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Abstract

Modern large language models (LLMs) employ
diverse logical inference mechanisms for rea-
soning, making the strategic optimization of
these approaches critical for advancing their ca-
pabilities. This paper systematically investigate
the comparative dynamics of inductive (Sys-
tem 1) versus abductive/deductive (System 2)
inference in LLMs. We utilize a controlled ana-
logical reasoning environment1, varying modal-
ity (textual, visual, symbolic), difficulty, and
task format (MCQ / free-text). Our analysis re-
veals System 2 pipelines generally excel, partic-
ularly in visual/symbolic modalities and harder
tasks, while System 1 is competitive for tex-
tual and easier problems. Crucially, task for-
mat significantly influences their relative advan-
tage, with System 1 sometimes outperforming
System 2 in free-text rule-execution. These
core findings generalize to broader in-context
learning. Furthermore, we demonstrate that
advanced System 2 strategies like hypothesis
selection and iterative refinement can substan-
tially scale LLM reasoning. This study offers
foundational insights and actionable guidelines
for strategically deploying logical inference to
enhance LLM reasoning.

"It is not enough to have a good mind;
the main thing is to use it well."

— René Descartes

1 Introduction

Logical Inference2 is the reasoning process of de-
riving conclusions from known premises (Copi and
Cohen, 1990; Johnson-Laird, 2010). It primar-
ily categorizes into deductive inference — where
conclusions follow with logical necessity from

1https://github.com/HKUST-KnowComp/LogiDynamics
2The term ‘inference’ encompasses multiple interpreta-

tions across different disciplines. This paper employs the term
strictly within its logical trichotomy: deductive, inductive, and
abductive inference, as defined in (Flach and Kakas, 2000).
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Figure 1: (a) An illustration of System 1 and System
2 logical inference pipelines in RAVEN’s progressive
matrix. (b) General comparative dynamics between
System 1 and System 2 pipelines in all experiments.

premises, and inductive inference — where conclu-
sions serves as general rules derived from specific
instances (Salmon, 1984). While the introduction
of abductive inference (Peirce, 1958; Frankfurt,
1958) serves as a third perspective, denoting the
process of forming an explanatory hypothesis from
an observation requiring explanation. Logical in-
ference plays a crucial role in artificial intelligence,
scientific research, and philosophy, where ratio-
nal decision-making and hypothesis formation are
foundational (Hempel and Oppenheim, 1948; Har-
man, 1965; Reiter, 1987).

Different logical inference pipelines can be ap-
plied in solving the same reasoning task. Figure
1(a) illustrates an example of Raven’s Progressive
Matrices (Raven, 1938; Zhang et al., 2019), where
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the missing element in the 3×3 matrix is inferred
through the common patterns among different rows.
There are two approaches to solving this problem:
1) directly inferring the missing element from the
observed elements in the matrix, and 2) explic-
itly identifying the common patterns across rows,
then deductively applying these patterns to deter-
mine the missing element in the last row. The for-
mer is driven by inductive inference and features
fast, intuitive, pattern-recognition guided reasoning.
The latter consists of abductive and deductive infer-
ence, featuring slower but more deliberate analysis.
These approaches correspond to System 1 and Sys-
tem 2 thinking, respectively (Kahneman, 2011).

Research on large language models (LLMs) has
explored the logical inference pipelines employed
by LLMs for solving a wide range of tasks. Qiu
et al. (2024) and Wang et al. (2024) have demon-
strated the effectiveness of the System 2 approach
in various inductive reasoning datasets such as
ARC (Chollet, 2019) and its variants (Kim et al.,
2022; Xu et al., 2023). He et al. (2024) highlighted
the potential of System 2 logical inference in the
reasoning workflow of LLM-based agents. While
Liu et al. (2024) compared both System 1 and Sys-
tem 2 approaches in several in-context learning
tasks, pointing out the inconsistency of their rel-
ative performances across datasets. Nevertheless,
all prior studies leave an open question: When and
how can System 1 and System 2 logical inference
pipelines be effectively leveraged to enhance LLM
reasoning?

To address this intricate question, we systemat-
ically investigate the comparative dynamics of
System 1 and System 2 pipelines within LLM
reasoning tasks, specifically examining the con-
tingency of their performance preferences on task
attributes such as modality, difficulty, and task for-
mat. First, we build a fully controllable evaluation
environment using analogical reasoning tasks. The
environment is controlled in three dimensions: 1)
Modality: The data covers textual (word/phrase),
visual (images), and symbolic modalities. 2) Diffi-
culty: All tasks are labeled with relative difficulty
levels (easy, medium, and hard). 3) Task Format:
For each question, we provide two task formats:
multiple-choice questions (MCQ) or free-text gen-
eration (FTG) format.

With experiments in 10 modern LLMs (and
MLLMs), we discover several key findings:

• Modality-dependent: System 2 logical in-

ference shows superior performance in visual
and symbolic tasks, while System 1 performs
comparably in textual tasks.

• Difficulty-dependent: System 2 logical in-
ference is more advantageous in harder tasks,
while System 1 achieve comparable perfor-
mance in easier tasks.

• Task Format-dependent: For tasks involving
explicit rule execution, System 1 logical in-
ference outperforms System 2 in FTG format,
but underperforms in MCQ format.

To verify the generalizability of our findings,
we conduct further experiments in the List Func-
tion dataset (Rule, 2020) and SALT dataset (ours),
where we observe similar comparative dynam-
ics in difficulty and task format. We argue that
our findings can be generalized to broader in-
context learning (ICL) tasks where: 1) the few-
shot demonstrations are presented in Input-Output
format, and 2) the mapping function between input
and output can be explicitly defined.

Furthermore, we explored the effects of more
sophisticated System 2 logical inference pipelines,
including hypothesis selection, hypothesis verifi-
cation, and refinement. Using these paradigms,
LLMs demonstrate significant performance im-
provements as the number of inference tokens
increases. We show that, with sufficient com-
putational resources, LLMs under logical infer-
ence scaling achieve performance comparable
to state-of-the-art Long-CoT reasoning mod-
els. This highlights the potential of scaling infer-
ence through advanced System 2 logical inference
pipelines.

This work makes several key contributions to
understanding and improving LLM reasoning ca-
pabilities from a logical inference perspective:

1. We provide a systematic evaluation environ-
ment to compare logical inference paradigms
across controlled dimensions. (§3)

2. We present rich findings as clear guidelines
for leveraging different inference approaches
based on task characteristics. (§4)

3. We validate our findings’ generalizability to
broader in-context learning tasks. (§5)

4. We highlight the potential to scale up LLM
reasoning using advanced System 2 logical
inference paradigms. (§6)
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Collectively, these contributions establish a founda-
tion for future research on enhancing LLM reason-
ing through optimized logical inference strategies.

