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Abstract

Driven by vast and diverse textual data, large
language models (LLMs) have demonstrated
impressive performance across numerous natu-
ral language processing (NLP) tasks. Yet, a crit-
ical question persists: does their generalization
arise from mere memorization of training data
or from deep semantic understanding? To inves-
tigate this, we propose a bi-perspective evalua-
tion framework to assess LLMs’ scenario cog-
nition—the ability to link semantic scenario el-
ements with their arguments in context. Specif-
ically, we introduce a novel scenario-based
dataset comprising diverse textual descriptions
of fictional facts, annotated with scenario el-
ements. LLMs are evaluated through their
capacity to answer scenario-related questions
(model output perspective) and via probing
their internal representations for encoded sce-
nario elements-argument associations (internal
representation perspective). Our experiments
reveal that current LLMs predominantly rely
on superficial memorization, failing to achieve
robust semantic scenario cognition, even in sim-
ple cases. These findings expose critical limi-
tations in LLMs’ semantic understanding and
offer cognitive insights for advancing their ca-
pabilities.

1 Introduction

Large language models (LLMs) have achieved re-
markable, human-like performance across diverse
natural language processing (NLP) tasks (Brown
et al., 2020; Yan et al., 2024). However, significant
gaps persist between their cognitive abilities and
those of humans (Echterhoff et al., 2024; Lamprini-
dis, 2023). Consider the example in Figure 1, hu-
mans effortlessly understand a sentence like “Film
director Paxton presented a new movie concept
to producer Helen and actor Blake,” identifying
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relationships such as Paxton (director), Helen (pro-
ducer), and Blake (actor). In contrast, even when
LLMs have memorized similar facts, they often fail
to reason about such role relationships, revealing
a notable gap between memorization and deeper
relational understanding that motivates this study.

Figure 1: Illustration of the contrast between human
and LLM text comprehension, highlighting humans’
ability to identify semantic roles and their arguments
in a sentence, compared to LLMs’ reliance on surface-
level memorization without scenario cognition.

We observe that while LLMs can recall se-
quences of text, they often struggle to recognize
specific roles within those sequences. To clarify
this issue, we draw on two concepts from the Frame
Semantics (Fillmore, 1976; Li et al., 2024): se-
mantic scenes and scenario elements. A semantic
scene refers to a mental structure formed through
repeated real-world experiences, while scenario el-
ements represent the participants that make up a
scene. As illustrated in Figure 1(left), “director,”
“producer,” and “actor” are scenario elements,
with “Paxton,” “Helen,” and “Blake” as their cor-
responding arguments. We define the scenario
cognition as the ability to accurately associate sce-
nario elements with their arguments. This leads
to our key research question: Do LLMs have the
ability of scenario cognition to reliably link sce-
nario elements and their arguments?

A thorough investigation of this issue is crucial
for understanding and evaluating the knowledge
memorization mechanisms in LLMs. While pre-
vious studies have established that LLMs exhibit
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strong formal linguistic competence—generating
fluent and grammatically correct text, their func-
tional linguistic competence is still unclear and
under debate (Mahowald et al., 2024). We propose
that generalized knowledge memorization in LLMs
should be divided into two parts: a surface-level
“data” memory and a deeper “knowledge” mem-
ory, corresponding to formal and functional lin-
guistic competence, respectively. Formal linguistic
competence mainly comes from statistical learn-
ing during training on large text corpora. Through
patterns like word co-occurrence and context win-
dows, the model learns the grammar and structure
of any given language, enabling it to generate flu-
ent text (Talmor et al., 2020). This ability reflects
“data” memory. By contrast, functional linguistic
competence requires the model not only to parse
surface text but also to understand deeper mean-
ings (Suresh et al., 2023; Janik, 2023), showing
“knowledge” memory.

Among studies on knowledge memorization (Lu
et al., 2024; Satvaty et al., 2024; Antoniades et al.,
2024; Chen et al., 2024a), the “Reversal Curse”
(Berglund et al., 2024) is a well-known issue. It
refers to LLMs’ difficulty in generalizing learned
knowledge in the reverse direction (e.g., from
“A → B” to “B → A”). However, existing re-
search has two key limitations: it mainly studies
simple cases with only two entities, and frames
the issue as a text sequence problem, which still
focuses on “data” memory rather than “knowledge”
memory. Therefore, testing whether LLMs can rec-
ognize scenario elements in more complex contexts
offers a valuable way to explore their knowledge
memory.

To address this, we propose a new bi-perspective
evaluation framework to assess LLMs’ scenario
cognition. We first create a dataset of fictional
facts, each accompanied by multiple descriptions
and labeled its scenario elements based on their se-
mantics. Then we evaluate a range of open-source
LLMs across various scales and families, analyzing
their scenario cognition both from their outputs and
through probing experiments that examine their in-
ternal vector representations (Alain and Bengio,
2016; Conneau et al., 2018). Our results show
that current LLMs still rely mainly on surface-level
memorization, rather than forming deeper semantic
understanding of scenarios. This leads to general-
ization failures even in simple situations.

In summary, the main contributions of this paper
are as follows:

1. First systematic evaluation of LLMs’ sce-
nario cognitive ability: We present the first com-
prehensive assessment of LLMs’ scenario cogni-
tive abilities from a semantic perspective, aiming
to determine whether they exhibit characteristics of
“knowledge” memory rather than “data” memory.

2. A bi-perspective evaluation framework
with a novel scenario-based dataset: We con-
struct a new dataset* of fictional facts annotated
with scenario elements and use it to train and eval-
uate multiple open-source LLMs of varying scales
from the perspective of model outputs. Further-
more, we design probing experiments to analyze
scenario cognitive ability from the perspective of
internal representations.

