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Abstract

Zero-shot Event Detection (ED), the task of
identifying event mentions in natural language
text without any training data, is critical for doc-
ument understanding in specialized domains.
Understanding the complex event ontology, ex-
tracting domain-specific triggers from the pas-
sage, and structuring them appropriately over-
loads and limits the utility of Large Language
Models (LLMs) for zero-shot ED. To this end,
we propose DICORE, a divergent-convergent
reasoning framework that decouples the task
of ED using Dreamer and Grounder. Dreamer
encourages divergent reasoning through open-
ended event discovery, which helps to boost
event coverage. Conversely, Grounder intro-
duces convergent reasoning to align the free-
form predictions with the task-specific instruc-
tions using finite-state machine guided con-
strained decoding. Additionally, an LLM-
Judge verifies the final outputs to ensure high
precision. Through extensive experiments on
six datasets across five domains and nine LLMs,
we demonstrate how DICORE consistently out-
performs prior zero-shot, transfer-learning, and
reasoning baselines, achieving 4–7% average
F1 gains over the best baseline – establishing
DICORE as a strong zero-shot ED framework.

1 Introduction

Event Detection (ED) is the task of identifying
events by extracting and labeling event triggers
(Sundheim, 1992; Doddington et al., 2004). ED
aids in various downstream applications, including
news monitoring (Tanev et al., 2008), biomedical
literature mining (Pyysalo et al., 2012), epidemic
forecasting (Parekh et al., 2024b,c), and legal un-
derstanding (Francesconi et al., 2010). Training
effective ED models requires large amounts of
expert-annotated domain-specific data, which is
highly costly and labor-intensive. This underlines
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Figure 1: (top) Illustration of how prompting LLMs
directly for Event Detection (ED) with all the task con-
straints can lead to precision, recall, and constraint vio-
lations (incorrect JSON, trigger not in sentence) across
various LLMs. The errors are highlighted in bold.
(bottom) Highlighting the superior model performance
(green bars) of our proposed DICORE with minimal
inference cost (red bars) relative to reasoning baselines.

the need to develop zero-shot systems that can per-
form ED robustly without using any training data.

Recently, large language models (LLMs) have
shown strong zero-shot performance across vari-
ous tasks (Ouyang et al., 2022a; Li et al., 2023b).
However, their effectiveness on ED remains lim-
ited (Gao et al., 2023; Huang et al., 2024), due to
the requirement of extensive domain knowledge
and the complex structural nature of ED. ED re-
quires deep reasoning and imposes several inter-
twined constraints: study of the large, closed event

20560



ontology and ensuring the event types must be cho-
sen from it; semantic understanding of the input
passage and precisely identifying domain-specific
triggers within it; and conforming the output to a
strict, machine-parsable structured format. Encod-
ing these constraints as natural language instruc-
tions in the prompt overloads the LLM cognitively,
making it harder to effectively apply its reasoning
skills (Tam et al., 2024). This increased difficulty in
reasoning causes failures, such as missing relevant
events, predicting irrelevant ones, and struggling to
follow the expected format, as shown in Figure 1.

To this end, we propose DICORE, a novel
pipeline introducing Divergent-Convergent
Reasoning, that facilitates better ED performance
by reducing the cognitive burden of constraint
adherence on the LLM. DICORE comprises two
major components in a pipeline: Dreamer and
Grounder. (1) Dreamer fosters divergent reasoning
by prompting in an unconstrained, open-ended
manner. This encourages broad semantic explo-
ration of potential event mentions by removing
rigid task constraints and, in turn, boosts the recall.
(2) Grounder introduces convergent reasoning by
mapping Dreamer’s free-form predictions to the
task-specific closed event ontology. To alleviate
the constraint adherence burden on the LLM, we
employ a finite-state machine (FSM) to encode
structural and task-specific constraints. This FSM
guides the generation process through constrained
decoding, ensuring that the output adheres to the
task requirements. Finally, we add an LLM-Judge
to verify the grounded predictions against the
original task instructions, ensuring high precision
by filtering irrelevant predictions.

We conduct extensive experiments on six
datasets from five domains across nine LLMs.
Compared with various existing LLM inference
works (Gao et al., 2023; Wang et al., 2023; Parekh
et al., 2025a), we show how DICORE performs the
best with average improvements of 4-5% F1 Trig-
ger Classification and 5.5-6.5% F1 Event Identifica-
tion over the best baselines. DICORE, without any
training, also consistently improves over transfer-
learning baselines (Hsu et al., 2022; Sainz et al.,
2023) fine-tuned on 15-30k datapoints by at least
5-12% F1. Furthermore, we demonstrate that DI-
CORE provides 1-2% F1 gains while using 15-55x
fewer inference tokens relative to strong thinking-
based models and chain-of-thought (CoT), high-
lighting the significance of our proposed divergent-
convergent reasoning.

There should not be any demonstration in times of war.

Event Type: Demonstrate Event Type: Attack

Figure 2: Illustration example for the task of Event
Detection. Here, the blue box is the input sentence, and
the green boxes are the event mentions. The underlined
words indicate the event triggers.

In summary, we make the following contribu-
tions: (1) We propose Dreamer, introducing di-
vergent reasoning to improve event coverage. (2)
We develop Grounder, performing convergent rea-
soning to align free-form predictions to the event
ontology. (3) We design FSM-guided decoding
to enforce task-specific structure during inference.
Through extensive evaluations across six datasets,
five domains, and nine LLMs, we demonstrate
the generalizability and efficacy of DICORE, es-
tablishing it as a robust zero-shot ED framework.
We will release the code at https://github.com/
PlusLabNLP/DiCoRe.

2 Background and Related Works

Event Detection (ED) is the task of identifying
event mentions from input text/document X based
on a pre-defined ontology (Sundheim, 1992; Gr-
ishman and Sundheim, 1996; Doddington et al.,
2004). We follow previous works (Doddington
et al., 2004) to define an event as something that
happens or describes a change of state. Each event
is labeled by an event type e and the list of pre-
defined event types constitutes an event ontology
E . An event trigger t is defined as the most distinc-
tive word/phrase that indicates the event’s presence
in the text X . The trigger-event type pair (t, e) is
jointly referred to as the event mention. The extrac-
tion of trigger words from the text and classifying
them into one or more event types from the event
ontology is the task of Event Detection, described
by f below.

[(e1, t1), ...(en, tn)] = f(X; E)

We provide an illustration of the task in Figure 2,
wherein demonstration and war indicate the men-
tions of Demonstrate and Attack events, respec-
tively, in the sentence.

Event Detection: Traditionally, ACE05 (Dod-
dington et al., 2004) and ERE (Song et al., 2015)
have been traditionally utilized for developing
various sequence-tagging (Wadden et al., 2019;
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Hsu et al., 2023a) and generative (Li et al., 2021;
Hsu et al., 2023b) models. However, procuring
expert-annotated data in specialized domains like
biomedicine, law, cybersecurity, etc. is an ex-
pensive and labor-intensive task, leading to explo-
rations in zero-shot and low-resource ED.

Zero-shot Event Detection: Recently, various
diverse datasets such as MAVEN (Wang et al.,
2020), FewEvent (Deng et al., 2019), GENEVA
(Parekh et al., 2023) in general domain, GE-
NIA2011 (Kim et al., 2011), GENIA2013 (Kim
et al., 2013) in biomedical, CASIE (Satyapanich
et al., 2020) in cybersecurity, PHEE (Sun et al.,
2022) in pharmacovigilance, SPEED (Parekh et al.,
2024c), SPEED++ (Parekh et al., 2024b) in epi-
demiology, etc. have been developed. To explore
generalizability across these domains/datasets, ini-
tial works posed ED as a question-answering (Du
and Cardie, 2020) or machine-reading comprehen-
sion problem (Liu et al., 2020). Various works
explored transfer and joint learning across various
IE tasks to build more universal IE models (Lu
et al., 2022; Fei et al., 2023; Li et al., 2024). Some
works have explored posing ED as a generative
text-to-text approach with event-based templates
(Lu et al., 2021; Li et al., 2021; Hsu et al., 2022),
even for zero-shot cross-lingual transfer (Huang
et al., 2022; Parekh et al., 2024a). However, these
works require source data training for zero-shot
transfer, limiting their utility. Recent works have
also explored the utility of zero-shot prompting
with LLMs - concluding their sub-par performance
(Gao et al., 2023; Li et al., 2023a). Other works
have explored utilizing LLMs for data generation
(Ma et al., 2024; Zhang et al., 2024b; Parekh et al.,
2025a) to aid better generalizability. In our work,
we focus on improving LLMs’ zero-shot task gen-
eralizability to ED without any model fine-tuning.

Unconstraining LLMs for Better Reasoning:
LLMs show immense language understanding and
generation capabilities, but they need instructions
and constraints to aid in meaningful human tasks
(Ouyang et al., 2022b). However, imposing con-
straints also reduces LLM reasoning capabilities
(Tam et al., 2024; Tian et al., 2024; Banerjee et al.,
2025). To this end, works have explored con-
strained decoding by altering the output probability
distribution (Willard and Louf, 2023; Netz et al.,
2024; Zhang et al., 2024a). Some works explore
grammar-aligned decoding strategies (Geng et al.,
2023; Park et al., 2024). However, such strict en-

forcement has been shown to hurt LLMs’ genera-
tions. Recently, Tam et al. (2024) explored better
prompt design on math reasoning to unburden the
constraints on the LLM. With similar inspiration,
we explore decoupling LLMs from constraints to
improve reasoning in our work. Although, we only
explore the task of Event Detection, we believe our
work could benefit other structured tasks in Infor-
mation Extraction (Li et al., 2023c; Wang et al.,
2025), Document Understanding (Suvarna et al.,
2024), Question Answering (Rajpurkar et al., 2016;
Parekh et al., 2025b), and Dialogue Generation
(Parekh et al., 2020; Chen et al., 2020).