2 Preliminaries

2.1 Analogical Reasoning
Analogical reasoning is a fundamental aspect of
cognitive intelligence (Gentner et al., 2001). It
involves inferring a missing element in a target
domain according to relational structures from a
source domain. Formally, given a source pair
(A,A′) and an incomplete target pair (B, x), where
A and A′ have an implicit relational pattern P , the
goal is to infer x that have the same relational pat-
tern P with B. This task can be defined as:

B′ = argmax
x∈X

simP ((A,A′), (B, x)),

where simP measures the consistency of the rela-
tional pattern P between the source pair (A,A′)
and the candidate target pair (B, x), and X repre-
sents the set of all possible candidates for B′. The
complete analogy is denoted as A : A′ :: B : B′.
For instance, given the source pair (sun, planet)
and the incomplete target pair (nucleus, x), we can
infer x = electron by identifying the pattern P as
orbital relationship.

The task of analogical reasoning is particularly
well-suited for our investigation for several rea-
sons: 1) it offers a well-defined task structure while
encompassing diverse data modalities, 2) it is com-
patible with a variety of logical inference pipelines,
and 3) it is considered out-of-distribution for the
training data of LLMs, enabling a robust evaluation
of their reasoning capabilities under generalization
(Stevenson et al., 2024).

2.2 Logical Inference Pipelines
In the main experiment, we compare three logical
inference pipelines: direct induction, abduction +
deduction, and automatic inference. More sophis-
ticated pipelines involving hypothesis selection,
verification, and refinement are discussed in the
scaling experiments in Section 6. Detailed prompt
templates are provided in Appendix D.

Direct Answering as Inductive Inference In-
ductive inference is often associated with fast, intu-
itive reasoning in cognition (Cohen, 1982). Similar
to Liu et al. (2024), we regard the direct answering
of LLMs as a form of inductive inference, repre-
senting their System 1 logical inference pipeline.

Dataset Difficulty Total
Task Modality Benchmark Easy Medium Hard

Analogy
Textual E-KAR 317 435 496 1248
Visual VASR 455 572 320 1347
Symbolic RAVEN 402 462 395 1259

General ICL Math/Code List Function 432 423 395 1250
Textual SALT 400 400 400 1200

Total 2006 2292 2006 6304

Table 1: Dataset statistics across modalities and diffi-
culty levels. Details of general in-context learning tasks
(List Function and SALT) are introduced in Section 5.

Abductive and Deductive Inference With this
System 2 pipeline, task completion is decomposed
into two steps. First, LLMs are required to abduc-
tively infer the hypothetical pattern Ph based on the
source pair(s). Then, they deductively apply this

pattern to the incomplete target pair as B
Ph−→ B′.

Zero-shot CoT as Automatic Inference The rea-
soning process observed in zero-shot CoT (Chain-
of-Thought) (Wei et al., 2023), which we term “Au-
tomatic Inference” for the purpose of this paper,
demonstrates an inherent logical inference capabil-
ity acquired during instruction-tuning or alignment
stages. Therefore, we included the “Automatic In-
ference” in our comparison for reference.

3 Evaluation Environment

In this section, we introduce our evaluation envi-
ronment of analogical reasoning, providing details
on the settings for each control dimensions.

3.1 Modality

Exploring diverse data modalities is crucial for ob-
taining comprehensive insights. To this end, we
selected three analogical reasoning tasks across
different modalities. E-KAR (Chen et al., 2022)
consists of human-curated analogy questions be-
tween word pairs (or sets), where analogies are
determined by shared ontological relationships be-
tween words. VASR (Bitton et al., 2022) com-
prises human-annotated analogical questions be-
tween image pairs, where analogies are determined
by shared semantic transitions between images.
RAVEN (Raven, 1938; Zhang et al., 2019; Hu
et al., 2022) generates symbolic matrices using at-
tributed stochastic image grammar (A-SIG), where
analogies are determined by shared attribute shifts
among rows. To enhance comprehension in large
language models, we adopt the abstracted version
proposed by Hu et al. (2023), which tokenizes the
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Figure 2: LLM performances (in Accuracy %) in our evaluation environment under different reasoning pipelines.

matrix images into symbolic vectors.

3.2 Difficulty

Task difficulty, while a key determinant of thinking
styles (Phillips et al., 2016), is largely overlooked
in research on reasoning paradigms in LLMs. To
address this, we conducted difficulty annotations
for all three datasets. In analogical reasoning in-
volving real-world data, difficulty is often mea-
sured by the semantic distance between analogy
pairs (Vendetti et al., 2012; Jones et al., 2022).
For E-KAR, we compute the semantic distance be-
tween word pairs using FastText embeddings (Bo-
janowski et al., 2017), which are more suitable than
Word2Vec (Mikolov et al., 2013a) or BERT (De-
vlin et al., 2019), as the word pairs exhibit morpho-
logical variations but lack contextual dependencies.
For VASR, we calculate the distance between VGG
encodings (Simonyan and Zisserman, 2015) to ac-
count for both semantic and graphical features. For
RAVEN, task complexity is defined by the number
of attribute variations across the columns. The
statistics of our datasets across different modalities
and difficulty levels are presented in Table 1. Fur-

ther details about our difficulty annotation process
are provided in Appendix B.

3.3 Task Format

The task format also serves as an important factor
influencing reasoning performance (Ribeiro et al.,
2018; Zong et al., 2024). We conducted experi-
ments separately under two task formats3: multiple-
choice questions (MCQ) and free-text generation
(FTG), aiming to achieve a more comprehensive
perspective in our exploration.

4 Main Experiment Results and Analysis

We evaluated 10 modern LLMs / MLLMs (details
provided in Appendix A) within our exploration
environment. The experimental results are pre-
sented in Figure 2. Across the entire environment,
the tested LLMs achieved an overall average per-
formance of only 35.4%, demonstrating that our
datasets effectively stress-test the real reasoning
abilities of LLMs rather than simply retrieving
from memorization. Furthermore, the substantial

3For the visual dataset, we evaluated only in the MCQ
format for feasibility.
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(a) Modality (Task Format = MCQ)

Modality
Pipeline Textual Visual Symbolic

Induction 55.70 38.88 28.58
Automatic 58.05 51.52 34.99
Abduction+Deduction 59.13 53.93 37.69

System 2 Advantage +6.16% +38.73% +31.86%

(b) Difficulty (Task Format = MCQ)

Difficulty
Pipeline Easy Medium Hard

Induction 51.48 41.93 31.48
Automatic 58.12 48.23 40.02
Abduction+Deduction 59.68 49.76 43.20

System 2 Advantage +15.92% +18.68% +37.20%

(c) Task Format

Textual Symbolic
Pipeline MCQ FTG MCQ FTG

Induction 55.70 23.36 28.58 19.18
Automatic 58.05 24.89 34.99 8.67
Abduction+Deduction 59.13 24.93 37.69 11.33

System 2 Advantage +6.16% +6.74% +31.86% -40.93%

Table 2: Comparative dynamics of different logical infer-
ence pipelines in our evaluation environment, controlled
by modality, difficulty, and task format. Performances
(in Accuracy %) are averaged across all LLMs. "Sys-
tem 2 Advantage" denotes the relative improvements of
abduction + deduction pipeline over direct induction.

performance gaps across difficulty levels validate
the effectiveness of our difficulty annotations. Gen-
erally, the abduction + deduction pipeline outper-
forms direct induction, while automatic inference
falls between the two pipelines in most scenarios.

