lieve that specialized formulas are needed to reflect
their specific profile. As our first contribution in
this paper, we propose the first readability model
for French specifically designed for low-literate
readers. The proposed model can be considered
specialized in that it has been trained on a corpus
of texts specifically calibrated by literacy educa-
tors with expertise in the field of illiteracy. Fur-
thermore, it relies on a difficulty scale explicitly
designed for this target population (Monteiro et al.,
2023) and make use of recent advances in readabil-
ity modeling, particularly through the use of hybrid
architectures.

In addition, fieldwork observations indicate that
generating a single, global readability score to
match texts with readers is insufficient for effec-
tively supporting reading skill development. In
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practice, literacy educators are frequently required
to manually simplify web-based texts prior to in-
struction, in order to tailor them to the needs of
their learners. Although this task could align with
the domain of automatic text simplification (Sag-
gion, 2017; §tajner, 2021; Al-Thanyyan and Azmi,
2021), current approaches remain limited in their
ability to be fine-tuned for specific target popu-
lations, as they relied on the Newsela dataset, fit
for children (Kew and Ebling, 2022; Alkaldi and
Inkpen, 2023). In this study, we adopt an alter-
native approach: rather than attempting to sim-
plify texts directly, we focus on identifying the text
segments that contribute to text difficulty for indi-
viduals with low-literacy. This approach remains
highly interpretable and enables educators to re-
tain control over simplification operations. As a
task, it closely aligns with research on complex
word identification (North et al., 2023), although
our scope extends beyond lexical complexity to
include the syntactic, discursive, and semantic di-
mensions of difficulty. To our knowledge, no such
fine-grained system exists for local difficulty assess-
ment in French, the closest system being AMesure
(Francois et al., 2020) that targets standard readers
of administrative documents and relies on pre—deep
learning technologies. Our second contribution
is therefore a novel system for local difficulty as-
sessment in French, specifically designed for low-
literate readers. The third contribution of this paper
is an annotated corpus used to develop both above
solutions, made up of 461 texts annotated, which
is publically available'. This resource stands out in
two key respects. First, it is unique in the context
of French low-literate readers. Second, it provides
a dual representation of textual difficulty: each text
is annotated both globally (overall text difficulty)
and locally (highlighting difficult segments within
the text). Notably, items marked as complex in the
local annotations are defined relative to the overall
difficulty level of the corresponding text.

The remainder of the paper is structured as fol-
lows, section 2 reviews prior work on readability
and local difficulty assessment, with a focus on
research in French and on readers facing literacy
challenges, and provides a comparison with ex-
isting datasets. Section 3 introduces the created
dataset used in our study. Then, Sections 4 and 5
present the models evaluated for constructing our

1https ://github.com/tfrancoiscental/
iread4skills_readability_corpus_fr

readability formula, with performance analyses on
the global and local levels, respectively. We con-
clude with a discussion of the findings and future
directions in Section 6.

2 Related work

Some of the earliest studies on readability focused
explicitly on low-literate adults (Dale and Tyler,
1934; Gray and Leary, 1935). Over time, however,
research interests shifted toward formulas designed
for adults in general (Flesch, 1948; Gunning, 1952)
or for schoolchildren (Dale and Chall, 1948). To-
day, readability formulas have been used to eval-
uate the difficulty of various types of documents
— e.g., medical texts (Wilson, 2009; Mcinnes and
Haglund, 2011) or contracts (Arbel, 2024) — for
people with functional illiteracy. However, these
studies rely almost exclusively on traditional for-
mulas, which are not tailored to this population.
When narrowing the scope to studies that pro-
pose new readability models specifically aimed at
low-literate adults, only a few efforts can be iden-
tified. These include research conducted on Por-
tuguese (Aluisio et al., 2010), Italian (Dell’ Orletta
et al., 2011) or German (Weiss et al., 2018). The
latter is particularly noteworthy, as it introduces a
formula based on the Alpha difficulty scale, which
was explicitly developed for individuals with func-
tional illiteracy (Riekmann and Grotliischen, 2011).
This formula was subsequently incorporated into
a dedicated search engine for low-literacy users
(Dittrich et al., 2019), targeting Alpha levels 3 to 6.
Despite these advances, studies dedicated to this
specific population remain scarce. As noted by the
review by Collins-Thompson (2014), which sur-
veys the range of audiences addressed in readability
research, individuals with functional illiteracy are
not explicitly considered. To our knowledge, no
such readability model currently exists for French.
Recent work, including in French, has increas-
ingly emphasized the algorithmic aspects of read-
ability modeling. Prior to 2017, the prevailing ap-
proach relied on machine learning aimed at identi-
fying the textual features most predictive of read-
ing difficulty and optimizing their combination
(Schwarm and Ostendorf, 2005; Feng et al., 2010;
Vajjala and Meurers, 2012), including for French
(Francois and Fairon, 2012; Dascalu, 2014). Then,
the field experienced renewed momentum with the
advent of distributed semantic representations (Cha
et al., 2017; Filighera et al., 2019) and the rise
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of deep learning (Nadeem and Ostendorf, 2018;
Azpiazu and Pera, 2019; Martinc et al., 2021). In
French, Blandin et al. (2020b) exploited deep feed-
forward models to generate reading age recommen-
dations for children; Yancey et al. (2021) proposed
a BERT-based readability formula for French as
a foreign language and Van Ngo and Parmentier
(2023) explored the relationship between a text’s
overall difficulty and the sentences that compose it.
Lately, two recent trends have emerged in readabil-
ity research. The first involves hybrid approaches
that integrate traditional linguistic features within
deep learning architectures, also known as hybrid
approaches (Qin et al., 2020; Deutsch et al., 2020;
Liu and Lee, 2023) with Wilkens et al. (2024) of-
fering a representative example for French. The
second trend leverages generative large language
models (LLMs), which enable zero-shot readabil-
ity assessment without requiring prior fine-tuning.
This shift is exemplified by the promising results
reported by Jamet et al. (2024).

As regards the automatic detection of local read-
ing difficulties, the task addressed in this study
does not precisely align with any existing standard
task. It is most closely related to Complex Word
Identification (CWI) (Paetzold and Specia, 2016;
Yimam et al., 2018), later renamed as Lexical Com-
plexity Prediction (LCP) (Shardlow et al., 2021,
2022, 2024), in that it aims to predict challeng-
ing tokens for readers. However, while CWI and
LCP are limited to the detection of complex words
or multi-word expressions, our approach encom-
passes a broader spectrum of reading difficulties.
Nevertheless, techniques developed for LCP re-
main highly relevant to our task. As described in
North et al. (2023), the field has broadly followed
the general trajectory of natural language process-
ing (NLP), transitioning from classical machine
learning and ensemble approaches to deep learning
and transformer-based models. For French, Tack
et al. (2016) proposed personalized CWI models
using support vector machines and neural networks.
More recently, several studies have explored the po-
tential of generative large language models (LLMs)
for CWI in zero-shot and few-shot configurations
(Zaharia et al., 2020; Ortiz-Zambrano et al., 2024),
including for French (Kelious et al., 2024).

In terms of dataset comparison, existing French
readability datasets such as Naous et al. (2024),
Hernandez et al. (2022) and Blandin et al. (2020a)
target different audiences—primarily children or
second-language learners—and include genres in-

tended either for general readers (e.g., Wikipedia,
news, research, literature, legal texts) or for
schoolchildren (e.g., children’s stories and text-
books). In contrast, most of the texts in our
dataset were sourced from trainers working with
low-literacy adults, making them more tailored to
this specific population. Furthermore, our dataset
provides both global difficulty levels and segment-
level annotations that highlight specific linguistic
phenomena contributing to reading difficulty.

3 Data Set

To develop a readability model tailored to adults
with low-literacy, we first compiled a corpus of
texts and assessed their difficulty levels for our tar-
get audience. This dataset consists of 461 texts
representative of 11 different types of communica-
tion (personal, professional, business, academic,
political, legal, religious, social media, as well
as fiction, non-fiction and didactic books). The
texts are short (ranging from 18 to 387 words), as
they are intended for an adult low-literacy audi-
ence; the distribution of text lengths is shown in
Appendix A.3. Most of the texts were sourced from
trainers working with low-literate adults, supple-
mented by materials retrieved from the web. We
then conducted an annotation campaign to assess
the level of difficulty of each text (global annota-
tions) as well as to identify specific segments and
features that may present challenges for readers
from this level (local annotations).

