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Abstract

Multi-modal large language model (MLLM)-
based web agents interact with webpage en-
vironments by generating actions based on
screenshots of the webpages. In this work,
we propose Weblnject, a prompt injection at-
tack that manipulates the webpage environ-
ment to induce a web agent to perform an
attacker-specified action. Our attack adds a
perturbation to the raw pixel values of the ren-
dered webpage. After these perturbed pixels
are mapped into a screenshot, the perturbation
induces the web agent to perform the attacker-
specified action. We formulate the task of find-
ing the perturbation as an optimization prob-
lem. A key challenge in solving this problem
is that the mapping between raw pixel values
and screenshot is non-differentiable, making
it difficult to backpropagate gradients to the
perturbation. To overcome this, we train a
neural network to approximate the mapping
and apply projected gradient descent to solve
the reformulated optimization problem. Exten-
sive evaluation on multiple datasets shows that
Weblnject is highly effective and significantly
outperforms baselines.

1 Introduction

A webpage is defined by an HTML file. A browser
renders the webpage by interpreting its HTML
source code and generating the corresponding raw
pixel values within the display region of a moni-
tor. These raw pixels are subsequently transformed
through a webpage-to-screenshot mapping before
being displayed on the monitor. With the advance-
ment of reasoning capabilities in multi-modal large
language models (MLLMs), an increasing number
of web agent frameworks are adopting MLLMs as
the backbone (Zheng et al., 2024; Koh et al., 2024).
Typically, MLLM-based web agents take a user
prompt as instruction, and use a monitor to take a
screenshot of the webpage as observation. Then, it
uses the MLLLM to generate an action based on the
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user prompt, observation, and history of previous
actions. Generated actions include clicking on a
specific coordinate or typing a specific text input.

However, despite the advanced capabilities of
MLLM-based web agents, they remain vulnerable
to emerging security and safety threats. One such
threat is prompt injection attack (Liu et al., 2024;
Liao et al., 2025; Zhang et al., 2024; Aichberger
et al., 2025; Zhao et al., 2025; Wu et al., 2025),
in which an adversary manipulates the web envi-
ronment to induce the agent to perform a specific,
attacker-chosen action—referred to as the target
action—such as clicking on a designated coordi-
nate on the monitor. This type of attack poses a
serious security risk, potentially resulting in conse-
quences such as click fraud, malware downloads,
or disclosure of sensitive information.

Prompt injection attacks to web agents can be
categorized into two types: 1) Webpage-based at-
tacks (Liao et al., 2025; Zhang et al., 2024; Xu
et al., 2024). These attacks aim to mislead the
web agent into generating a target action by mod-
ifying a webpage’s source code—for example, by
injecting deceptive HTML elements such as pop-up
windows. However, most existing webpage-based
attacks are heuristic-driven and often exhibit subop-
timal effectiveness. Furthermore, they lack stealth
or, when stealth is preserved, sacrifice a certain
degree of effectiveness, as the injected elements
are typically visible to users and easily detected. 2)
Screenshot-based attacks (Aichberger et al., 2025;
Zhao et al., 2025). These attacks add visual pertur-
bations directly to the screenshot of a webpage to
increase the likelihood that the web agent performs
the target action. However, such attacks are imprac-
tical in real-world scenarios, since attackers do not
have direct access to modify screenshots, which
are captured locally on the user’s device. Further-
more, none of them has discussed the webpage-to-
screenshot mapping, reflecting a lack of consider-
ation for this critical aspect. Therefore, while one
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Figure 1: Illustration of Weblnject.

might attempt to implement these perturbations by
modifying the raw pixel values via changes to the
webpage’s source code, this approach fails entirely
due to the nontrivial webpage-to-screenshot map-
ping, as demonstrated in our experiments. More
details on related work are shown in Section 6.

In this work, we introduce a new webpage-based
attack, Weblnject, which achieves both effective-
ness and stealthiness while maintaining practical
feasibility. Fig. 1 provides a brief illustration of
Weblnject: the attacker introduces a perturbation
to a webpage’s raw pixel values via modifying its
source code; this indirectly perturbs the resulting
screenshot, thereby misleading the web agent into
generating the target action. In particular, to ensure
both effectiveness and stealthiness, we formulate
the task of finding the perturbation as an optimiza-
tion problem. The objective is to maximize the
probability that the MLLM generates the desired
target action (effectiveness), while the constraint
bounds the £.,-norm of the perturbation to ensure it
remains imperceptible to users (stealthiness). Fur-
thermore, since the webpage-to-screenshot map-
ping varies across monitors, we constrain the pertur-
bation to lie within the overlapping region shared
by multiple types of monitors, thereby crafting a
universal perturbation.

However, solving the optimization problem faces
two key challenges: 1) the webpage-to-screenshot
mapping, which transforms a webpage’s raw pixel
values into a screenshot on a monitor, is non-
differentiable; and 2) the resizing operation used
by MLLMs to fit screenshots into their input di-

mensions is also non-differentiable. These non-
differentiabilities make it difficult to backpropa-
gate gradients to the perturbation. To address the
first challenge, we train a neural network to ap-
proximate the webpage-to-screenshot mapping. To
overcome the second challenge, we substitute the
original resizing operation with a differentiable al-
ternative. With these modifications, we apply pro-
Jjected gradient descent to solve the reformulated
optimization problem and obtain the perturbation.
Finally, we implement this perturbation by modify-
ing the source code of the webpage.

We conduct an in-depth evaluation of our attack.
We begin by constructing extensive datasets of web-
pages, including synthetic and real webpages. Our
extensive evaluation demonstrates that Weblnject
is highly successful and significantly outperforms
existing attacks. Specifically, when the web agent
uses the MLLM Gemma-3 (Team et al., 2025), the
success rate of our attack is 0.910 higher than the
best-performing baseline. We also perform abla-
tion studies to examine the impact of the number
of monitors, perturbation bounds, different cate-
gories of prompts, and various target actions. These
studies further demonstrate the generalizability of
Weblnject across configurations and variations.