3 Methodology

In our work, we frame ED through a generative
outlook fgen (Paolini et al., 2021; Huang et al.,
2022) as they provide stronger zero-shot perfor-
mance (Hsu et al., 2022) and are better suited for
LLMs. We consider a structured list of tuples as
the output generation as they provide stronger per-
formance (§ C.1) and are easy to parse (Wang et al.,
2023). However, these considerations introduce
constraints (encoded as task instructions in LLM
prompt) like the predicted event is from the pro-
vided list, the predicted trigger phrase is in the
input text, and the output generation follows the
JSON format, as technically described below.

Y = fgen(X; E) where

Y = “[(e1, t1), ...(en, tn)]” (1)

t ∈ X ∀t ∈ {t1, ...tn} (2)

e ∈ E ∀e ∈ {e1, ...en} (3)

We argue that these structured constraints inher-
ent to ED (Eq. 1-3) increase the cognitive load
on LLMs, making reasoning more difficult (Tam
et al., 2024). This is one of the contributing fac-
tors to LLMs’ subpar performance for ED (Huang
et al., 2024). To address this, we propose DICORE,
a novel pipeline that decouples and reduces con-
straint adherence through divergent open-ended
discovery, convergent alignment, and constrained
decoding. DICORE is lightweight, does not require
additional training, and can be seamlessly applied
to any LLM. Specifically, DICORE comprises a
three-stage pipeline of a Dreamer-Grounder-Judge,
as illustrated in Figure 3, and described below.

3.1 Dreamer
Our first component, Dreamer aka Divergent open-
ended thinker, is designed to promote open-ended
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DREAMER
Divergent open-ended thinker

GROUNDER
Convergent constraint aligner

JUDGE
High precision verifier

Cabinet has advised people who 
experience symptoms of fever, flu, or 
rashes, to report to their nearest facility

LLM

[(“Advice”, “advised”),
(“symptom reporting”, “experience”), 
(“disease reporting”, “report”)]

Verbs

Fever 
flu …

cabinet

reporting

Event Ontology:
Control – collective 
efforts to impede the 
spread of a pandemic
…

LLM

[(“Control”, “advised”),
(“Symptom”, “experience”), 
(“Control”, “report”)]

LLMFSM

[(“Control”, “advised”),
(“Symptom”, “experience”)]

Control = collective 
efforts to impede the 
spread of a pandemic

Cabinet has 
advised people 
who experience …

Figure 3: Illustration of our DICORE pipeline. First, the Dreamer reasons divergently in an open-ended uncon-
strained manner about all potential events in the text and generates free-form event names. Next, the Grounder reads
the event ontology and convergently grounds the free-form predictions to one of the event types. It uses finite-state
machine (FSM) guided constrained decoding to enforce task-specific constraints. Finally, the Judge evaluates each
prediction and verifies its validity at a holistic scale.

divergent discovery, encouraging the LLM to
achieve high recall by freely identifying potential
events without being constrained by the predefined
event ontology. Specifically, the Dreamer compo-
nent fd removes the task-specific event constraint
(Eq. 3), relaxes the trigger constraint (Eq. 2), and
prompts the LLM to extract event mentions directly
from the input sentence X as

Yd = “[(e′1, t1), ...(e
′
n, tn)]” = fd(X)

where each e′i is a free-form LLM-generated nat-
ural language event name. Notably, e′i need not
adhere to the event ontology E . We provide an
illustration of the LLM prompt in Figure 5.

By removing explicit references to the event on-
tology, the instructions become less restrictive and
more semantically intuitive for the LLM. This sim-
plification enables the model to divergently reason
on the underlying semantics of the text, rather than
rigidly aligning with predefined categories. This
open-ended setup encourages broader event dis-
covery, improving recall by allowing the model to
identify diverse or implicit event types. Though it
may lower precision, it produces a rich candidate
set for downstream refinement.

3.2 Grounder
The second component, Grounder aka Conver-
gent constraint aligner, convergently aligns the
Dreamer’s open-ended predictions Yd with the
closed, task-specific event ontology E , while filter-
ing the events that are not mappable. Technically,

JSON
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Type
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End / Next 
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End
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Figure 4: Finite state machine (FSM) illustration
for guiding decoding to enforce constraints. Here
e1, . . . , e|E| ∈ E represent all the possible event types
and w1, . . . , w|X| ∈ X represent the atomized phrases
in the sentence X .

the Grounder component fg infuses the original
task-specific constraints into the prompt to gener-
ate the grounded event mentions Yg as

Yg = “[(e1, t1), ...(em, tm)]” = fg(X; E , Yd)

An illustration of the Grounder prompt and ex-
pected output is shown in Figure 6.

FSM-guided decoding for constraint enforce-
ment: To reduce the burden of constraint-
following on the LLM and ensure strict adherence
to the task format, we incorporate a constrained
decoding mechanism guided by a finite-state ma-
chine (FSM). Inspired by recent work (Willard
and Louf, 2023; Zhang et al., 2024a), the FSM
explicitly encodes structural and task-specific con-
straints (Eq. 1–3) within the decoding process. We
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LLM Prompt MAVEN (168) FewEvent (100) ACE (33) GENIA (9) SPEED (7) CASIE (5) Average
Style TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI

Llama3-8B

ChatIE 33.7 7.3 13.8 20.8 10.2 27.6 30.6 24.9 46.8 8.6 3.2 11.3 28.4 15.5 43.3 10.8 3.6 20.4 22.2 10.8 27.2
GEE 19.1 1.9 6.8 11.7 5.9 14.0 30.0 21.3 27.4 25.4 15.8 26.7 35.9 27.7 38.7 11.5 9.2 45.8 22.3 13.6 26.6
DEE 33.7 6.0 9.2 21.1 10.6 17.8 26.9 19.8 36.1 25.3 16.9 32.5 29.1 20.3 39.2 8.7 7.6 48.3 24.1 13.5 30.5
BD 54.5 10.7 12.3 22.3 9.9 15.0 34.2 19.5 31.4 28.1 11.2 30.2 35.3 24.7 37.2 16.8 7.4 44.5 31.9 13.9 28.4
MD 45.9 2.8 4.0 25.2 9.5 15.2 35.6 22.4 30.1 22.8 15.3 25.4 34.9 27.8 42.4 10.3 8.8 47.9 29.1 14.4 27.5
MS 46.2 10.3 11.2 20.2 10.2 17.0 26.7 17.6 23.1 27.6 19.7 30.5 34.1 27.3 40.6 11.9 10.3 48.3 27.8 15.9 28.4
DICORE 53.5 14.4 17.4 26.1 15.7 25.0 40.3 36.3 47.9 25.8 15.4 30.0 35.5 23.6 42.4 18.5 16.8 58.8 33.3 20.4 36.9

Llama3-70B

ChatIE 47.9 19.8 24.8 33.3 20.8 40.6 45.5 37.9 47.0 14.6 6.4 17.3 41.8 31.0 50.9 12.9 10.2 48.9 32.7 21.0 38.3
GEE 28.3 15.7 17.5 26.2 16.3 31.1 47.0 42.3 52.2 32.5 24.2 38.5 43.7 34.7 46.0 11.1 10.7 43.2 31.5 24.0 38.1
DEE 60.8 14.8 16.4 34.0 21.3 33.6 47.4 38.3 45.4 39.2 30.5 46.0 41.7 32.2 44.7 16.6 16.4 63.1 40.0 25.6 41.5
BD 63.0 13.9 15.2 34.0 14.5 22.6 49.1 36.6 41.7 39.4 26.5 45.4 49.2 33.6 45.7 16.5 11.7 48.8 41.9 22.8 36.6
MD 63.5 14.2 14.7 34.0 20.9 32.6 51.2 40.2 46.8 36.8 28.9 43.0 45.4 36.8 49.0 13.9 13.7 64.4 40.8 25.8 41.8
MS 33.9 21.6 22.3 35.3 24.9 39.9 49.9 42.8 46.9 37.4 31.0 45.0 43.8 35.5 49.6 14.0 14.0 59.5 35.7 28.3 43.9
DICORE 62.5 27.8 30.6 40.4 25.1 36.1 57.2 49.5 55.1 38.6 31.0 48.5 45.0 36.5 51.8 17.3 16.6 66.6 43.5 32.8 48.1

Table 1: Main results comparing the zero-shot ED performance of our proposed DICORE with all other baselines
for the Llama3-8B-Instruct and Llama3-70B-Instruct LLMs. TI: Trigger Identification, TC: Trigger Classification,
EI: Event Identification. bold = best performance. (XX) = number of distinct event types.

construct and demonstrate an FSM to encode con-
straints for our ED task in Figure 4.

The FSM states represent decision points (e.g.,
whether the sentence contains an event, which
event type e ∈ E to choose, which trigger w ∈ X to
assign, etc.), and the transitions denote valid LLM
generations at each point (e.g., list of event types
in E , trigger words in the sentence). As shown in
Figure 4, generation proceeds step by step: starting
with the event/no-event decision (state A), followed
by selecting an event type (state B), then its trigger
(state C), and finally deciding whether to generate
another event mention or terminate (state D). To
ensure that the generations are natural, the FSM
states are partitioned in alignment with the LLM
tokenizer, i.e., the states are chosen such that the
sequence of transition tokens is the most probable
tokenization of the output text Yg.