3. Key findings on LLMs’ limitations in
scenario cognition: Our extensive experiments
demonstrate that current LLMs lack robust sce-
nario cognition capabilities and discuss the poten-
tial connection between this deficiency and certain
hallucinations. These findings underscore a funda-
mental gap in semantic understanding and provide
important insights for guiding future improvements
in LLM design and training.

2 Methods

To systematically evaluate LLMs’ scene cognition
capabilities, we propose a bi-perspective evalua-
tion framework both from the perspective of model
outputs and internal representations. An overall
framework is illustrated in Figure 2.

2.1 Perspective of Model Outputs
To assess the scenario cognition capabilities of
LLMs from the perspective of model outputs, we
construct a novel scenario-based dataset for both
training and evaluation. As illustrated on the left
side of Figure 2, our framework consists of four
key stages: Atomic Knowledge Generation, Knowl-
edge Description Expansion, Scenario Element An-
notation, and Scenario Question Generation.

2.1.1 Atomic Knowledge Generation
We adopt a multi-model data generation strategy
to construct a set of fictional, atomic textual facts
which we term Atomic Knowledge, and apply se-
mantic similarity filtering alongside multi-model
voting validation to ensure diversity and quality.

Specifically, we employ two powerful LLMs,
which are DeepSeek-V3 (Liu et al., 2024) and

*It’s available at https://huggingface.co/datasets/
MattMa/scenario-based-dataset.
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Figure 2: Diagram of the bi-perspective evaluation framework for assessing LLMs’ scenario cognition, depicting
the model output perspective (left) and the internal representation perspective (right).

Qwen2.5-Max (Yang et al., 2024), as generation
agents. The generation process is guided by prompt
templates (shown in Appendix C) that emphasize
three key criteria: Fictionality — ensuring the facts
are entirely imaginary and without any real-world
correspondence; Role Richness — requiring each
fact involves at least three distinct roles; Concise-
ness — mandating each fact be expressed in a sin-
gle sentence while remaining semantically com-
plete.

To ensure semantic diversity and eliminate re-
dundancy, we apply a similarity-based filtering
mechanism. We initialize an embedding set I and
encode each candidate x using the BGE-M3 (Chen
et al., 2024b) encoder, normalizing its output as the
semantic representation vx:

vx =
Enc(x)
∥Enc(x)∥ (1)

For each x, we compute the L2 distance to obtain
its nearest neighbor vy ∈ I:

d(vx, vy) = ∥vx − vy∥2 (2)

Only samples satisfying d(vx, vy) > 0.5 are re-
tained, and their embeddings are added to I.

For quality assurance, we employ a multi-model
voting strategy, using three open-source models,
LLaMA3-8B (Grattafiori et al., 2024), Qwen2.5-7B
(Yang et al., 2024), and Gemma2-6B (Team et al.,
2024), as validators. Each sample must satisfy
all generation criteria across all validators. We
further perform manual inspection on randomly
sampled validated entries, discarding those of low
quality. This process yields a total of 500 high-
quality Atomic Knowledge.

2.1.2 Knowledge Description Expansion
To improve the learnability of Atomic Knowledge,
we perform semantic expansion to construct a
Memory Set comprising diverse yet semantically
consistent knowledge descriptions, for use in both
training and the evaluation of the memory ability.
Similar to the previous stage, we adopt a multi-
model generation and validation strategy, but place
special emphasis on preserving the core seman-
tics of the original knowledge during paraphrasing
which means that variations are restricted to lin-
guistic form and surface structure. After an addi-
tional manual filtering, we retain ten high-quality
knowledge descriptions for each Atomic Knowl-
edge, resulting in a total of 5,000 training samples,
which is partly shown in Appendix D.

We further apply a first-verb-based segmentation
strategy to prepare these samples for supervised
fine-tuning (SFT): each description is split to two
segments at the first verb phrase because verbs
typically convey the core semantics of a sentence
(Fillmore, 1967; Jackendoff, 1972). Specifically,
the preceding segment serves as the input prompt,
and the following segment serves as the target out-
put. For example, in the sentence “Film director
Paxton presented a new movie concept to producer
Helen and actor Blake,” the input is “Film director
Paxton presented”, and the target output is “a new
movie concept to producer Helen and actor Blake.”

2.1.3 Scenario Element Annotation
To assess the scenario cognition ability of LLMs,
different from traditional Frame Semantic Parsing
methods (Su et al., 2025), we adopt a human–LLM
collaborative annotation framework for labeling
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scenario elements within Atomic Knowledge. We
employ Qwen2.5-Max as the annotator and design
task-specific prompts to guide the identification of
scenario elements.

Taking “Film director Paxton presented a new
movie concept to producer Helen and actor Blake”
as an example, the model is expected to extract
elements such as “director”, “producer”, and “ac-
tor”, along with their corresponding arguments

“Paxton”, “Helen”, and “Blake”. Due to the com-
plexity of this task, we do not rely on multi-model
voting. Instead, we perform manual correction of
low-quality annotations to ensure consistency and
precision.

2.1.4 Scenario Question Generation
Based on the annotated scenario elements, we fur-
ther utilize Qwen2.5-Max to generate scenario-
based questions. For each scenario element, we
construct a corresponding prompt where the an-
swer is the entity that fulfills the element.

To ensure alignment with the SFT task format,
we adopt a completion-style format rather than a
traditional question–answer format. For instance,
given the element “director”, we generate a prompt
such as “The director who presented a new movie
concept to producer Helen and actor Blake is ___”
with “Paxton” as the expected answer.