To better illustrate the comparative dynamics
between different logical inference pipelines, we
present the consolidated results controlled by each
dimension in Table 2. From these results, we ob-
serve the key findings as follows:

Findings 1: The comparative advantages of the
System 2 logical inference pipeline are modality-
dependent. As shown in Table 2(a), the abduc-
tion + deduction pipeline substantially outperforms
direct induction in visual and symbolic tasks, with
relative improvements of 38.73% and 31.86%, re-
spectively. However, in textual tasks, direct in-
duction achieves comparable performance, trailing
behind by only 6.16%.

Findings 2: The comparative advantages of the
System 2 logical inference pipeline are difficulty-
dependent. Based on Table 2(b), the abduction +

deduction pipeline outperforms direct induction by
37.20% on hard questions, while the performance
gap reduces to 18.68% and 15.92% on medium and
easy questions, respectively.

Findings 3: The System 2 logical inference
pipeline falls short in free-text generation for-
mat when the task requires explicit rule execu-
tion. Results from Table 2(c) reveal a noteworthy
inconsistency: in textual tasks, the advantage of the
System 2 pipeline remains the same across task for-
mats. However, in symbolic tasks (i.e., RAVEN),
the System 2 pipeline severely underperforms di-
rect induction in the free-text generation format,
which sharply contrasts with its advantage in the
multiple-choice question format.

Interpretation of Findings 3: To investigate the
underlying mechanism leading to the limitation of
System 2 logical inference in free-text generation,
we conducted further analyses to decouple the per-
formance of abduction and deduction (detailed in
Appendix E). We identified the following explana-
tions for this task format sensitivity:

• The precise generation of complex rules is
challenging for most LLMs, as evidenced by
the poor pattern inference accuracy compared
to pattern execution (Table 8).

• Implicit pattern matching may be more ef-
fective in this case, as employed by di-
rect induction. However, in the System 2
pipeline, lengthy rationales disrupt the well-
structured few-shot patterns essential for in-
context learning, thereby rendering implicit
learning ineffective (Table 9).

• For multiple-choice questions, the System 2
pipeline can better infer patterns, as the an-
swer space is reduced to a few candidates.
It may also occasionally leverage reasoning
shortcuts to improve performance (Geirhos
et al., 2020; Zong et al., 2024) — an advantage
that cannot be employed in direct induction.

As a result, the abduction + deduction pipeline
tends to favor the MCQ format when address-
ing problems that require explicit rule execution,
whereas, under the FTG format, direct induction
demonstrates a surprising advantage.

5 Generalization Experiment

To further assess the generalizability of our find-
ings, we extend the scope from analogical reason-
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ing to general in-context learning tasks. Specifi-
cally, we formally define our target task scope us-
ing the following constraints: 1) The task requires
generating output y from input x, based on n-shot
demonstrations D = [(x1, y1), . . . , (xn, yn)]. 2)
The input-output function y = f(x) can be ex-
plicitly defined. We conduct generalization experi-
ments on two in-context learning datasets, both of
which require explicit rule execution.

List Function (Rule, 2020) takes lists of integers
as input and maps them to output lists using 250
predefined transition functions. In this task, LLMs
must infer the underlying function from provided
demonstrations (input-output pairs) and apply it to
new input lists. The difficulty of the task is deter-
mined by the complexity of the transition functions.

SALT (Syntax-aware Artificial Language Trans-
lation) is a machine translation benchmark that
we developed to address key limitations in exist-
ing datasets. Unlike benchmarks such as SCAN
(Higgins et al., 2018) and Kalamang (Tanzer et al.,
2024), SALT introduces diverse syntactic shifts
(e.g., inversion of semantic unit order) while rig-
orously mitigating data leakage—a common issue
in low-resource machine translation benchmarks.
The task difficulty is determined by the complexity
of the syntactic structures, enabling fine-grained
evaluation of model performance across varying
levels of linguistic challenge. Details of the SALT

(a) List Function
Difficulty Task Format

Pipeline Easy Medium Hard MCQ FTG

Induction 65.26 42.53 24.18 44.96 43.92
Automatic 64.42 42.16 26.35 52.35 37.09
Abduction+Deduction 68.55 43.21 28.06 52.93 40.85

System 2 Advantage +5.04% +1.60% +16.06% +17.73% -6.98%

(b) SALT
Difficulty Task Format

Pipeline Easy Medium Hard MCQ FTG

Induction 49.75 33.58 23.42 41.44 29.72
Automatic 41.88 36.17 29.46 45.83 25.83
Abduction+Deduction 43.71 39.17 33.58 50.53 27.11

System 2 Advantage -12.14% +16.63% +43.42% +21.92% -8.79%

Average -3.55% +9.11% +29.74% +19.83% -7.88%

Table 3: Comparative dynamics of different logical infer-
ence pipelines in List Function and SALT. Performances
(in Accuracy %) are averaged across all LLMs.

dataset are provided in Appendix C.
The results of the generalization experiments are

illustrated in Figure 3, with the consolidated find-
ings presented in Table 3. Across both datasets,
we observed patterns similar to those in our eval-
uation environment in analogy: The advantage of
the System 2 logical inference pipeline increases
substantially as task difficulty rises. While the two
pipelines exhibit contrasting task preferences be-
tween the MCQ and FTG format. Consequently,
we demonstrate that our findings are generaliz-
able to broader in-context learning tasks where
the input-output function is explicitly defined.

6 Scaling-up System 2 Logical Inference

Beyond the basic processes of abductive hypothesis
generation and deductive execution (which form
the core of our System 2 pipeline), more sophisti-
cated logical inference strategies can be employed
to tackle complex tasks and further enhance System
2 reasoning. We introduce two inference method-
ologies in philosophy and connect them to the logi-
cal inference pipelines of LLMs.

6.1 Liptonian and Holmesian Inference

Liptonian Inference (Lipton, 2000) provides a
widely recognized modern account of IBE (Infer-
ence to the Best Explanation). It characterizes the
process of selecting the most explanatory hypoth-
esis from a set of candidates based on its capacity
to best account for the observed evidence. In LLM
reasoning, this corresponds to the parallel sampling
of multiple hypotheses, followed by hypothesis se-
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Figure 4: Effect of hypothesis selection, verification and
refinement on LLM performances (in Accuracy %).

lection as a precursor to the final deductive execu-
tion. In our experiment, we evaluated the effective-
ness of hypothesis selection across sampling sizes
ranging from 1 to 10.