We implement this FSM using the Outlines li-
brary (Willard and Louf, 2023) integrated into a
vLLM inference framework (Kwon et al., 2023).
The module takes as input the ontology, input sen-
tence, LLM, and output JSON schema (potentially
expressed as a grammar). Each FSM state transi-
tion is encoded as an Outlines choices list, thereby
restricting the LLM’s output vocabulary to only
valid strings for that transition. For example, the set
of possible event types or candidate trigger words
is directly provided as the restricted vocabulary,
and transitions with a single option are handled de-
terministically. The selected string then determines
the next FSM state.

This design enforces structural validity during
decoding: at each step, tokens not corresponding
to valid FSM transitions are zeroed out, ensuring

the LLM can only generate ontology-compliant
outputs. Our implementation currently supports
generation of JSON tuples of the form (event type,
trigger), making it directly applicable to any ED
dataset. More generally, because the transition and
state mappings can be automatically constructed
from the grammar of task constraints, the approach
is customizable to other output formats and struc-
tured prediction tasks.

3.3 Judge
The final component of our pipeline, Judge aka
High precision verifier, serves to ensure each pre-
dicted event mention adheres to the original task
instructions. Specifically, for each candidate pair
(ei, ti), the Judge fj evaluates the hypothesis that
the trigger ti expresses the event type ei in the con-
text of the input sentence X as

yij = “Y es/No” = fj(ei, ti, X; E)

All predictions with yij = “Y es” are accepted into
the final output, while the others are rejected. We
provide an illustration of the prompt in Figure 7.

This verification step plays a crucial role in en-
suring the semantic validity and task alignment of
predictions at a holistic level. By filtering out irrel-
evant or uncertain outputs, the Judge substantially
improves the precision of the overall system with-
out requiring additional supervision or training.

4 Experimental Setup

In this section, we describe our experimental setup
comprising the datasets, baselines, evaluation met-
rics, and implementation details. Additional setup
and implementation details are provided in § B.
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LLM Prompt MAVEN (168) FewEvent (100) ACE (33) GENIA (9) SPEED (7) CASIE (5) Average
Style TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI

Qwen2.5-14B
MD 53.0 17.6 20.9 28.8 21.1 34.2 28.3 24.5 42.1 24.8 18.8 26.7 37.7 33.0 51.2 15.8 15.8 61.5 31.4 21.8 39.5
MS 46.5 20.8 24.6 24.8 18.9 32.1 33.6 26.3 32.5 25.4 19.2 27.7 38.9 34.3 46.1 16.3 16.1 54.5 30.9 22.6 36.2
DICORE 53.1 23.3 27.6 29.7 19.3 30.4 38.4 37.7 48.8 29.9 22.6 38.6 42.9 35.3 46.5 19.7 19.5 58.8 35.8 26.1 41.8

Qwen2.5-72B
MD 49.4 21.6 24.1 17.0 12.3 21.0 28.8 25.8 30.3 30.5 27.0 36.3 41.4 37.4 45.4 11.0 10.4 57.9 29.7 22.4 35.8
MS 39.9 23.6 25.4 25.0 21.0 34.2 42.5 40.4 42.5 26.7 23.6 34.1 40.6 35.5 45.2 10.5 10.5 49.1 30.9 25.8 38.4
DICORE 54.1 27.5 30.2 30.8 22.3 32.9 46.8 44.8 47.8 33.6 29.8 43.9 40.6 34.7 41.4 15.9 15.8 59.3 37.0 29.2 42.6

GPT3.5-turbo
MD 50.9 17.4 20.4 23.2 14.6 27.0 40.9 36.2 42.5 27.0 19.9 31.4 36.5 30.6 41.8 10.0 9.9 51.1 31.4 21.4 35.7
MS 48.2 15.5 17.2 23.7 15.9 29.8 40.7 37.4 42.3 23.2 19.0 26.3 33.0 23.7 35.5 7.7 7.1 44.4 29.4 19.8 32.6
DICORE 48.1 21.6 26.1 25.3 15.6 31.1 41.7 41.7 48.9 26.2 19.5 36.3 32.4 27.2 49.0 11.4 10.6 55.7 30.9 22.7 41.2

GPT4o
MD 61.8 28.9 31.9 30.6 23.9 35.4 52.3 52.3 52.3 41.0 36.5 49.5 44.1 40.2 48.0 10.1 10.1 55.7 40.0 32.0 45.5
MS 49.4 30.8 33.3 25.6 20.6 32.2 36.2 36.2 38.3 36.6 33.2 45.0 45.7 40.4 50.1 13.4 13.4 46.9 34.5 29.1 41.0
DICORE 58.5 32.2 35.6 36.1 28.4 38.5 54.9 54.9 56.6 40.7 35.4 51.2 43.3 37.3 46.1 16.7 16.7 58.8 41.7 34.2 47.8

Table 2: Generalization results for zero-shot ED performance comparing DICORE with the best baselines for four
other LLMs of Qwen2.5-14B-Instruct, Qwen2.5-72B-Instruct, GPT3.5-turbo, and GPT4o. bold = best performance.
(XX) = number of distinct event types.

Dataset Domain # Doc # Event Avg. Doc
Mentions Length

MAVEN General 250 623 24.5
FewEvent General 250 250 30.5
ACE News 250 71 13.2
GENIA Biomedical 250 2472 251.3
SPEED Epidemiology 250 258 32.4
CASIE Cybersecurity 50 291 283.1

Table 3: Data Statistics of the various ED datasets used
in our experimental setup.

Datasets: We benchmark our model across six
ED datasets spanning five diverse domains, listed
as: (1) MAVEN (Wang et al., 2020) and (2) Few-
Event (Deng et al., 2019) from the general do-
main, (3) ACE (Doddington et al., 2004) from the
news domain, (4) GENIA (Kim et al., 2011), from
the biomedical domain, (5) SPEED (Parekh et al.,
2024c), from the epidemiological/social media do-
main, (6) CASIE (Satyapanich et al., 2020), from
the cybersecurity domain.

We provide statistics about the test splits of the
different datasets in Table 3. To avoid any distri-
butional biases, following TextEE (Huang et al.,
2024), we uniformly sample 250 datapoints from
the combined train-dev-test splits of each dataset
for evaluation. Since CASIE is a smaller dataset,
we only use 50 test samples for this dataset. The
table highlights the domain diversity of the datasets
covering common domains like news and gen-
eral, while also focusing on technical domains
like biomedical and epidemiology. The datasets
also show variation in the density, with ACE, Few-
Event, and SPEED being sparse with upto 1 event
mention/sentence. On the other hand, MAVEN,
CASIE, and GENIA are denser with 2.5-10 event

mentions/passage. Finally, we also show the vari-
ation in token length, with ACE being the lowest
with an average of 13 tokens, while GENIA and
CASIE are longer with 250-280 average tokens per
input document.

Baselines: We consider two major baselines, de-
scribed below: (1) Multi-event Direct (MD) (Gao
et al., 2023) directly prompts the LLM to provide
the final output in a single pass, and (2) Multi-event
Staged (MS) (Parekh et al., 2025a) decomposes the
task into two stages, where the first stage identifies
the event and the second stage extracts the cor-
responding triggers. We also compare with other
works like: (3) Binary-event Direct (BD) (Lyu et al.,
2021; Li et al., 2023d) prompts the LLM to do bi-
nary classification for each event, (4) Decompose-
Enrich-Extract (DEE) (Shiri et al., 2024) utilizes
instruction enrichment with schema information
for ED, (5) GuidelineEE (GEE) (Srivastava et al.,
2025), similar to Code4Struct (Wang et al., 2023),
converts ED into a code-generation problem using
Python classes and instantiations, and (6) ChatIE
(Wei et al., 2023) decomposes ED via multi-turn
conversations. We ensure consistent, structured out-
puts for each baseline to maintain fair comparisons
(analysis in § C.1). Furthermore, we add the Judge
component to each baseline, if not already present,
to ensure robust benchmarking of DICORE.

Base LLMs: We use the following LLMs for our
base experiments: Llama3-8B-Instruct and Llama3-
70b-Instruct from the Llama3 family (Dubey et al.,
2024) and Qwen2.5-14B-Instruct; Qwen2.5-72B-
Instruct from the Qwen2.5 (Yang et al., 2024) LLM
family; and GPT3.5-turbo and GPT-4o (Brown
et al., 2020; OpenAI, 2023) from OpenAI.
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Evaluation Metrics: Following Ahn (2006);
Parekh et al. (2025a) we report the F1 scores for
the following three metrics: (1) Trigger Identifica-
tion (TI) - correct identification of triggers, and (2)
Event Identification (EI) - correct classification of
event types, and (3) Trigger Classification (TC) -
correct identification of the trigger-event pair (event
mention). To maintain consistency with traditional
span-based evaluations, we used string matching to
map the generated outputs to input spans.

Implementation Details: We use TextEE
(Huang et al., 2024) for our benchmarking,
datasets, and evaluation setup. To restrict LLM’s
generation choices for the FSM-guided constrained
decoding, we utilize Outlines (Willard and Louf,
2023) over vLLM inference (Kwon et al., 2023).
We use Curator (Marten et al., 2025) for querying
the GPT family LLMs. We deploy a temperature
of 0.4 and top-p of 0.9 for decoding. We report
the averaged results over three runs for robust
benchmarking.

5 Results and Analysis

In this section, we provide our main results and
findings, and later provide supporting evidence
through our analyses. We also provide additional
experimental results and error anlaysis in the Ap-
pendix (§ C).