2 Background

Webpage, screenshot, and webpage-to-
screenshot mapping. A webpage is defined by
an HTML file containing source code w, which
instructs a browser on how to render the webpage
content on a monitor d. Suppose a monitor d has
width wg and height hg, defining a rectangular
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region [0, wq] x [0, hy] with the top-left corner as
the origin of the coordinate system. A browser
renders the webpage content within this region
based on the source code w. For simplicity, we
assume the browser is in fullscreen mode, as is
common practice for web agents. We denote
by I(w,d) the resulting raw pixel values after
rendering. Before being displayed on the monitor,
I(w, d) is transformed according to the monitor’s
International Color Consortium (ICC) profile,
which defines how colors should appear on a
specific monitor. This process can be formal-
ized as Ij(w,d) = M(I(w,d),ICCy), where
M(-,1CCy) denotes the webpage-to-screenshot
mapping defined by the monitor’s ICC profile
ICCy. Both I(w,d) and I5(w,d) are tensors
of size wg X hg x 3, where the last dimension
corresponds to the three RGB channels.

A screenshot of the webpage reflects the ICC-
transformed image I;(w,d), rather than I(w,d).
Because monitors differ in sizes and ICC profiles,
the same webpage displayed on two different types
of monitors can yield different screenshot images
Is(w,d). Fig. 6 in Appendix illustrates examples
of the raw pixel values I(w, d) of a webpage and
its screenshot on two different monitors. Note
that monitors of the same type typically share the
same ICC profile. For instance, all 27-inch 5K
Retina monitors from Apple use the same ICC pro-
file, which may differ from the profile used by
Dell’s 27 Plus 4K monitors. These ICC profiles for
various monitor types are often publicly available
(TFTCentral, 2021). Moreover, the webpage-to-
screenshot mapping M is non-differentiable, pos-
ing a significant challenge for implementing our
webpage-space attack, as elaborated in Section 4.2.

MLLM-based web agent. An MLLM-based web
agent is powered by an MLLM f. Given a user-
specified text prompt p, the agent performs a se-
quence of actions to iteratively interact with a web-
page w through a monitor d in order to complete the
desired task. The webpage w defines the environ-
ment with which the agent interacts. The webpage
content is rendered and displayed on the monitor d
and its screenshot serves as the agent’s observation
of the environment. Each action a in the action
space A consists of a function name and its corre-
sponding arguments. For example, click((x,y))
indicates a click at the coordinate (x,y) on the
monitor. Table 2 in Appendix summarizes the pos-
sible actions for a web agent.

At each step ¢, f receives the text prompt p,
the screenshot I;(w, d) of the current state of the
webpage w captured using the monitor d, and the
interaction history H; as input, and outputs the
next action a; € A to be executed. Following prior
work (Liao et al., 2025; Aichberger et al., 2025;
Zheng et al., 2024), the interaction history H; in-
cludes only the agent’s previously taken actions,
ie., H = [a1,aq,...,a;—1] , Where each a; rep-
resents the action at step ¢. Moreover, the agent
usually resizes Is(w, d) to balance speed and mem-
ory usage, and to match the expected input dimen-
sions of the MLLM. For example, Qwen2.5-VL
(Bai et al., 2025) rounds the width and height of a
screenshot to the nearest multiple of 28.

Formally, the generated action a; is defined as:
ar = f(p,r(Is(w,d)), Hy), where r(-) represents
resizing. For brevity, we omit the index ¢ in subse-
quent equations unless otherwise stated. Let Pr(a |
[p, 7(Is(w,d)), H]) denote the probability that the
MLLM f produces action a, given the prompt p,
the screenshot /(w, d), and the history H. Since
a is a textual description, it can be represented as
a sequence of tokens: a = [eq, ea, ..., ey]. As f is
a generative model, the probability of generating
action a can be decomposed into the product of the
conditional probabilities of generating each token
in the sequence:

Pr(a| [p,r(Ls(w,d), H]) = [ Pre |
q=1

p,r(Is(w,d)),H,[e1,...,eq-1]). €))

3 Threat Model

Attacker’s goals. We consider an attacker who
controls a webpage-referred to as the target web-
page—such as an e-commerce site, blog, or edu-
cational platform. The attacker may be either a
malicious administrator of the target webpage or a
third party who has compromised it. The attacker’s
objective is to manipulate the target webpage to
achieve two goals: effectiveness and stealthiness.
The effectiveness goal requires that when a user
employs a web agent to interact with the target
webpage, the agent performs an attacker-specified
action, called target action. For example, target ac-
tions involve clicking a specific coordinate on the
screen, enabling malicious outcomes such as click-
ing fraud (artificially inflating ad clicks to generate
revenue), redirecting users to malicious or adver-
tisement pages, or initiating malware downloads.
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Since the agent’s behavior depends on the user’s
prompt and the monitor used to view the webpage,
the attacker constructs a set of prompts—called
target prompts—designed to mimic those a user
might naturally issue. They also collect informa-
tion (e.g., size and ICC profile) about a set of mon-
itors—called target monitors—commonly used by
real users. For instance, target prompts may be
based on the webpage’s content, and target monitor
information may be gathered from online sources.
Thus, the effectiveness goal is to maximize the
probability that the agent performs the target action
when a user issues a target prompt (or a seman-
tically similar variant) and uses a target monitor.
Formally, let w denote the target webpage, P the
set of target prompts, D the set of target monitors,
and a* the target action.

The stealthiness goal ensures that the modifi-
cations made to the webpage remain invisible to
regular users, making the attack stealthy and dif-
ficult to detect. If users were able to perceive the
changes, they could report the issue or avoid inter-
acting with the target webpage altogether.

Attacker’s capability. We assume that the attacker
can modify the target webpage’s source code w.
This assumption aligns with prior work (Liao et al.,
2025; Zhang et al., 2024). While the attacker does
not have access to real agent interaction histories,
we assume the attacker can construct a shadow his-
tory to partially simulate interactions between the
agent and the target webpage. In our experiments,
we automatically generate a shadow history by ran-
domly sampling actions from the action space. For-
mally, let H denote a set of shadow histories, where
each shadow history contains a sequence of actions.