Holmesian Inference (Bird, 2005) provides an
alternative model to Liptonian, emphasizing hy-
pothesis verification rather than selection. Inspired
by Sherlock Holmes’s famous dictum, it involves
systematically eliminating all but one hypothesis to
ensure that the remaining one is necessarily true. In
LLM reasoning, this can be simulated through iter-
ative verification and refinement (regeneration) of
hypotheses, where candidate outputs are repeatedly
evaluated and improved. In our experiment, we in-
vestigated hypothesis verification and refinement
across iteration rounds up to 5.

6.2 Scaling Performances

The experimental results of hypothesis selection,
verification and refinement are presented in Figure

4 (a) and 4 (b). In hypothesis selection, we observe
clear improvements in sampling sizes from 1 to 5.
However, the performance starts to decrease when
the sampling size increases to 10, as the diversity of
the sampled hypotheses begins to saturate, and the
selection process also becomes less effective with a
longer context. In terms of hypothesis verification
and refinement, the saturation of improvements
was reached after one round of verification, except
for GPT-4o in the List Function, where positive
improvements were observed in every additional
round of verification. This interesting inconsis-
tency can be explained as follows: 1) Stronger
LLMs lead to better verification quality. Com-
pared to the consistent improvements observed in
GPT-4o, GPT-4o-mini did not exhibit similar en-
hancements, as its ability to detect incorrect hy-
potheses is also weaker. 2) Well-formed hypoth-
esis formats make refinements easier. The im-
provement seen in the List-Function dataset (where
hypotheses are written in Python code) does not
hold for the RAVEN dataset (where hypotheses are
presented in free text). A better hypothesis format
may also enhance the effectiveness of proofreading
or maintaining the validity of existing hypotheses.

Figure 4 (c) illustrates the combined effect of the
two scaling strategies. In both datasets, GPT-4o
demonstrates considerable performance improve-
ments as the number of inference tokens increases.
For instance, performance of GPT-4o in the List-
Function dataset improved from 46.8% to 61.6%,
consuming 25× more inference tokens compared
to automatic inference. This underscores the po-
tential of scaling up LLM reasoning through
System 2 logical inference pipelines.

6.3 Discussions on Large Reasoning Models
Recent advances in large reasoning models (LRMs),
such as o1 (OpenAI, 2024) and Deepseek-R1
(DeepSeek-AI et al., 2025), have demonstrated im-
pressive performance in mathematical and code rea-
soning tasks. LRMs emerge strong self-reflec- tion
abilities during their reinforcement learning stage,
driven by rule-based rewards. From our explor-
ation, LRMs exhibit two noteworthy characteristics
within our task domain (in-context learning with
explicit input/output functions): 1) LRMs emulate
an "iterative holmesian inference" by engaging
in repeated cycles of hypothesis generation and
verification. 2) The number of inference tokens
(rounds of iterative hypothesis generation) in-
creases substantially as task difficulty rises.
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Model Inference Tokens (# Rounds) Accuracy
Easy Medium Hard

Deepseek-R1 2174.5 (3.9) 3353.1 (5.0) 5935.9 (6.5) 69.2
o1-mini 1345.5 (2.6) 2229.8 (3.2) 4188.0 (3.5) 69.6
o1 1949.1 (2.7) 3233.0 (3.3) 6995.7 (5.5) 77.2
o3-mini 1184.3 (2.5) 2126.3 (3.0) 5328.7 (6.2) 76.8

Deepseek-V3 989.0 1261.1 1260.9 57.2
+Sys2 Scaling (low) 1758.0 (2.4) 2124.4 (2.5) 2618.9 (2.7) 65.2
+Sys2 Scaling (high) 2356.8 (2.7) 2985.3 (2.9) 4308.0 (3.8) 69.6

Table 4: Performance of LRMs and LLMs with adaptive
logical inference scaling on the List Function dataset.

Nevertheless, can short-CoT LLMs achieve com-
parable performance by scaling up System 2 logical
inference? To answer this question, we conducted
experiments on Deepseek-V3 (DeepSeek-AI et al.,
2024), employing adaptive logical inference scal-
ing under low and high computational consump-
tions (details in Appendix F), where the model
autonomously determined the number of iteration
within a set limit. As illustrated in Table 4, under
high consumptions, Deepseek-V3 demonstrates a
similar inference scaling effect in difficulty and
achieves comparable performance to LRMs.

7 Related Work

7.1 Logical Inference in Language Models
Abductive Inference In the era of pre-trained
language models, α-NLI (Bhagavatula et al., 2020)
introduced abductive reasoning to commonsense
reasoning, where plausible explanations are in-
ferred from observations. Subsequent works pro-
posed various techniques to enhance this capability
(Qin et al., 2021; Kadik, is et al., 2022; Chan et al.,
2023), including extensions to uncommon scenar-
ios focusing on rare but logical explanations (Zhao
et al., 2024). Unlike real-world data in common-
sense reasoning, benchmarks like ProofWriter
(Tafjord et al., 2021) evaluate formal abductive rea-
soning within semi-structured texts with explicit
logical relationships. Recent studies have explored
LLMs in more challenging open-world reasoning
contexts (Zhong et al., 2023; Del and Fishel, 2023;
Thagard, 2024). Beyond natural language infer-
ence, abductive reasoning has also been examined
in graph-based modalities for commonsense and
event knowledge (Du et al., 2021; Bai et al., 2024).

Deductive and Inductive Inference Deductive
inference is extensively studied in transformers
(Clark et al., 2020; Han et al., 2024; Zheng et al.,
2025b) with natural language rule-based reasoning
tasks. Saparov et al. (2023) evaluate LLMs’ deduc-

tive reasoning in out-of-distribution settings, em-
phasizing challenges with longer proofs and com-
plex logic. Inductive inference is explored through
datasets like EntailmentBank (Dalvi et al., 2022),
where models construct step-by-step entailment
trees to explain answers. Meanwhile, recent studies
have demonstrated emergent inductive reasoning
abilities in LLMs (Zheng et al., 2025a; Li et al.,
2025; Fan et al., 2025).

7.2 Analogical Reasoning

The study of analogical reasoning in AI has pro-
gressed from early symbolic systems, such as the
Structure-Mapping Engine (Falkenhainer et al.,
1989), which used hand-crafted representations, to
models like the Latent Relation Mapping En-
gine (Turney, 2008), which integrated symbolic
rules with statistical learning. The neural era in-
troduced word embeddings for analogy evaluation
(Mikolov et al., 2013b), emphasizing local seman-
tic patterns. With LLMs, Webb et al. (2023) demon-
strated emergent analogical reasoning, but chal-
lenges remain. AnaloBench (Ye et al., 2024) shows
minimal scaling gains for long-context analogies,
while ANALOGICAL (Wijesiriwardene et al.,
2023) highlights struggles with complex metaphors.
Story-level benchmarks like StoryAnalogy (Ji-
ayang et al., 2023) and ARN (Sourati et al., 2024)
reveal difficulties in cross-domain narrative map-
ping without explicit prompts.