We adopt a difficulty scale specifically tailored
for adults with low literacy, as proposed by Mon-
teiro et al. (2023). This scale was informed by the
CEFR, due to its widespread recognition and com-
patibility with other grading systems, while the use
of simple, familiar labels ensures accessibility for
the intended users. The authors examined text com-
plexity dimensions from the literature and refined
them in collaboration with professionals working
with low-literate adults, resulting in a list of 79 de-
scriptors organized across four levels: Very Easy,
Easy, Plain and +Complex (see Appendix A.4 for
definitions). A mapping to CEFR was established
for alignment with proficiency frameworks.

We began the annotation campaign by develop-
ing an annotation guide including descriptions and
examples, which was iteratively reviewed until all
contributors reached consensus. A first annota-
tion phase was then conducted via the Qualtrics
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platform?, accompanied by training sessions for
annotators. Their feedback led to two key revi-
sions: the introduction of a 5-point Likert scale
to allow finer-grained judgments within difficulty
levels, and the adjustment of certain labels. The
Likert scale provides an ordinal refinement of cate-
gorical judgments. A score of 1 corresponds to the
lower boundary of a given difficulty class, while a
score of 5 corresponds to its upper boundary. For
instance, if an annotator selects Easy and assigns a
score of 1, this indicates that they consider the ex-
ample to be at the lower boundary of the Easy cate-
gory, bordering on Very Easy. Conversely, a score
of 5 reflects a case at the upper boundary of Easy,
closer to P1lain. Then, a second pre-test confirmed
the usefulness of these adjustments. Although re-
sults varied only slightly, annotators reported im-
proved ease of use, leading to the adoption of the
revised version. The texts were first annotated for
global difficulty, using the four-level difficulty scale
and each text was assigned both a categorical level
and a numerical score from 1 to 20, calculated by
adding the Likert scale value (from 1 to 5) to the
global level, converted as follows: Very Easy (0),
Easy (5), Plain (10), +Complex (15). Using both
categorical labels and numerical scores allows us
to model the ordinal structure of the task and to
model it both with classification and regression
approaches. For the local annotation, annotators
followed the guidelines to highlight specific words
or expressions that could pose difficulties for read-
ers within the assigned global level. We define nine
difficulty classes, which cover lexical, syntactic,
semantic, and structural sources of complexity:
 Difficult or unknown word,
* Spelling or decoding problem,
* Figure of speech, idiomatic expression,
* Difficult cultural reference,
* Grammar-related difficulty,
* Difficult cohesion cue (connector, pronoun, infer-
ence),
* Too much secondary information,
* Unusual syntactic order,
* Other.

This two-step annotation process was carried out
by 15 professionals active in the field of illiteracy
Each text was annotated by at least three annota-
tors and we provide all individual annotations, with
each linked to its corresponding anonymized anno-
tator and text. Texts were grouped into sets of ap-

Zhttps://www.qualtrics.com

proximately 16 items and annotators could choose
how many sets to complete; some annotated only
one set, while others contributed up to 28. For
the global annotations, we established reference
values for both scales by averaging the three anno-
tations®. For the local annotations, as the complex
tokens were relative to the global level annotated
by each annotator, the reference consider that a to-
ken is complex if at least one annotator deemed it
complex, following Paetzold and Specia (2016).

At the end of this annotation process, we ob-
tained 461 annotated texts both at the global and
local level. Table 1 presents the distribution of an-
notated texts across the different difficulty levels.
Unfortunately, it is unbalanced, as around 85 %
of the texts were assigned to the Easy and Plain
categories. Additional details on annotation and
data analysis can be found in Appendix A.

Very Easy Easy Plain +Complex
19 212 198 32

Table 1: Distribution of texts by difficulty category

4 Global Readability Assessment

In this study, we investigated multiple approaches
for global text readability assessment, as illus-
trated in Figure 1, including classical machine
learning models, deep learning methods (a fine-
tuned CamemBERT), a hybrid model and genera-
tive large language models using zero and few-shot
prompting techniques. Based on the two previously
defined global difficulty scales—one consisting of
discrete classes and the other their corresponding
1-20 ordinal scores—we approached the automatic
readability evaluation task from two perspectives:
classification and regression. The classification
framework facilitates the assignment of functional
difficulty levels relevant to practical applications,
whereas the regression approach enables a more
nuanced and continuous assessment, taking into ac-
count the ordinal nature of the task, thereby mitigat-
ing limitations inherent to rigid class boundaries.
Model performance was estimated using 5-fold
cross-validation* with stratified sampling. To
mitigate the impact of class imbalance, we ap-
plied class-frequency weighting to the loss func-

3In the dataset, we also provide an alternative calculation
method based on the most represented label, with the average
used when all labels differ.

*60% of the data for training, 20% for hyperparameter
search and 20% for testing.
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Figure 1: Architecture of global readability assessment
systems.

tion, assigning higher penalties to underrepresented
classes during training.

4.1 Machine Learning Models

Machine learning (ML) modelling involves convert-
ing texts into numerical features. For this, we used
FABRA (Wilkens et al., 2022)>, a tool that provides
numerous linguistic descriptors relevant to readabil-
ity assessment at the document, sentence, and word
levels for French. For each descriptor, FABRA pro-
vides up to 20 statistical aggregators (e.g., mean,
median, mode, 80th percentile), resulting in a very
large set of features. We thus performed automated
feature selection using the minimum Redundancy
Maximum Relevance (mRmR) algorithm (Ding
and Peng, 2003), which identifies the most infor-
mative and least redundant subsets of features. We
compared feature subsets ranging in size from 10
to 500 features, which were combined using sup-
port vector machines (SVM), decision trees (DT),
and random forests (RF) for the classification task,
along with their corresponding regression models.
In addition, because text readability inherently fol-
lows a graded progression, we also experimented
with ordinal regression (OrdR) models (Pedregosa-
Izquierdo, 2015). Technical details about each of
our models are described in Appendix B.

A comprehensive list of variables is available at https:
//cental.uclouvain.be/fabra.

4.2 Deep Learning Models

For deep learning (DL), we fine-tuned two
pre-trained BERT-type transformers for French,
namely CamemBERT (Martin et al., 2020) and
CamemBERT-v2 (Antoun et al., 2024) on our
dataset (Section 3). This approach leverages the
rich linguistic knowledge encoded within the trans-
former’s internal layers while specializing the
model for readability prediction. For classification
tasks, we employed cross-entropy loss, whereas for
regression we used mean squared error (MSE). Ad-
ditionally, we applied the Ordinal Log-Loss (Lim
and Lee, 2024) to account for the ordinal nature of
the task, enabling the model to better capture the
relative ordering between classes. Technical details
are provided in Appendix B.

4.3 Hybrid models

Our hybrid models are based on the Soft-Label
(SO) architecture proposed by (Lee et al., 2021)
and later adopted in (Wilkens et al., 2024), which
demonstrated strong performance across four dif-
ferent datasets. In this approach, the softmax output
of a deep learning model is concatenated with a set
of linguistic features, and the resulting representa-
tion is used as input to a classical machine learning
model for predicting text difficulty. Based on the
observations obtained from experiments with both
machine learning and deep learning models, as re-
ported in Table 2, we constructed hybrid model
inputs by concatenating the linguistic variables se-
lected by the mRMR algorithm with the output of
the fine-tuned CamemBERT-v2 model. These con-
catenated feature representations were then fed to a
random forest (RF) model to predict text difficulty.
The training and evaluation strategy follows the
approach described in Section 4.1.

4.4 Generative Large Language Models

Due to their broad generalization capabilities
across a wide range of NLP tasks, we investigated
the use of generative LLMs for global text diffi-
culty assessment. Their ability to operate effec-
tively in zero-shot and few-shot settings makes
them attractive for tasks with limited annotated
data. We evaluated various LLMs—spanning open-
and closed-weight models, as well as instruction-
and reasoning-tuned variants—to explore their po-
tential and shortcomings in this context.

