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Abstract

Large Language Models (LLMs) have demon-
strated a remarkable understanding of language
nuances through instruction tuning, enabling
them to effectively tackle various natural lan-
guage processing tasks. Recent research has
focused on the quality of instruction data rather
than the quantity of instructions. However, ex-
isting high-quality instruction selection meth-
ods rely on external models or rules, over-
looking the intrinsic association between pre-
trained model and instruction data, making it
difficult to select data that align with the pref-
erences of pre-trained model. To address this
challenge, we propose a strategy that utilizes
noise injection to identify the quality of instruc-
tion data, without relying on external model.
We also implement the strategy of combining
inter-class diversity and intra-class diversity to
improve model performance. The experimen-
tal results demonstrate that our method signif-
icantly outperforms the model trained on the
entire dataset and established baselines. Our
study provides a new perspective on noise in-
jection in the field of instruction tuning, and
also illustrates that the pre-trained model itself
should be considered in defining high-quality.
Additionally, we publish our selected high-
quality instruction data at https://github.
com/HUSTNLP-codes/Alpaca-selectd.

1 Introduction

Large Language Models (LLMs) have the ability
to carry out intricate natural language processing
tasks in various situations and fields through in-
struction tuning (Iyer et al., 2022; Ouyang et al.,
2022; OpenAI, 2023; Chen et al., 2023; Sun et al.,
2023; Caruccio et al., 2024). In the realm of instruc-
tion tuning, previous research has primarily con-
centrated on how the quantity of instruction data
impacts training results (Wei et al., 2022; Chung
et al., 2022; Longpre et al., 2023). Consequently,
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Figure 1: The figure illustrates the pipeline of filtering
data by using external models, as well as the limitations
of using external models.

some researches focus on researching methods to
automatically generate instruction data (Wang et al.,
2023; Taori et al., 2023; Xu et al., 2023b), thus pro-
moting the continuous expansion of the scale of
instruction data. Training models on constantly
expanding datasets is not practical because of the
significant costs involved.

Therefore, current researches are investing in
research on the quality of instruction data (Zhou
et al., 2023a; Köpf et al., 2023; Li et al., 2023a).
Specifically, LIMA (Zhou et al., 2023a) demon-
strates the importance of data quality over data
quantity, while also raising the question of how
to evaluate the quality of each instruction. Conse-
quently, some research aims to use external models
to develop a scoring mechanism for individual in-
structions, thereby achieving the identification of
high-quality instructions (Li et al., 2024a,b; Chen
et al., 2024). Additionally, research has indicated
that using the length of instruction outputs as a cri-
terion for data filtering can also achieve significant
optimization results (Zhao et al., 2024). As shown
in Figure 1, relying on external models or explicit
rules for instruction filtering overlooks the relation-
ship between pre-trained models and instruction
data, potentially limiting fine-tuning performance.
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It struggles to identify data that genuinely corre-
sponds to the model’s own preferences. This limi-
tation raises a critical challenge:

How to select data that aligns with the
model’s own preferences to achieve opti-
mized instruction tuning?

To address this challenge, we devote to develop-
ing a novel high-quality instruction filtering tech-
nique that delves into the intrinsic association
between the implicit knowledge learned by pre-
trained model and instruction data. Inspired by pre-
vious research on noise utilization (Namysl et al.,
2020; Hua et al., 2022; Jain et al., 2023), we pro-
pose to define the quality of each data by intro-
ducing noise. Specifically, we inject noise into
the input part of the instruction, then analyze the
changes in the output probability distribution of
the pre-trained model for the entire instruction, and
select those data with high probability distribution
consistency as high-quality data. Moreover, we
combine the strategies of inter-class diversity and
intra-class diversity to improve the coverage of
the selected data and reduce the redundancy in the
datasets. We have conducted extensive experiments
on different models and various instruction datasets.
The experimental results show that our method not
only outperforms the results of full-data training
but also surpasses existing baselines.

In summary, our contributions are as follows:

• We propose a method for selecting high-
quality instruction data without using addi-
tional models and taking into account an ef-
fective combination of quality and diversity.

• Our method creatively applies noise injection
to measure the quality of each instruction data,
providing a new application perspective for
noise in the field of instruction tuning.

• The overall performance of our method sur-
passes that of full-data training when selecting
only 5%-15% of the entire dataset, which not
only reduces the training cost, but also im-
proves the performance of the model.