8 Conclusion
This paper systematically dissects the interplay
of inductive (System 1) and abductive/deductive
(System 2) logical inference within LLMs. We
establish that while System 2 pipelines generally
yield superior performance—particularly in vi-
sual/symbolic modalities and with increasing task
difficulty—System 1 remains competitive for tex-
tual tasks and, crucially, can outperform System
2 in free-text rule-execution scenarios. These nu-
anced dynamics extend to broader ICL tasks involv-
ing explicit input-output functions. Furthermore,
we demonstrate that strategically scaling System
2 through methods like hypothesis selection and
iterative refinement largely enhances reasoning ca-
pabilities, enabling standard LLMs to approach
the performance of specialized reasoning models.
Ultimately, this study provides a foundational un-
derstanding and actionable guidelines for optimiz-
ing LLM reasoning by tailoring logical inference
strategies to specific task characteristics.
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Limitations

While our extensive experiments and analyses yield
rich findings, our exploration is limited to reason-
ing frameworks for static LLMs. Future research
could build on this work by focusing on the tun-
ing stage of LLMs, aiming to develop systems that
dynamically balance different types of logical in-
ference. For example, a system capable of auto-
matically identifying the nature of a question and
determining whether to apply System 1 or System
2 reasoning could not only maintain or enhance
performance but also improve efficiency. Such
adaptive reasoning closely mirrors the way humans
naturally approach problem-solving.
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A Model Details

In our experiments, we tested 15 modern LLM /
MLLMs / LRMs with details as follows:

• Qwen-2.5-7b / Qwen-2.5-72b (Qwen et al.,
2025) is an open-source MoE LLM series,
trained with 18 trillion tokens of pre-training
corpus and 1 million fine-tuning examples.

• Llama-3.1-70b / Llama-3.1-405b (AI, 2024)
is an open-source dense LLM series, trained
with 15 trillion tokens of pre-training corpus,
and adopted DPO (Rafailov et al., 2024) dur-
ing its alignment stage.

• GPT-4o-mini / GPT-4o (OpenAI, 2024) is
the latest proprietary LLM series by OpenAI
prior to their reasoning models.

• Gemini-1.5-flash / Gemini-1.5-pro (Google,
2024) is a proprietary MoE LLM series featur-
ing a long context window of 1 million tokens.

• Gemini-2.0-flash (DeepMind, 2024) is the
latest Gemini series LLM, offering enhanced
multimodal and reasoning performance.

• Pixtral-12b (Agrawal et al., 2024) is a
lightweight open-source multimodal LLM.

• Deepseek-V3 (DeepSeek-AI et al., 2024) is
the state-of-the-art open-source LLM.

• Deepseek-R1 (DeepSeek-AI et al., 2025) is
the leading open-source LRM trained with
reinforcement learning using a rule-based re-
ward system.

• o1-mini / o1 (OpenAI, 2024) represents the
state-of-the-art proprietary LRM series devel-
oped by OpenAI.

• o3-mini (OpenAI, 2025) is the latest LRM by
OpenAI, featured its cost-effectiveness.

The temperature for all LLMs is set to zero in our
main experiments, while it is set to 0.4 during the
hypothesis sampling in our scaling experiments.

B Difficulty Annotation

The detailed difficulty annotation standards are pre-
sented in Table 5. For EKAR and VASR, we set
thresholds for semantic distances to categorize the
difficulty into easy, medium, and hard, ensuring
comparable sizes across categories.

sem_dist =
cos_dist(A,B) + cos_dist(A′, B′)

2

For RAVEN, we calculate the number of attributes
in transition among rows, with fine-grained catego-
rization applied within each question typology. For
List Function, we use the predefined complexity
ranking of mapping functions provided by (Rule,
2020). For SALT, we classify the syntax complex-
ity of the translation examples into simple, medium,
and complex categories.
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Dataset Determinator Category Easy Medium Hard

E-KAR FastText Distance - <0.70 0.70∼0.80 >0.80

VASR VGG Distance - <0.70 0.70∼0.76 >0.76

RAVEN Number of Transitions

center_single 1 2 >=3
distribute_four <=2 3 >=4
distribute_nine <=2 3 >=4
in_center_single_out_center_single <=3 4 >=5
in_distribute_four_out_center_single <=3 4 >=5
up_center_single_down_center_single <=3 4 >=5
left_center_single_right_center_single <=4 5 >=6

List Function Function Complexity Ranking - <=84 85∼170 >=170

SALT Syntax Complexity - simple intermediate complex

Table 5: Difficulty classification standards for each datasets in our experiment.

English Sentence I like beautiful house. Giant elephant runs quickly.

Syntax Structure <pronoun - verb - adjective - noun> <adjective - noun - verb - adverb>

Grammar Rule <noun-adjective inversion> <predicate-subject inversion>

Transition Type Intra-Constituent Inter-Constituent

Vocabulary I → gkt, like → ivo, beautiful → prr, house → cbi giant → rgd, elephant → krt, runs → uco, quickly → xrk

Translation gkt ivo cbi prr. uco xrk rgd krt.

Table 6: Examples of intra-constituent and inter-constituent syntactic transitions in the SALT dataset.

C Syntax-aware Artificial Language
Translation

Syntax-aware Artificial Language Translation
(SALT) is a low-resource machine translation (MT)
benchmark that we designed and developed to eval-
uate generalizable in-context learning in large lan-
guage models. LLMs are required to infer vo-
cabulary mappings as well as syntactic transitions
from few-shot demonstrations and apply them to
translate a compositionally crafted testing instance.
SALT offers two key advantages over other low-
resource MT benchmarks: 1) SALT synthesizes
out-of-vocabulary strings for the artificial language,
preventing data leakage, a common issue in other
benchmarks. 2) SALT provides detailed difficulty
control enabled by human-curated syntactic struc-
tures with compositional complexities.

The creation of SALT involves two main stages:

1. Syntax-aware Template Design In the first
stage, we design syntactic rules that involve
the permutation or repetition of semantic units
in the artificial language, as illustrated in Table
6 and 7. Next, we manually craft templates for
few-shot demonstrations with considerations
in compositional generalization. We ensure
that all the necessary underlying word map-
pings and syntactic rules required for translat-
ing the testing instances can be inferred from
the provided few-shot demonstrations.