All generated samples undergo manual valida-
tion to guarantee data quality. In total, we con-
structed 1,581 scenario-based prompt–answer pairs
to serve as the scenario-based Understanding Set
for use in the evaluation of the ability of scenario
cognition. Examples of them are provided in Ap-
pendix D.

2.2 Perspective of Internal Representations
As shown on the right side of Figure 2, we de-
signed a scenario-based probing method to exam-
ine whether the given model’s internal vector rep-
resentations capture the associations between sce-
nario elements and arguments, evaluating its sce-
nario cognition from an internal representation per-
spective. Specifically, given a text of length n,
X = {x1, x2, . . . , xn}, we input it into the LLM
f(·) and extract the hidden states H for each token
xi ∈ X across all layers:

H = {H(1),H(2), . . . ,H(l)} ∈ Rl×n×d (3)

where l is the number of Transformer layers, d
is the dimensionality of each vector, and H(k) ∈
Rn×d represents the vectors at layer k. Based on

the annotated scenario elements in the scenario-
based dataset, we extract the representation vectors
of the scenario elements:

He = {h(k)
e1 ,h(k)

e2 , . . . ,h(k)
em} ∈ Rl×m×d (4)

and their corresponding argument representation
vectors:

Ha = {h(k)
a1 ,h

(k)
a2 , . . . ,h

(k)
am} ∈ Rl×m×d (5)

where e1, e2, . . . , em are the token indices anno-
tated as scenario elements, a1, a2, . . . , am are the
corresponding argument token indices, and h

(k)
i is

the representation of token i at layer k.
To explore how scenario cognition is distributed

across layers, we divide the Transformer layers of
the given LLM into three levels: LHead = {1, 2, 3},
LMid =

{⌊
l
2

⌋
− 1,

⌊
l
2

⌋
,
⌊
l
2

⌋
+ 1

}
, and LTail =

{l− 2, l− 1, l}. We probe representations indepen-
dently at each level.

For each L ∈ {LHead,LMid,LTail}, we pair each
scenario element representation hL

ei with its corre-
sponding argument representation hL

aj and concate-
nate them as the probe input:

zLi,j = [hL
ei ;h

L
aj ] ∈ R2d (6)

where [·; ·] denotes concatenation.
We then build a linear probe* on zLi,j to predict

whether ei and aj form a matching pair. The probe
applies a linear transformation to produce a scalar
output, followed by a sigmoid activation for binary
classification.

ŷLi,j = σ(w⊤zLi,j + b) (7)

where w ∈ Rd, b ∈ R, and σ(·) is the sigmoid
function mapping the output to [0, 1].

During training, pairs with i = j are labeled
as positive, others as negative, forming a binary
classification task optimized by cross-entropy:

Loss = CrossEntropy(ŷLi,j , yi,j) (8)

where

yi,j =

{
1 i = j

0 i ̸= j
(9)

Through this probing, we aim to determine
whether the LLM’s internal representations at dif-
ferent layers encode the relationships between sce-
nario elements and their corresponding arguments.

*We further explored alternative non-linear probe model
designs and Attention-based probes, with details presented in
Appendix B.
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Models
Memory Set Understanding Set

EM BLEU-1 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L EM BLEU-1 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Gemma2-2B 0.76 0.95 0.88 0.96 0.93 0.95 0.16 0.19 0.09 0.31 0.25 0.31
Gemma2-9B 0.76 0.95 0.88 0.96 0.94 0.96 0.19 0.22 0.11 0.36 0.30 0.36

LLaMA3.2-1B 0.79 0.95 0.89 0.96 0.94 0.96 0.14 0.19 0.09 0.30 0.23 0.30
LLaMA3.2-3B 0.82 0.96 0.90 0.97 0.95 0.97 0.19 0.22 0.10 0.36 0.28 0.36
LLaMA3.1-8B 0.84 0.96 0.91 0.97 0.95 0.97 0.24 0.25 0.12 0.41 0.33 0.41

Qwen2.5-0.5B 0.77 0.94 0.88 0.95 0.92 0.95 0.10 0.13 0.06 0.21 0.15 0.21
Qwen2.5-1.5B 0.81 0.95 0.90 0.96 0.94 0.96 0.14 0.17 0.08 0.26 0.20 0.26
Qwen2.5-3B 0.84 0.96 0.91 0.97 0.95 0.97 0.14 0.17 0.08 0.28 0.22 0.28
Qwen2.5-7B 0.86 0.97 0.92 0.98 0.96 0.97 0.20 0.22 0.11 0.36 0.29 0.37
Qwen2.5-14B 0.87 0.97 0.92 0.98 0.96 0.97 0.20 0.24 0.11 0.39 0.31 0.39

Table 1: Performances from the model output perspective on both the Memory Set and Understanding Set after 5
epochs of fine-tuning. The metrics include Exact Match (EM), BLEU, and ROUGE. Each value is the average over
five runs.

If the probe can accurately distinguish positive
from negative samples, it indicates that the model
has encoded some structural information about sce-
nario elements and arguments in its vector represen-
tations, reflecting its scenario cognition capability.

3 Experiments

We applied the proposed scenario-based datasets
and probing method to models of varying scales
from three open-source LLM families: Qwen2.5,
LLaMA3.x, and Gemma2, in order to perform a bi-
perspective evaluation of their scenario cognition
capabilities.