5.1 Main Results
We present the main zero-shot results for all base-
lines on the six datasets for Llama3 LLMs in Ta-
ble 1. As seen from the average results (last three
columns), DICORE performs the best, surpass-
ing the best baseline of multi-event staged (MS)
by a significant margin of 5.5-8% TI, 4-8.5% EI,
and 4-5% TC. The performance disparity across
different task decomposition methods of ChatIE,
MS, and DICORE highlights how our divergent-
convergent decomposition of Dreamer-Grounder
provides a stronger inductive bias. Other base-
lines perform relatively better on datasets like GE-
NIA/SPEED, as these are simpler datasets with
fewer event types; thus, requiring lesser cognitive
reasoning. However, on the high-event datasets
like MAVEN/FewEvent/ACE which require more
complex reasoning, DICORE with its divergent-
convergent reasoning shows more significant im-
provement over the baselines.

Generalization across LLMs: To demonstrate
the generalizability of DICORE, we benchmark

Model Setting Average F1
TI TC EI

Test on GENIA, SPEED, CASIE

GOLLIE-7B 6.0 5.3 15.3
GOLLIE-34B 15.6 11.7 29.4
Llama3-8B DICORE 26.6 18.6 43.7
Llama3-70B DICORE 33.6 28.0 55.6

Test on all but ACE dataset

ACE-trained DEGREE 20.9 11.0 21.3
Llama3-8B DICORE 31.9 17.2 34.7
Llama3-70B DICORE 40.8 27.4 46.7

Test on all but MAVEN dataset

MAVEN-trained DEGREE 31.8 25.0 38.6
Llama3-8B DICORE 29.2 21.6 40.8
Llama3-70B DICORE 39.7 31.7 51.6

Table 4: Comparison of pure zero-shot DICORE with
fine-tuned transfer-learning baselines. Underline indi-
cates scenarios of DICORE improvements.

it with the top-performing baselines on four addi-
tional LLMs from the Qwen and GPT families and
show our results in Table 2. We note how DICORE

performs the best across all LLMs with an overall
average improvement of 5.5% TI, 6.5% EI, 4% TC
over the multievent-staged baseline and 3.3% TI,
5.4%, 4.6% TC over the multievent-direct base-
line. Across different LLMs, we note the strongest
performance on GPT4o, followed by Llama3-70B-
Instruct and Qwen2.5-72B, indicating how more
parameters help better reasoning with DICORE.

5.2 Comparison with Fine-tuned
Transfer-learning Methods

Various works utilize transfer-learning and univer-
sal Information Extraction (IE) training for zero-
shot cross-dataset ED (Cai et al., 2024; Li et al.,
2024). These works train on selected IE datasets
and show performance on unseen IE datasets. We
provide a comparison of DICORE with two such
transfer-learning approaches: (1) DEGREE (Hsu
et al., 2022), a generative framework utilizing text-
based event templates to generalize, (2) GOLLIE
(Sainz et al., 2023), a universal IE framework, fine-
tuning LLMs on various IE instruction datasets.
For DEGREE, we consider two versions where the
source data is ACE and MAVEN, respectively. For
GOLLIE, we consider the fine-tuned GOLLIE-7B
and GOLLIE-34B models. We provide the aver-
aged results across target datasets (not included in
the source data) in Table 4, with detailed results in
§ C.4. Through these results, we demonstrate how,
despite no fine-tuning, DICORE consistently out-
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Base LLM Prompt Average F1
Style TI TC EI

Chain-of-thought Baselines

Llama3-8B MD + CoT 25.0 13.5 27.1
Llama3-8B MS + CoT 28.4 17.6 31.9
Llama3-70B MD + CoT 41.0 30.9 48.0
Llama3-70B MS + CoT 40.5 31.6 47.1
Qwen2.5-72B MD + CoT 34.9 27.1 43.6
Qwen2.5-72B MS + CoT 36.2 28.8 40.8

Thinking-based model Baselines

DS-Qwen-32B MD 39.2 30.0 46.3
DS-Qwen-32B MS 39.5 30.4 45.2
DS-Llama3-70B MD 29.0 23.3 36.1
DS-Llama3-70B MS 33.3 27.0 37.8
O1-mini MD 40.2 32.5 44.7

DICORE base model results

Llama3-8B DICORE 33.3 20.4 36.9
Llama3-70B DICORE 43.5 32.8 48.1
Qwen2.5-72B DICORE 37.0 29.2 42.6
GPT4o DICORE 41.7 34.2 47.8

DICORE improvements with reasoning

Llama3-8B DICORE+ CoT 33.1 21.1 36.2
Llama3-70B DICORE+ CoT 43.0 33.1 49.8
Qwen2.5-72B DICORE+ CoT 37.0 29.1 43.5
DS-Qwen-32B DICORE 43.1 33.3 49.5
DS-Llama3-70B DICORE 41.4 33.0 48.3

Table 5: Comparison of DICORE with reasoning-based
baselines like Chain-of-thought (CoT) and thinking-
based models. Underline indicates DICORE improve-
ments over reasoning baselines.

performs the fine-tuned transfer-learning baselines
across all settings. On average, DICORE improves
by 3-10% F1 using Llama3-8B-Instruct and 10-
22% F1 using Llama3-70B-Instruct and GPT4o.

5.3 Comparison with Reasoning baselines

Reasoning by verbalizing thoughts using addi-
tional tokens has commonly helped improve perfor-
mance across a wide range of tasks (Kojima et al.,
2022; Latif et al., 2024). We evaluate the utility
of reasoning, specifically Chain-of-thought (CoT)
(Wei et al., 2022), along with thinking-based mod-
els like Deepseek-R1-Distilled-Qwen-32B (DS-
Qwen-32B), Deepseek-R1-Distilled-Llama3-70B
(DS-Llama3-70B) (DeepSeek-AI et al., 2025) and
O1-mini (Jaech et al., 2024) on our task of zero-
shot ED in Table 5 (complete results in § C.5). We
demonstrate how the baselines improve with addi-
tional reasoning; however, DICORE with the base
models (Llama3-70B) consistently outperforms all
these reasoning baselines (even O1-mini) while us-
ing 15-55x fewer tokens on average (§ C.5). We
also show how our method is complementary to

Component TI TC
P R F P R F

Llama3-8B-Instruct

Dreamer 8.5 64.3 15.0 0.0 0.0 0.0
+ Grounder 20.4 47.9 28.6 15.5 37.1 21.9
+ FSM Decoding 22.3 56.8 32.1 16.2 42.3 23.4
+ Judge 41.8 39.0 40.3 37.5 35.2 36.3

MD Baseline 48.4 28.2 35.6 30.2 17.8 22.4
MS Baseline 22.0 33.8 26.7 14.4 22.5 17.6

Llama3-70B-Instruct

Dreamer 15.5 77.5 25.8 0.0 0.0 0.0
+ Grounder 28.6 65.7 40.4 22.5 53.4 31.8
+ FSM Decoding 32.3 66.7 43.5 26.2 54.0 35.3
+ Judge 52.8 62.5 57.2 45.7 54.0 49.5

MD Baseline 57.2 46.5 51.2 44.0 37.1 40.2
MS Baseline 66.4 39.9 49.9 57.0 34.3 42.8

Table 6: Ablation Study on the ACE dataset highlighting
the significance and contribution of each component of
DICORE. P: Precision, R: Recall, F: F1 score.

reasoning by demonstrating further improvements
up to 1-2% F1 using reasoning with DICORE.

5.4 Ablation Study
To demonstrate the role of each component of our
pipeline, we ablate and show the model perfor-
mance as we add each component in DICORE for
the ACE dataset for Llama3-8B and Llama3-70B
LLMs in Table 6. For reference, we also show the
precision/recall splits of the baselines. Dreamer
achieves a high recall for TI (albeit a low preci-
sion) - demonstrating the utility of divergent un-
constrained reasoning. Grounder helps align the
predictions, causing a slight drop in recall while im-
proving the precision. FSM Decoding helps largely
improve the recall for Llama3-8B-Instruct by im-
proving the mapping, and precision for Llama3-
70B-Instruct by fixing any constraint violations.
Finally, Judge largely boosts the precision of the
model. Analysis of the baselines reveals that they
are conservative, making a low number of high-
precision predictions. In comparison, DICORE

makes many more predictions, largely improving
recall while maintaining reasonably high precision.

Qualitative Study: We provide some qualitative
examples for each component of DICORE, while
comparing the best baseline across the datasets in
Table 7 (more examples in § D). We see how the
best baseline often reasons incorrectly, leading to
precision loss, or remains conservative, predicting
nothing, leading to recall errors. The split across
the three components shows how Dreamer gen-
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Sentence Best Baseline Dreamer Grounder Judge
Prediction Prediction Prediction Prediction

cass apd ra gave birth to
her first daughter.

[("Life:Be-Born",
"gave")]

[("Birth", "gave"),
("Birth", "birth")]

[("Life:Be-Born",
"birth")]

[("Life:Be-Born",
"birth")]

After passing the island,
the hurricane turned to
the northeast, and be-
came extratropical on
September 8, before dis-
sipating two days later.

[("Change",
"turned"),
("Change",
"became"), ("Dis-
sipating", "dissi-
pating")]

[("Movement",
"turned"), ("Tran-
sition", "became"),
("Dissipation", "dissi-
pating")]

[("Change_event_time",
"turned"), ("Becom-
ing_a_member",
"became"), ("Disper-
sal", "dissipating")]

[("Dispersal",
"dissipating")]

Covid-19 has led to so-
cial distancing, but we
can still be together
through the quarantine
with online gaming!

[] [("Social_Distancing",
"distancing"), ("Quar-
antine", "quarantine"),
("Gaming", "gam-
ing")]

[("prevent", "dis-
tancing"), ("control",
"quarantine")]

[("prevent",
"distancing"),
("control", "quar-
antine")]

Table 7: Qualitative examples comparing DICORE’s predictions (per component) with the best baseline. We
highlight the correct predictions in green and incorrect ones in red.

erates many plausible event mentions, Grounder
aligns and removes some, while Judge verifies and
filters irrelevant ones. These examples provide the
internal workings of DICORE, highlighting the sig-
nificance of divergent-convergent reasoning.