Attacker’s background knowledge. We assume
that the attacker has access to the model parameters
of the MLLM f used by the web agent. This is a
reasonable assumption, as many MLLMs are open-
sourced (Qin et al., 2025; Abouelenin et al., 2025;
Meta, 2024; Bai et al., 2025; Team et al., 2025).
This assumption enables us to analyze the secu-
rity of MLLM-based web agents under worst-case
scenarios. As discussed earlier, the attacker can
construct the set of target prompts and gather in-
formation about the target monitors. However, the
attacker does not have access to the web agent’s in-
teraction history and cannot directly modify screen-
shots, as users may deploy the agent locally, mak-
ing both the history and screenshots inaccessible.

4 Weblnject

Our attack Weblnject aims to achieve both effec-
tiveness and stealthiness by modifying the source
code of the target webpage w. To this end, the
attack first introduces a human-imperceptible per-
turbation 0 to the rendered raw pixel values I (w, d)
of the target webpage, resulting in modified pixels
I(w,d) + 4. The attack then implements this per-
turbation by modifying the source code w to obtain
anew version w’ such that I(w’, d) = I(w,d) + 6.
In the following, we first formulate the task of find-
ing the perturbation J as an optimization problem,
then present our algorithm to solve it, and finally
describe how the perturbation is implemented via
modifying the source code w.

4.1 Formulating an Optimization Problem

Quantifying the effectiveness and stealthiness
goals. Corresponding to the threat model discussed
in Section 3, consider a web agent powered by an
MLLM f, a target webpage w, a target prompt set
‘P, a target monitor set D, a target action a*, and
a shadow history set /. To quantify effectiveness,
we use a summed cross-entropy loss. Minimizing
this loss produces a perturbation § that maximizes
the probability that f generates the target action
a* across different target prompts and monitors,
regardless of the shadow history used. Formally,
the loss term is defined as follows:

ZZZ log (Pr (a* |

peP deD HeH 2)
[ 7T(M(I(wv d) + 57 ICCd))v H])) )

where M is the webpage-to-screenshot map-
ping, ICCy is d’s ICC profile, and the probability
Pr(a* | [p,r(M(I(w,d) + 9,ICCy)), H]) is cal-
culated using Equation 1. To quantify the stealthi-
ness goal, we impose a bound on the perturbation 4.
Specifically, we constrain the ¢,-norm of § to be
within a small value ¢, although other constraints,
such as the ¢3-norm, are also applicable.

Constraining the perturbation for multiple tar-
get monitors. Another challenge is that the raw
pixel values I(w, d) rendered for different target
monitors may have various widths and heights. For
example, 24-inch iMac M1 has a resolution of 4480
x 2520 pixels, while 15-inch MacBook Air has a
size of 2880 x 1864. Consequently, the perturba-
tion ¢ may not be fully visible on some monitors.
For instance, if we craft a perturbation ¢ based on
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24-inch iMac M1, it would fall outside the visible
area of the 15-inch MacBook Air. To address this
challenge, we constrain the perturbation § to the re-
gion that overlaps across all target monitors. Specif-
ically, we define the width and height of the over-
lapping region as ws = gélg wgq and hs = Id?(éllr)l hq,
where wy and hg denote the width and height of
each target monitor d, respectively. To ensure that
the perturbation is fully visible on all target mon-
itors, we optimize it only within [0, ws] x [0, hs],
setting it to zero outside this region.
Optimization problem. Taking into account the
loss term for the effectiveness goal, the constraint
for the stealthiness goal, and the constraint to ac-
commodate target monitors of varying sizes, we
formulate finding the perturbation ¢ as the follow-
ing optimization problem:

D3I D

peEP deD HEH

[p, r(M(I(w,d) +6,1CCy)), H]))
st [|0]lee <€

Say = 0,

log (Pr(a* |

\V/(ﬂf,y) ¢ [O’w(S] X [Ovhé]v
3)
where d,, denotes the value of the perturbation
at coordinate (x,y), the objective captures the ef-
fectiveness goal, the first constraint enforces the
stealthiness goal, and the second constraint ensures

compatibility across multiple target monitors.

4.2 Solving the Optimization Problem to
Obtain the Perturbation o

Two challenges. We adopt projected gradient de-
scent (PGD) to solve the optimization problem.
However, two challenges arise: (1) the webpage-
to-screenshot mapping M is non-differentiable, as
discussed in Section 2; and (2) the resizing opera-
tion r is generally non-differentiable, since MLLM
resizing implementations typically rely on discrete
pixel remapping (e.g., via PIL or OpenCV). These
challenges make it difficult to backpropagate gradi-
ents from the loss to the perturbation 9.

Addressing the first challenge. We address this
challenge by training a neural network-referred
to as the mapping neural network—for each tar-
get monitor d to approximate its webpage-to-
screenshot mapping M (-, ICCy), denoted as Nj.
The mapping neural network N takes I(w,d) + §
as input and outputs the corresponding screenshot
M(I(w,d) + 9,ICCy). Since both the input and
output are pixel tensors of the same size, we adopt

the popular U-Net architecture (Ronneberger et al.,
2015) as the mapping neural network. To train Ny,
we collect a dataset of input-output pairs. Specifi-
cally, for each pair, we apply a random perturbation
0’ to obtain the raw pixel values I (w, d) 4 ¢', then
perform a webpage-to-screenshot mapping based
on the ICC profile of the target monitor d, resulting
in M(I(w,d) + ¢§,ICCy). We repeat this pro-
cess to collect a large number of samples. Notably,
the attacker does not need physical access to the
target monitors to perform webpage-to-screenshot
mapping for training. Instead, the attacker can sim-
ulate the target monitors and the corresponding
webpage-to-screenshot mappings using their ICC
profiles. We provide additional details on monitor
simulation in Section 5.1 and Fig. 3 in Appendix.

Addressing the second challenge. To address
the non-differentiability of resizing, we replace
it with a differentiable alternative during opti-
mization. Specifically, modern deep learning
frameworks typically support differentiable resiz-
ing. For example, PyTorch provides the function
torch.F.interpolate() and TensorFlow offers
tensorflow.image.resize(), both of which al-
low gradients to flow through the resizing opera-
tion. This enables us to approximate the resizing
behavior in a differentiable manner. We denote the
differentiable alternative resizing as 7’/(-).