3.1 Experimental Setup

The evaluation from model output perspective in-
volved two phases: training and inference. Dur-
ing training, we fine-tuned LLMs on 500 Atomic
Knowledge using 5,000 expanded descriptions in
Memory Set via full-parameter supervised fine-
tuning (SFT) for 5 epochs at a learning rate of
1.0 × 10−5 across LLMs of various families and
scales ranging from 0.5B to 14B, using Deep-
Speed ZeRO-3 (Rajbhandari et al., 2020) for ac-
celeration. In the inference phase accelerated by
vLLM (Kwon et al., 2023), each epoch’s check-
point was evaluated on both the Memory and Un-
derstanding Set with temperature = 1, averaged
over five runs to observe more diverse model out-
puts and ensure robustness. Evaluations on the
Memory Set reflect the memorization ability, while
those on the Understanding Set reflect the scenario
cognition ability.

Then from internal representation perspective,
we constructed a corpus from the scenario-based
Memory Set containing co-occurrences of scenario

elements and arguments. The corpus was split 70%
for probe training and 30% for knowledge probing,
with a balanced distribution of 1,577 positive (47%)
and 1,784 negative (53%) examples. A probe was
trained for 5 epochs at a learning rate of 1.0 ×
10−3 to examine whether LLMs internally encode
the correspondence between scenario elements and
arguments.

3.2 Results and Analysis

3.2.1 Perspective of Model Outputs

Table 1 presents the evaluation results of the LLMs
on our scenario-based dataset after five epochs of
supervised fine-tuning, assessed from the perspec-
tive of model outputs.

Overall, the performance metrics exhibit an up-
ward trend as model scale increases, indicating a
positive correlation between the scenario cogni-
tion capability of the models and their scale. This
suggests that larger models may possess stronger
capacities to perform scenario cognition at the per-
spective of model outputs.

More specifically, the LLMs achieve high scores
across all evaluation metrics on the Memory
Set. Notably, there is no evident discrepancy be-
tween the recall-oriented ROUGE scores and the
precision-oriented BLEU scores. Even under the
stricter EM metric, the models maintain compet-
itive performance. These results suggest that the
models have effectively memorized and mastered
the training data. However, on the Understand-
ing Set, all metrics drop to very low levels, and
unlike the balanced performance observe on the
Memory Set, the recall-oriented ROUGE scores on
the Understanding Set are substantially higher than
the BLEU scores. This phenomenon indicates that,

20751



Figure 3: The trend of each metric as the training epoch increases from the perspective of model outputs, with solid
lines representing metrics on the Memory Set, indicating improving memorization, and dashed lines representing
metrics on the Understanding Set, showing limited improvement in scenario cognition.

Model EM (+∆) BLEU-1 (+∆) BLEU-4 (+∆) ROUGE-1 (+∆) ROUGE-2 (+∆) ROUGE-L (+∆)

Gemma2-2B 0.25 (+0.09) 0.34 (+0.15) 0.18 (+0.09) 0.42 (+0.11) 0.35 (+0.10) 0.42 (+0.11)
Gemma2-9B 0.31 (+0.12) 0.40 (+0.18) 0.21 (+0.10) 0.48 (+0.12) 0.39 (+0.09) 0.48 (+0.12)

LLaMA3.2-1B 0.19 (+0.05) 0.29 (+0.10) 0.14 (+0.05) 0.38 (+0.08) 0.30 (+0.07) 0.38 (+0.08)
LLaMA3.2-3B 0.27 (+0.08) 0.31 (+0.09) 0.15 (+0.05) 0.45 (+0.09) 0.36 (+0.08) 0.45 (+0.09)
LLaMA3.1-8B 0.31 (+0.07) 0.36 (+0.11) 0.18 (+0.06) 0.51 (+0.10) 0.42 (+0.09) 0.51 (+0.10)

Qwen2.5-0.5B 0.16 (+0.06) 0.24 (+0.11) 0.12 (+0.06) 0.29 (+0.08) 0.21 (+0.06) 0.29 (+0.08)
Qwen2.5-1.5B 0.18 (+0.04) 0.22 (+0.05) 0.12 (+0.04) 0.31 (+0.05) 0.25 (+0.05) 0.31 (+0.05)
Qwen2.5-3B 0.19 (+0.05) 0.23 (+0.06) 0.12 (+0.04) 0.35 (+0.07) 0.27 (+0.05) 0.35 (+0.07)
Qwen2.5-7B 0.28 (+0.08) 0.41 (+0.19) 0.22 (+0.11) 0.47 (+0.11) 0.38 (+0.09) 0.47 (+0.10)
Qwen2.5-14B 0.25 (+0.05) 0.33 (+0.09) 0.17 (+0.06) 0.43 (+0.04) 0.34 (+0.03) 0.43 (+0.06)

Table 2: Performance of different models on the Understanding Set after format adaptation. Here, models were
fine-tuned on a mixture of the Memory Set and 30% of the Understanding Set to reduce the output format gap, and
then evaluated on the remaining 70% of the Understanding Set. Each score is the average over five runs, while the
value in parentheses (+∆) indicates the performance gain relative to the baseline without format adaptation.

during inference, the models tend to generate exces-
sive irrelevant content, leading to higher recall but
lower precision. Therefore, from the perspective
of model outputs, the evaluated LLMs primarily
demonstrate strong memorization of the training
data but fail to exhibit scene-level understanding or
reasoning of the information encountered during
training.

In addition, we evaluated the checkpoint from
each epoch on both the Memory and Understanding
Sets. Figure 3 illustrates the metric trends as train-
ing progressed. As reflected by the solid lines, the
models progressively learned the text distribution
of the Memory Set, with their memorization ability
steadily and clearly improving over time. However,
as shown by the dashed lines, the generalization

performance on the Understanding Set did not im-
prove correspondingly. This divergence indicates
that the models’ scenario cognition ability did not
advance alongside their increasing memorization
during training.