Difficulty
Level

Syntax Rule Sentence
Complexity

Easy word-to-word mapping Simple
Easy noun repetition Simple
Easy noun-adjective inversion Simple
Easy predicate-subject inversion Simple
Medium word-to-word mapping Intermediate
Medium verb repetition Intermediate
Medium noun-adjective inversion Intermediate
Medium predicate-subject inversion Intermediate
Hard word-to-word mapping Complex
Hard adjective repetition Complex
Hard verb-adverb inversion Complex
Hard predicate-subject inversion Complex

Table 7: Summary of the 12 translation modes in SALT,
listing their syntax rule and sentence complexity.

2. Semantic-aware Data Synthesis After ac-
quiring the templates, we populate them with
semantically appropriate English words using
LLM-assisted selection. Next, we randomly
assign out-of-vocabulary letter strings as the
artificial language equivalents for each En-
glish word. Finally, a total of 1,200 ques-
tions are sampled—400 at each difficulty
level—ensuring comparability in size with
other datasets.
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D Prompt Templates

Textual Analogy (Induction)

Below is an analogy question, where analogy
x:y::x’:y’ exists between the two wordsets, your task
is to finish the second wordset to complete the analogy.

Wordset1: <word_x>:<word_x'>
Wordset2: <word_y>:[missing_word]

Your response should strictly follow the JSON dict format:

{
"answer": "missing word here"

}

Textual Analogy (Automatic)

Below is an analogy question, where analogy
x:y::x’:y’ exists between the two wordsets, your task
is to finish the second wordset to complete the analogy.

Wordset1: <word_x>:<word_x'>
Wordset2: <word_y>:[missing_word]

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing word here"

}

Textual Analogy (Abduction)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two wordsets, your task is to infer
the relational pattern within wordsets.

Wordset1: <word_x>:<word_x'>
Wordset2: <word_y>:[missing_word]

Your response should strictly follow the JSON dict format:

{
"reasoning": "reasoning steps here"
"pattern": "relational pattern here"

}

Textual Analogy (Deduction)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two wordsets, your task is to
finish the second wordset to complete the analogy.
Here’s the relational pattern: <pattern>

Wordset1: <word_x>:<word_x'>
Wordset2: <word_y>:[missing_word]

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing word here"

}
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Visual Analogy (Induction)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two image pairs, your task is to
complete the second image pair to complete the analogy.

Image Pair 1: <img_x>:<img_x'>
Image Pair 2: <img_y>:[missing_img]

<Candidate Images>

Your response should strictly follow the JSON dict format:

{
"answer": "missing image choice here"

}

Visual Analogy (Automatic)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two image pairs, your task is to
complete the second image pair to complete the analogy.

Image Pair 1: <img_x>:<img_x'>
Image Pair 2: <img_y>:[missing_img]

<Candidate Images>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing image choice here"

}

Visual Analogy (Abduction)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two image pairs, your task is to
infer the relational pattern within image pairs.

Image Pair 1: <img_x>:<img_x'>
Image Pair 2: <img_y>:[missing_img]

<Candidate Images>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"pattern": "relational pattern here"

}

Visual Analogy (Deduction)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two image pairs, your task is to
complete the second image pair to complete the analogy.
Here’s the relational pattern: <pattern>

Image Pair 1: <img_x>:<img_x'>
Image Pair 2: <img_y>:[missing_img]

<Candidate Images>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing image choice here"

}

Symbolic Analogy (Induction)

Below is a 3x3 matrix of abstracted symbols. The
symbols follow a certain rule or pattern in rows. Your
task is to infer the missing symbol.

Incomplete Matrix: <incomplete_matrix>

Your response should strictly follow the JSON dict format:

{
"answer": "missing symbol here"

}

Symbolic Analogy (Automatic)

Below is a 3x3 matrix of abstracted symbols. The
symbols follow a certain rule or pattern in rows. Your
task is to infer the missing symbol.

Incomplete Matrix: <incomplete_matrix>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing symbol here"

}

Symbolic Analogy (Abduction)

Below is a 3x3 matrix of abstracted symbols. The
symbols follow a certain rule or pattern in rows. Your
task is to infer the relational pattern.

Incomplete Matrix: <incomplete_matrix>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"pattern": "relational pattern here"

}

Symbolic Analogy (Deduction)

Below is a 3x3 matrix of abstracted symbols. The
symbols follow a certain rule or pattern in rows.
Your task is to infer the missing symbol. Here’s the
relational pattern: <pattern>

Incomplete Matrix: <incomplete_matrix>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing symbol here"

}
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List Function ICL (Induction)

Below are several examples of input and output lists.
There exists an unified function that maps the input
list to the output list.

Input 1: <input_list1>, Output 1: <output_list1>
Input 2: <input_list2>, Output 2: <output_list2>
Input 3: <input_list3>, Output 3: <output_list3>

Please infer the output list for the new input list below:
New Input: <new_input_list>

Your response should strictly follow the JSON dict format:

{
"answer": "output list here"

}

List Function ICL (Automatic)

Below are several examples of input and output lists.
There exists an unified function that maps the input
list to the output list.

Input 1: <input_list1>, Output 1: <output_list1>
Input 2: <input_list2>, Output 2: <output_list2>
Input 3: <input_list3>, Output 3: <output_list3>

Please infer the output list for the new input list below:
New Input: <new_input_list>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "output list here"

}

List Function ICL (Abduction)

Below are several examples of input and output lists.
There exists an unified function that maps the input
list to the output list.

Input 1: <input_list1>, Output 1: <output_list1>
Input 2: <input_list2>, Output 2: <output_list2>
Input 3: <input_list3>, Output 3: <output_list3>

Please infer the mapping function in python.
Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"function": "python function here"

}

List Function ICL (Deduction)

Below are several examples of input and output lists.
There exists an unified function that maps the input
list to the output list. The python code for the
function is: <function>

Input 1: <input_list1>, Output 1: <output_list1>
Input 2: <input_list2>, Output 2: <output_list2>
Input 3: <input_list3>, Output 3: <output_list3>

Please infer the output list for the new input list below:
New Input: <new_input_list>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "output list here"

}

SALT ICL (Induction)

You are required to translate english sentences to an
artificial language. The translation involves both
vocabulary mapping and syntax rules transition. Below
are translation examples:

English 1: <english_1>, Translation 1: <translation_1>
English 2: <english_2>, Translation 2: <translation_2>
English 3: <english_3>, Translation 3: <translation_3>
English 4: <english_4>, Translation 4: <translation_4>

Please translate this sentence: <english_new>
Your response should strictly follow the JSON dict format:
{

"translation": "translated sentence here"
}

SALT ICL (Automatic)

You are required to translate english sentences to an
artificial language. The translation involves both
vocabulary mapping and syntax rules transition. Below
are translation examples:

English 1: <english_1>, Translation 1: <translation_1>
English 2: <english_2>, Translation 2: <translation_2>
English 3: <english_3>, Translation 3: <translation_3>
English 4: <english_4>, Translation 4: <translation_4>