To construct our prompts, we adapted the for-
mulation proposed by Jamet et al. (2024), which
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guides the model to produce CEFR scores. We
used the corresponding CEFR levels rather than
our custom scale, as they yielded better perfor-
mance—Ilikely due to the model’s prior exposure
during training. Using the mapping defined in
our dataset, the CEFR levels were aligned with
our annotation scheme as follows: A1 — Very
Easy, A2 — Easy, B1 — Plain, and B2 and
above — +Complex. We evaluated two instruc-
tion languages in the prompts given to the LLMs,
French and English, in order to analyze the impact
of the interaction language on the model’s perfor-
mance. For both zero-shot and few-shot prompt-
ing, the input prompt includes a Chain-of-Thought
(CoT) reasoning example based on a toy difficulty
classification example to provide minimal guidance
to the model’s reasoning process. In the few-shot
experiments, we selected examples representative
of each difficulty level, ensuring consensus among
annotators. Example prompts are provided in Ap-
pendix D.

4.5 Results & Analysis

The performance of the models trained on our
dataset (Section 3) was evaluated using several
metrics. For classification models, we employed
accuracy, adjacent accuracy®, and macro-F1 score,
which accounts for class imbalance. For regres-
sion models, performance was assessed using mean
squared error (MSE). To fairly compare classifica-
tion and regression models, we follow previous
work (Ribeiro et al., 2024; Wilkens et al., 2022)
and discretize continuous regression scores to the
corresponding readability classes (Very Easy <
5, Easy 5-10, Plain 10-15, +Complex > 15), en-
abling computation of macro-F1 scores for regres-
sion predictions. Macro-F1 results are shown in
Table 2, with full results in Table 11 (Appendix E).

The results highlight clear differences between
ML, DL, and hybrid models across tasks. Among
ML classifiers, RF achieves the strongest results
with 62.77% accuracy and 98.05% adjacent accu-
racy, though macro-F1 remains similar to SVM,
indicating that its improvement in accuracy does
not necessarily translate into better handling of
underrepresented classes. ML models generally
show higher accuracy than macro-F1, reflecting
a tendency to favor majority classes; Applying
class weighting helped reduce this gap but does

®Adjacent accuracy considers a prediction correct if it
matches the true class or a neighboring class on the ordered
scale (e.g., predicting Very easy instead of Easy).

Model Macro-F1
ML - SVM (500) 4754 %6.15
g ML -DT (300) 43.84 +4.98
£ ML - RF (400) 47.78 +7.60
&€ DL - CamemBERT 60.36 + 8.23
E DL - CamemBERT-v2 60.05 + 6.01
O  DL-CamemBERT-OLL 61.14 + 4.30
Hybride - RF (300) 56.26 +9.17
ML - SVR (500) 22.63 +1.96
= ML-DT(50) 22.13+3.15
£ ML - RF (500) 2296 +4.71
£ ML - OrdR (50) 22.70 +2.30
E’ DL - CamemBERT 59.63 + 2.55
DL - CamemBERT-v2  47.52+8.36
Hybrid - RF (300) 36.50 +5.21

Table 2: Comparison of macro-F1 performance for read-
ability classification and regression models. Parentheses
denote the number of selected features.

not eliminate it. DL models consistently outper-
form ML, with CamemBERT and CamemBERT-v2
reaching around 64% accuracy and macro-F1 near
60%, while the ordinally trained CamemBERT-
OLL further improves performance, achieving the
best macro-F1 (61.14%) and adjacent accuracy
(99.78%), in line with previous findings in (Lim
and Lee, 2024). Hybrid models attain the highest
classification accuracy (67.32%) but lower macro-
F1 (56.26%), suggesting improved overall correct-
ness at the expense of class balance. In regres-
sion, ML baselines perform poorly with accura-
cies around 40% and very low macro-F1, though
the ordinal regressor OrdR achieves a much lower
MSE (0.84%), highlighting the advantage of ordi-
nal constraints. DL regressors outperform all ML
and hybrid models, with CamemBERT reaching
70.77% accuracy, 59.63% macro-F1, and perfect
adjacent accuracy, while CamemBERT-v2 attains
slightly lower accuracy. Hybrid regression shows
competitive adjacent accuracy (99.57%) but under-
performs DL in macro-F1 and MSE. Overall, DL
provides the strongest and most balanced perfor-
mance, ordinal-aware methods slightly improve
both ML and DL, and hybrid approaches mainly
improve raw accuracy without fully capturing class
balance or minimizing regression error.

Concerning generative LLMs, Table 3 presents
the classification performance using different
prompting strategies. To assess performance vari-
ability, the dataset was partitioned into five folds,
and we computed the average accuracy, adja-
cent accuracy, and macro-F1 score for each fold,
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Model EN-zero-shot EN-few-shot FR-zero-shot FR-few-shot
DeepSeek-70b 29.64 +8.22  48.95 +4.85 38.41+3.14 47.06 = 3.55
Gemma-27b 30.19+797 41.12+4.45 29.8+646 39.49+3.76
Qwen-72b 17.65+443 4693 +353 19.32+11.13 429 +533
Mistral-large 22.78 £5.34 48.6 £ 4.08 26.72 +4.24  43.86 +3.57
GPT-4.1 27.01 £6.04 44.69 +6.84 35.55+934  43.02+7.82

Table 3: Comparison of the macro-F1 performance of the generative LLM for global difficulty classification.

along with their corresponding standard devia-
tions. We also provide additional results in the
appendix Table 12. We observe a positive corre-
lation between model size and performance, for
example, DeepSeek-7b achieves 25.6% macro-
F1 in EN zero-shot, while DeepSeek-70b reaches
29.64%, jumping to 48.95% with few-shot prompt-
ing, making it the overall top performer across both
languages. Gemma-27b performs competitively,
achieving 30.19% (EN-zero-shot) and 41.12% (EN
few-shot), while Qwen-72b exhibits a strong few-
shot jump, especially in EN despite low zero-
shot performance, suggesting high sensitivity to
few-shot guidance. Mistral-large and GPT-4.1
also show strong few-shot improvements, reach-
ing nearly 48% macro-F1 for EN and around 43%
for FR. In zero-shot settings, French prompts out-
perform English ones, likely due to the fact that
French prompts might match more precisely the
internal representation of French linguistic com-
plexity in the model. In contrast, few-shot settings
favor English, possibly because instruction tuning
is more robust in English. These results highlight
the importance of model scale and in-context ex-
amples for effective global difficulty classification.
In contrast to DL models, generative LLMs gen-
erally exhibit lower macro-F1 but achieve promis-
ing performance without task-specific training.
This capacity for generalization without direct su-
pervision highlights their potential, although they
currently do not surpass fine-tuned models.

5 Local Readability Assessment

From the data collected on local text difficulties
(see Section 3 and Appendix A.5 for details about
the labels), which provides fine-grained annota-
tions of words and structures considered challeng-
ing for readers at specific proficiency levels along
with the reasons for their difficulty, we explore
the ability of language models to replicate expert
judgments of local complexity. We used two differ-
ent strategies, fine-tuning and zero-shot prompting.
Specifically, we fine-tuned CamemBERT for token

classification on our dataset, complemented by gen-
erative LLMs applied in a framework inspired from
the LCP task. During annotation, human annota-
tors labeled words they deemed difficult for readers
at specific proficiency levels (our global annota-
tions). To replicate this, we provide these global
difficulty levels as part of the input to condition the
model’s behavior accordingly.

To assess the ability of language models to iden-
tify local reading difficulties, we design two exper-
imental settings: binary classification and multi-
label classification. The binary setup allows to
evaluate the model’s discriminative ability in dis-
tinguishing difficult from non-difficult words and
structures. The multi-label setup enables a more
fine-grained assessment by assigning one or more
specific difficulty types to each word or structure.