Besides, to mitigate potential performance dis-
crepancies between the Memory Set and the Under-
standing Set caused by differences in output format,
we conducted an additional experiment. Specifi-
cally, we fine-tuned the models on a mixture of
the Memory Set and 30% of the Understanding
Set, thereby exposing them to the target output for-
mat, and then evaluated their performance on the
remaining 70% of the Understanding Set. This
design allows us to examine whether reducing the
format gap enables the models to better demon-
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Figure 4: Visualization of linear probing results for LLMs’ internal representations across training epochs, with
subfigures for Precision, Recall, and F1 scores at different Transformer layers (Head, Mid, Tail), where the red
dashed line at 0.5 indicates the baseline for binary classification of scenario element-argument correspondences.

strate their scenario cognition ability. As shown in
Table 2, however, even when exposed to the for-
mat information during training, the improvements
in scenario cognition ability remain limited and
are still substantially lower than those observed for
memorization ability, which confirms that simple
supervised fine-tuning with partial data exposure
is insufficient to effectively enhance the scenario
cognition ability of LLMs.

All of these results highlight a fundamental lim-
itation of current LLMs: their scenario cognition
ability remains inadequate, and improved memo-
rization does not necessarily translate into a deeper
or more generalizable understanding of the text.
Even after mitigating the format gap between the
Memory Set and the Understanding Set, the dis-
parity between cognition and memorization abil-
ities remains strikingly pronounced. Moreover,
the widening gap between performances of train-
ing and Understanding Set suggests a tendency
toward overfitting, where the models over-rely on
pattern replication rather than learning transferable
scenario-based knowledge. This finding further
implies that simply scaling model parameters or
prolonging training epochs may not suffice to en-
hance scenario cognition; instead, more targeted

methods may be required to guide models toward
semantic scenario generalization.

3.2.2 Perspective of Internal Representations
As revealed by our probing results, Figure 4 illus-
trates the extent to which the internal representa-
tions of the evaluated LLMs capture the correspon-
dence between scenario elements and arguments.
As described in the Methods section, we formu-
lated this as a binary classification task, with a rela-
tively balanced distribution of positive and negative
samples in the dataset. However, as the probing
results show, none of the models reached the score
of 0.5, and their recall scores were significantly
lower than their precision scores, indicating that
the models struggled to retrieve correctly matched
scenario element–argument pairs. Overall, these
findings suggest that the evaluated LLMs have not
effectively modeled the correspondence between
scenario elements and arguments within their inter-
nal representations.

Specifically, in terms of performance trends, the
probing metrics exhibited no consistent upward tra-
jectory as the number of training epochs increased.
This suggests that, although SFT enables LLMs to
memorize the training data with reasonable accu-
racy, such memorization remains superficial and
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does not translate into meaningful semantic sce-
nario cognition. In other words, the models’ ability
to recall specific outputs does not imply an internal
grasp of the underlying scenario structures, high-
lighting a disconnect between surface-level genera-
tion and deeper representational learning.

Then in terms of layers, no consistent associ-
ation was observed between scenario-related in-
formation and specific Transformer layers, even
within the same LLM family. This indicates scene-
related knowledge was not stably or systematically
encoded in particular layers. This observation im-
plies that current LLM architectures and training
paradigms may lack mechanisms—such as ded-
icated modules, hierarchical structures, or task-
specific objectives—necessary to effectively en-
code and organize scenario cognition within inter-
nal representations.

Finally, in terms of model scale, unlike the re-
sults observed from the model output perspective,
we did not observe a significant positive correla-
tion between probing performance and model scale
across all LLM families, particularly in terms of
recall. These findings suggest that while output-
level metrics often improve with increasing model
scale, such gains may reflect parameter accumula-
tion rather than genuine scenario cognition inside.

3.3 Case Study and Discussion
This section further investigates the situational cog-
nition capability of LLMs through a case study.
Since the phenomena under discussion are consis-
tently observed across the evaluated models, we
focus on Qwen2.5-14B, the model with the best
overall output performance, to analyze these shared
challenges. Figure 5 illustrates Qwen2.5-14B’s per-
formance in memorizing and understanding spe-
cific atomic knowledge. It reveals a clear discrep-
ancy between the model’s memorization and under-
standing abilities: while the fine-tuned model can
accurately recall diverse knowledge descriptions
from the Memory Set, it nevertheless makes sig-
nificant errors when answering related questions
in the Understanding Set, often generating content
that was never present in the training data.

Notably, unlike previous studies on the “rever-
sal curse,” our work introduces multiple diverse
knowledge descriptions during training without en-
forcing a fixed presentation order. These descrip-
tions are only required to be semantically coherent
within their respective scenarios, with no explicit
constraints on textual sequence. The model’s fail-

Figure 5: Case study illustration of Qwen2.5-14B’s per-
formance, demonstrating a gap between surface-level
data memory and deeper scenario cognition.

ure to generalize, therefore, cannot be simply at-
tributed to reversed input sequences. Instead, it
reflects a deeper limitation in semantic compre-
hension and situational reasoning. In particular,
the model appears to rely heavily on surface-level
“data” memory of linguistic forms, while lacking
deeper “knowledge” memory that supports flexi-
ble reasoning. This observation underscores the
broader challenge in bridging memorization and
true understanding: current LLMs may perform
well in rote recall but struggle with functional lan-
guage competence necessary for semantic integra-
tion and scenario-based reasoning. Enhancing sce-
nario cognition may therefore be a key step toward
bridging the gap between “data” memory and gen-
uine “knowledge” memory.