• We publish the high-quality instruction dataset
filtered from Alpaca by our method.

2 Method

2.1 Preliminaries
LIMA (Zhou et al., 2023a) indicates that the pre-
training phase is where large models accumulate

most of their knowledge. In contrast, the goal of
instruction tuning is to steer the model towards a
particular interaction style or format, effectively
demonstrating its built-in knowledge and abilities.

Therefore, we hypothesize that instruction data
with high semantic relevance to pretrained knowl-
edge are more effectively utilized by the model,
thereby facilitating the release of its latent capa-
bilities. To validate this hypothesis, we propose
a method based on perturbation consistency that
introduces noise into the low-dimensional embed-
ding space of the instructions and assesses the sta-
bility of model outputs to identify high-quality in-
struction samples closely aligned with pre-trained
knowledge. To ensure data diversity and reduce
redundancy, we incorporate k-means clustering
combined with cosine similarity-based filtering.
The overall framework of our method is illustrated
in Figure 2. Through extensive experiments, we
demonstrate the effectiveness of our core hypothe-
sis in activating the latent knowledge of the model
(Section 4.1 & 4.3), as well as the superiority of
our method in capturing the intrinsic semantic re-
lationships between pre-trained knowledge and in-
struction data (Section 4.5).

2.2 Consistency Selection

Adding interference directly to a high-dimensional
space such as the original text can easily cause se-
mantic changes. Therefore we perform noise injec-
tion on the embedding of the input part of the text.
And we use Gaussian noise which is widely used
in image processing. In particular, we introduced β
to change the mean and variance to control the size
of the noise. For each instruction di in the initial
dataset D0, where di is represented as (X,Y ). The
embedding for each di instruction is expressed as
(ex1,i · · · exn,i, e

y
1,i · · · e

y
m,i). We introduce a specific

level of noise to the embedding of the input section
of the instructions, as per the following formulas:

nk,i = β(µi
x + σi

xϵi), ϵi ∼ N (0,1), (1)

ẽxk,i = exk,i + nk,i, (2)

where β represents the scaling factor of noise mag-
nitude, σi

xdenotes the standard deviation of input
part X in the ith instruction, and µi

x stands for the
mean of input part X in the ith instruction, exk,i
represents the embedding of the kth token in the
ith data, ẽxk,i represents the embedding exk,i after
adding noise.
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Figure 2: The overall framework. The top portion of the figure illustrates the method for determining the quality of
each data, whereas the bottom part depicts the procedure for integrating quality with diversity selection strategies.

In order to assess the consistency of the model
in predicting word-level granularity before and af-
ter introducing noise, we collected the probability
distribution predictions of the model at each vo-
cabulary position after adding noise. Subsequently,
we compared the consistency of model prediction
probabilities between the original instructions and
the instructions after noise is added. A higher level
of consistency indicates better data quality. The
formula for calculating the consistency of probabil-
ities is as follows:

DKL(P ||Q) =
1

n

∑

i

P (i) log

(
P (i)

Q(i)

)
, (3)

where n represents the token length of an instruc-
tion, including the input x and the output y. Pi rep-
resents the probability output of the ithinstruction
after passing through the model, while Qi denotes
the probability output of the ith instruction af-
ter adding noise to the input portion and passing
through the model.

A lower KL divergence value suggests a greater
consistency in the probability distribution, thereby
indirectly indicating the quality of the data. when
perturbations are introduced, there will be a certain
degree of randomness in the actual noise generation.
Therefore, in the actual experimental operation,
we took three independent sampling processes and
calculated the corresponding KL divergence values,
and finally took the average of the three as our

consistency evaluation result.

2.3 Diversity Selection
Relying solely on consistency calculations for sort-
ing and selection may result in the selected data set
having only a few categories, resulting in reduced
model performance. In order to improve the cat-
egory diversity of the selected data set, we adopt
the inter-class diversity selection and intra-class
diversity selection strategies.

