
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 20930–20953
November 4-9, 2025 ©2025 Association for Computational Linguistics

EIFBENCH: Extremely Complex Instruction Following Benchmark
for Large Language Models

Tao Zou, Xinghua Zhang, Haiyang Yu, Minzheng Wang, Fei Huang, Yongbin Li *

Tongyi Lab, Alibaba Group
{qingdie.zt, zhangxinghua.zxh, yifei.yhy, wangminzheng.wmz, f.huang, shuide.lyb}@alibaba-inc.com

Abstract

With the development and widespread ap-
plication of large language models (LLMs),
the new paradigm of “Model as Product” is
rapidly evolving, and demands higher capa-
bilities to address complex user needs, often
requiring precise workflow execution which in-
volves the accurate understanding of multiple
tasks. However, existing benchmarks focusing
on single-task environments with limited con-
straints lack the complexity required to fully
reflect real-world scenarios. To bridge this gap,
we present the Extremely Complex Instruction
Following Benchmark (EIFBENCH), meticu-
lously crafted to facilitate a more realistic and
robust evaluation of LLMs. EIFBENCH not
only includes multi-task scenarios that enable
comprehensive assessment across diverse task
types concurrently, but also integrates a variety
of constraints, replicating complex operational
environments. Furthermore, we propose the
Segment Policy Optimization (SegPO) algo-
rithm to enhance the LLM’s ability to accu-
rately fulfill multi-task workflow. Evaluations
on EIFBENCH have unveiled considerable per-
formance discrepancies in existing LLMs when
challenged with these extremely complex in-
structions. This finding underscores the neces-
sity for ongoing optimization to navigate the in-
tricate challenges posed by LLM applications.

1 Introduction

The advent of large language models (LLMs) has
transformed real-world applications by improving
models’ ability to comprehend a diverse range
of human instructions, from simple conversations
to complex problem solving (Sanh et al., 2022;
Dubois et al., 2023; Zhang et al., 2024c). Thus, in-
structions have become central to effective human-
machine interaction in this new landscape (Zhong
et al., 2021; Mishra et al., 2022; Gao et al., 2024),
especially the paradigm of “Model as Product” has

**Corresponding author

(b) EIFBench (Ours)(a) Previous Work

(1)

(2)

(3) …

…

1-1

N-1

1-N

Instruction 1:
Introduce the story of the Chinese Idiom.

Multi-Constraints for Instruction 1:
1.Write it in 200 words 2. In English …

Instruction i:
Write a dialogue about the story.

Multi-Constraints for Instruction i:
1.The theme should be in travel 2…

…

…

Instruction:
Introduce the story of the Chinese Idiom.

Multi-Constraints:
1.Write it in 200 words 2. In English …

Instruction 1:
Introduce the story of the Chinese Idiom.

Instruction N:
Write a dialogue about the story.

Instruction:
Introduce the story of the Chinese Idiom.

Constraint:
Write it in 200 words

Instruction N:
Summarize the content of the dialogue.

Multi-Constraints for Instruction i:
1.Write in Chinese 2. Include a title

…
… …

N-N

(4)

Figure 1: Existing benchmarks, represented on the left,
either focus on completing a single instruction or han-
dling multiple instructions with only one constraint each.
In contrast, EIFBENCH presents a multi-instruction,
multi-constraint benchmark, designed to more closely
align with real-world complexities and demands.

deeply entered the collective consciousness where
LLM agents need to accurately complete a series
of tasks to meet user demands (Xiong et al., 2025;
Hu et al., 2024; Alakuijala et al., 2025). However,
as user demands grow more sophisticated, tradi-
tional benchmarks (Zhong et al., 2024; Chia et al.,
2023), which focus on specific tasks, are insuffi-
cient to evaluate models’ comprehensive ability to
handle multifaceted instructions. This shortfall un-
derscores the need for innovative evaluation frame-
works capable of accurately assessing how models
understand and execute complex instructions (Zhou
et al., 2023; Wang et al., 2023; Xu et al., 2024).