Furthermore, a deeper analysis of the erroneous
outputs revealed a potential correlation between
the model’s situational cognition ability and its
tendency to produce hallucinations. As shown in
Figure 5, most errors do not display obvious gram-
matical or pragmatic flaws, yet they deviate sub-
stantially from factual correctness. Drawing on
these observations, we argue that hallucination in
LLMs is, at least in part, a reflection of their in-
sufficient situational cognition. Specifically, the
model’s “data” memory provides strong compe-
tence in formal linguistic patterns, allowing it to
generate grammatically fluent and coherent text.
However, the lack of robust “knowledge” memory
limits its ability to verify the semantic accuracy of
its outputs or to integrate factual information ef-
fectively, the model appears confined to producing
content that seems plausible on the surface but fails
to grasp the semantics of its outputs, ultimately
leading to certain types of hallucinations.

20754



4 Related Work

4.1 Cognitive Capabilities of LLMs

Research on LLMs’ cognitive abilities reveals
strengths in language processing but persistent
challenges in reasoning and functional compe-
tence (Webb et al., 2023). Niu et al. (2024) high-
light LLMs’ human-like language processing yet
note deficits in reasoning with novel prompts and
context-dependent understanding. Lamprinidis
(2023) show LLMs’ high error rates in limited-data
inductive reasoning, underperforming Bayesian
predictors. Mahowald et al. (2024) argue LLMs
excel in formal linguistic competence but struggle
with functional competence, lacking deep seman-
tic understanding. Binz and Schulz (2023) find
GPT-3 limited in causal reasoning and delibera-
tion, indicating poor generalization beyond train-
ing data. Ullman (2023) demonstrate LLMs’ fail-
ure in altered Theory-of-Mind tasks, suggesting
weak cognitive modeling. Blank (2023) emphasize
methodological pitfalls in assessing LLMs’ cogni-
tive capacities, advocating for rigorous language-
based evaluations. Recently, Zhao et al. (2025)
also highlight the importance of implicit cognitive
knowledge beyond the given text and propose a
post-hoc knowledge probing approach to explain
and evaluate the cognitive abilities of black-box
LMs after training, thereby bridging them with
human-understandable cognition. These findings
align with our study, which explores LLMs’ sce-
nario cognition, revealing their reliance on surface-
level “data” memory hinders semantic integration
of multiple scenario elements, underscoring gaps
in human-like knowledge memory.

4.2 Knowledge Memory in LLMs

Research on LLMs’ knowledge memory reveals
significant limitations in generalizing learned as-
sociations. Berglund et al. (2024) demonstrate the
“Reversal Curse”, where LLMs trained on “A is
B” fail to infer “B is A”, suggesting reliance on
surface-level “data” memory over deeper “knowl-
edge” memory. Similarly, Grosse et al. (2023) use
influence functions to show that training examples
matching the input order dominate LLM outputs,
with reverse-order examples having minimal im-
pact. Meng et al. (2022) further indicate that factual
associations are stored directionally in LLMs, com-
plicating bidirectional recall. Petroni et al. (2019)
explore LLMs as knowledge bases, noting their
struggle with consistent factual retrieval under vary-

ing prompts. Additionally, Elazar et al. (2021)
highlight inconsistencies in LLM outputs, attribut-
ing them to a lack of robust semantic understand-
ing. Unlike these studies, which focus on simple
relations or factual recall, our work investigates
scenario cognition in complex, multi-role contexts,
evaluating both model outputs and internal repre-
sentations to underscore persistent gaps in semantic
integration and knowledge memory.

5 Conclusion

This study is the first to assess the scenario cog-
nition capabilities of LLMs by introducing a bi-
perspective evaluation framework from both the
output and internal representation perspectives with
a scenario-based dataset. Our findings indicate that,
although LLMs are capable of accurately memo-
rizing Atomic Knowledge from the Memory Set,
they struggle to answer questions involving specific
scenario elements and fail to effectively encode the
associations between scenario elements and argu-
ments within their internal representations. These
results suggest that current LLMs do NOT have
the ability of scenario cognition and rely primar-
ily on surface-level memorization rather than true
semantic understanding or meaningful knowledge
retention. Moreover, a brief case study reveals a po-
tential link between limited scenario cognition and
the occurrence of hallucinations in LLMs, offer-
ing a cognitive perspective that may inform future
directions for improving model design and training.

Limitations

While this study provides insights into the scenario
cognition ability of LLMs, several limitations re-
main. First, our evaluation is based on a synthetic
dataset of fictional facts, which may not fully cap-
ture the complexity and variability of real-world
language scenarios. Second, the dataset scale is
relatively small, potentially limiting the generaliz-
ability of the findings. Third, the probing analysis
focuses on simple associations between scenario el-
ements and arguments, which may overlook more
complex or distributed semantic representations.
Future work could address these limitations by ex-
panding the dataset, incorporating real-world data,
and exploring more advanced probing methods to
provide deeper insights into the cognitive capabili-
ties of LLMs.
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A Computational Resources

To conduct the experiments described in this paper,
we utilized NVIDIA V100 GPUs (32 GB) for train-
ing LLMs and all experiments were performed on
a cluster of 4 × V100 GPUs.

Table 3 presents the estimated floating-point op-
erations (FLOPs) consumed during the supervised
fine-tuning of each model on the scenario-based
dataset. FLOPs were calculated based on the model
architecture, dataset size, and number of training
epochs. These estimates provide insight into the
computational cost of training each model family.

Model Training TFLOPs

Gemma2-2B 1.526
Gemma2-9B 3.808

LLaMA3.2-1B 0.934
LLaMA3.2-3B 1.514
LLaMA3.1-8B 2.737

Qwen2.5-0.5B 0.574
Qwen2.5-1.5B 1.163
Qwen2.5-3B 1.939
Qwen2.5-7B 2.675
Qwen2.5-14B 4.369

Table 3: Computational cost (in TFLOPs) for training
each model on the scenario-based dataset.