In the inter-class diversity selection strategy, our
core goal is to expand the coverage of the selected
data while ensuring the quality of each piece of
data. To this end, we prioritize data that ranks
higher in the initial ranking, while implementing
inter-class diversity selection to ensure that the se-
lected data set is broadly representative at the class
level. We calculate the overall semantic embedding
of each data point using the following formula.
We then utilize the K-means (Lloyd, 1982) cluster-
ing algorithm for inter-class diversity filtering to
optimize the quality of the dataset and the gener-
alization performance of the model. The relevant
calculation formulas are as follows:

[hi
1 · · ·hi

n] = PLM(ei1 · · · ein), (4)

Hi =

∑n
k=1 h

i
k

n
, (5)

(cluster1 · · · cluserk) = K-means(H1 · · ·Hi),
(6)
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where PLM denotes a pre-trained model, while
hi
n represents the ultimate hidden states of the ith

instructions. Hi is the vector representation of the
entire statement.

After confirming data coverage using the inter-
class diversity selection strategy, we observed that
data points within the same class might exhibit
significant similarities, leading to redundant data.
To diminish redundancy and enhance dataset di-
versity, we implemented an intra-class diversity
selection strategy. More precisely, we assess the
quality of data within each category and then cal-
culate the cosine similarity between instructions by
utilizing sentence embedding. The diversity of the
dataset is improved by choosing instructions that
have similarities under a set limit and adding these
less similar data points to the filtered subset.

3 Experimental Setup

Datasets We use the Alpaca (Taori et al., 2023)
dataset created by Stanford University, which
contains 52K instruction data. This dataset has
been widely adopted and applied in the research
field of instruction filtering. To thoroughly assess
the model’s performance, we utilize a range of
datasets for conducting specific capability tests.
We use the MMLU (Hendrycks et al., 2021)
dataset to measure the model’s ability to handle
interdisciplinary knowledge in a multilingual
environment. By employing the Humaneval (Chen
et al., 2021), we evaluate the model’s proficiency in
comprehending and producing code. The GSM-8K
(Cobbe et al., 2021) is utilized to assess the model’s
aptitude in resolving mathematical problems. In
addition, we use the CommonsenseQA (Talmor
et al., 2019) to examine the model’s mastery of
common sense knowledge in daily life. Finally,
through the NaturalQuestions (Kwiatkowski et al.,
2019), we evaluate the model’s performance in
understanding and answering questions involving
world knowledge.

Baselines We compare various state-of-the-art
baseline methods. LIMA (Zhou et al., 2023a) is
trained on 1k high-quality instruction-following
data meticulously handcrafted. AlpaGasus (Chen
et al., 2024) uses ChatGPT to score each piece of
data and select the high-scoring data for training.
Q2Q (Li et al., 2024b) trains a model initially with
a few instructions, and subsequently assess the
data quality using two distinct loss values within

the model. Furthermore, Superfiltering (Li et al.,
2024a) refines the process by replacing the re-
quired instruction fine-tuning model with a smaller
external model for computation. Additionally
we use the length of the instruction’s output as a
strong baseline (Zhao et al., 2024). Moreover, we
add some additional methods. Alpaca-all (Taori
et al., 2023) is directly trained on the complete
Alpaca dataset. Random is selected from the
source data set through random sampling. The
details of the experimental implementation can be
found in Appendix A

4 Results and Analysis

We are focusing on the instruction tuning of six
key Research Questions (RQ) with a series of cor-
responding experiments and in-depth analysis.

4.1 Main Results

RQ1: How does our selection method compare
to the SOTA method in performance? We com-
pare our method with established baselines in dif-
ferent pre-trained models. The experimental re-
sults are shown in Table 1. Our method exhibits
outstanding performance across various scales and
structures of models, significantly enhancing the
model’s comprehensive knowledge capabilities. It
is noteworthy that relying solely on external mod-
els for selection while ignoring the model’s own
characteristic biases, may limit its performance in
specific domains. Specifically, in the Llama2 ex-
periments, AlphaGasus exhibits markedly lower
mathematical performance, reaching only about
half the level of the other baseline models. We
observe that the performance improvement of our
method is particularly pronounced on smaller mod-
els compared to the full dataset. We hypothesize
that this might be due to smaller models being more
sensitive to data quality.