5.1 Deep Learning Models

To establish a supervised learning baseline, we em-
ployed deep learning models based on pre-trained
language representations. In particular, we used
CamemBERT fine-tuned for token classification
to detect difficult words and structures within the
input text. To condition the models’ predictions
on global difficulty, each text is prefixed with its
global difficulty level, allowing the model to tailor
its identification of difficult words accordingly. In
the binary setup, the model classifies each token
as either difficult or not, with positive labels as-
signed to tokens representing challenging words
or structures, regardless of the specific difficulty
type. The model is trained using cross-entropy loss
and predicts a class for each token—either posi-
tive or negative—by applying the argmax to the
output probabilities. In the multi-label setup, the
difficulty types are used as class labels for each
token, allowing the model to assign multiple diffi-
culty categories to a single token when applicable.
We used a binary cross-entropy (BCE) loss, and
consider a class to be positive if its output is greater
than a threshold. Otherwise, the class is considered
negative. All models are trained with grid search
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using the same hyperparameters as global difficulty
assessment. Technical details are mentioned in
Appendix B.

5.2 Generative Large Language Models

We evaluate the zero-shot capability of generative
LLMs to identify difficult words and structures
within a text, conditioned on the reader’s profi-
ciency level. We frame the problem as a Lexical
Complexity Prediction (LCP) task (North et al.,
2023), which involves assessing the difficulty of a
target word in a given context. Grounded in recent
research on the use of generative LLMs for LCP
tasks (Ortiz-Zambrano et al., 2024; Kelious et al.,
2024), we investigate whether such models can
reliably indentify difficult words for our target pop-
ulation without fine-tuning. To mirror the human-
annotators setup, we prompt the model using the
full text, the associated global readability level, and
a list of target words. The model is then prompted
to assess which of the target words are likely to
present difficulty for a reader at the specified profi-
ciency level. For evaluation, words and structures
annotated by humans as difficult are treated as pos-
itive instances. To reduce computational overhead
and leverage the structured output format of gener-
ative LLMs, we apply undersampling directly from
the same text for negative instances (non-difficult
words), ensuring a balanced set of positive and neg-
ative instances per text’. In the multi-label setup,
we prompt the model to assign each candidate word
or structure to one or more classes corresponding
to predefined difficulty types, or to a special non-
difficulty class if the model determines that the
word is not difficult. The prompt templates are
provided in Appendix D.

5.3 Results & analysis

Difficulty type BERT-Binary
No difficulty 87%
Difficult 43%
Macro-F1 65%

Table 4: F1 scores (%) per local difficulty label for
CamemBERT model in binary settings.

The binary classification (Table 4) performs well,
achieving a macro-F1 of 65%. In contrast, the
multi-label setup (Table 5) exhibits weak perfor-
mance, this can be attributed to the inherent com-

"To control for potential length biases, the negative sam-

ples are selected such that their word lengths match those of
the positive instances.

Difficulty type BERT-Multilabel
No difficulty 84%
Grammar difficulties 9%
Figure of speech, idiomatic expression 6%
Spelling or decoding problems 13%
Difficult cohesion index 7%
Difficult or unknown word 16%
Unusual syntactic order 10%
Difficult cultural reference 8%
Too much secondary information 10%
Macro-F1 18%

Table 5: F1 scores (%) per local difficulty label for
CamemBERT model in multilabel settings.

plexity of the task and the subtle, overlapping pat-
terns of linguistic difficulty present in the text.
The performance drop is also likely influenced by
dataset imbalance, particularly for low-frequency
difficulty types (e.g. Grammar Difficulties).
While the model achieves the best performance
on the Difficult or unknown word class, it
struggles significantly with less frequent and more
abstract categories such as Difficult cohesion
cue, despite weighting the loss by class frequency.
This underscores the need for more targeted re-
search on modeling fine-grained language complex-
ity, particularly in the presence of class imbalance
and subtle contextual cues.

In table 6, we present the performance results
of several generative LLMs on our task. Full re-
sults for the binary LLM across the different global
difficulty levels are provided in Table 13 in Ap-
pendix E. For the binary setup, GPT-4.1 consis-
tently outperforms the other models, achieving the
highest marcro-F1 score of 76.7% and an accuracy
of 76.8%, and demonstrating superior performance
across all difficulty levels, particularly on Easy
texts (76.93%) and Plain (76.71%). This suggests
a strong capacity for handling increasing linguistic
complexity, likely due to its high-quality instruc-
tion tuning and extensive coverage of diverse tex-
tual data. DeepSeek-R1 ranks second, showing
robust results across all levels, especially Plain
(75.29%). Its retrieval-augmented and alignment-
aware architecture may contribute to its effective
handling of localized difficulty. Mistral-large per-
forms moderately, with stable but less adaptive
performance, particularly struggling to capture pat-
terns in Plain and +Complex levels compared to
GPT-4.1. Finally, Qwen2.5 shows the weakest over-
all performance (F1: 68.12%, accuracy: 68.47%),
indicating potential limitations in linguistic gen-
eralization for French language compared to the
rest of the models. Overall, the top-performing
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Difficulty type Mistral-large GPT-4.1 Qwen2.5 DeepSeek-R1
Binary

Macro-F1 71.34 76.7 68.12 74.73
Multilabel

Grammar difficulties 35.76 51.27 38.17 44.82
Figure of speech, idiomatic expression 43.98 58.62 46.20 54.43
Spelling or decoding problems 9.93 22.68 17.18 18.61
Difficult cohesion index 33.15 47.78 25.76 24.70
Difficult or unknown word 63.80 69.61 64.33 67.90
Unusual syntactic order 12.31 24.78 17.73 27.23
Difficult cultural reference 47.60 55.99 47.30 49.63
Too much secondary information 29.98 38.10 36.46 36.34
Macro-F1 34.56 46.10 36.64 40.46

Table 6: F1 scores (%) per local difficulty label, with average across all labels for generative LLMs.

models demonstrate strong multilingual capabili-
ties, reflecting the ability of modern LLMs to adapt
to French text.

The results on multi-label local difficulty assess-
ment (see Table 6; full results in Table 14, Ap-
pendix E), show that GPT-4.1 outperforms the other
models across most difficulty types, achieving a
macro-F1 score of 46.1%. Although this score
remains moderate, it supports the model’s strong
performance in the binary local difficulty assess-
ment and indicates good discriminative capabilities
across various linguistic challenges. DeepSeek-R1
follows with a macro-F1 of 40.46%, showing good
results in culturally and lexically challenging cases.
In contrast, Mistral-large and Qwen2.5 perform
moderately (macro-F1 around 34-37%) and strug-
gle particularly with unusual syntactic order
class and rare difficulty types. Overall, all models
perform best on identifying difficulties related to
lexical access—such as difficult or unknown
word—while they struggle most with structural
and low-frequency phenomena like spelling or
decoding problems and unusual syntactic
order, indicating these aspects remain more chal-
lenging to model. These findings suggest that zero-
shot generative LLMs offer a promising strategy for
local difficulty assessment, particularly when com-
pared to CamemBERT fine-tuning approaches in
contexts where training data is scarce. They there-
fore warrant further investigation to better under-
stand their strengths and limitations across diverse
linguistic phenomena.