To evaluate the instruction following abilities
of LLMs, several benchmarks (Zhou et al., 2023;
Qin et al., 2024; Li et al., 2024) have been pro-
posed, which can be categorized into three main
types as shown in Fig. 1: (1) Single-Instruction
Single-Constraint benchmarks, such as IFEval
(Zhou et al., 2023) and INFOBENCH (Qin et al.,
2024), focus on tasks governed by a single con-
straint, providing insights into basic instruction
following abilities. (2) Single-Instruction Multi-
Constraint benchmarks, like CFBench (He et al.,
2024b), evaluate how models handle a single in-
struction with multiple constraints across content,

20930

numerical, and other dimensions simultaneously.
(3) Multi-Instruction Single-Constraint scenar-
ios, such as those explored by SIFo (Chen et al.,
2024), test models’ adherence to sequences of
instructions, assessing their adaptability and ver-
satility while maintaining focus on a single con-
straint. Nonetheless, research still lacks in address-
ing multi-instruction multi-constraint scenarios,
which more accurately reflect real-world complexi-
ties, especially in the era of LLMs serving as agents
with workflow execution involving multiple tasks.

Multi-instruction multi-constraint (MIMC) sce-
narios are ubiquitous in real-world applications,
such as workflow automation (Zhang et al., 2022;
Taylor et al., 2023) and healthcare scheduling
(Bakhshandeh and Al-e-hashem, 2024; Li et al.,
2021). For example, in cloud-based workflow au-
tomation, orchestrating computational tasks such
as data preprocessing, model inference, and report
generation requires balancing resource allocation,
execution time, and task dependencies (Xiong et al.,
2016). However, existing LLMs struggle with such
complexity, with performance dropping by over
30% with over 5 constraints (He et al., 2024b).
Bridging this gap necessitates benchmarks that mir-
ror real-world MIMC dynamics, integrating both
task interdependence and constraint scalability to
foster robust and adaptable LLMs.

In response to these challenges, we introduce
the Extremely Complex Instruction Following
Benchmark (EIFBENCH), specifically designed to
address the shortcomings of current benchmarks by
providing a comprehensive framework that mirrors
the complexities of real-world task environments.
As shown in Fig. 1, EIFBENCH is unique in its
inclusion of multi-task scenarios, drawn from di-
verse sources and integrated with multifaceted con-
straints1. This design allows for an in-depth assess-
ment of a model’s ability to manage complex de-
mands. In addition, we introduce the Segment Pol-
icy Optimization (SegPO) algorithm, which fea-
tures advantage estimation for outputs correspond-
ing to each instruction within multi-instruction in-
puts. The main contributions of this paper are sum-
marized as follows:

• We first develop the extremely complex in-
struction following benchmark (EIFBENCH),
simulating real-world applications with multi-
ple instructions and constraints.

1In this work, plain text datasets refer to non-
conversational plain text datasets.

8.8%

13.1%

23.7%

13.2%

14.5%

4.7%
19.2%

2.7%

Task Types
Classification
Information Extraction
Text Generation
Dialogue System
Reasoning and Logic
Language Style
Evaluation and Verification
Programming-Related

Figure 2: Task type distribution in EIFBENCH.

• We propose the segment policy optimization
(SegPO) algorithm by calculating the advan-
tages separately for each output that responds
to the corresponding instruction within the in-
put, encouraging more nuanced feedback in
following multiple instructions.

• We conduct a detailed analysis of 20 LLMs,
encompassing both open-source and closed-
source models, uncovering their limitations in
processing complex instructions and pinpoint-
ing areas for enhancement to better adapt to
real-world complex scenarios. The SegPO
algorithm demonstrates significant improve-
ments, achieving increases of 14.85% com-
pared to the base LLM and 3.40% compared
to GRPO models on EIFBENCH, respectively.

2 EIFBENCH

2.1 Task and Constraint Taxonomy

To thoroughly assess the capability of large lan-
guage models (LLMs) in adhering to complex in-
structions, we introduce an exceptionally challeng-
ing instruction following benchmark. Specifically,
we categorize both tasks and constraints to structure
the evaluation. For tasks, we identify and compile
8 types of tasks based on traditional NLP tasks.
Regarding constraints, we establish a two-level hi-
erarchical taxonomy for the organization.