4.2 Generalization of Method

RQ2: Can our method adapt to different styles
of instruction datasets? Our method demon-
strates outstanding performance on the Alpaca
dataset, which is created from powerful LLMs.
To assess whether our method retains its effi-
cacy across different instruction dataset types, we
broaden our experimental scope. We choose two
different types of instruction datasets for test-
ing: the manually crafted instruction dataset Dolly
(Dolly, 2023) and the conventional NLP-related

20767



Models Methods External
Model MMLU Math Code COM NQ Average ∆

Qwen2-0.5B
Alpaca-All — 35.83 14.56 20.73 52.01 7.59 26.14 —
AlpaGasus(2024) ! 36.23 27.22 23.17 51.92 6.54 29.02 +2.88
Ours % 36.68 34.85 26.83 53.32 7.01 31.74 +5.60

Qwen2-1.5B
Alpaca-All — 50.47 39.73 33.54 69.94 13.77 41.49 —
AlpaGasus(2024) ! 35.59 53.98 36.59 71.25 13.77 42.24 +0.75
Ours % 45.10 57.54 40.24 71.25 14.16 45.66 +4.17

Llama2-7B

Alpaca-All — 47.93 13.12 13.41 55.04 20.83 30.07 —
Random % 45.97 10.99 11.59 52.66 29.14 30.07 0
LIMA(2023a) % 40.76 19.33 15.24 44.72 11.83 26.38 -3.69
Superfiltering(2024a) ! 41.03 7.73 11.59 49.63 19.14 25.82 -4.25
Q2Q(2024b) ! 44.69 13.50 15.85 47.75 28.84 30.13 +0.05
AlpaGasus(2024) ! 46.51 7.73 14.63 54.05 29.75 30.53 +0.46
Lenth(2024) % 45.87 16.07 14.02 50.07 30.66 31.34 +1.27
Ours % 47.12 15.69 15.85 56.51 29.83 33.00 +2.93

Table 1: "Math" means GSM-8K,"Code" means Humaneval, "COM" means CommonsenseQA, "NQ" means
NaturalQuestions.
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Figure 3: We randomly select a subset from the FLAN
dataset that is comparable in size to the Dolly dataset for
experiments. In multiple-choice questions, the option
corresponding to the sequence with the lowest perplexity
is chosen as the model’s final inference result for that
question.

dataset FLAN (Longpre et al., 2023). The ex-
perimental results are shown in Figure 3. In the
Dolly dataset experiment, the model trained with
our method significantly outperforms the model
trained on the full data set across all metrics. In the
Flan dataset experiment, the random subset may
impact the data quality, leading to lower training
results. After using our method, the model perfor-
mance is further improved, especially in common
sense question-answering. The experimental re-
sults demonstrate the effectiveness of our method
in adapting to different instruction styles and sig-
nificantly enhance the performance of instruction
fine-tuning.

While our method improves performance across
stylistically diverse datasets, it remains unclear
whether these gains extend to instruction follow-
ing—a key aspect of LLM utility. To test this,
we evaluate on the IFEVAL (Zhou et al., 2023b),

Methods Pro-strict Ins-strict Pro-loose Ins-loose Avg

Dolly 16.45 25.90 18.11 27.94 22.10
Selected 18.48 28.90 19.59 30.58 24.39

Flan 23.48 35.13 23.84 35.37 29.46
Selected 25.32 36.69 25.69 37.05 31.19

Table 2: Performance of our method on datasets with
diverse stylistic characteristics under the IFEVAL evalu-
ation framework.

which measures instruction adherence across di-
verse task formats, allowing us to assess whether
our data selection strategy yields better alignment
with human instructions. As reported in Table 2,
models trained on datasets curated by our method
achieve superior performance compared to those
trained on the original unfiltered data, under both
strict and loose evaluation criteria. These consis-
tent improvements highlight that our approach not
only enhances task performance across heteroge-
neous benchmarks but also strengthens the ability
of models to faithfully follow instructions, under-
scoring the practical significance of our method for
real-world instruction-driven applications.

4.3 Ablation Experiments

RQ3: Can the data selected through our method
enhance ability of the model to express in-
ternal knowledge? We train models on a low-
consistency dataset to evaluate its impact on per-
formance, using consistency as the sole selection
criterion. For performance evaluation, we integrate
the Vicuna testset (Chiang et al., 2023) from open-
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Methods
Ability Open-Domain

MMLU Math Code COM NQ Avg. Vicuna

Random 45.97 10.99 11.59 52.66 29.14 30.07 48.96

Low-Consistency 48.62 6.22 11.59 60.61 11.65 27.74 8.79

High-Consistency 46.34 13.87 15.24 53.32 29.11 30.45 60.81

Table 3: The comparison of consistency selection ex-
periments. "Ability" refers to the collective mean of
diverse testing capabilities. For the Vicuna test, we uti-
lize "weighted_alpaca_eval_gpt4_turbo" from AlpacaE-
val2.0 as the annotator.