6 Conclusion and Perspectives

This study systematically evaluates multiple ap-
proaches for classifying the difficulty of French
texts specifically designed for adults with low lit-
eracy, it examines both global and local text diffi-
culty. The analysis compared the effectiveness of

four different approaches to readability, providing
insights into their relative performance and suitabil-
ity for this target population. For global difficulty
classification, the results indicate that hybrid and
deep learning models generally outperform other
approaches in terms of accuracy and robustness. In
contrast, LLMs exhibit comparatively lower effec-
tiveness in this specific context. Nevertheless, these
findings suggest potential for improvement: fine-
tuning a generative LLM on a dedicated readability
task could be a promising direction for future re-
search. At the local difficulty assessment level,
both generative and fine-tuned large language mod-
els (LLMs) demonstrate good comparable perfor-
mance in a binary classification setup—specifically,
when identifying whether a given token is difficult
or not. However, their effectiveness decreases in
the more challenging multi-label token difficulty
classification task. In this setting, generative LLMs
show better performance than fine-tuned models,
though both approaches exhibit notable limitations.
These results highlight the need for further refine-
ment to improve token-level difficulty modeling on
our dataset. Text readability assessment is inher-
ently subjective, and annotator subjectivity can lead
to inter-annotator disagreement. Despite this, the
results suggest that averaging global text difficulty
annotations yields more consistent and reliable data
for training classification models for global text
difficulty assessment. This aggregation appears
to mitigate individual biases and enhance model
performance. To further improve annotation qual-
ity—particularly for applications targeting adults
with low literacy—a more in-depth comparative
analysis of annotator behavior would be benefi-
cial. Such an analysis could inform strategies for
standardizing annotations in cases of substantial
discrepancy, ultimately leading to more robust and
inclusive readability assessment frameworks.
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Limitations

There are a number of limitations to our dataset
and analysis, in addition to those already discussed
in the paper. First, although we attempted to antici-
pate dataset imbalance during corpus construction
by using an automated readability analysis tool
from our previous work (Francois, 2015), which
was designed for generic second-language learn-
ers, to select a balanced set of French texts, the
final class distribution was subsequently modified
by the human annotation process. Annotators as-
signed scores based on their expert judgment of
readability for low-literacy adult audiences. This
change in audience, combined with the inherently
subjective nature of assessing text readability, ex-
plains the imbalance observed in our dataset. In
fact, the task of assessing text readability remains
inherently subjective. Expert annotations are in-
fluenced by a variety of factors, including individ-
ual backgrounds, interpretation of difficulty, and
prior experience with low-literacy adult popula-
tions. This introduces variability that is difficult
to fully control. Second, the number of texts in-
cluded in our dataset (461) is relatively small. This
is largely due to the challenges involved in collect-
ing and annotating texts that are representative of
the linguistic and cognitive profiles of low-literate
adults. Each text required expert-level, fine-grained
annotation of lexical difficulty types, making the
process resource-intensive. Finally, we do not in-
clude direct comparisons with existing readability
models and datasets. This choice stems from the
poor transferability of models fine-tuned on other
datasets to our own. Preliminary experiments re-
vealed a lack of generalization, likely due to differ-
ences in annotation protocols, target populations,
and text types. As a result, we focus our evalua-
tion and modeling efforts on our dataset, which is
specifically tailored to french low-literacy adults.
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A Data and annotation details

A.1 Texts copyright compliance

We documented the source of each text included
in our dataset®. Following consultation with our
institution’s legal advisor, we were informed that
these texts may be used and shared for research pur-
poses under the citation exception, as they consist
of relatively short excerpts and the original sources
are properly cited. Where necessary, measures will
be implemented to ensure that the use of this data
is restricted to teaching and research activities.

A.2 Annotator Demographics and
Compensation

All our annotators were women, although gender
was not a selection criterion. They were paid 15€
per series, with the choice between a bank transfer
or a bookshop gift voucher for a annotation session
between 30 minutes and 2 hours.

A.3 Data analysis

We first examine the corpus in terms of text length,
as shown in Figure 2.

To better understand the variability of difficulty
within each global level, we examine the distribu-
tion of the 1-20 numerical scores assigned to texts
in Figure 3, which shows that each level does not
present the same profile. For example, texts in
the Very Easy category have the highest scores in
their category, with the third and fourth quartiles
merging. The other categories seem to have more
homogeneous scores.

A.4 Global labels of Difficulty

In the annotation guidelines provided to annotators,
the global difficulty levels are described as follows:

8https ://github.com/tfrancoiscental/
iread4skills_readability_corpus_fr
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Figure 2: Distribution of corpus text lengths measured
in words, using whitespace-based tokenization.
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Figure 3: Box plot of text difficulty scores by category.

* Very Easy: Texts that are completely or almost
completely understood by all readers, including
those with a very low level of schooling (up to
about sixth grade) and almost no reading experi-
ence. They are very short and deal with simple
subjects, with a basic vocabulary.

» Easy: Texts fully or almost fully understood by
people with a low level of schooling (i.e. having
completed elementary school, but no more than
the ninth year of education) and limited reading
experience. These are short texts, which may
include abstract concepts and common figures of
speech.

* Plain: Texts comprehensible on first reading by
individuals who have completed the ninth grade
and have functional to average reading experi-
ence. These are longer texts, which may present
more varied concepts, more complex syntactic
structures and irregular verbs if they are very
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frequent in the language.

* +Complex: Texts requiring more attentive read-
ing and a certain linguistic mastery to be fully
understood. They are aimed at readers with a
more advanced level of schooling and more in-
depth reading experience. This level includes all
the more complex elements than those described
for the previous categories.

A.5 Local labels of difficulty

The local difficulty labels are described as follows:

* Difficult or unknown word: A word is con-
sidered difficult if it meets one of the following
criteria:

— A word whose meaning may not be well un-
derstood by the reader.

— A word potentially absent from the reader’s vo-
cabulary, as it belongs to a specialized domain
(e.g., technical, scientific, literary).

— A word from a foreign language.

— A word belonging to a very formal register.

— An archaic word.

— An expression where a single isolated word
makes the entire expression difficult.

* Spelling or decoding problem: A word or ex-
pression is considered to pose a decoding prob-
lem if it meets one of the following characteris-
tics:

— A word whose spelling may hinder access to
meaning, but which remains familiar orally.

— Numbers written in a way that is difficult to
read for the reader’s CEFR level.

* Figure of speech, idiomatic expression: Fig-
ures of speech include, but are not limited to,
metaphors, metonymies, personifications, and
ironies. Idiomatic expressions are multiword
units which, taken together, may not be under-
stood literally.

Difficult cultural reference: Cultural references
include the reader’s prior knowledge such as cul-
tural, artistic, or literary references, as well as
general or digital culture. A cultural reference is
considered complex for a reader of a given CEFR
level if it prevents comprehension.

¢ Grammar-related difficulty: Grammatical diffi-
culties include, but are not limited to, problems
with tense, mood, concord, passive voice, omis-
sion of determiners, etc.

Too much secondary information: A sentence
is considered overloaded with secondary infor-
mation when such information may hinder com-

prehension. Secondary information is “the sur-
plus” that could be removed or turned into a sepa-
rate sentence. This includes, for example, asides,
parentheses, and embedded subordinate clauses.
Difficult cohesion cue (connector, pronoun, in-
ference): Difficult cohesion markers include is-
sues related to the micro-structure of the text,
such as challenging inferences and anaphoric
references (pronouns), connectors (e.g., “all the
same,” “however,” “rarely”), and other types of
inference.
¢ Unusual syntactic order: An unusual word or-
der occurs when deviation from the standard sub-
ject—verb—object order may cause comprehension
difficulties.

Local label Count
Difficult or unknown word 4297
Spelling or decoding problem 2121
Figure of speech, idiomatic expression 914
Difficult cultural reference 789
Difficult cohesion cue 731
Unusual syntactic order 560
Grammar-related difficulty 468
Too much secondary information 371
Other 181
Total 10432

Table 7: Distribution of the local labels of difficulty
across the corpus.

- 1750
+Complex
- 1500

- 1250
Flain

1000

750

Global label

Easy
500

Very easy 250
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Figure 4: Distribution of local labels for each global
difficulty category.

A.6 Inter-annotator agreement

Inter-annotator agreement scores were assessed for
both global and local annotations. Given the wide
variation in annotator participation, we constructed
three super-annotators by aggregating annotations
and keeping together those from the same annotator.
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Kappa  Spearman
Annot 1 vs. ref. 028 £0.12 0.63 £0.13
Annot 2 vs. ref. 038 +0.15 0.69 +£0.13
Annot 3 vs. ref. 054 +£0.11 0.69 £ 015

Table 8: Inter-annotator agreement according to
Weighted Quadratic Kappa and Spearman correlation
for scores out of 20.

These three super-annotators comprise one, five
and ten annotators respectively.