6 Conclusion and Future Work

In our work, we introduce DICORE, a novel
divergent-convergent reasoning pipeline of
Dreamer-Grounder-Judge, aimed at decoupling the
LLM from task-specific constraints, and indirectly
better exploiting LLMs’ reasoning. Through
experimentation on six ED datasets from five
domains across nine LLMs, we confirm how
DICORE provides a stronger inductive bias, im-
proving over other zero-shot baselines, fine-tuned
transfer learning methods, and reasoning-focused
approaches. Future works can explore this
paradigm on broader tasks and study to better elicit
divergent-convergent reasoning.
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A DICORE Prompts

We described our modeling paradigm of divergent-
convergent reasoning through the Dreamer-
Grounder-Judge paradigm in § 3. Here we provide
some additional details and also share the prompts
that we used for each component.

Dreamer: The Dreamer component induces di-
vergent thinking, encouraging the model to think
more widely. We induce this behavior by removing
the event-based constraints from the task instruc-
tions and adding additional inductive bias to pro-
vide this encouragement inthe form of additional
task instructions asking the model to be super lib-
eral. We provide an illustration of this prompt in
Figure 5. Specifically, sentences like "Try to be lib-
eral and increase the coverage as much as possible.
I will filter and improve the precision in the next
step." and "Be very open and output all possible
events that are potentially mentioned." provide this
stronger divergent reasoning inductive bias.

Grounder: The Grounder component aligns the
open-ended predictions of the Dreamer with the
closed event ontology using convergent reasoning.
To this end, we add the various task-specific con-
straints in the form of natural language instructions
as well as use a finite-state machine (FSM) guided
generation to aid with this convergent reasoning.
Here, we describe the prompt and the inductive
biases in it, as illustrated in Figure 6. Specifically,
we first add all the verbalized constraints, including
the ontology details in the form of event names and
information. To provide more inductive bias, we
also add a sentence like "Be conservative in your
outputs - If a trigger word cannot be mapped, skip
the trigger word. If the mapped event does not
happen in the sentence, skip the trigger word.".

Judge: The Judge is tasked with the evaluation
of the prediction to ensure that the trigger word
triggers the specific event in the given sentence.
We run the Judge for each prediction separately. To
make this lightweight, we ensure that the output
space is simple "Yes" or "No" without any explana-
tion, which makes the parsing easier as well. We
provide an illustration of this prompt in Figure 7.
This component is very generic and can be easily
applied to other methods/LLMs as well.

You are an event extraction model, looking to 
extract events from a sentence.

This is an event extraction task where the goal is to 
extract structured events from the text. A structured 
event contains an event trigger word and an event 
type.
Below is a sentence from which you need to extract 
the events if any. Only output a list of tuples in the 
form [(\"event_type_1\", \"event_trigger_word_1\"), 
(\"event_type_2\", \"event_trigger_word_2\"), ...] for 
each event in the sentence. Try to be liberal and 
increase the coverage as much as possible. I will 
filter and improve the precision in the next step. Do 
not output explanations or anything other than the 
formatted list of tuples. If there are no events in the 
sentence, output empty list []. Be very open and 
output all possible events that are potentially 
mentioned.

People who live in crowded or poorer areas are 
more likely to test positive for Covid - 19 , according 
to a ( url ) study of infection in the general 
population ( url )

System Prompt User Instructions User Query

Figure 5: Illustration of the prompt utilized for Dreamer.
To encourage divergent thinking, we remove event-
based constraints from the model instructions. Further-
more, we add sentences that encourage the model to be
liberal and open in its predictions.

B Additional Experimental Details

In § 4, we provided brief details about our experi-
mental and implementation details. Here, we pro-
vide additional implementation details for DICORE

and the various baselines. For open-source models,
we ran them locally on NVIDIA RTX A6000/A100
machines with support for 8 GPUs.

B.1 DICORE

Trigger Atomization Adaptation for FSM-
guided Decoding: Different datasets have var-
ied annotation instructions and definitions for the
trigger spans. Some datasets are strictly adhering
to only single-word triggers (e.g., SPEED), while
others are largely loose and support multi-word
triggers (e.g., CASIE). We provide a small study
of measuring multi-word triggers in Table 8, high-
lighting this disparity across datasets. To account
for these varied definitions, we infuse a customiz-
able atomization unit in our FSM-guided decoding.
Specifically, state C from Figure 4 is customiz-
able wherein for stricter datasets (SPEED, ACE,
FewEvent), we impose an additional constraint
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You are an event extraction model, looking to map 
provided trigger words to potential event types.

This is an event extraction task where the goal is to 
extract structured events from the text. Given the 
sentence and possible event triggers, map these 
triggers to corresponding events from the provided 
event list. Omit triggers which are not mappable or if 
the mapped event is not mentioned in the sentence.
The event list comprises 7 events. These events are:
Infect … Spread … 
…
Below is the sentence and the list of trigger words. 
Map each trigger word from this list to a single event 
from above and output a list of tuples in the form 
[(\"event_type_1\", \"event_trigger_word_1\"), 
(\"event_type_2\", \"event_trigger_word_2\"), ...]. Be 
conservative in your outputs - If a trigger word cannot 
be mapped, skip that trigger word. If the mapped 
event does not happen in the sentence, skip that 
trigger word. Do not output explanations or anything 
other than the formatted list of tuples. If no triggers 
can be mapped, output empty list [].

Sentence: I hope this pandemic ends soon …
Trigger List: ['ends']"

System Prompt User Instructions User Query

Figure 6: Illustration of the prompt utilized for
Grounder. To encourage convergent thinking and align-
ment, we add event-based constraints in the model in-
structions. Furthermore, we add sentences that encour-
age the model to be more conservative in its predictions.

of single-word trigger, while for other datasets
(CASIE, GENIA, MAVEN), we apply a looser con-
straint of substring match with the query sentence.

Dataset % Multi-word Triggers

MAVEN 8%
FewEvent 3%
ACE 2.8%
GENIA 8.5%
SPEED 0%
CASIE 54.6%

Table 8: Measuring the percentage of multi-word trig-
gers across the different ED datasets.

B.2 Multi-event Direct (MD)
Multi-event direct (MD) (Gao et al., 2023; Huang
et al., 2024; Chen et al., 2024) is the most common
and simplest prompting technique used for ED. It
prompts the model directly to reason across all the
events and provide the relevant triggers based on
the query text. We try various prompt versions and
illustrate the best engineered prompt based on a
small study in Figure 8. Majorly, we include all

You are an event extraction verification model, 
looking to verify the provided trigger word triggers 
the event type in the given sentence.

This is an event extraction verification task where 
the goal is to verify if the extracted structured event 
is mentioned in the text. Given the sentence, a 
possible event mention with its trigger, verify if the 
event mention is correct or not.
Event Definition: The event of interest is infect. The 
event is related to the process of a 
disease/pathogen invading host(s).
Event Trigger: infection
Below is the sentence. Verify if the above trigger 
word triggers the above mentioned event in this 
given sentence. If yes, then output 'Yes' else output 
'No'. Do not output explanations or anything other 
than 'Yes/No'.

People who live in crowded or poorer areas are 
more likely to test positive for Covid - 19 , according 
to a ( url ) study of infection in the general 
population ( url )

System Prompt User Instructions User Query

Figure 7: Illustration of the prompt utilized for Judge.
To encourage convergent thinking and alignment, we
add event-based constraints in the model instructions.
Furthermore, we add sentences that encourage the
model to be more conservative in its predictions.

task-specific instructions and constraints in a single
verbalized prompt, which can overload the LLM’s
reasoning capability.

B.3 Multi-event Staged (MS)

Multi-event staged (MS) (Parekh et al., 2025a) was
introduced as a way of forward generation to en-
sure higher trigger quality. We extend that in our
work to build a strong task decomposition baseline.
Simply, this model first extracts the event types
from the texts in Stage 1 and then extracts triggers
specific to these event types in Stage 2. We provide
an illustration of the two stages of MS in Figures 9
and 10. In this case, the first stage majorly only
focuses on the event-specific constraints, while the
second stage is focused on the trigger-specific ones.

B.4 Binary-event Direct (BD)

Binary-event direct (BD) (Lyu et al., 2021; Li et al.,
2023d) has been a popular paradigm pre-dating
LLMs when smaller generative text-to-text mod-
els were used. It drastically reduces the LLM’s
constraints by making the LLM focus on a single
event type at a time, i.e., it prompts the LLM in a
multi-event direct manner, but for each event type
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You are an event extraction model, looking to 
extract events from a sentence.

This is an event extraction task where the goal is to 
extract structured events from the text. A structured 
event contains an event trigger word and an event 
type.
Here are 7 events that we are interested in:
Infect … Spread … 
…
Below is a sentence from which you need to extract 
the events if any. Only output a list of tuples in the 
form [(\"event_type_1\", \"event_trigger_word_1\"), 
(\"event_type_2\", \"event_trigger_word_2\"), ...] for 
each event in the sentence. Do not output 
explainations or anything other than the formatted 
list of tuples. If there are no events in the sentence, 
output empty list [].

People who live in crowded or poorer areas are 
more likely to test positive for Covid - 19 , according 
to a ( url ) study of infection in the general 
population ( url )

System Prompt User Instructions User Query

Figure 8: Illustration of the prompt utilized for multi-
event direct baseline.

You are an event extraction model, looking to 
extract events from a sentence.