Our complete algorithm. With the mapping neu-
ral network N/, for each target monitor d and a
differentiable alternative resizing operation r/, we
can reformulate the optimization problem in Equa-
tion 3 as follows:

mln ZZ Z log (Pr(a™ |
peEPdeD HEH
p, 7' (Na(I(w,d) +9)), H]))
st [|6]lee < €,
5:py =0, V(x,y) ¢ [0,105] X [Ovhé]
“)

We then apply PGD to solve the reformulated
optimization problem. Specifically, we initialize
¢ as a zero tensor. In each iteration, we randomly
sample mini-batches Pp C P and Hp C H to cal-
culate the gradient g of the loss function in Equa-
tion 4. We then update § with a learning rate «:
6 = d — « - g. Subsequently, we project the per-
turbation ¢ to satisfy the two constraints. For the
first constraint, we apply a clamping function to
constrain the ¢/..-norm of ¢ to e. Given § and e,
the clamping function ensures that each element
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of 4 is restricted within [—e, €]. Mathematically, it
is defined as Clamp(d, €) = min(max(d, —¢), €),
where values in § smaller than —e are set to —e,
and values greater than ¢ are set to €. For the
second constraint, we introduce a mask matrix S,
which has value 1 within the rectangular region
[0, ws] x [0, hs] and O elsewhere. Formally, we
have S,y = 1 for (z,y) € [0,ws] x [0, hs] and
Szy = 0 otherwise.

We then update the perturbation as 6 = S © 4,
where ® denotes element-wise multiplication. Our
complete algorithm is shown in Algorithm 1 in
Appendix.

4.3 Implementing the Perturbation § via
Modifying the Target Webpage w

Finally, our attack implements the perturbation § by
injecting code into the source code w of the target
webpage. The objective is to ensure that the mod-
ified webpage w’ satisfies I(w’,d) = I(w,d) + ¢
for each target monitor d. Specifically, our injected
code operates as follows: when the browser renders
the webpage on a monitor d, it first extracts the raw
pixel values I (w, d) within the rectangular region
[0, ws] x [0, hs]. The injected code then adds ¢ to
these pixel values and writes the result back to the
same region, effectively overwriting the original
rendered pixel values with the perturbed version.
The pseudo-code for this implementation is pro-
vided in Algorithm 1, and additional details are
described in Fig. 7 in Appendix. To preserve nor-
mal user interaction with the webpage, we place the
original HTML elements on the top layer and set
their opacity to zero. This ensures that the screen-
shot reflects the ICC-based transformation of the
perturbed pixels, while user interactions remain
directed toward the original elements.

5 Experiments
5.1 Experimental Setup

Collecting webpage datasets. Our webpage
datasets consist of both real and synthetic web-
pages. For real webpages, we download
their source code using the SingleFile extension
(Lormeau, 2021), which allows us to snapshot the
full webpage into a single file. Using this method,
we collect real websites across five categories—blog,
commerce, education, healthcare, and portfolio—
resulting in five datasets. For synthetic webpages,
we employ GPT-4-Turbo (OpenAl, 2023) to gen-
erate 100 webpages for each category, producing

another five datasets. The prompt used for gener-
ating synthetic webpages is provided in Fig. 9 in
Appendix. In total, we obtain ten webpage datasets,
whose statistics are shown in Table 3 in Appendix.
We treat each webpage as a target webpage and
apply our attack to it.

MLLMs for web agents. We use the follow-
ing five MLLMs in our evaluation: UI-TARS-
7B-SFT (Qin et al., 2025), Phi-4-multimodal-
instruct (Abouelenin et al., 2025), Llama-3.2-
11B-Vision-Instruct (Meta, 2024), Qwen2.5-VL-
7B-Instruct (Bai et al., 2025), and Gemma-3-4b-
it (Team et al., 2025). For simplicity, we refer to
them as UI-TARS, Phi-4, Llama-3.2, Qwen-2.5,
and Gemma-3, respectively.

Target prompts. For each target webpage, based
on its source code, we use GPT-4-Turbo (OpenAl,
2023) to generate 10 target prompts. Specifically,
we apply the instruction in Fig. 10 in Appendix to
guide GPT-40 in generating these target prompts.

History. There are two types of history sets used in
the experiment: the shadow history set and the user
history set. The shadow history set is used by an
attacker to optimize the perturbation, while the user
history set is used to evaluate the perturbation. For
the shadow history set of a target webpage, we ran-
domly sample 10 histories from the action space,
with each sampled history consisting of 3-5 actions.
Since real user histories are difficult to collect, we
randomly generate histories to simulate them. This
simulation is reasonable because the generated his-
tories are not used to optimize the perturbation, and
because the interaction between users and agents is
inherently hard to predict. Therefore, for the user
history set of a target webpage, we also randomly
sample 10 histories from the action space, with
each history consisting of 3-5 actions.

Evaluation metric. We use the Aftack Success
Rate (ASR) to evaluate the effectiveness of our at-
tack. Given a target webpage w, a target prompt
D, and a target action a,, our attack optimizes a
perturbation § specific to this tuple. The attack is
considered successful on a monitor d if the web
agent outputs the exact target action a, when pro-
vided with the prompt p,,, a resized screenshot
r(M(I(w,d) 4+ 6,ICCy)), and a user history H,,
sampled from the constructed user history set. For-
mally, for each (w, p,, a))) triple, the ASR across
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Table 1: ASR of different attacks against web agents using various MLLMs. The ASR for each attack is averaged

across our 10 webpage datasets.

Agent Naive Context Ignoring Fake Completion Combined Screenshot-based Weblnject
UI-TARS (Qin et al., 2025) 0.085 0.147 0.054 0.050 0.000 0.975
Phi-4 (Abouelenin et al., 2025)  0.095 0.050 0.047 0.025 0.000 0.963
Llama-3.2 (Meta, 2024) 0.270 0.212 0.345 0.248 0.000 0.972
Qwen-2.5 (Bai et al., 2025) 0.100 0.095 0.067 0.063 0.000 0.970
Gemma-3 (Team et al., 2025)  0.062 0.054 0.037 0.062 0.000 0.972

all target monitors is defined as follows:

ASR = L > 1{f (P, r(M(I(w,d) + 6,
=t

ICCy)), Ho) = ag}, (5)
where 1 is the indicator function.
1{f (po r(M(I(w,d) + 8, 1CCy)), Hy) = a2}
is 1if f (po, r(M(I(w,d) +3,ICCy)), Hy) = a,
otherwise 0. Given a dataset, we report the ASR
averaged over all target webpages, target prompts,
and user histories. Unless otherwise specified, for
each target webpage, we use click((x,y))-with
a randomly chosen coordinate (x,y) within the
overlapping region shared by all target monitors—as
the default target action. We also evaluate the
effectiveness of our attack on alternative target
actions in the ablation study.