For the global level, we computed Cohen’s x
and Spearman’s p between each super-annotator
and the reference, allowing to identify the best
annotators. Table 8 reports those values for the 1-
20 scores (with quadratic weighted kappa - QWK),
ranging from 0.28 and 0.54, with an average per
annotator and per series of 0.33. These results
are admittedly low, but quite similar to the QWK
obtained on a related task at SemEval 2012 (Specia
et al., 2012). For the local annotations, where the
boundaries of annotated phenomena may vary, we
evaluated inter-annotator agreement using token-
level macro F1 scores, following common practice
for this type of task. We distinguished between two
aspects: agreement on whether a token is complex
(a binary classification task), and agreement on
the assigned difficulty category (in a multilabel
setting, as more than one class can be assigned to
the same token). Macro-F1 scores for the binary
classification range from 0.63 to 0.69 (see Table 9).
This suggests that annotators generally identified
similar reading difficulty within the texts. However,
agreement on the type of difficulty was notably
lower, with micro-F1 scores ranging from 21.7 to
18.5. It is important to note that local annotations
are relative to the global difficulty level assigned
to the text, disagreement may stem from different
global annotations.

Comparaison Binary  Multilabel
Annotl vs Annot2 61.03 21.71
Annot2 vs Annot3 59.22 18.73
Annotl vs Annot3 60.07 18.44
Average 60.11 19.63

Table 9: Macro-F1 for pairs of annotators for the local
annotation seen as a binary task and a multilabel task.

A.7 Qualtrics interface for trainers

Texte 4

Salut, Comment ¢a va ? Dis-moi est-ce que tu peux me
remplacer mardi prochain STP ? Mer

ci de ta réponse.

Figure 5: Qualtrics interface used for selecting the
global difficulty of texts.

Text 4

Hi, how are you? Can you let me know if you
could cover for me next Tuesday plz? Thanks for
your reply.

o Very Easy

o Easy

o Plain

o Complex
O O O O O
1 2 3 4 5

Beginning of level End of level

Figure 6: English translation of the global difficulty
selection interface (see Figure 5 for the original French
version).

B Technical details

B.1 Machine Learning models for global
difficulty assessment

For machine learning models, we used a grid search
to explore the set of hyperparameter configurations
for our different models. Our implementation is
based on the Scikit-learn library (Pedregosa et al.,
2011). To address class imbalance in the classi-
fication setting, the cost function was weighted
according to class frequency.
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Surlignez les mots ou parties du texte qui, selon vous,
rendent le texte difficile @ comprendre.

Mot difficile ou inconnu

Figure de style, expression idiomatique
 ropanomamm meondaies Oesyasowemoos ([II00)
Salut, Comment ¢a va ? Dis-moi est-ce que tu peux me
remplacer mardi prochain STP ? Merci de ta réponse.

Graphie, probléme de déchiffrage

Référence culturelle difficile

Si vous avez indigué "Autre”, donnez une indication sur le type de
difficulté identifié :

- ) N (o
Commentaire ou suggestion pour ce texte \opt\ome\)

Figure 7: Qualtrics interface used for selecting the local
difficulty of texts.

Highlight the words or parts of the text that,
in your opinion, make the text difficult to un-
derstand.

* Difficult or unknown word

* Spelling or decoding problem

* Figure of speech, idiomatic expression

* Difficult cultural reference

* Grammar-related difficulty

* Difficult cohesion cue (connector, pronoun,

inference)

* Too much secondary information

* Unusual syntactic order

e Other

Hi, how are you? Can you cover for me next
Tuesday plz? Thanks for your reply.

If you selected “Other”, please provide an
explanation of the type of difficulty identified:

[Free text field]

Comment or suggestion for this text (op-
tional):

[Free text field]

Figure 8: English translation of the interface for local
annotations (see Figure 7 for the original French ver-
sion).

Here is the list of hyperparameters by task and
model type:

» SVM’: We evaluated three kernel types (1inear,

rbf, sigmoid). For the regularization parameter
C, we tested the following values: 0.001, 0.005,
0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100.

DT'?: Among the objective functions, we tested
gini, entropy, and log_loss. For the maxi-
mum tree depth, we used values from 1 to 8. The
minimum number of samples required to split an
internal node was selected from 2, 3, 5, 10, 15,
and 20.

RF'!: The number of trees in the forest could
take values between 10, 20, 30, 40, 50, 100, and
200. For the objective function, the maximum
tree depth, and the minimum number of samples,
we explored the same values as for the decision
trees.

SVR'2: We evaluated three kernel types (1inear,
rbf, sigmoid). For the regularization parameter
C, we tested the following values: 0.001, 0.01,
0.1, 1, 10, 100.

DTR'3: We tested different objective functions:
squared error, friedman mse, absolute
error, and poisson. The maximum tree depth
was set to 1, 5, 7, or 8, and the minimum number
of samples required to split an internal node was
set to 2, 5, 10, or 20.

RFR!*: The number of trees in the forest (n
estimators) could be 10, 30, 50, or 200. The
other parameters (criterion, max depth, min
samples split) were explored with the same
values as for the decision trees.

OrdR": We evaluated four ordinal regres-
sion methods from the mord library—threshold-
based and regression-based: LogisticAT,
LogisticIT, OrdinalRidge, and LAD. All mod-
els were tuned via grid search. For the first
three, the regularization parameter o was tested
with values 0.1, 1.0, and 10.0. For LAD, the

9https://scikit—learn.org/stable/modules/

generated/sklearn.svm.SVC.html

10https://scikit—learn.org/stable/modules/
generated/sklearn. tree.DecisionTreeClassifier.
html

11https://scikit—learn.org/stable/
modules/generated/sklearn.ensemble.
RandomForestClassifier.html

Phttps://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVR.html

13https://scikit—learn.org/stable/modules/
generated/sklearn.tree.DecisionTreeRegressor.
html

Yhttps://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestRegressor.
html

Bhttps://pythonhosted.org/mord/
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inverse regularization C' and optimization tol-
erance tol were tested with 0.1, 1.0, 10.0 and
1072,1073, respectively. We report resulss for
the OrdinalRidge variant which slightly outper-
forms the others.

B.2 Deep Learning models for difficulty

assessment
The fine-tuned CamemBERT mod-
els considered in this work include

camembert-base!®, camembertv2-base!”,

and sentence-camembert-base!®. The AdamW
optimizer (Loshchilov and Hutter, 2019) was
employed to update the model parameters, with all
layers of the language model fine-tuned without
freezing the intermediate representations. To
prevent overfitting and reduce training time, early
stopping was applied with a patience of 10 epochs.
An exhaustive grid search was conducted to
identify optimal hyperparameters. Different values
were explored for the following parameters: the
learning rate, tested with values of le-5, le-4,
1e-3; the batch size, with values of 16, 32, 64; the
weight decay, explored for values 1e-5, le-4, 1e-3;
and finally, the dropout values 0.1, 0.3, 0.5 were
tested to mitigate overfitting.

For the classification task, due to class imbal-
ance in our dataset, we employed a weighted cross-
entropy loss. The weights, calculated as the inverse
of class frequency, enable the model to better ac-
count for underrepresented classes. For the regres-
sion task, root mean square error (RMSE) was used
as the optimization objective.

B.3 Generative LLMs for difficulty
assessment

The majority of the experiments were conducted
by prompting the models via their respective APIs,
with a total cost of approximately $20. An ex-
ception was made for the global difficulty experi-
ments involving DeepSeek-R1, Gemma-27b, and
Qwen2.5, which were executed locally using the
Ollama framework. These experiments were run
on a local cluster equipped with NVIDIA A100
and V100 GPUs, thereby incurring no API-related
financing costs.

https://huggingface.co/almanach/
camembert-base

"https://huggingface.co/almanach/
camembertv2-base

18https://huggingface.co/dangvantuan/
sentence-camembert-base

* Mistral Large: We used the latest version of Mis-
tral Large'?, released in November 2024. This
model reportedly contains 123 billion parame-
ters and demonstrates state-of-the-art reasoning
capabilities across a wide range of tasks.

* GPT-4.1: We employed OpenAI’'s GPT-4.1%,
their flagship model optimized for complex tasks.
Although the number of parameters has not been
publicly disclosed, GPT-4.1 is known for its
strong performance in problem-solving and gen-
eralization across domains.