B Probing Design Discussion

In Section 2.2, we introduced a linear probe to as-
sess whether LLMs encode associations between
scenario elements and their arguments in internal
representations. Here, we explore three alternative

20757

https://doi.org/10.26599/TST.2024.9010036
https://doi.org/10.26599/TST.2024.9010036
https://arxiv.org/abs/2410.16708
https://arxiv.org/abs/2410.16708


probing designs: SimilarityMLP, EnhancedSimilar-
ityMLP, and an Attention-based probing approach.
These designs aim to capture potentially non-linear
or complex interactions that a simple linear probe
might miss, serving as extensions to evaluate inter-
nal encodings from different angles. We describe
each method and summarize their experimental re-
sults, which further support the main findings that
LLMs lack robust internal encoding of scenario
cognition.

B.1 SimilarityMLP

The SimilarityMLP is a two-layer multilayer per-
ceptron (MLP) designed to capture non-linear re-
lationships, aiming to introduce non-linear trans-
formations for richer feature representation. For
a scenario element representation hL

ei ∈ Rd and
argument representation hL

aj ∈ Rd at layer level L,
we concatenate them as:

zLi,j = [hL
ei ;h

L
aj ] ∈ R2d (10)

The probe applies a non-linear transformation to
predict whether ei and aj form a matching pair:

hL
i,j = ReLU(W1z

L
i,j + b1) (11)

ŷLi,j = σ(W2h
L
i,j + b2) (12)

where W1 ∈ Rd×2d, b1 ∈ Rd, W2 ∈ R2×d,
b2 ∈ R2 are trainable parameters, and σ(·) is the
sigmoid function yielding probabilities for binary
classification.

B.2 EnhancedSimilarityMLP

The EnhancedSimilarityMLP extends Similari-
tyMLP by incorporating derived features to en-
hance sensitivity to representational differences.
We compute the absolute difference dL

i,j = |hL
ei −

hL
aj | and element-wise product mL

i,j = hL
ei ⊙ hL

aj ,
forming the input:

zLi,j = [hL
ei ;h

L
aj ;d

L
i,j ;m

L
i,j ] ∈ R4d (13)

The probe applies a non-linear transformation:

hL
i,j = ReLU(W1z

L
i,j + b1) (14)

ŷLi,j = σ(W2h
L
i,j + b2) (15)

where W1 ∈ Rd×4d, b1 ∈ Rd, W2 ∈ R2×d, b2 ∈
R2 are trainable parameters, and σ(·) is the sigmoid
function.

B.3 Attention-based Probing
Motivated by the Attention mechanism in Trans-
former architectures prevalent in LLMs, we de-
signed an Attention-based probe as a supplement
to the MLP-based probes. It analyzes the Atten-
tion scores between target pairs (i.e., scenario el-
ements and their corresponding argument pairs)
and non-target pairs (i.e., scenario elements and
unrelated tokens) to reveal potential interference
in internal representations. For a scenario element
representation hL

ei ∈ Rd and argument represen-
tation hL

aj ∈ Rd at layer level L, we compute the
Attention score as:

αL
i,j =

exp((Wqh
L
ei)

⊤(Wkh
L
aj )/

√
d)

∑
k exp((WqhL

ei)
⊤(WkhL

ak
)/
√
d)

(16)

where Wq,Wk ∈ Rd×d are trainable weight ma-
trices. Instead of binary classification, we analyze
distributions such as average and maximum Atten-
tion scores for target vs. non-target pairs to assess
relational encoding.

B.4 Experimental Results
We evaluated the SimilarityMLP, EnhancedSimi-
larityMLP, and Attention-based probing method
on the same set of LLMs as in the main analysis.
The results are presented in Figures 6, 7, and 8,
respectively.

As shown in Figures 6 and 7, compared to the
linear probe, both MLP-based methods exhibit rel-
atively low performance across all metrics (Preci-
sion, Recall, and F1), with no clear correlations to
model depth or training epochs. This indicates that
introducing non-linear transformations and derived
features does not significantly improve the detec-
tion of scenario element–argument associations, re-
inforcing the main conclusion that LLMs’ scenario
cognition is insufficient and disorganized. Notably,
larger models like Qwen2.5-14B and Gemma2-9B
often show near-zero scores, suggesting complex
probes may overfit without uncovering deeper rela-
tional encodings.

As a supplement, the Attention-based probe (Fig-
ure 8) reveals that LLMs partially learn Attention
relationships for target pairs, with average Atten-
tion scores notably higher than for non-target pairs.
However, the maximum Attention for non-target
pairs remains significantly higher, indicating per-
sistent interference from extraneous tokens outside
the semantic scenario. This Attention-based analy-
sis complements the MLP probes by highlighting
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Figure 6: Visualization of probing results with SimilarityMLP for LLMs’ internal representations across training
epochs, with subfigures for Precision, Recall, and F1 scores at different Transformer layers (Head, Mid, Tail),
where the red dashed line at 0.5 indicates the baseline for binary classification of scenario element-argument
correspondences.

Figure 7: Visualization of probing results with EnhancedSimilarityMLP for LLMs’ internal representations across
training epochs, with subfigures for Precision, Recall, and F1 scores at different Transformer layers (Head, Mid,
Tail), where the red dashed line at 0.5 indicates the baseline for binary classification of scenario element-argument
correspondences.
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Figure 8: Visualization of probing results using Attention-based Probing for LLMs’ internal representations at the
final epoch. Each subfigure shows the Attention scores of a specific LLM at different Transformer layers (Head,
Mid, Tail), comparing target pairs (i.e., scenario elements and their corresponding arguments) with non-target pairs
(i.e., scenario elements and unrelated tokens). Each bar represents the average value, and the error bar indicates the
maximum and minimum values.

how such interference may hinder clear scenario
cognition, further underscoring the limitations in
LLMs’ internal representations.