This is an event extraction task where the goal is to 
extract structured events from the text. Given the 
sentence, figure if you find any event mention of the 
possible events.
Here are 7 events that we are interested in:
Infect … Spread … 
…
Below is a sentence from which you need to extract 
the events if any. Only output a list of events in the 
form [\"event_type_1\", \"event_type_2\", ...] that 
you find in the sentence. Do not output 
explanations or anything other than the formatted 
list. If there are no events in the sentence, output 
empty list [].

People who live in crowded or poorer areas are 
more likely to test positive for Covid - 19 , according 
to a ( url ) study of infection in the general 
population ( url )

System Prompt User Instructions User Query

Figure 9: Illustration of the Stage-1 prompt utilized for
multi-event staged baseline.

You are an event extraction model, looking to 
extract event triggers for given events from a 
sentence.

This is an event extraction task where the goal is to 
extract structured events from the text. Given the 
sentence and possible events, find corresponding 
event triggers for the event. Event triggers are 
usually one word, many times verbs, and most 
indicative of the event presence.
Here are 1 events that are possibly present in the 
sentence: ['infect’]
The event of interest is infect. The event is related to 
the process of a disease/pathogen invading host(s).
Below is a sentence. Identify the trigger word for the 
above listed events and output a list of tuples in the 
form [(\"event_type_1\", \"event_trigger_word_1\"), 
(\"event_type_2\", \"event_trigger_word_2\"), ...] for 
all the events mentions. Omit events which are not 
present or do not have a prominent trigger. Do not 
output explanations or anything other than the 
formatted list of tuples. If there are no events in the 
sentence, output empty list [].

Children can catch COVID - 19 .

System Prompt User Instructions User Query

Figure 10: Illustration of the Stage-2 prompt utilized for
multi-event staged baseline.

You are an event extraction model, looking to 
extract event triggers for the given event from a 
sentence.

This is an event extraction task where the goal is to 
extract structured events from the text. Given the 
sentence and the event definition, find 
corresponding event triggers for the event. Event 
triggers are usually one word, many times verbs, 
and most indicative of the event presence.
The event of interest is infect. The event is related to 
the process of a disease/pathogen invading host(s).
Below is a sentence. Identify the trigger word for the 
above event of interest. Output a list in the form 
[\"trigger1\", \"trigger2\" ...] for all the events 
mentions. If the event is not present, output a 
empty list []. Do not output explanations or anything 
other than the output list.

Children can catch COVID - 19 .

System Prompt User Instructions User Query

Figure 11: Illustration of the prompt utilized for binary-
event direct baseline.
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You are an event extraction model, looking to 
extract events from a sentence.

Task Description: You are an assistant that helps 
extract the list of event types and their trigger words 
from input text.
Extraction Rules:
- The instance can contain any number of events.
- Limit responses to event types and their triggers 

only.
- Refrain from providing additional explanations.
- Do not enumerate the list.
Event Type Definitions: The possible event types 
and their definitions are as follows:
Infect … Spread … 
…
Output Format: Output a list of events 
[{'event_type': <event_type_1>, 'trigger': 
<event_trigger_1>}, {'event_type': <event_type_2>, 
'trigger': <event_trigger_2>}, ...]. Each event 
contains an event type and its trigger.

People who live in crowded or poorer areas are 
more likely to test positive for Covid - 19 , according 
to a ( url ) study of infection in the general 
population ( url )

System Prompt User Instructions User Query

Figure 12: Illustration of the prompt utilized for
Decompose-Enrich-Extract baseline.

separately. Finally, the predictions are aggregated
and output as the final prediction. We provide an
illustration of the prompt in Figure 11. Overall,
this is a highly expensive method, especially for
larger event datasets.

B.5 Decompose-Enrich-Extract (DEE)

Decompose-Enrich-Extract (DEE) (Shiri et al.,
2024) is a variation of the multi-event direct (MD)
model, wherein it prompts the model to make pre-
dictions while enhancing the input schema. It also
puts down additional rules to make the extraction
more accurate, but we posit this also adds more
constraints, restricting the model’s reasoning. We
provide an illustration of the prompt for this base-
line in Figure 12.

B.6 GuidelineEE (GEE)

GuidelineEE (GEE) (Srivastava et al., 2025) is the
method focused on providing extensive guidelines
to the LLM to improve its task understanding capa-
bility. This work is similar to Code4Struct (Wang
et al., 2023), wherein the input and output are more
code-oriented using Python class-like structures.
The definition is provided as a docstring, and the

You are an event extraction model, looking to extract events 
from a sentence.

This is an event extraction task where the goal is to extract 
structured events from the text. A structured event contains 
an event trigger word and an event type. For each different 
event type, please output the instances of the corresponding 
classes with the appropriate trigger i.e. 
<Event_Name>(trigger='<Trigger_name>’)
#  The following lines describe the events as python classes:
@dataclass
class infect():
""" The event of interest is infect. The event is related to the 
process of a disease/pathogen invading host(s)."""
def __init__(self, trigger: str):
        self.trigger = trigger
…

# This is the text to analyze
text = “Children can catch COVID - 19 .”

System Prompt User Instructions User Query

# The list called result should contain the instances for the 
events in the above text according to the guidelines above 
(i.e. [ event_name1(trigger='trigger1'), 
event_name2(trigger='trigger2'), ...]):
result = 

Figure 13: Illustration of the prompt utilized for Guide-
lineEE baseline.

trigger is extracted as an attribute of the class. The
output is mainly instantiations of the right set of
classes. We provide an illustration of the prompt
for this baseline in Figure 13.

B.7 ChatIE

ChatIE (Wei et al., 2023) is a simple variation of
multi-event staged (MS), but uses multi-turn con-
versation with the LLM. Specifically, stage-1 (Fig-
ure 9) is used as the initial prompt, and based on the
output, stage-2 (Figure 10) is used as the second
turn of the prompt.

B.8 GPT Runs

For the GPT models (i.e., GPT3.5-turbo, GPT4o,
O1-mini), we utilized Curator (Marten et al., 2025)
for the API calls. We noticed how the GPT models
are already super conservative in their predictions,
even when explicitly asked not to be. The Judge
component was indeed hurting model performance
by making the pipeline more conservative. Thus,
we removed the Judge from all runs of the GPT
LLMs.

C Additional Experimental Results

Here we provide additional and complementary
results to the ones discussed in the main paper.

20577



Below is a sentence from which you need to extract the events if 
any. Only output a list of tuples in the form [(\"event_type_1\", 
\"event_trigger_word_1\"), (\"event_type_2\", 
\"event_trigger_word_2\"), ...] for each event in the sentence. Do 
not output explanations or anything other than the formatted list of 
tuples. If there are no events in the sentence, output empty list [].

Below is a sentence from which you need to extract the events if 
any. Output the event and trigger information as natural sentences 
like “The event <event_name> is triggered by the trigger <trigger>.” 
for each event type on a new line. Do not output explanations. If 
there are no events in the sentence, output “No events found.”.

Below is a sentence from which you need to extract the events if 
any. Output the event and trigger information in natural language 
as you wish. Do not output any explanations.

Structured JSON Structured Text Free-form & Restructuring

Below is the text from which you need to extract the structured 
event-related information. Only output a list of tuples in the form 
[(\"event_type_1\", \"event_trigger_word_1\"), (\"event_type_2\", 
\"event_trigger_word_2\"), ...] for each event in the sentence. Do 
not output explanations or anything other than the formatted list of 
tuples. If there are no events in the sentence, output empty list [].

Figure 14: Illustration of the prompts utilized for the
different output formats for ablating why the structured
output format is better.

Output Format TI TC EI

Structured JSON 35.6 22.4 30.1
Stuctured Text 14.9 11.0 31.8
Free-form & Restructuring 16.7 12.7 20.8

Table 9: Ablation Study on the ACE dataset using
Llama3-8B-Instruct, highlighting the significance of
utilizing structured JSON output compared to text out-
puts.

C.1 Structured v/s Unstructured Output

In our work, we largely maintain the output to be
structured to ensure easy parsing and get stronger
model performance as noted in Wang et al. (2023).
To provide more evidence, we conducted a small
experiment with different output formats: (1) Struc-
tured JSON output (the base version that we have
currently) using a JSON list of tuples as the out-
put, (2) Structured text wherein we ask the LLM
to produce natural language text but in a structured
way, and (3) Free-form text and re-structuring (Tam
et al., 2024), wherein the LLM generates free-form
text in the first generation and later restructures into
JSON format using an additional LLM generation.
We provide an illustration of these output formats
in Figure 14.

We ablate these three output formats using the
Multi-event Direct (MD) prompt setting for the
ACE dataset using Llama3-8B-Instruct. We pro-
vide the results of the average of 3 runs in Table 9.
As clearly evidenced, any kind of text-based output

format is quite poor for TI and TC metrics, high-
lighting the significance of JSON-based output.

C.2 Statistical Significant Testing

To verify that our results are statistically signifi-
cant, we provide error bars indicating confidence
intervals in Table 10 for MAVEN, FewEvent, and
ACE datasets using the Llama3-8B-Instruct. These
results demonstrate how our experimental improve-
ments are statistically sound. We also test and
demonstrate that the improvements by DICORE

are statistically significant (t-test using p < 0.01).

C.3 Results on larger test data size

Our experimental data comprised 250 samples for
evaluation to keep our findings/results consistent
with the the previous work of TextEE (Huang et al.,
2024). Here, we provide additional experiments on
larger test data size of 1000 samples for ACE and
MAVEN datasets in Table 11. Similar to patterns
in the main results, DICORE outperforms the base-
lines with gains upto 14% F1 for ACE and 8% F1
for MAVEN.