Simulating monitors. Since the webpage-to-
screenshot mapping is monitor-specific, attacking
webpages and their evaluation on different moni-
tors requires operating on the corresponding moni-
tors. Therefore, we either need access to real moni-
tors or simulate various monitors on a single device.
As obtaining physical monitors is costly, simula-
tion becomes a more practical approach. To this
end, we use Python and the Canvas API. First, we
use the webdriver function from the selenium li-
brary in Python to load the webpage, setting the
browser window size to match that of a target mon-
itor. This simulates the viewing window. Then, we
use the Canvas API to extract raw pixel values of
the webpage.

Then, as detailed in Section 2, taking a screen-
shot is essentially an ICC profile-based transfor-
mation. Therefore, to simulate this process, af-
ter extracting the raw pixel values, we apply the
ICC profile-based transformation to map these raw
pixel values to the screenshot image. As ICC
profiles for various monitors are publicly avail-
able, we can thereby successfully simulate taking
screenshots across different monitors. The core

implementation of simulating monitors is shown
in Fig. 3 in Appendix. In our experiments, we
use three physical monitors (24-inch iMac M1, 15-
inch MacBook Air M3, and 27-inch 4K UHD LG
27UL500-W) and simulate two monitors (27-inch
4K UHD Dell S2722QC and 27-inch 4K UHD
ASUS XG27UCG). Unless otherwise mentioned,
we assume a single target monitor, 27-inch 4K
UHD LG 27UL500-W.

Baselines. We compare our attack against two cat-
egories of baselines: (1) webpage-based attacks
and (2) screenshot-based attacks. Webpage-based
attacks draw from techniques in EIA (Liao et al.,
2025), Pop-up Attack (Zhang et al., 2024), and
various textual prompt injection methods, includ-
ing Naive Attack (Willison, 2022), Context Ignor-
ing (Willison, 2022), Fake Completion (Willison,
2023), and Combined Attack (Liu et al., 2024). EIA
and Pop-up Attack inject HTML elements into the
target webpage to mislead the agent, while textual
prompt injection attacks craft deceptive textual in-
structions to induce a target action from the agent.

For each target webpage, we inject a pop-up
containing three key HTML elements: (i) an at-
tention Hook used to attract the agent’s attention.
(ii) the instruction corresponding to a given textual
prompt injection attack. (iii) an information banner
that misleads the agent about the purpose of the
pop-ups. The banner is placed at the coordinate
specified in the target action. We consider the at-
tack successful if the pop-up induces the agent to
click on the information banner. Fig. 4 in the Ap-
pendix summarizes the implementation details of
these webpage-based attacks. We apply screenshot-
based attacks (Aichberger et al., 2025; Zhao et al.,
2025) in our threat model, i.e., by optimizing per-
turbations on the screenshot of a target webpage
and directly adding these perturbations to the raw
pixel values of the target webpage.

Parameter setting. We set the £,,-norm constraint
€ to 16/255, the learning rate « to 0.3, and the
number of iterations 7" to 2,500. When training the
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mapping neural network for a target monitor, we
collect 16,240 input-output pairs across all target
webpages, use 200 epochs, a learning rate of 0.005,
and a batch size of 16.

5.2 Experimental Results

Weblnject achieves both stealthiness and effec-
tiveness goals and outperforms existing attacks.
Table 1 reports the ASR of various attacks aver-
aged across our 10 webpage datasets for different
MLLM-based web agents. A detailed breakdown
of ASR results for each dataset is provided in Ta-
bles 5-9 in Appendix. We observe that Weblnject
consistently achieves high effectiveness and sig-
nificantly outperforms all baseline attacks. For
example, when the web agent uses the MLLM
Gemma-3, the highest ASR achieved by existing
webpage-based attacks is 0.062, while screenshot-
based attacks yield an ASR of 0.000. In contrast,
Weblnject achieves an ASR of 0.972. This sub-
stantial improvement stems from the optimization-
based nature of Weblnject, which directly maxi-
mizes the likelihood that the agent generates the
target action. In comparison, existing webpage-
based attacks rely on heuristic injection strategies,
and screenshot-based attacks fail to consider the
critical webpage-to-screenshot mapping.

Impact of the number of target monitors.
Fig. 2(a) shows the impact of the number of tar-
get monitors on the average ASR of our Weblnject
across the five web agents. A detailed breakdown
of ASR per dataset is provided in Fig. 11-12 in
the Appendix. We observe that ASR decreases
slightly as the number of target monitors increases.
This is because the perturbation space to be opti-
mized becomes smaller, since we only optimize the
perturbation within the overlapping region. Nev-
ertheless, selecting more target monitors enables
the attacker to successfully compromise a greater
number of users who use different monitors, al-
though the probability of successfully attacking
each user decreases slightly on average. Addition-
ally, as shown in Table 1, although webpage-based
and screenshot-based attacks are not affected by the
number of target monitors, they still perform sig-
nificantly worse than Weblnject when the number
of target monitors increases.

Impact of the perturbation bound ¢. Fig. 2(b)
shows the impact of ¢ on the average ASR of
our Weblnject across the five web agents. A de-
tailed breakdown of ASR per dataset is provided
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0.8t
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0
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------ Llama-3.2
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4/255 8/255 16/255 32/255
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Figure 2: Impact of the number of target monitors and e
on the average ASR of Weblnject across five agents.

in Fig. 13-14 in the Appendix. We observe that
as e increases from 4/255 to 32/255, the ASR
rises to nearly 1. This is because a larger e pro-
vides a greater space for optimization. This result
further illustrates that our Weblnject can success-
fully achieve both effectiveness and stealthiness
goals. Note that ¢ < 16/255 is generally consid-
ered stealthy in prior works (Qi et al., 2024; Luo
et al., 2024). Examples of the perturbed webpages
under different e are shown in Fig. 5 in Appendix.