C Prompt Templates for Data Generation

This appendix provides details on the prompt tem-
plates used in the data generation and verification
process for our scenario-based dataset, specifically
in the stages of Section 2.1.1 Atomic Knowledge
Generation (Figure 9) and Section 2.1.2 Knowledge
Description Expansion (Figure 10). These tem-
plates were designed to guide LLMs in generating
high-quality, diverse, and semantically consistent
textual data to support the evaluation of scenario
cognition.

D Examples of Generated Data

This appendix presents example datas of our
scenario-based dataset. These examples illustrate
the quality and characteristics of the generated data,
which underpin the evaluation of LLMs scenario
cognition capabilities.

Table 4 presents the examples which reflect the
design principles of our training dataset, including
fictionality, role richness, conciseness, and seman-
tic consistency. For brevity, we only show three
representative Expanded Descriptions per Atomic
Knowledge but the full set of descriptions is avail-
able and have been used during our evaluation.
These data support the evaluation of large language
models’ scenario cognition by providing diverse
inputs for supervised fine-tuning, as discussed in
Section 2.1.1 and 2.1.2.

Table 5 presents examples of scenario-based
questions generated which are designed to eval-
uate the scenario cognition capabilities of LLMs.
Each question is derived from the corresponding
Atomic Knowledge and its expanded descriptions,
focusing on specific scenario elements and their
relationships. The questions are structured to elicit
responses that demonstrate the model’s understand-
ing of the scenario context and its ability to reason
about the roles and actions involved as discussed
in Section 2.1.3 and 2.1.4.
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Figure 9: Prompt template for Atomic Knowledge Gen-
eration.

Figure 10: Prompt template for Knowledge Description
Expansion.
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Atomic Knowledge Expanded Descriptions

Mathematician Dr. Lincoln Quantum presented
a groundbreaking proof at the Annual Theoret-
ical Mathematics Conference, confirming the
existence of Quintilian particles.

• At the Annual Theoretical Mathematics
Conference, Mathematician Dr. Lincoln
Quantum introduced a pioneering proof
confirming the existence of Quintilian par-
ticles.

• A groundbreaking proof was presented by
Mathematician Dr. Lincoln Quantum at
the Annual Theoretical Mathematics Con-
ference, which confirmed the existence of
Quintilian particles.

• At the Annual Theoretical Mathematics
Conference, Mathematician Dr. Lincoln
Quantum offered new evidence through a
groundbreaking proof of Quintilian parti-
cles’ existence.

Captain James Morrison rescued endangered
wildlife during a cruise in the Pacific Ocean. • During a cruise in the Pacific Ocean, Cap-

tain James Morrison rescued endangered
wildlife.

• When Captain James Morrison was on a
cruise in the Pacific Ocean, he rescued en-
dangered wildlife.

• In the Pacific Ocean, Captain James Mor-
rison’s mission was to rescue endangered
wildlife.

Pediatrician Lucy Armstrong successfully per-
formed surgery to remove a mysterious malfor-
mation from a young patient.

• During the surgery, Pediatrician Lucy Arm-
strong successfully removed a mysterious
malformation from a young patient.

• To remove a mysterious malformation, Pe-
diatrician Lucy Armstrong successfully
carried out the surgery on a young patient.

• In successful surgery, Pediatrician Lucy
Armstrong removed a mysterious malfor-
mation from a young patient.

Table 4: Examples of Atomic Knowledge and their corresponding expanded descriptions, which compose the
Memory Set.
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Atomic Knowledge Scenario-based Question

Mathematician Dr. Lincoln Quantum presented
a groundbreaking proof at the Annual Theoret-
ical Mathematics Conference, confirming the
existence of Quintilian particles.

• The discoverer who presented a ground-
breaking proof confirming the existence
of Quintilian particles at the Annual
Theoretical Mathematics Conference is
Mathematician Dr. Lincoln Quantum.

• The location where Mathematician Dr.
Lincoln Quantum presented the ground-
breaking proof confirming the existence of
Quintilian particles is Annual Theoretical
Mathematics Conference.

• The groundbreaking proof presented by
Mathematician Dr. Lincoln Quantum
at the Annual Theoretical Mathematics
Conference confirmed the existence of
Quintilian particles.

Captain James Morrison rescued endangered
wildlife during a cruise in the Pacific Ocean. • The rescuer of endangered wildlife dur-

ing a cruise in the Pacific Ocean is
Captain James Morrison.

• Captain James Morrison rescued endan-
gered wildlife during a cruise in the
Pacific Ocean.

• The subject that Captain James Morrison
was rescued during a cruise in the Pacific
Ocean is endangered wildlife.

Pediatrician Lucy Armstrong successfully per-
formed surgery to remove a mysterious malfor-
mation from a young patient.

• The surgeon who successfully performed
the surgery to remove a mysterious
malformation from a young patient is
Pediatrician Lucy Armstrong.

• The procedure that Pediatrician Lucy Arm-
strong successfully performed to remove
a mysterious malformation from a young
patient is surgery.

• The surgery performed by Pediatri-
cian Lucy Armstrong successfully re-
moved a mysterious malformation from
a young patient.

Table 5: Examples of scenario-based questions generated from Atomic Knowledge, which compose the Understand-
ing Set. The underlined text indicates the expected answer.
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