2.1.1 Task Categories
In line with instruction following existing works
(Zhang et al., 2024a; Li et al., 2024), we categorize
the tasks in EIFBENCH into eight primary types. 2

These categories provide a comprehensive frame-
work for systematically evaluating model perfor-
mance across diverse task settings. The distribution
of these task categories is shown in Fig. 2.

2In this work, following an instruction refers to completing
one specific task and producing the corresponding response.

20931

Benchmark Multi-Constraint Multi-Instruction Multi-Type Average Constraint Average Instruction

CIF-Bench (Li et al., 2024) ✗ ✗ ✗ 1.00 1.00
FollowBench (Jiang et al., 2024) ✓ ✗ ✗ 3.00 1.00
ComplexBench (Wen et al., 2024) ✓ ✗ ✗ 4.19 1.00
CFBench (He et al., 2024b) ✓ ✗ ✗ 4.24 1.00
SIFo (Chen et al., 2024) ✗ ✓ ✗ 1.00 4.17
EIFBENCH (Ours) ✓ ✓ ✓ 74.01 8.24

Table 1: EIFBENCH encompasses multi-instruction multi-constraint samples across multiple data types. “Multi-
type” refers to the inclusion of data from various formats, such as plain text, dialogue, and multi-party dialogue,
highlighting diverse communication styles and structures.

Classification involves sentiment analysis, text and
toxic content classification, empathy detection, and
social norm judgment.
Information Extraction focuses on extracting key
information such as named entity recognition, key-
word annotation, and entity relationships.
Text Generation tasks cover creative and practical
outputs, including story generation, text expansion,
and headline content generation.
Dialogue System tasks are designed for develop-
ing interactive agents through dialogue generation,
intent recognition, and state information tracking.
Reasoning and Logic tasks require logical infer-
ence and critical thinking, including commonsense
and multi-hop reasoning question answering.
Language Style tasks involve style manipulation
and analysis, such as style transfer, sarcasm detec-
tion, and dialect variation recognition.
Evaluation and Verification tasks concentrate on
verifying information and assessing text quality,
including fact consistency verification.
Programming-Related tasks evaluate program-
ming understanding through code generation, de-
bugging, and explanation capabilities.

In addition, tasks are structured into distinct
modes: parallel for simultaneous dimension consid-
eration, serial for chain dependencies, conditional
for adaptability to varying conditions, and nested
for hierarchical structures. These categories pro-
vide a systematic evaluation of model capabilities
in the benchmark.

2.1.2 Constraint Categories
Following established research on instruction fol-
lowing (Zhang et al., 2024b), we have developed a
comprehensive constraint system for EIFBENCH.
This system categorizes constraints into four pri-
mary types: Content Constraints, Situation Con-
straints, Style Constraints, and Format Constraints.
These categories provide a structured framework to
systematically evaluate the capabilities of language

39.3%

15.9%

19.2%

25.7%

Content
Situation
Style
Format

 Theme
Exclusion
Inclusion
Value
Privacy
Numerical

Role-Playing
Target Audience
Prior Condition
Natural Language Process Background
Markdown Process Background
Table Background Information

Text Background Information
Tone and Style
Emotion
Linguistic Characteristics
Multilingual
Output Format

Text Pattern
Grammar Structure
Citation
Numbering and List
Hierarchical Structure
Template

Secondary Constraints

Primary Constraints

Figure 3: Constraint type distribution in EIFBENCH.

models across a wide range of instructional scenar-
ios. The distribution is shown in Fig. 3. Detailed
descriptions of the specific constraint dimensions
within each category are provided in Appendix A.
Content Constraints. These ensure the text fol-
lows specific thematic topics, inclusion/exclusion
criteria, values, tone, style, privacy considerations,
and numerical precision.
Situation Constraints. These emphasize contex-
tual elements like audience specifications, precon-
ditions, and incorporate various knowledge and
background information formats.
Style Constraints. These govern tone, emotion,
style, and multilingual features to suit the required
stylistic and emotional text aspects.
Format Constraints. These ensure adherence to
essential structural requirements such as output
formats, text patterns, grammar, accurate sentence
structure, and hierarchical organization.