* DeepSeek-R1: We used DeepSeek-R1
(DeepSeek-Al, 2025), a reasoning-optimized
Mixture-of-Experts model from DeepSeek-Al. It
has 671B total parameters, with 37B active per
forward pass, and supports long contexts (up to
128k tokens). The model is open-weight and
trained with reinforcement learning for strong
performance on reasoning tasks.

e qwen2.5: We used Qwen2.5-72B (Yang et al.,
2024), a 72B-parameter decoder-only trans-
former with a 131k token context window. It
supports instruction following and performs well
on complex language tasks.

¢ Gemma-27b: We used Gemma-27B (Team,
2024), an open weights 27B-parameter decoder-
only transformer with an 8,000-token context
window, designed to balance efficiency and capa-
bility.

C Correlation between system entropy
and human disagreement

Spearman  Pearson
ML - SVM (500) -0.196*  -0.1777*
ML - DT (300) 0.0318 0.0292
ML - RF (400) -0.1465*%  -0.1489%
DL - CamemBERT-v2 -0.0461 -0.0314
Hybride - RF (300) -0.1373*  -0.1298*

Table 10: Spearman and Pearson correlation results
for classification models. Significant correlations are
indicated by an asterisk (*).

In this section, we study the correlation between
annotator disagreement and model uncertainty for
global readability assessment. Shannon entropy,
calculated from the model output probabilities for
each text, measures the uncertainty of predictions.

19https://mistral.ai/news/mistral—large
20https://platform.openai.com/docs/models/
gpt-4.1
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In a previous study (Tack et al., 2017), disagree-
ment between annotators for a text ¢ is calculated
based on the observed disagreement Dg; regarding
the label = given by annotator c. This measure
is obtained by decomposing the Krippendorff for-
mula for the observed disagreement Dy (Artstein
and Poesio, 2008), which is equal to twice the em-
pirical variance per text s2.

1 c ¢
Dgéz‘ = m Z Z 6interval<1‘z’cm,$z’cn) = 2812

m=1n=1
(1

In this way, a disagreement score and an entropy
score can be calculated for each text, depending on
the system being evaluated. A Pearson or Spear-
man correlation can then be used to study the rela-
tionship between human uncertainty and systems.

Table 10 presents the Spearman and Pearson
correlations for different classification models.

The results in Table 10 indicate that some mod-
els have a slight correlation with human uncertainty.
For example, the SVM model shows a significant
negative correlation for both tests (Spearman: -
0.196), suggesting that greater uncertainty in pre-
dictions is associated with greater disagreement
between annotators. This behavior is similarly ob-
served for the RF model, and by extension the hy-
brid model, which shares common architectural
features.

Conversely, the CamemBERT-v2 and DT mod-
els do not show significant correlations, indicating
that their prediction uncertainty does not appear to
be directly related to human disagreement.

D Generative LLMs prompts
E Additional results

1. Vous étes un expert linguistique spécialisé dans
I’évaluation des niveaux de francais selon le
Cadre européen commun de référence pour les
langues (CEFR).

>. Votre tiche consiste a classer le texte francais
suivant dans I’un des niveaux du CEFR:

— Al, A2,B1, B2, CI ou C2.

3. Example:

— Texte a classifier : "Bonjour, je m’appelle
Jean. J’habite a Paris. J’aime jouer au football."
4. Le texte fourni est composé de phrases simples
et courtes, utilisant des structures grammaticales
de base et un vocabulaire élémentaire. Selon
le Cadre européen commun de référence pour
les langues (CEFR), le niveau Al correspond
a la capacité de comprendre et dutiliser des ex-
pressions familieéres et quotidiennes ainsi que
des énoncés tres simples visant a satisfaire des
besoins concrets.

— Niveau CECR: **A1%*

5. Classifiez ce texte francais: {text}

Figure 9: Example of a prompt used for global difficulty
classification.

1. You are a linguistic expert specialized in eval-
uating French language levels according to the
Common European Framework of Reference for
Languages (CEFR).

». Your task is to classify the following French
text into one of the CEFR levels:

— Al, A2,B1, B2, CI ou C2.

3. Example:

— Text to classify : "Hello, my name is Jean. I
live in Paris. I like to play football."

— The provided text consists of simple, short
sentences, using basic grammatical structures
and elementary vocabulary. According to the
Common European Framework of Reference for
Languages (CEFR), level A1 corresponds to the
ability to understand and use familiar, everyday
expressions as well as very simple statements
aimed at satisfying concrete needs.

— CECR level: **A1%*

4. Classify this French text: {text}

Figure 10: English translation of the example prompt
used for global difficulty classification from Figure 9.
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1. Vous €tes un expert linguistique spécialisé dans
I’évaluation des niveaux de frangais selon le
Cadre européen commun de référence pour les
langues (CEFR).

». Votre tache consiste a classer le texte francais
suivant dans 1’un des niveaux du CEFR:

— Al, A2, B1, B2, C1 ou C2.

3. Exemple :

— Texte a classifier : "Bonjour, je m’appelle
Jean. J’habite a Paris. J’aime jouer au football."
— Le texte fourni est composé de phrases sim-
ples et courtes, utilisant des structures gram-
maticales de base et un vocabulaire élémentaire.
Selon le Cadre européen commun de référence
pour les langues (CEFR), le niveau Al corre-
spond a la capacité de comprendre et d’utiliser
des expressions familieres et quotidiennes ainsi
que des énoncés tres simples visant a satisfaire
des besoins concrets.

— Niveau CECR : **A1**

4. Classifiez ce texte francgais : {shotl }

— {cotl}

— Niveau CECR : **{valuel } **

5. Classifiez ce texte frangais : {shot2}

— {cot2}

< Niveau CECR : **{value2}****

6. Classifiez ce texte francgais : {shot3}

— {cot3}

< Niveau CECR : **{value3}**

7. Classifiez ce texte francais : {shot4}

— {cotd}

— Niveau CECR : **{value4 } **

8. Classifiez ce texte francais : {text}

1. You are a linguistic expert specialized in evalu-
ating French language proficiency according to
the Common European Framework of Reference
for Languages (CEFR).

>. Your task is to classify the following French
text into one of the CEFR levels:

— Al, A2,B1,B2,Cl, or C2.

3. Example:

— Text to classify: "Bonjour, je m’appelle Jean.
J’habite a Paris. J’aime jouer au football."

— The provided text consists of simple, short
sentences using basic grammatical structures
and elementary vocabulary. According to the
CEFR, level Al corresponds to the ability to un-
derstand and use familiar everyday expressions
and very simple statements aimed at meeting
concrete needs.

— CEFR Level: #*A1**

4. Classify this French text: {shotl}

— {cotl}

— CEFR Level: **{valuel } **

5. Classify this French text: {shot2}

— {cot2}

— CEFR Level: **{value2}**

6. Classify this French text: {shot3}

— {cot3}

—» CEFR Level: **{value3}**

7. Classify this French text: {shot4}

— {cotd}

< CEFR Level: **{value4}**

8. Classify this French text: {text}

Figure 12: English translation of the example of a
prompt used for global difficulty level classification
with multiple few-shot examples from Figure 11.

Figure 11: Example of a prompt used for global diffi-
culty level classification with multiple few-shot exam-
ples.
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1. Vous €tes un assistant linguistique spécialisé
dans I’analyse de la complexité lexicale.

2. Votre tache est d’évaluer si un mot est com-
plexe dans le contexte fourni, en fonction du
niveau CECR du lecteur cible.

3. Un mot est considéré comme complexe s’il
présente une ou plusieurs des difficultés suiv-
antes, selon les définitions ci-dessous :

— {definitions}

4. Format attendu : une liste d’objets JSON, un
par mot, contenant les champs suivants :

— - "term" : le mot analysé

— - "label" : "1" si le mot est jugé complexe,
sinon "0".

— Niveau CECR du lecteur : {level}

— Texte : {text}

— Liste de mots a évaluer : {tokens}

< Evaluez la complexité de chacun des mots de
la liste pour ce niveau de lecteur.

Figure 13: Example of a prompt used for binary local

difficulty prediction based on reader CEFR level.