domain problems into our analysis, assessing with
AlpacaEval2.0 (Li et al., 2023b). The comprehen-
sive experimental results are detailed in Table 3.
It is apparent that the data selected through low-
consistency has not conducive to the unleashing of
the model’s intrinsic knowledge. While such data
may yield higher scores on selected-choice tasks, it
underperforms significantly in domains that require
knowledge output, such as mathematical problem-
solving or open-domain question answering. The
scores on these tasks are even far lower than the re-
sults of random selection. Conversely, the selection
of high-consistency data has demonstrated superior
performance across all dimensions. To delve into
this phenomenon, we examine the Vicuna-test re-
sults and randomly select one question to assess the
impact of various selection methods, as detailed in
Table 5. Mode trained on High-Consistency data
produce answers that are not only richer in content
but also more fluent in language, while maintaining
better contextual coherence. This result indicates
that high-consistency data can more effectively fa-
cilitate the expression of knowledge acquired by
the model during pre-training.

To further assess the impact of diversity in in-
struction styles in data selection, we conduct a
set of experimental comparisons. The outcomes
are displayed in Table 4. The results show that a
quality-centric approach may neglect data diver-
sity, possibly constraining the proficiency of model
in specific domains. Although a diversity-centric
selection expands the data range, it risks incorporat-
ing lower-quality data, which could impair model
performance. However, models that balance both
quality and diversity in selection show enhanced
performance in our tests. Quality guarantees that
the model learns the interaction style of instruc-
tions, while diversity enables the model to master
various styles, thereby improving its generalization

and adaptability across different situations.

4.4 Effect of Noise
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Figure 4: Examining the impacts of varying noise types
and varying noise intensities on experimental outcomes.
In the figure on the left, β = 1 signifies the initial
intensity of the noise. Conversely, in the figure on the
right, β = 10 suggests a tenfold increase in the noise
intensity.

RQ4: How does the noise affect the performance
of our method? We conduct an in-depth ex-
ploration of the data filtering effect under different
noise intensities. Specifically, we select 5%-15%
of the original dataset as subsets under noise levels
of β = 1 and β = 10, and train Llama2 based on
these subsets. The results are shown in Figure 5.
The model trained with the filtered subset gener-
ally outperforms the results of training with the full
dataset under the two noise intensities, confirming
the effectiveness of our proposed approach. Espe-
cially under the condition of β = 10 and a 12%
selection ratio, the model performance reaches the
optimal level. Additionally, we observe an overall
trend toward better model performance at higher
noise levels, which may be due to the fact that low
noise intensity is not sufficient to cause effective
interference in the data.

We replace the conventional Gaussian noise with
uniform noise to investigate the impact on model
performance. The results are presented in Figure
4. The figure clearly illustrates that, across various
noise levels, Gaussian noise yields significantly su-
perior experimental outcomes compared to uniform

Methods MMLU Math Code COM NQ Average

Alpaca-All 47.93 13.12 13.41 55.04 20.83 30.07
Diversity 46.34 13.87 15.24 53.32 29.11 31.58

Consistency 45.26 15.39 15.85 44.80 30.94 30.45
Diversity+

Consistency 47.12 15.69 15.85 56.51 29.83 33.00

Table 4: The importance of combining quality and di-
versity(Llama2).
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Question What are the main differences between Python and JavaScript programming languages?

High-Consistency-Output The primary difference between Python and JavaScript is their syntax, data types, and use
cases. Python is a high-level language with a simpler syntax than JavaScript which makes it
easier to read and write code. It has fewer built-in data types compared to JavaScript, but
Python provides more extensive library support for working with complex data structures
such as lists and dictionaries. On the other hand, JavaScript is primarily used in client-side
scripting and runs on the browser, while Python can be used both on the server side and client
side. Additionally, Python supports multiple paradigms like object-oriented programming
and functional programming, whereas JavaScript follows a single-paradigm approach of
imperative programming.

Low-Consistency-Output Python is an interpreted language, while JavaScript is a compiled language.