User prompts are semantically equivalent vari-
ants of the target prompts. Table 11 in Ap-
pendix shows the ASR of Weblnject across dif-
ferent agents when user-specified prompts are se-
mantically equivalent variants of the target prompts
but not textually identical. Specifically, ASR is
computed by replacing the target prompt p,, with
its semantically equivalent user prompt in Equa-
tion 5. Given a target prompt, we generate its se-
mantic equivalent user prompt using GPT-4-Turbo
(OpenAl, 2023), guided by the instruction shown
in Fig. 8 in Appendix. We observe that even
though Weblnject is not directly optimized for
user prompts, it still achieves comparable ASR.
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For example, for the Gemma-3 agent on the syn-
thetic blog webpage dataset, the ASR using user
prompts is 0.957, which is close to the ASR us-
ing target prompts, 0.988. This result highlights
that Weblnject can extend to a wide range of user
prompts, as long as the user prompt is semantically
similar to the target prompt used in optimization.

Other target actions. In our prior experiments, we
use click((x,y)) as a target action. Table 10 in
Appendix shows the ASR of Weblnject for other
target actions on the synthetic Blog dataset when
using Phi-4 (Abouelenin et al., 2025) as the MLLM.
The results show that our Weblnject is also highly
successful at misleading the web agent to generate
other target actions.

6 Related Work

Prompt injection attacks. When an LLM pro-
cesses input from untrusted sources such as the
Internet, it becomes vulnerable to prompt injection
attacks (Willison, 2022; Greshake et al., 2023; Liu
et al., 2024). In such attacks, an adversary embeds
malicious prompts into the input to redirect the
model toward an attacker-chosen task rather than
the intended one. These injected prompts can be
crafted manually using heuristics (Willison, 2022,
2023; Liu et al., 2024) or generated automatically
through optimization techniques (Hui et al., 2024;
Shi et al., 2024; Jia et al., 2025; Shi et al., 2025).
Shao et al. (2024) further demonstrated that poison-
ing the alignment process can amplify an LLM’s
vulnerability to prompt injection.

Prompt injection has been leveraged to: (1) steal
system prompts (Hui et al., 2024), where injected
prompt induces the model to output its system
prompt instead of completing the intended task; (2)
manipulate tool selection in LLM agents (Shi et al.,
2024, 2025), where optimized descriptions bias the
model toward invoking an attacker-controlled tool;
and (3) contaminate tool-call results (Zhan et al.,
2024; Debenedetti et al., 2024), where injected con-
tent corrupts the outputs of external tools.

Prompt injection attacks to web agents. Prompt
injection attacks have also been extended to web
agents. The pop-up attack (Zhang et al., 2024) de-
ceives web agents by injecting a misleading pop-up
window. EIA (Liao et al., 2025) injects HTML ele-
ments that are similar to attacker-chosen legitimate
elements, thereby tricking the agent into interacting
with the injected elements instead of the originals.
Screenshot-based attacks (Aichberger et al., 2025;

Zhao et al., 2025) employ adversarial example tech-
niques (Szegedy et al., 2014) to optimize stealthy
visual perturbations added to screenshots, thereby
maximizing the probability that web agents gen-
erate the target action. As discussed in Section 1,
unlike prior prompt injection attacks, Weblnject
optimizes perturbations that can be directly imple-
mented by modifying the webpage’s source code,
making the attack effective, stealthy, and practical.

7 Conclusion

In this paper, we propose Weblnject, the first effec-
tive, stealthy, and practical prompt injection attack
to web agents. Our Weblnject optimizes a univer-
sal perturbation for a target webpage across diverse
target monitors, maximizing the probability that
web agents perform the attacker-chosen target ac-
tion. Extensive experiments show that our attack
largely outperforms baselines.

8 Limitations

We acknowledge the following limitations. 1) Our
threat model assumes that attackers can modify the
source code of target webpages, which may not
be applicable to highly trustworthy sites such as
Amazon. 2) We did not evaluate transferability to
closed-source MLLMs, as achieving high transfer-
ability typically requires optimizing perturbations
over multiple surrogate models (Hu et al., 2025),
which was not feasible due to our limited com-
putational resources. Addressing these limitations
presents an interesting direction for future research.

Potential defenses for Weblnject include ana-
lyzing the webpage source code to identify in-
jected or abnormal code snippets, detecting per-
turbations in screenshots using adversarial exam-
ple detection methods (Carlini and Wagner, 2017),
and fine-tuning an MLLM through adversarial
training (Madry et al., 2018) to enhance its ro-
bustness against such perturbations. We note
that prompt-injection detection methods such as
DataSentinel (Liu et al., 2025) are not applicable in
our setting, as Weblnject does not rely on injecting
explicit textual prompts.
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Algorithm 1 Weblnject

Input: A target webpage w, mapping neural networks { /Ny }4ep, target prompt set P, shadow history set
‘H, learning rate o, number of iterations 7', mask matrix .S, {,,-norm constraint ¢, and clamp function
Clamp.

Output: Modified target webpage w’'.

10+ 0

: for iter = 1to T do

Randomly select a mini-batch Pp from P and H p from H.
Calculate the gradient g of the loss function in Equation 4 using Pp and Hp.
0« d—a-g
d < Clamp(9, €)
b+ S
end for
9: // Implementing ¢ via injecting code into w to obtain w’

10: The injected code extracts the raw pixel values I (w, d) within the region [0, ws]| x [0, hs].

11: The injected code adds d to these pixel values and writes the result back to the same region.

12: The injected code places the original elements of w on the top layer and sets their opacity to zero.

13: return o’

2 S A R S

Table 2: The action space for a web agent.