1. You are a linguistic assistant specialized in an-
alyzing lexical complexity.

>. Your task is to evaluate whether a word is com-
plex in the given context, based on the CEFR
level of the target reader.

3. A word is considered complex if it presents one
or more of the following difficulties, as defined
below:

— {definitions}

— Expected format: a list of JSON objects, one
per word, containing the following fields:

— - "term": the analyzed word

— - "label": "1" if the word is considered com-
plex, otherwise "0".

— Reader CEFR level: {level}

— Text: {text}

— List of words to evaluate: {tokens}

— Evaluate the complexity of each word in the
list for this reader level.

Figure 14: English translation of the example of a
prompt used for binary local difficulty prediction based

on reader CEFR level from Figure 13.

1. Vous &tes un assistant linguistique spécialisé
dans I’analyse de la complexité lexicale.

>. Votre tiche est d’évaluer si un mot est com-
plexe dans le contexte fourni, en fonction du
niveau CECR du lecteur cible.

3. Un mot est considéré comme complexe s’il
présente une ou plusieurs des difficultés suiv-
antes, selon les définitions ci-dessous :

— {definitions }

4. Important : un méme mot complexe peut
présenter plusieurs types de difficulté simultané-
ment. Dans ce cas, indiquez tous les types de
difficulté applicables sous forme de liste de la-
bels.

— Si le mot n’est pas complexe, utilisez la
valeur "0".

— Format attendu : une liste d’objets JSON, un
par mot, contenant les champs suivants :

— - "term" : le mot analysé

— - "label" : la liste des types de difficulté per-
tinents parmi ceux listés ci-dessus si le mot est
jugé complexe, sinon "0".

— Niveau CECR du lecteur : {level }

— Texte : {text}

— Liste de mots a évaluer : {tokens}

< Evaluez la complexité de chacun des mots de
ce texte pour ce niveau de lecteur.

Figure 15: Example of a prompt used for multi-label
local difficulty prediction based on reader CEFR level.
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1. You are a linguistic assistant specialized in the
analysis of lexical complexity.

2. Your task is to evaluate whether a word is com-
plex in the given context, based on the CEFR
level of the target reader.

3. A word is considered complex if it presents one
or more of the following difficulties, according
to the definitions below:

— {definitions }

4. Important: a single complex word may present
several types of difficulty simultaneously. In this
case, indicate all applicable types of difficulty in
the form of a list of labels.

— If the word is not complex, use the value "0".
— Expected format: a list of JSON objects, one
per word, containing the following fields:

— - "term": the analyzed word

— - "label": the list of relevant difficulty types
among those listed above if the word is judged
complex, otherwise "0".

— Reader CEFR level: {level}

— Text: {text}

— List of words to evaluate: {tokens}

— Evaluate the complexity of each word in this
text for this reader level.

Figure 16: English translation of an example of a prompt
used for multi-label local difficulty prediction based on

reader CEFR level from Figure 15.
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Table 11: Additional results comparing performance metrics of readability classification and regression models.

Accuracy Adj. Accuracy Macro-F1 MSE
Classification
ML - SVM (500) 55.84 £4.26 97.83+195 47.54+6.15
ML - DT (300) 54.10 £3.28 94.81 £0.81 43.84 +4.98
ML - RF (400) 62.77 £4.18 98.05+1.26 47.78 £7.60
DL - CamemBERT 64.04 £9.97 98.71+1.77 60.36 +8.23
DL - CamemBERT-v2 64.26 £5.67 99.17+0.91 60.05 +6.01
DL - CamemBERT-OLL  66.02 + 3.80 99.78 + 0.43  61.14 +4.30
Hybride - RF (300) 67.32 + 4.08 99.14+0.81 56.26 £9.17
Regression
ML - SVR (500) 39.60 +5.39 93.06+3.61 22.63+1.96 4.94+1.07
ML - DT (50) 38.75+5.29 88.10+2.24 22.13+£3.15 7.22+1.55
ML - RF (500) 40.89 £ 6.28 91.77+£3.10 2296+4.71 4.70+0.73
ML - OrdR (50) 42.20 +3.80 91.30+3.30 22.70+2.30 0.84+0.09
DL - CamemBERT 70.77 £ 5.48 100.00 £ 0.00 59.63 £2.55 3.87+0.72
DL - CamemBERT-v2 68.38 £5.70 100.00 £ 0.00 47.52+8.36 3.78+0.75
Hybrid - RF (300) 64.28 + 6.55 99.57+0.53 3650+£521 4.88+0.75

Parentheses denote the number of selected features.

Model EN-zero-shot EN-few-shot FR-zero-shot FR-few-shot
DeepSeek-7b 25.6+3.36  28.01 £2.54 2371 +£2.88 2897 +1.31
DeepSeek-14b 2397 +£3.07 3496+4.78 25.02 +4.57 34.4+393
DeepSeek-32b 27.77+£529  43.06 +7.37 27.33+484 41.83+8.16
DeepSeek-70b 29.64 £8.22  48.95 + 4.85 38.41+3.14 47.06 £ 3.55
Gemma-27b 30.19+7.97 41.12+445 29.8+6.46 39.49 +3.76
Qwen-72b 17.65+4.43 4693 +£3.53 1932+11.13 429 £5.33
Mistral-large 2278 £5.34 48.6 +4.08 26.72 £4.24  43.86 +3.57
GPT-4.1 27.01 £6.04 44.69 £6.84 3555+£934 43.02+7.82

Table 12: Additional results of macro-F1 performance of generative LLMs for global difficulty classification.

level Mistral-large GPT-4.1 Qwen2.5 DeepSeek-R1

P R F1 Acc| P R F1 Acc| P R F1 Acc| P R F1 Acc
Very Easy [72.68 71.9 71.68 71.94|74.88 71.07 69.97 71.15|73.59 73.51 73.49 73.52| 68.1 68.99 68.0 68.55
Easy 73.4 73.3173.27 73.29|78.2477.1276.93 77.18|71.19 70.77 70.57 70.7 |74.99 74.91 74.92 74.97
Plain 72.5770.96 70.32 70.8 |77.04 76.74 76.71 76.79|68.43 67.09 66.36 66.92|75.99 75.44 75.29 75.41
+Complex|73.11 70.43 69.41 70.24|76.76 76.53 76.43 76.47|70.13 68.51 67.72 68.32|75.61 73.41 72.66 73.2
Macro-F1 [72.59 71.7 71.3471.59(77.1276.74 76.7 76.8 |69.57 68.61 68.12 68.47|75.25 74.8 74.73 74.86

Table 13: Additional results on performance metrics for binary local difficulty assessment by proficiency level.

P: Precision, R: Recall, Acc: Accuracy.

Table 14: Additional results of generative LLM performance for multi-label local difficulty classification, broken

Difficulty type Mistral-large GPT-4.1 Qwen2.5 DeepSeek-R1
P R FI|P R FI|[P R FI|[|P R FI
Grammar difficulties 48.56 28.30 35.76[47.54 55.64 51.27|32.13 47.00 38.17|33.95 65.95 44.82

Figure of speech, idiomatic expression

Spelling or decoding problems
Difficult cohesion index
Difficult or unknown word
Unusual syntactic order
Difficult cultural reference

Too much secondary information

53.9937.1143.98
56.59 5.44 9.93
43.0026.97 33.15
61.15 66.68 63.80
40.82 7.25 12.31
43.99 51.86 47.60
35.3426.04 29.98

62.14 55.48 58.62
53.65 14.38 22.68
47.39 48.18 47.78
60.73 81.52 69.61
66.67 15.2224.78
55.54 56.46 55.99
35.58 41.00 38.10

38.8157.06 46.20
53.0110.2517.18
34.7920.4525.76
61.78 67.10 64.33
48.0010.87 17.73
46.54 48.08 47.30
35.3237.67 36.46

48.57 61.90 54.43
58.87 11.05 18.61
44.3117.1224.70
61.82 75.32 67.90
61.9417.4527.23
40.59 63.82 49.63
40.34 33.06 36.34

Average

47.9331.21 34.56

53.66 45.98 46.10

43.8037.31 36.64

48.8043.21 40.46

down by local difficulty class. P: Precision, R: Recall.
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