Table 5: A comparative analysis of model generation capabilities under two different selecting approaches.

noise. A meticulous comparison of the images
within the figure reveals a notable trend: as noise
intensity rises, both methods exhibit considerable
performance gains. Our research concludes that a
moderate increase in noise intensity aids in refin-
ing the identification of data quality. This effect
might stem from the fact that moderate noise levels
effectively accentuate key data features while di-
minishing the relevance of less critical details, thus
enhancing the efficiency of data quality differentia-
tion.
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Figure 5: Compare various dataset sizes within the al-
paca dataset to assess how our method’s performance
varies. Additional experiments on noise intensity can
be found in Appendix B

4.5 Selected Data Analysis

RQ5: Can our method consider the relationship
between the pre-trained model and the instruc-
tion dataset, thereby selecting data that align
with the model’s preferences? Directly analyz-
ing this research question is challenging. Therefore,
we utilize GLM-4 (Zeng et al., 2024) to classify
the dataset into nine categories, in order to depict
the trends in data selection among different pre-
trained models, and further analyze the selection
preferences of the models. A smaller value indi-
cates a greater tendency to select this type of data.

Detailed experimental results are shown in Table
6. It is evident that on the Alpaca dataset, the
Llama2 and Qwen2 models exhibit unique prefer-
ences in data selection. In particular, Qwen2-0.5B
and Qwen2-1.5B, which have the same model ar-
chitecture, show similar selection preferences for
data types. This preference is due to models within
the same category using similar corpora during
the pre-training phase. This observation confirms
that our selection method does take into account
the knowledge learned by the model during pre-
training, thereby filtering out data that aligns with
the model’s own preferences.

To conduct an in-depth analysis of the data types
our method typically selects and whether the cho-
sen data maintains diversity, we employ the Self-
instruct (Wang et al., 2023) to analyse. The findings
are illustrated in Figure 6, indicating that the fil-
tered dataset has enhanced task distribution while
preserving the diversity present in the original data.
More specifically, the filtered datasets exhibited a
tendency to include creative and interpretive tasks
such as "generate," "write," "create," "explain," and
"describe," while tasks involving revisions such as
"rewrite" and "edit" showed a relative decrease. In
terms of semantic information content, "rewrite"
instructions are significantly inferior to "generate"
instructions. This result reveals that the data fil-
tering method adopted in this study effectively re-
moves instructions with low semantic information
content.

4.6 Scale Generalization

RQ6: Can our method be effectively applied to
different model versions and larger-scale mod-
els? In the previous experimental analysis, our
evaluation was primarily conducted on relatively
smaller models and earlier versions of LLMs. How-
ever, as the landscape of foundation models is
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Category Alpaca Dolly
All Selected ∆ Selected ∆ All Selected ∆

Moldel — Llama2-7B — Qwen2-0.5B/1.5B — — Llama2-7B —
Discipline 2193 242 88.96% 277/283 87.37%/87.10% 561 169 69.88%
Language 5855 72 98.77% 80/78 98.63%/98.67% 113 36 68.14%
Konwledge 15761 2012 87.23% 2567/2537 83.71%/83.90% 10651 3639 65.83%
Comprehension 3860 669 82.67% 767/817 80.13%/78.83% 626 252 59.74%
Reasoning 837 94 88.77% 118/89 85.90%/89.37% 208 92 55.77%
Creation 12758 2103 83.52% 2565/2780 79.89%/78.21% 856 339 60.40%
Code 626 59 90.58% 82/90 86.90%/85.62% 5 1 80.00%
Mathematics 3195 99 96.90% 89/84 97.21%/97.37% 162 53 67.28%
Other 5874 697 88.13% 796/810 86.45%/86.21% 1520 572 62.37%

Table 6: Using GLM-4 to classify the data before and after selection. Here, ∆ is calculated as (ALL−Selected)
ALL .