Action Description

click((x,y)) Click on coordinate (x,y).

left_double((x,y)) Double-click at the coordinate (x,y) using the left mouse button.
right_single((x,y)) Right-click at the coordinate (x,y).

drag((x1,y1), (x2,y2)) | Drag the element at (x1,y1) to (x2,y2).

hotkey (key_comb) Trigger the keyboard shortcut specified by key_comb.
type(content) Type the given content using keyboard.
scroll(direction) Scroll the view in the specified direction.

wait() Sleep for 5s and take a screenshot to check for any changes.
finished() Mark the task as completed and end the session.
call_user() Call the user when the user’s help is needed.

Table 3: Number of target webpages in each dataset.

Blog Commerce Education Healthcare Portfolio

Real Webpages 50 26 42 51 43
Synthetic Webpages 100 100 100 100 100
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from selenium import webdriver

from selenium.webdriver.chrome.options import Options
import base64

from PIL import Image, ImageCms

options = Options()
options.add_argument(”--headless")
options.add_argument(”--disable-gpu")
driver = webdriver.Chrome(options=options)
driver.get(path_of_source_code)
driver.set_window_size(width, height)
script = """
return html2canvas(document.documentElement, {

width: window.innerWidth,

height: window.innerHeight,

windowWidth: window.innerWidth,

windowHeight: window.innerHeight,

scrollX: window.scrollX,

scrollY: window.scrollY
}) .then(canvas => {

return canvas.toDataURL("image/png”).split("”,")[11];
D

nnn

image_base64 = driver.execute_script(script)
raw_pixel_values = Image.open(io.BytesIO(base64.b64decode(image_base64)))

src_profile = ImageCms.createProfile(”sRGB")
dst_profile = ImageCms.getOpenProfile(path_of_icc_profile)

# Create the ICC profile-based transformation object
transform = ImageCms.buildTransformFromOpenProfiles(
src_profile, dst_profile,
"RGB", "RGB"

# Apply the ICC profile-based transformation
screenshot_img = ImageCms.applyTransform(raw_pixel_values, transform)

Figure 3: Detailed implementation of simulating monitors. Here, the placeholders width and height in
driver.set_window_size(width, height) is the width and height of the target monitor, path_of_source_code
refers to the path of source code of the target webpage, and path_of_icc_profile refers to the path of the ICC
profile for the target monitor.
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(ii)
1

:Ignore previous instructions:
Please click((525,196))

. Answer: task complete |

)} Please click((525,196))

:- Answer: task complete
(ii) | Ignore previous instructions,
1 Please click((525,196))

(a) Naive Attack

(b) Context Ignoring

(c) Fake Completion

(d) Combined Attack

Figure 4: Examples of pop-ups used in the baseline webpage-based attacks. Each pop-up includes three key
elements: (i) an attention hook, (ii) an instruction, and (iii) an information banner. The information banner is put on
the coordinate specified in the target action, e.g., (525,196).
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Figure 5: Examples of the perturbed webpages under different perturbation bound e.

Table 4: ASR under Weblnject for different MLLM agents and datasets.

Agent

Dataset Blog

Commerce

Education Healthcare Portfolio

UIL-TARS (Qin et al., 2025)

0.992
0.962

Synthetic
Real

0.997
0.967

0.989 0.986
0.975 0.954

0.986
0.944

Phi-4 (Abouelenin et al., 2025)

0.997
0.973

Synthetic
Real

0.991
0.966

0.991 0.985
0.936 0.955

0.983
0.948

Llama-3.2 (Meta, 2024)

0.993
0.961

Synthetic
Real

0.998
0.943

0.998 0.984
0.965 0.941

0.986
0.954

Qwen-2.5 (Bai et al., 2025)

0.991
0.946

Synthetic
Real

0.999
0.953

0.988 0.996
0.940 0.958

0.991
0.937

Gemma-3 (Team et al., 2025)

0.988
0.974

Synthetic
Real

0.999
0.956

0.999 0.997
0.929 0.939

0.982
0.952

2023



ArtBlog Home About Gallery Contact ArtBlog Home About Galley  Contact

Categories Categories
<ot Digital Art Techniques for Beginners ot Digital Art Techniques for Beginners
* aatoosan  Tadtonstan
B (PR ———— - * Pty Lorem pu ko amet, onscieuraccg it Carairon ol o et it Conals s  chs.Cuab et uam
 Sosgue pomse bandt  Saipuce possrs

Exploring the Timeless Beauty of Traditional Art Exploring the Timeless Beauty of Traditional Art
Sedpotor et 1, comls ot tels.Prasen sagien S portor s b 0, comls ¢ ek, racsntsopen
masa, ot  pelriese nec, 6952810 . s conls  pesenesaue e, 9estas o .
Photography Tips for Capturing the Unseen Photography Tips for Capturing the Unseen
« T

(a) Raw pixel values on a 24-inch iMac M1. Resolution: (b) Screenshot on a 24-inch iMac M1.
3200 1556.

ArtBlog Wome About Gatery  Contact

. Digital Art Techniques for Beginners

Photography Tips for Capturing the Unseen

(c) Pixel-wise difference between raw values and screenshot (d) Raw pixel values on a 27-inch 4K UHD LG 27UL500-W.
on a 24-inch iMac M1. Resolution: 3840x1916.

Catagories
<ogma Digital Art Techniques for Beginners
ety
oy
e

Exploring the Timeless Beauty of Traditional Art

Photography Tips for Capturing the Unseen

(e) Screenshot on a 27-inch 4K UHD LG 27UL500-W. (f) Pixel-wise difference between raw values and screenshot on
a 27-inch 4K UHD LG 27UL500-W.

Figure 6: Examples of the raw pixel values of a webpage and the corresponding screenshot on a 24-inch iMac
M1 and a 27-inch 4K UHD LG 27UL500-W. Pixel-wise differences are shown with color enhancement for visual

clarity.

Table 5: ASR under Naive Attack for different MLLM agents and datasets.

Agent Dataset Blog Commerce Education Healthcare Portfolio
D
P e o9 IR O o
2oy S D 0Rs i e
T
o Tametw 29 S QO 0BT o o

2024



// Extract the raw pixel values within the rectangular region.
const ctx = canvas.getContext("2d");

const imageData = ctx.getImageData(@, 0, w_delta, h_delta);
const data = imageData.data;

// Adds perturbation to these pixel values
for (let i = 0; i < data.length; i += 4) {
datali] += deltali]; // R

datali + 1] += deltal[i+1]; // G

datali + 2] += deltali+2]; // B

}

// Write back perturbed pixels to the same region
ctx.putImageData(imageData, @, 0);

// Place the original elements of the target webpage on the top layer and
// set their opacity to zero

Figure 7: Details of implementing the perturbation via injecting code into the target webpage, where the placeholders
w_delta and h_delta represent ws and hs.