2.2 Construction Workflow

The overall construction process includes several
key stages: 1) Taxonomy of Constraints and Tasks,
2) Multi-scenario Data Collection, 3) Task Expan-
sion, 4) Constraint Expansion, 5) Quality Control,
and 6) Response Generation & Evaluation.

1) Taxonomy of Constraints and Tasks. We
establish two taxonomies for constraints and tasks,
as presented in Section 2.

20932

Figure 4: Pipeline for constructing the benchmark.

2) Multi-scenario Data Collection. Our col-
lection process involves three types of datasets:
plain text, dyadic dialogue, and multi-party dia-
logue. Plain text samples are drawn from existing
works (Wen et al., 2024; Li et al., 2024). For dyadic
dialogues, we first perform data cleaning and noise
reduction on the collected real-life interactions.
Guided by the methodology in Wang et al. (2025b),
we employ Large Language Models (LLMs) to con-
dense the conversations while ensuring the preser-
vation of key information. Multi-party dialogue
data is synthesized with LLMs, crafting diverse sce-
narios and participant numbers. Specific prompts
guide LLMs to produce varied and representative
dialogue content, enhancing the depth and applica-
bility of the dataset.

3) Task Expansion. Tasks are expanded into
series in the plain text scenario (see Section 2.1.1).
Using LLMs, we develop complex task sets with
dependencies and parallelism. We also conduct
rigorous quality assessments, removing redundant,
infeasible, and contradictory tasks, thus ensuring
the quality and consistency of the generated data.
In dyadic and multi-party dialogue scenarios, we
directly generate multiple new tasks, ensuring each
reflects the complexity of real-world interactions.

4) Constraint Expansion. In the constraint ex-
pansion process, we refine simple instructions us-
ing a predefined taxonomy (see Section 2.1.2). Uti-
lizing LLMs, complexity is incrementally added,
ensuring tasks encompass a broad spectrum of re-
quirements and constraints. This iterative review
targets and clarifies ambiguous semantics to ensure
constraints are objectively evaluated and quanti-
fied. This method not only adds complexity and
challenge but also enhances the realism and com-
prehensiveness of the data generated.

5) Quality Assessment. Our quality assessment
covers instruction-level and constraint-level val-
idation. For instruction-level validation, we en-

Category #N Min. Max. Avg.

Plain Text 450 41 107 73.27
Dyadic Dialogue 450 47 107 73.38
Multi-party Dialogue 100 63 116 80.26

Table 2: Statistics of EIFBENCH. #N denotes data in-
stances; Min., Max., and Avg. mean the minimum,
maximum, and average number of constraints per in-
stance.

Scenario 6 7 8 9 10 11 12

Plain Text 15 76 136 139 76 7 1
Dyadic Dialogue 42 113 152 108 33 2 -
Multi-party Dialogue - 11 47 27 13 1 1

Table 3: Distributions of instructions with different num-
bers of constraints.

sure logical consistency and feasibility for LLMs,
removing contradictory, redundant, or infeasible
tasks while maintaining a diverse, moderate diffi-
culty task set of 6 to 12 instructions. In constraint-
level validation, constraints are iteratively refined
using predefined taxonomies, ensuring they are ob-
jectively quantified and within model capabilities,
addressing any ambiguity or infeasibility.

6) Response Generation & Evaluation. First,
using the instruction data, we employ various lan-
guage models to generate the corresponding out-
puts. To verify their compliance, we then prompt
large language models to assess each constraint
satisfaction for the outputs, generating a binary out-
come (0/1) that indicates whether the generated
output satisfies the respective constraints.

As shown in Table 2, EIFBENCH comprises
1,000 instances. Across three subsets, the min-
imum, maximum, and average numbers of con-
straints per instance are reported. Fig. 5 and Table
3 illustrate the distribution of constraint numbers
and instruction numbers within EIFBENCH.

20933

Figure 5: Distributions of total constraints for different
text categories.

2.3 Evaluation Protocol

We employ GPT-4o (OpenAI, 2023) as the evalu-
ation model to assess constraint adherence in gen-
erated responses in LLM-as-judge manner (Zhang
et al., 2023; Wang et al., 2024b; Zeng et al., 2024;
Wang et al., 2024a). Following established prac-
tices (Wen et al., 2024), the k-th constraint in the
j-th instruction of i-th instance is given a binary
compliance score Si,j,k ∈ {0, 1}, with 1 signifying
full compliance and 0 indicating non-compliance.