Please translate this sentence: <english_new>
Your response should strictly follow the JSON dict format:
{

"reasoning":"reasoning steps here",
"translation": "translated sentence here"

}

SALT ICL (Abduction)

You are required to study translations from english
sentences to an artificial language. The translation
involves both vocabulary mapping and syntax rules
transition. Below are translation examples:

English 1: <english_1>, Translation 1: <translation_1>
English 2: <english_2>, Translation 2: <translation_2>
English 3: <english_3>, Translation 3: <translation_3>
English 4: <english_4>, Translation 4: <translation_4>

Please infer the word mappings and syntax rules.
Your response should strictly follow the JSON dict format:
{

"reasoning":"reasoning steps here",
"vocabulary": "word mappings here",
"grammar": "syntax rules here"

}

SALT ICL (Deduction)

You are required to translate english sentences to
an artificial language. The translation involves
both vocabulary mapping and syntax rules transition.
Vocabulary mapping: <vocab>; Syntax rules: <grammar>.
Below are translation examples:

English 1: <english_1>, Translation 1: <translation_1>
English 2: <english_2>, Translation 2: <translation_2>
English 3: <english_3>, Translation 3: <translation_3>
English 4: <english_4>, Translation 4: <translation_4>

Please translate this sentence: <english_new>
Your response should strictly follow the JSON dict format:
{

"reasoning":"reasoning steps here",
"translation": "translated sentence here"

}
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E Interpretation on Task-Format
Dependency

We investigated System 2’s limitations in free-text
generation using the List Function dataset, where
intermediate rules are evaluatable Python func-
tions. This allows direct assessment of abductive
inference accuracy. We compared the accuracy of
LLMs generating these Python functions (abduc-
tion) against their accuracy in applying ground-
truth functions (deduction).

As evidenced by the results in Table 8, the sub-
stantially lower abduction accuracy indicates that
a primary reason for System 2’s failure in free-
text rule execution ICL is the insufficient ability of
LLMs to precisely generate rules.

Model Abduction Deduction

Qwen-2.5-7b 26.80 86.64
Qwen-2.5-72b 50.20 90.72
GPT-4o-mini 40.60 92.56

Average 39.20 89.97

Table 8: Abduction vs. Deduction Accuracy (%) on List
Function Dataset.

Furthermore, to assess the impact of contextual
distance from lengthy reasoning chains, character-
istic of System 2 and Automatic (CoT) pipelines,
we introduced dummy reasoning tokens of varying
lengths before the answer in Direct Induction and
Automatic pipelines on the List Function dataset
(FTG). This simulates how extended context might
impair free-text generation precision.

As evidenced by the results in Table 9, perfor-
mance degrades for both pipelines as token length
increases. This suggests that lengthy rationales
contribute to task-format sensitivity by disrupting
precise free-text output.

Pipeline Contextual
Distance Qwen-2.5-7b Qwen-2.5-72b

Direct
Induction

0 25.6 47.6
100 10.4 46.0
400 9.2 40.4

Automatic
(Zero-shot CoT)

0 27.6 46.8
100 17.6 43.6
400 16.4 38.8

Table 9: Impact of Dummy Reasoning Tokens on Per-
formance (%) in List Function (FTG).

F Details of Scaling Experiments

This appendix outlines the methodologies for the
scaling experiments in Section 6.

• Figure 4a (Hypothesis Selection): The LLM
first samples multiple candidate hypotheses,
ranging from 1 to 10 candidates, using a tem-
perature of 0.4. From these candidates, the
LLM then selects the single best hypothesis.

• Figure 4b (Hypothesis Verification and Re-
finement): Initially, a single hypothesis is ob-
tained through the regular abduction process.
This hypothesis is then subjected to iterative
verification and refinement by the LLM, with
this process repeated for multiple rounds.

• Figure 4c (Combined Selection and Refine-
ment): This approach begins with the LLM
selecting the best hypothesis from several sam-
pled candidates. The chosen hypothesis then
undergoes iterative verification and refinement
over multiple rounds.

• Table 4 (Adaptive Scaling for DeepSeek-
V3): This method also combines selection and
refinement, but with the LLM autonomously
determining the number of refinement rounds
within predefined limits. For the Low Con-
sumption setting, the LLM selects from 3 can-
didate hypotheses and refines the chosen one
for at most 3 rounds. For the High Consump-
tion setting, selection is from 5 candidates,
followed by refinement for at most 5 rounds.

G Full Results

The detailed LLM performances in our analogy
environement and in-context learning benchmarks
is presented in tables below:

• Table 10: Textual Analogy (E-KAR)-MCQ

• Table 11: Visual Analogy (VASR)-MCQ

• Table 12: Symbolic Analogy (RAVEN)-MCQ

• Table 13: Textual Analogy (E-KAR)-FTG

• Table 14: Symbolic Analogy (RAVEN)-FTG

• Table 15: List Function ICL-MCQ

• Table 16: List Function ICL-FTG

• Table 17: SALT ICL-MCQ

• Table 18: SALT ICL-FTG
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Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 65.93 56.32 40.93 52.64
Automatic 68.45 52.87 39.11 51.36
Abduction+Deduction 69.40 54.71 44.35 54.33

Qwen-2.5-72b
Induction 76.03 68.74 46.77 61.86
Automatic 75.39 67.13 49.60 62.26
Abduction+Deduction 76.97 70.34 51.01 64.34

Llama-3.1-70b
Induction 64.67 56.32 37.90 51.12
Automatic 73.19 64.14 46.37 59.38
Abduction+Deduction 73.19 62.53 46.17 58.73

Llama-3.1-405b
Induction 74.76 64.83 43.95 59.05
Automatic 77.92 68.97 52.62 64.74
Abduction+Deduction 73.50 67.13 50.60 62.18

GPT-4o-mini
Induction 66.88 54.94 36.49 50.64
Automatic 63.72 55.40 40.32 51.52
Abduction+Deduction 63.41 56.78 40.73 52.08

GPT-4o
Induction 73.82 64.83 44.15 58.89
Automatic 69.72 63.22 48.59 59.05
Abduction+Deduction 73.50 68.74 51.61 63.14

Table 10: LLM performances on textual analogy dataset (E-KAR) in MCQ task format.