Figure 6: Comparing the diversity of instructions between the original alpaca data (left) and the filtered data (right)
involves analyzing the verb-noun structure of the instructions. The inner circle displays the top 20 most common
root verbs found in the instructions, while the outer circle lists their corresponding first four direct noun objects.

rapidly evolving, with new versions and larger-
scale models being continuously released, it is es-
sential to examine whether our method can gener-
alize under these more challenging settings. To this
end, we extend our experiments to three represen-
tative updated models of different scales: Llama3-
8B (Dubey et al., 2024), Qwen2-7B (Yang et al.,
2024a), and Qwen2.5-14B (Yang et al., 2024b).
Furthermore, to provide a more comprehensive
assessment of model performance, we addition-
ally introduce BBH (Suzgun et al., 2023) bench-
mark into the evaluation suite, thereby enabling
us to evaluate not only the effectiveness of our
approach on updated models but also its robust-
ness when faced with more demanding inference
tasks. As shown in Table 7, our method consis-
tently outperforms the baselines across different
models and parameter sizes, yielding substantial
improvements in average performance with gains
of +7.25, +6.36, and +3.70 points on Llama3-8B,
Qwen2-7B, and Qwen2.5-14B, respectively. These
results demonstrate that our approach generalizes

well across newer versions of LLMs while scal-
ing effectively to larger models, underscoring its
robustness and its potential applicability in real-
world scenarios where high-capacity models are
increasingly adopted.

5 Related Work

Instruction Dataset Previous research has
focused on improving the model’s ability to follow
instructions using an extensive instruction dataset
(Ouyang et al., 2022; Chung et al., 2022). FLAN
(Ouyang et al., 2022) effectively boosted model
performance by transforming traditional NLP
tasks into instruction datasets using instruction
templates. Alpaca employs the self-instruct
technique, utilizing advanced LLMs to generate a
varied collection of 52k instructions (Taori et al.,
2023; Wang et al., 2023). Humpack (Li et al.,
2023a) employs instruction reverse translation
and self-filtering for fine-tuning. WizardLm (Xu
et al., 2023a) create more complex instructions,
thereby enhancing the performance of large
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Models Methods External
Model MMLU Math Code COM NQ BBH Average ∆

Llama3-8B
Alpaca-All — 59.77 26.08 40.85 70.84 30.06 36.36 43.99 —
AlpacGasus ! 60.89 30.63 34.15 73.46 33.91 57.51 48.42 +4.43
Ours % 60.92 42.23 40.24 73.55 33.63 56.87 51.24 +7.25

Qwen2-7B
Alpaca-All — 66.59 60.12 62.80 81.24 28.45 44.59 57.30 —
AlpacGasus ! 69.69 75.51 64.02 82.23 30.14 57.61 63.20 +5.90
Ours % 70.00 76.04 67.68 80.67 29.45 58.10 63.66 +6.36

Qwen2.5-14B
Alpaca-All — 75.17 73.77 62.80 84.28 33.46 67.27 66.13 —
AlpacGasus ! 77.56 82.87 69.51 84.36 34.43 56.96 67.62 +1.49
Ours % 77.52 83.17 71.34 84.19 33.60 69.15 69.83 +3.70

Table 7: Experimental results on the updated and larger LLMs, showing that our method consistently generalizes
across newer model versions and larger parameter scales.

language models. LIMA (Zhou et al., 2023a)
demonstrates that with just 1,000 meticulously
curated high-quality data points, LLMs can exhibit
significant improvements in command-following
capabilities.

Noise Utilization NAT (Namysl et al., 2020)
boosts the robustness of sequence labeling models
via noise-aware training without sacrificing input
accuracy. LNSR (Hua et al., 2022) strengthens
pre-trained models for follow-up tasks by injecting
noise during training. NEFTune (Jain et al., 2023)
enhances model performance by adding noise
to embeddings during fine-tuning. Our method
introduces a novel approach by applying noise to
instruction data selection, a previously unexplored
area.

Instruction Data Selection Recent research
aims to minimize the required data for instruction
tuning. Intuitively, instruction mining (Cao et al.,
2023) has established linear rules using specific
natural language metrics for assessing the quality
of instruction datasets. AlpaGasus (Chen et al.,
2024) rely on other exceptional LLMs for assessing
and selecting high-quality instruction data . The
AIT (Kung et al., 2023) proposes prompt uncer-
tainty for filtering novel/informative instructions.
Q2Q (Li et al., 2024b) uses a fine-tuned model
to calculate the Instruction-Following Difficulty
(IFD) index for each point. Superfiltering (Li et al.,
2024a) employs smaller exceptional models to
calculate IFD. Additionally, research has indicated
that using the length of instruction outputs as
a criterion for data filtering can also achieve
significant optimization results (Zhao et al., 2024) .