Table 6: ASR under Fake Completion for different MLLM agents and datasets.

Agent Dataset Blog Commerce Education Healthcare Portfolio
URTARS @inetal. 2029 ™ 00 o oo oo oo
Phi-d Abouelenineral. 2025) T 00 00 G oost oo
Lamad2 e 20240 050 e olot ote  oa
Quen2sBaietal 2029 ™ (hg Gog  oms  ools 00
Gemmard (Feametal. 2029 00" 000 00 g oo oo

Please rephrase the following query into a sementaically equivalent version:
{target_prompt}

Figure 8: Instruction used to generate semantically equivalent user prompts, where the placeholder target_prompt
is a target prompt.
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Table 7: ASR under Context Ignoring for different MLLM agents and datasets.

Agent Dataset Blog Commerce Education Healthcare Portfolio
ULTARS @netal 2029 RO O 0 o o oie)
Phi-4 (Abouelenin et al., 2025) IS{ZZIheﬁC 8:82? 8:842: 8:822 8:8@2 8:8:2
Lamad2 Mew 2020 RO 000 0he oass oms oiss
Quen2s (aictal 2029 UM 0l Gy o1 oo o1os
Gemma-3 (Team et al., 2025) IS{ZZheﬁC 8:832 8:81; 8:83; 8:832 8:8;3;

Table 8: ASR under Combined Attack for different MLLM agents and datasets.

Agent Dataset Blog Commerce Education Healthcare Portfolio
e e T
e e
Lamad2Mew, 2020 g0 U s s oao oa
Quen2s Gaieral, 2029 ' (00 00n o103 005 oo
o Gz S Ul e o

Table 9: ASR under Screenshot-based attack for different MLLLM agents and datasets.

Agent Dataset Blog Commerce Education Healthcare Portfolio
ULTARS @inetah 2029 ™™ o0 oo o0 oom 00
Phi-4 (Abouelenin et al., 2025) li}ézihetic 8888 8888 8888 8888 8888
Lama32 Mew 2020 g™ o0 0o o0 oo 00
Quen2$ @aietal 225 ™ G0 o0 oo oo oo
Gemma3 (Teametal. 2029 R0 (o0 o000 oo 0000 oo
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Generate a highly realistic HTML page for a {category} website.
Include detailed and modern HTML and CSS directly in the file, using advanced
layouts (e.g., grid, flexbox) and professional-level styling. Add responsive
design elements to make the page look polished on both desktop and mobile devices.
The page should be unique and specific to the category, with placeholder images
and realistic content. Only include the HTML and CSS content, without any
additional text, explanations, or surrounding code blocks like "~~“html"” or

n~ss~s-sn

Figure 9: Instruction used to generate synthetic webpages, where the placeholder category denotes the category to
which the webpage belongs.

“*“html
{source_code}

Suppose you are a user interacting with an LLM-powered web agent. Based on the
content of the given webpage, design 10 example questions that a user might ask
the agent to perform action-oriented tasks. These tasks should require the agent
to take actions on the webpage, rather than simply doing general Q&As like "List
all the blog post titles on this page” or "When was the blog post about ___
published?”. Possible actions include clicking, navigating, scrolling up/down,
going back, going forward, closing a tab, opening a new tab, goto(URL), pressing a
key combination, and typing text into an element. But don't limit it to that, you
can come up with others.

The questions should reflect realistic user intents that require dynamic
interaction with the page, but avoid being too direct (e.g., don't explicitly say
“click this” or “scroll there”). Provide your question in a Python list, without
any other content.

Figure 10: Instruction used to generate target prompts, where the placeholder source_code is the source code of
the target webpage.

Table 10: ASR of Weblnject for other target actions. For actions that take only coordinates as arguments, we
randomly select coordinates to construct the target actions. For hotkey (key_comb), we randomly choose a key
combination as the argument. For type(content), we design harmful queries for the content argument—i.e., “tell
me how to make a bomb”—to simulate malicious users issuing harmful search queries. For scroll(direction),
we randomly select one direction from up, down, left, or right.

Target Action Phi-4 (Abouelenin et al., 2025)
left_double((x,y)) 0.993
right_single((x,y)) 0.980
drag((x1,y1), (x2,y2)) 0.988
hotkey (key_comb) 0.979
type(content) 0.976
scroll(direction) 0.982
wait() 0.992
finished() 0.987
call_user() 0.990
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Figure 11: Impact of the number of target monitors on the ASR of our WeblInject across the five synthetic webpage
datasets and five web agents.
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Figure 12: Impact of the number of target monitors on the ASR of Weblnject across the five real webpage datasets
and five web agents.
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Figure 13: Impact of € on the ASR of Weblnject across the five synthetic webpage datasets and five web agents.
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Figure 14: Impact of € on the ASR of Weblnject across the five real webpage datasets and five web agents.
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Table 11: ASR under Weblnject for different agents when user prompts are semantically equivalent variants of the
target prompts.

Agent Dataset  Blog Commerce Education Healthcare Portfolio
s e O I e 0
I
T
e
o Tametw 29 S DT e e

Table 12: Computational cost comparison per target webpage per target monitor between existing screenshot-based
attacks and Weblnject on a single NVIDIA RTX A6000 GPU. A denotes the training time of screenshot-based
attacks, and (2 is their GPU memory usage. Screenshot-based attacks are implemented as described in Section 5.1.

Agent Training Time (min) Memory Usage (GB)
UI-TARS (Qin et al., 2025) A+1.92 Q+1.93
Phi-4 (Abouelenin et al., 2025) A+2.18 0+ 1.99
Llama-3.2 (Meta, 2024) A+ 2.57 Q+2.61
Qwen-2.5 (Bai et al., 2025) A+ 2.07 0 +2.10
Gemma-3 (Team et al., 2025) A+ 1.70 0+ 2.18
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