Model Pipeline Easy Medium Hard Total

Gemini-1.5-flash
Induction 38.90 30.59 29.38 33.11
Automatic 54.07 49.83 47.50 50.71
Abduction+Deduction 59.34 47.73 48.75 51.89

Gemini-1.5-pro
Induction 50.55 45.28 43.13 46.55
Automatic 65.49 54.37 59.06 59.24
Abduction+Deduction 65.71 57.34 59.38 60.65

Gemini-2.0-flash
Induction 52.31 47.38 47.50 49.07
Automatic 63.96 60.84 61.56 62.06
Abduction+Deduction 67.47 59.44 65.62 63.62

Pixtral-12b
Induction 32.53 24.30 17.81 25.54
Automatic 33.85 32.87 30.94 32.74
Abduction+Deduction 41.54 39.34 35.31 39.12

GPT-4o-mini
Induction 34.73 26.57 25.31 29.03
Automatic 51.43 41.61 40.00 44.54
Abduction+Deduction 51.21 41.43 44.06 45.36

GPT-4o
Induction 54.95 47.90 46.56 49.96
Automatic 66.37 55.07 59.06 59.84
Abduction+Deduction 68.13 59.97 60.94 62.95

Table 11: LLM performances on visual analogy dataset (VASR) in MCQ task format.

Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 29.10 19.26 11.39 19.94
Automatic 29.10 20.35 14.43 21.29
Abduction+Deduction 30.10 21.43 16.46 22.64

Qwen-2.5-72b
Induction 40.55 28.57 18.99 29.39
Automatic 51.24 38.74 26.08 38.76
Abduction+Deduction 54.48 43.72 36.20 44.80

Llama-3.1-70b
Induction 38.06 28.35 18.73 28.44
Automatic 52.99 36.58 28.35 39.24
Abduction+Deduction 49.50 36.36 34.43 39.95

Llama-3.1-405b
Induction 54.23 38.10 25.06 39.16
Automatic 53.48 38.53 28.35 40.11
Abduction+Deduction 64.93 47.62 37.72 50.04

GPT-4o-mini
Induction 36.82 22.51 15.44 24.86
Automatic 37.56 26.41 12.91 25.73
Abduction+Deduction 36.32 25.11 22.78 27.96

GPT-4o
Induction 41.79 29.87 17.22 29.71
Automatic 58.21 41.13 35.44 44.80
Abduction+Deduction 55.47 35.93 31.39 40.75

Table 12: LLM performances on symbolic analogy dataset (RAVEN) in MCQ task format.
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Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 28.08 22.99 16.33 21.63
Automatic 28.71 25.98 19.56 24.12
Abduction+Deduction 27.76 23.68 17.74 22.36

Qwen-2.5-72b
Induction 35.02 29.20 21.77 27.72
Automatic 33.75 28.74 22.18 27.40
Abduction+Deduction 34.07 29.66 21.98 27.72

Llama-3.1-70b
Induction 29.02 22.07 15.32 21.15
Automatic 32.81 23.45 19.15 24.12
Abduction+Deduction 29.97 25.52 18.95 24.04

Llama-3.1-405b
Induction 28.71 24.60 16.94 22.60
Automatic 29.34 25.75 18.75 23.88
Abduction+Deduction 32.18 27.59 19.76 25.64

GPT-4o-mini
Induction 28.08 22.99 16.33 21.63
Automatic 29.34 25.29 20.16 24.28
Abduction+Deduction 29.97 25.75 19.15 24.20

GPT-4o
Induction 32.81 26.90 19.35 25.40
Automatic 32.18 26.21 20.77 25.56
Abduction+Deduction 31.23 27.59 20.36 25.64

Table 13: LLM performances on textual analogy dataset (E-KAR) in FTG task format.

Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 19.15 8.87 5.57 11.12
Automatic 0.75 0.87 0.00 0.56
Abduction+Deduction 1.00 2.60 1.77 1.83

Qwen-2.5-72b
Induction 37.81 20.13 13.42 23.67
Automatic 17.91 5.41 1.52 8.18
Abduction+Deduction 25.37 13.85 8.86 15.97

Llama-3.1-70b
Induction 30.35 13.20 8.10 17.08
Automatic 18.16 7.14 4.81 9.93
Abduction+Deduction 9.45 7.58 6.08 7.70

Llama-3.1-405b
Induction 42.29 20.78 13.42 25.34
Automatic 30.85 12.99 7.34 16.92
Abduction+Deduction 28.61 16.45 12.15 18.98

GPT-4o-mini
Induction 26.37 12.34 8.61 15.65
Automatic 11.19 4.76 2.53 6.12
Abduction+Deduction 11.69 6.93 3.54 7.39

GPT-4o
Induction 37.81 18.40 10.89 22.24
Automatic 16.17 9.09 5.82 10.33
Abduction+Deduction 25.12 14.07 9.37 16.12

Table 14: LLM performances on symbolic analogy dataset (RAVEN) in FTG task format.
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Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 47.69 33.57 29.87 37.28
Automatic 60.42 44.21 39.24 48.24
Abduction+Deduction 64.81 32.97 38.23 49.36

Qwen-2.5-72b
Induction 65.05 46.34 40.51 50.96
Automatic 69.44 52.25 44.81 55.84
Abduction+Deduction 68.52 49.41 45.57 54.80

GPT-4o-mini
Induction 59.03 45.86 33.92 46.64
Automatic 61.81 53.90 42.28 52.96
Abduction+Deduction 66.20 52.01 44.80 54.64

Table 15: LLM performances on List Function dataset in MCQ task format.

Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 65.18 36.24 9.75 37.60
Automatic 54.59 24.71 7.50 29.36
Abduction+Deduction 57.88 24.71 8.00 30.64

Qwen-2.5-72b
Induction 79.06 49.65 17.25 49.28
Automatic 74.59 44.94 13.75 45.04
Abduction+Deduction 80.47 47.53 17.75 48.32

GPT-4o-mini
Induction 75.53 43.53 13.75 44.88
Automatic 65.65 32.94 10.50 36.88
Abduction+Deduction 73.41 41.65 14.00 43.60

Table 16: LLM performances on List Function dataset in FTG task format.

Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 21.50 16.75 10.00 16.08
Automatic 36.00 31.75 19.75 29.17
Abduction+Deduction 35.25 31.50 22.75 29.83

Qwen-2.5-72b
Induction 58.50 54.25 52.00 54.92
Automatic 61.25 60.00 60.00 60.42
Abduction+Deduction 60.75 62.00 63.25 62.00

GPT-4o-mini
Induction 63.50 56.75 39.75 53.33
Automatic 53.00 47.25 43.50 47.92
Abduction+Deduction 64.75 61.25 53.25 59.75

Table 17: LLM performances on SALT dataset in MCQ task format.

Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 37.50 15.25 2.00 18.25
Automatic 29.00 17.25 6.75 17.67
Abduction+Deduction 29.25 16.00 6.50 17.25

Qwen-2.5-72b
Induction 51.25 33.50 19.50 34.75
Automatic 38.00 35.25 26.75 33.33
Abduction+Deduction 33.50 30.25 30.00 31.25

GPT-4o-mini
Induction 66.25 25.00 17.25 36.17
Automatic 34.00 25.50 20.00 26.50
Abduction+Deduction 38.75 34.00 25.75 32.83

Table 18: LLM performances on SALT dataset in FTG task format.
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