6 Conclusion

Our method selects data suitable for the pre-trained
model itself through noise injection, without rely-
ing on additional models and rules. Initially, we
assess the value of different data points by intro-
ducing noise, which helps us precisely identify the
most beneficial data for model training. Subse-
quently, we reduce data bias by increasing diversity
within and between classes. Empirical evaluations
across multiple datasets and models show that our
innovative technique not only exceeds the perfor-
mance of full datasets, but also significantly ex-
ceeds current state-of-the-art baselines. Our strat-
egy not only reduces the resources required for
training but also significantly improves model per-
formance.

Limitations

Our data selecting method involves comparing the
output differences of the model before and after
adding noise to the data, which inevitably leads to
additional inference costs. However, we found that
models of the same type tend to have similar types
of filtered data, which may be their pre-training
data is roughly the same. Therefore, future research
can perform data filtering on smaller models and
then apply the filtering results to larger models of
the same type.
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A Experiment Details

Train Details In light of the fact that the majority
of existing baseline experiments are conducted
on Llama2-7b (Touvron et al., 2023), we adopt
Llama2-7b as a unified evaluation platform to
ensure fairness and comparability. Based on
this setup, we conduct a systematic comparative
analysis of all baseline methods. Additionally, to
delve into the performance discrepancies among
various architectural designs and across model
sizes, we expand our experimental study to include
analyses of the Qwen2-0.5B and Qwen2-1.5B
(Yang et al., 2024a). Unless otherwise specified,
during training, we fine-tune the model for 3
epochs, with the batch size of 256. We utilize the
AdamW optimization algorithm with a learning
rate set to 2× 10−5. To enhance the model’s per-
formance, we extend the maximum length of input
sentences to 4096 tokens. For testing the various
capabilities of the model, we use the Opencompass
(Contributors, 2023) framework. For MMLU, we
utilize 5-shots, and for CommonsenseQA, we use
8-shots. We rent 4 × NVIDIA A6000 for model
training. During the training process, we adapt
a full parameter fine-tuning strategy and utilized
gradient accumulation techniques. Despite the fact
that most of the instruction data is short, we still
set the maximum data length to 4096 tokens.

Main Experiments Details Main experi-
ments are conducted with Gaussian noise at
β = 10. Due to differences in parameter scale
and embedding distributions, the proportion of
data used varies slightly across models—about
12% for Llama2, 14% for Qwen2-0.5B, and 15%

for Qwen2-1.5B—all substantially below the full
dataset. For AlpaGasus and LIMA, we follow
the officially reported optimal ratios, while other
baselines are trained on datasets of the same scale
as ours to ensure fair comparison. To further assess
generality, we include both manually written
(Dolly) and template-converted (Flan) instruction
datasets, subsampling 15K examples from Flan
to match Dolly. For Flan’s multiple-choice tasks,
perplexity (PPL) is used as the evaluation metric.

Noise Injection We inject noise parame-
ters only in the region from instruction to input,
while the other parts of the template remain
undisturbed. In our main experiment, the injected
Gaussian noise involves the configuration of two
key parameters: mean and variance. Given that
the information content of different instructions
varies, it is clearly unreasonable to use fixed
parameter values. Therefore, we have adopted
an adaptive parameter setting method. For each
instruction, after embedding, we calculate the
specific variance and mean of the region where
noise is to be injected, and use these calculated
values for initialization to achieve an appropriate
semantic shift.

B More Experiments about Noise
Intensity

In this paper, we primarily report the data filtering
results with β set to 1 and 10. To provide a more
comprehensive study, we further include experi-
ments with a wider range of β values, as shown
in Table 8. The comparative analysis reveals that
when the noise intensity is either very low or very
high, the model’s performance is close to the base-
line. This can be attributed to the fact that overly
small noise fails to introduce meaningful perturba-
tions, whereas excessively large noise overwhelms
the signal, making it difficult for the model to ef-
fectively identify the relevant problems.

MMLU Math Code COM NQ Average

Alpaca_all 47.93 13.12 13.41 55.04 20.83 30.07
Ours(β = 3) 46.13 11.90 15.24 53.48 26.59 30.67
Ours(β = 5) 45.28 14.10 17.07 51.76 28.86 31.41

Ours(β = 10) 47.12 15.69 15.85 56.51 29.83 33.00
Ours(β = 15) 43.13 13.57 15.24 53.89 28.37 30.90

Table 8: More about the impact of different noise inten-
sities on performance
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