C.4 Complete Results for Transfer Learning
Baselines

We discussed and compared DICORE with exist-
ing zero-shot cross-dataset transfer-learning ap-
proaches in § 5.2. We provide complete results
for each dataset in Table 14 for a deeper analysis.
We exclude results for MAVEN and FewEvent for
GOLLIE as the generations were degenerate and
led to 0 F1 performance. Across the three settings
of various source-target datasets, we see how our
pure zero-shot DICORE consistently outperforms
all the fine-tuned transfer learning baselines by a
considerable margin. In fact, DICORE, based on
the smaller Llama3-8B-Instruct LLM is stronger
than most of these transfer-learning baselines. This
highlights the superior zero-shot generalization of
our proposed method.

C.5 Complete Results for Reasoning Baselines

In § 5.3, we discuss and compare DICORE with
reasoning-based approaches and models. Here, we
provide complete results of that comparison across
datasets in Table 16. In comparison to the non-
CoT numbers, we note how CoT provides gains
for the baseline models, and larger gains for the
larger LLMs. This indicates how reasoning im-
proves model performance, but also requires more
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Prompt MAVEN (168) FewEvent (100) ACE (33)
Style TI TC EI TI TC EI TI TC EI

ChatIE 33.7 (± 0.9) 7.3 (± 0.6) 13.8 (± 0.6) 20.8 (± 0.8) 10.2 (± 0.6) 27.6 (± 0.4) 30.6 (± 1.4) 24.9 (± 0.9) 46.8 (± 0.9)
GEE 19.1 (± 1.7) 1.9 (± 0.7) 6.8 (± 0.6) 11.7 (± 1.5) 5.9 (± 1.7) 14.0 (± 1.7) 30.0 (± 1.7) 21.3 (± 0.7) 27.4 (± 1.3)
DEE 33.7 (± 1.4) 6.0 (± 0.7) 9.2 (± 0.4) 21.1 (± 0.5) 10.6 (± 0.4) 17.8 (± 0.2) 26.9 (± 0.8) 19.8 (± 0.7) 36.1 (± 0.8)
BD 54.5 (± 0.6) 10.7 (± 0.7) 12.3 (± 0.5) 22.3 (± 1.7) 9.9 (± 0.9) 15.0 (± 0.8) 34.2 (± 1.9) 19.5 (± 1.5) 31.4 (± 1.1)
MD 45.9 (± 1.2) 2.8 (± 0.2) 4.0 (± 0.3) 25.2 (± 0.7) 9.5 (± 0.2) 15.2 (± 0.6) 35.6 (± 1.2) 22.4 (± 0.8) 30.1 (± 0.5)
MS 46.2 (± 1.3) 10.3 (± 0.7) 11.2 (± 0.8) 20.2 (± 1.1) 10.2(± 0.7) 17.0 (± 1.1) 26.7 (± 1.4) 17.6 (± 0.6) 23.1 (± 0.9)
DICORE 53.5 (± 1.1) 14.4 (± 0.7) 17.4 (± 0.6) 26.1 (± 0.4) 15.7 (± 0.7) 25.0 (± 0.6) 40.3 (± 1.9) 36.3 (± 1.2) 47.9 (± 0.8)

Table 10: Main results along with error bars indicating confidence intervals for the zero-shot ED performance of
our proposed DICORE with all other baselines for the Llama3-8B-Instruct. TI: Trigger Identification, TC: Trigger
Classification, EI: Event Identification. bold = best performance. (XX) = number of distinct event types.

Prompt Style ACE MAVEN
TI TC EI TI TC EI

MD 36.4 28.6 34.7 45.9 3.1 4.4
MS 28.2 20.7 25.2 45.6 11.1 12.7
DICORE 47.2 38.3 48.3 53.2 15.3 18.7

Table 11: Ablation Study on the ACE dataset using
Llama3-8B-Instruct, highlighting the significance of uti-
lizing structured JSON output compared to text outputs.

parameters and longer context handling. Thinking-
based models somehow show poorer performance
compared to CoT, and our observations align with
Li et al. (2025). Next, we show how the base non-
CoT performance of DICORE is better than the
CoT-based baselines. This can also be seen when
comparing thinking-based model baselines. This
strongly indicates how the strong inductive bias of
DICORE beats the reasoning-based improvements.

Additionally, we also infuse reasoning with DI-
CORE, specifically only in the Grounder stage.
Reasoning in the Dreamer stage makes the model
more conservative and harms the divergent reason-
ing we want to encourage. We note how this addi-
tional reasoning provides further improvements of
up to 1-2% F1 over the base DICORE performance.

Efficiency analysis: Apart from performance,
we also analyze the effectiveness in terms of ef-
ficiency of the various methods. We measure effi-
ciency by the average number of output words gen-
erated per query (which should be equivalent to the
average number of output tokens). We provide this
comparison for the different methods and LLMs
for the ACE dataset in Table 12. As evident, CoT
and thinking-based models expend a large amount
of tokens on token-based reasoning, which is zero
in the case of DICORE. On average, DICORE re-
duces the output words by 15x compared to CoT
and by up to 55x compared to the thinking-based

LLM Prompt Style Avg. Words

Llama3-8B MD + CoT 36.8
MS + CoT 82.4

Llama3-70B MD + CoT 87.4
MS + CoT 107.9

Qwen2.5-72B MD + CoT 96.3
MS + CoT 184.4

DS-Qwen-32B MD 247.8
MS 525.5

DS-L3-70B MD 258.9
MS 484.4

Llama3-8B DICORE 11.6
Llama3-70B DICORE 6.6
Qwen2.5-72B DICORE 5.1

Table 12: Efficiency analysis in terms of average number
of words per query (Avg. Words) of DICORE with other
reasoning-based baselines on the ACE dataset.

models. This highlights the practical utility of DI-
CORE where it can provide higher performance at
vastly reduced token generation cost.

C.6 Additional results for Ablation Study
We provided an ablation study for DICORE’s com-
ponents in § 5.4. Here we provide additional re-
sults for the same study, specifically for the Event
Identification (EI) evaluation metric in Table 13.
We conclude observations similar to those noted in
the main paper, highlighting how DICORE helps
increase the recall without much decreasing the pre-
cision of the model. Dreamer has a 0% score since
the event names are free-form text generations in
this stage.

D Broader Qualitative Study

We provided a brief qualitative study eliciting some
common errors of previous baselines and how
DICOREfixes them in § 5.4. Here, we provide
some more examples to highlight the various er-
rors made by previous baselines in Table 15. Next,
we also show some more examples to elicit the
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Component/LLM EI
P R F

Llama3-8B-Instruct

Dreamer 0.0 0.0 0.0
+ Grounder 19.1 45.6 26.9
+ FSM Decoding 21.1 54.9 32.3
+ Judge 49.5 46.5 47.9

MD Baseline 40.5 23.9 30.1
MS Baseline 18.9 29.6 23.1

Llama3-70B-Instruct

Dreamer 0.0 0.0 0.0
+ Grounder 25.4 61.5 36.0
+ FSM Decoding 29.1 60.1 39.2
+ Judge 50.8 60.1 55.1

MD Baseline 51.2 43.2 46.8
MS Baseline 62.5 37.5 46.9

Table 13: Ablation Study using Trigger Identification
(TI) on the ACE dataset highlighting the significance
and contribution of each component of DICORE. P:
Precision, R: Recall, F: F1 score.

internal component-wise predictions of DICORE

in Table 17. Overall, these examples demonstrate
the utility of the divergent-convergent reasoning
paradigm for ED.
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LM/LLM Prompt MAVEN (168) FewEvent (100) ACE (33) GENIA (9) SPEED (7) CASIE (5) Average
Style TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI

Trained on ACE data* → Tested on other datasets

BART-large DEGREE 29.4 11.0 13.8 42.6 22.5 27.2 - - - 5.1 3.5 11.6 23.4 16.2 26.7 3.8 2.0 27.0 20.9 11.0 21.3
Llama3-8B DICORE 53.5 14.4 17.4 26.1 15.7 25.0 - - - 25.8 15.4 30.0 35.5 23.6 42.4 18.5 16.8 58.8 31.9 17.2 34.7
Llama3-70B DICORE 62.5 27.8 30.6 40.4 25.1 36.1 - - - 38.6 31.0 48.5 45.0 36.5 51.8 17.3 16.6 66.6 40.8 27.4 46.7
GPT4o DICORE 58.5 32.2 35.6 36.1 28.4 38.5 - - - 40.7 35.4 51.2 43.3 37.3 46.1 16.7 16.7 58.8 39.1 30.0 46.0

Trained on MAVEN data* → Tested on other datasets

BART-large DEGREE - - - 31.1 18.7 25.0 43.3 36.6 38.2 33.9 27.6 46.2 44.8 37.1 44.8 6.1 5.2 38.6 31.8 25.0 38.6
Llama3-8B DICORE - - - 26.1 15.7 25.0 40.3 36.3 47.9 25.8 15.4 30.0 35.5 23.6 42.4 18.5 16.8 58.8 29.2 21.6 40.8
Llama3-70B DICORE - - - 40.4 25.1 36.1 57.2 49.5 55.1 38.6 31.0 48.5 45.0 36.5 51.8 17.3 16.6 66.6 39.7 31.7 51.6
GPT4o DICORE - - - 36.1 28.4 38.5 54.9 54.9 56.6 40.7 35.4 51.2 43.3 37.3 46.1 16.7 16.7 58.8 38.3 34.5 50.2

Trained on ACE data* → Tested on GENIA, SPEED, CASIE

GOLLIE-7B GOLLIE - - - - - - - - - 3.2 2.2 7.1 12.6 11.6 24.3 2.1 2.1 14.4 6.0 5.3 15.3
GOLLIE-34B GOLLIE - - - - - - - - - 26.5 22.8 40.4 15.9 10.9 19.1 4.5 1.5 28.6 15.6 11.7 29.4
Llama3-8B DICORE - - - - - - - - - 25.8 15.4 30.0 35.5 23.6 42.4 18.5 16.8 58.8 26.6 18.6 43.7
Llama3-70B DICORE - - - - - - - - - 38.6 31.0 48.5 45.0 36.5 51.8 17.3 16.6 66.6 33.6 28.0 55.6
GPT4o DICORE - - - - - - - - - 40.7 35.4 51.2 43.3 37.3 46.1 16.7 16.7 58.8 33.6 29.8 52.0

Table 14: Complete results for comparison of DICORE with other fine-tuned transfer-learning approaches for
zero-shot ED. *Training done for models other than DICORE. DICORE results are pure zero-shot, i.e., without any
training. "-" indicates training data or where results were degenerate. (XX) = number of distinct event types.

Sentence Baseline Prediction

Precision Errors

In the near future we will be
expanding this to include all
the other organizations that we
can contact, but we are just
keeping things safe for now.

[("Phone-Write",
"contact")]

The Holocaust of the Jews
and Zigeuner was motivated
by racial prejudices.

[("Attack", "Holo-
caust")]

My friend, an ER physician
has said over 70% of people
who test positive for covid
NEVER have a fever.

[("symptom",
"fever")]

On 4 April 2013, a build-
ing collapsed on tribal land in
Mumbra.

[("Destroying", "col-
lapsed")]

Recall Errors

Pasko was released in January
for good behavior after serv-
ing more than two-thirds of the
sentence.

[("Release-Parole",
"released")]
Missed: ("Sentence",
"sentence")

People who live in crowded or
poorer areas are more likely to
test positive for Covid - 19

[]
Missed: ("infect",
"positive")

WOW debuted on January 18
as part of AXS’s Friday Night
Fights schedule

[]
Missed: ("Pro-
cess_start", "de-
buted")

He is got it pretty easy Id
say even with the international
travel

[]
Missed: ("Transport-
person", "travel")

Table 15: Qualitative examples highlighting the various
errors by zero-shot LLM baselines. We highlight the
correct predictions in green and incorrect ones in red.
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LLM Prompt MAVEN (168) FewEvent (100) ACE (33) GENIA (9) SPEED (7) CASIE (5) Average
Style TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI

Chain-of-thought

Llama3-8B

MD 45.9 2.8 4.0 25.2 9.5 15.2 35.6 22.4 30.1 22.8 15.3 25.4 34.9 27.8 42.4 10.3 8.8 47.9 29.1 14.4 27.5
+ CoT 35.4 3.2 4.8 15.4 6.8 13.8 30.6 18.7 27.6 24.3 15.9 26.9 34.6 27.8 42.1 9.8 8.7 47.1 25.0 13.5 27.1

MS 46.2 10.3 11.2 20.2 10.2 17.0 26.7 17.6 23.1 27.6 19.7 30.5 34.1 27.3 40.6 11.9 10.3 48.3 27.8 15.9 28.4
+ CoT 35.9 7.2 8.2 20.5 11.1 19.3 34.3 23.4 32.9 27.2 20.1 29.6 39.4 31.9 46.6 13.1 12.2 54.8 28.4 17.6 31.9

DICORE 53.5 14.4 17.4 26.1 15.7 25.0 40.3 36.3 47.9 25.8 15.4 30.0 35.5 23.6 42.4 18.5 16.8 58.8 33.3 20.4 36.9
+ CoT 53.6 15.5 17.9 27.5 15.4 24.7 39.8 36.6 45.0 25.8 16.4 31.9 35.1 26.6 41.5 16.7 15.9 56.0 33.1 21.1 36.2

Llama3-70B

MD 63.5 14.2 14.7 34.0 20.9 32.6 51.2 40.2 46.8 36.8 28.9 43.0 45.4 36.8 49.0 13.9 13.7 64.4 40.8 25.8 41.8
+ CoT 56.0 29.4 32.5 37.1 25.3 37.2 54.9 48.5 57.1 35.4 28.2 45.5 47.1 39.5 50.3 15.7 14.8 65.4 41.0 30.9 48.0

MS 33.9 21.6 22.3 35.3 24.9 39.9 49.9 42.8 46.9 37.4 31.0 45.0 43.8 35.5 49.6 14.0 14.0 59.5 35.7 28.3 43.9
+ CoT 55.7 29.5 32.6 34.9 25.4 38.6 56.1 51.3 56.5 31.8 26.4 37.7 49.7 42.5 56.6 14.8 14.6 60.6 40.5 31.6 47.1

DICORE 62.5 27.8 30.6 40.4 25.1 36.1 57.2 49.5 55.1 38.6 31.0 48.5 45.0 36.5 51.8 17.3 16.6 66.6 43.5 32.8 48.1
+ CoT 61.2 34.1 36.4 40.9 27.3 37.5 55.4 51.7 58.5 37.9 31.7 48.1 44.3 36.5 50.8 18.0 17.4 67.1 43.0 33.1 49.8

Qwen2.5-72B

MD 49.4 21.6 24.1 17.0 12.3 21.0 28.8 25.8 30.3 30.5 27.0 36.3 41.4 37.4 45.4 11.0 10.4 57.9 29.7 22.4 35.8
+ CoT 54.0 27.9 33.8 26.7 20.5 33.3 46.1 41.6 47.3 29.5 26.1 38.9 42.6 36.8 48.1 10.3 9.9 60.0 34.9 27.1 43.6

MS 39.9 23.6 25.4 25.0 21.0 34.2 42.5 40.4 42.5 26.7 23.6 34.1 40.6 35.5 45.2 10.5 10.5 49.1 30.9 25.8 38.4
+ CoT 54.2 28.0 31.1 28.3 21.5 33.6 48.5 46.3 48.9 30.7 26.5 38.7 44.9 39.7 47.9 10.6 10.6 44.5 36.2 28.8 40.8

DICORE 54.1 27.5 30.2 30.8 22.3 32.9 46.8 44.8 47.8 33.6 29.8 43.9 40.6 34.7 41.4 15.9 15.8 59.3 37.0 29.2 42.6
+ CoT 54.2 29.7 33.8 31.7 23.5 35.5 45.4 42.2 45.4 34.2 29.2 43.6 40.5 34.6 44.8 16.8 16.7 60.0 37.1 29.3 43.8

Thinking-based models

DS-Qwen-32B
MD 55.3 26.7 30.1 34.0 23.7 36.8 56.3 51.8 60.2 33.2 27.5 41.2 45.5 39.0 54.5 11.1 11.1 54.9 39.2 30.0 46.3
MS 55.0 25.8 29.6 33.8 23.3 38.5 50.6 48.9 59.6 30.5 25.0 36.6 52.7 44.7 54.7 14.6 14.6 51.9 39.5 30.4 45.2
DICORE 60.1 30.2 32.6 38.5 26.1 36.8 56.3 53.9 60.5 36.3 30.4 47.6 48.6 41.1 55.2 18.5 17.8 64.4 43.1 33.3 49.5

DS-L3-70B
MD 48.3 31.2 32.5 13.7 9.6 17.3 31.5 27.8 34.5 24.5 21.6 31.9 45.3 38.9 50.6 10.5 10.5 50.0 29.0 23.3 36.1
MS 50.3 28.3 31.3 23.9 18.5 28.3 36.8 33.7 38.0 27.8 24.6 35.3 48.2 44.2 49.2 12.6 12.6 44.7 33.3 27.0 37.8
DICORE 59.5 34.7 37.2 36.2 25.9 35.0 53.0 51.3 55.8 32.3 28.6 42.7 49.3 39.8 53.4 18.0 17.9 65.9 41.4 33.0 48.3

O1-mini MD 59.1 32.8 35.7 36.8 28.0 40.3 53.9 48.5 53.0 35.8 33.7 43.8 44.2 40.2 48.1 11.5 11.5 47.5 40.2 32.5 44.7

Table 16: Complete results for comparison of DICORE with reasoning approaches like Chain-of-thought (CoT) and
thinking-based models for zero-shot ED. bold = best performance. (XX) = number of distinct event types.

Sentence Dreamer Grounder Judge
Prediction Prediction Prediction

Police also arrested two Moroc-
can men suspected of traffick-
ing in human beings and nav-
igating the Zodiac boat across
from Africa, Efe said.

[("arrest", "arrested"),
("trafficking", "trafficking"),
("navigating", "navigating"),
("said", "said")]

[("Arrest-Jail", "arrested"),
("Charge-Indict", "traffick-
ing")]

[("Arrest-Jail", "ar-
rested")]

Only 4 men have competed
without eliminating a single
opponent Fire, Mini Maximo,
Sombrita and Stukita.

[("compete", "competed"),
("eliminate", "eliminating")]

[("Competition", "com-
peted")]

[("Competition",
"competed")]

Weird as hell: the Covid-19 pa-
tients who have symptoms for
months | Coronavirus outbreak |
The Guardian (url)

[("Disease_Spread", "out-
break"), ("Infection", "pa-
tients"), ("Symptom_Show",
"symptoms")]

[("symptom", "symptoms"),
("spread", "outbreak")]

[("symptom", "symp-
toms"), ("spread",
"outbreak")]

The time he has spent inside
roughly equates to 2 years per
woman he killed

[("Kill", "killed"), ("Spend",
"spent"), ("Equate",
"equates")]

[("Life.Die", "killed")] [("Life.Die",
"killed")]

Table 17: Qualitative examples eliciting DICORE’s predictions per component for various input sentences. We
highlight the correct predictions in green and incorrect ones in red.
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