Instruction-Level Accuracy (ILA) measures
the success rate of individual instructions by aver-
aging compliance across all instructions within a
single instance. For the i-th instance, mi denotes
the number of instructions and ci,j is the number of
constraints in the j-th instruction. We calculate the
average score for n instances as the final metric.

ILAi =
1

mi

mi∑

j=1

ci,j∏

k=1

Si,j,k (1)

ILA =
1

n

n∑

i=1

ILAi (2)

Constraint-Level Accuracy (CLA) assesses the
fulfillment of individual constraints, making it cru-
cial for identifying specific requirement violations.

CLAi =
1∑mi

j=1 ci,j

mi∑

j=1

ci,j∑

k=1

Si,j,k (3)

CLA =
1

n

n∑

i=1

CLAi (4)

These metrics progressively assess compliance
at different granularities: from strict instruction-
level compliance (ILA) to fine-grained constraint-
level analysis (CLA).

2.4 Quality Control

To ensure high-quality evaluation data, we
implement a post-inspection protocol follow-
ing initial generation. First, we leverage
Qwen2.5-72B-Instruct to systematically verify
instruction-clarity alignment, logical consistency
of constraints, and overall task feasibility, while au-
tomatically detecting and correcting identifiable
errors through iterative self-refinement. Subse-
quently, three certified annotation specialists per-
form manual review to remove redundant con-
straints and instructions, revise infeasible tasks,
and resolve ambiguous phrasing, ensuring both
technical rigor and practical usability.

3 Preliminaries

Existing Large Reasoning Models (LRMs) (Wang
et al., 2025a; Jaech et al., 2024) have demon-
strated improved performance on complex tasks
via structured reasoning. A pivotal element in
training these LRMs is the use of the Group Rel-
ative Policy Optimization (GRPO) (Shao et al.,
2024) algorithm in Reinforcement Learning (RL).
Given a query q, GRPO samples a group of out-
puts {o1, o2, · · · , oG} from the old policy πθold and
eliminates the need for a separate value function
and instead relies on the average reward as a base-
line to compute the advantage. The optimization
process for policy is as follows:

JGRPO(θ) = Eq∼P (Q),{yi}Gi=1∼πθold
(y|q)

{
1

G

G∑

i=1

1

|yi|

|yi|∑

t=1

{
min

[
ri,t(θ)Ai,t,

clip
(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Ai,t

]

− βDKL [πθ||πref]
}}

, (5)

Ai,t =
ri − mean({r1, · · · , rG})

std({r1, · · · , rG})
, (6)

where ϵ and β are hyper-parameters, Ai,t is the ad-
vantage for each specific token, ri,t(θ) represents
the probability ratio or importance sampling weight
between the new policy πθ and the old policy πθold
and DKL [πθ||πref] denotes the KL divergence be-
tween the trained policy and the reference policy.
Detailed information is shown in Appendix B.

20934

4 Segment Policy Optimization

Although Group Relative Policy Optimization
(GRPO) has demonstrated effectiveness in enhanc-
ing the performance of Large Reasoning Models
(LRMs), existing methods often encounter difficul-
ties in scenarios that require the simultaneous exe-
cution of multiple instructions. Specifically, the re-
liance on group-level advantage computation may
constrain the model’s effectiveness in fine-grained
task settings. To address these challenges, we pro-
pose Segment Policy Optimization (SegPO), which
incorporates reasoning mechanisms and segment-
level evaluation into the advantage computation.
This integration enhances instruction alignment,
thereby improving both the accuracy and robust-
ness of model outputs.

Dual-Component Advantage Estimation. In
SegPO, the advantage Ai,t for the t-th token in
the response oi consists of two components: the
global advantage Ao

i,t and the segment advantage

Aϕ
i,t. For the global advantage, we use a group

of rewards {ro1, · · · , roG} corresponding to the out-
puts within each group for computation. For the
segment advantage Aϕ

i,t, we select the group of

rewards {rϕ
1,Iit

, · · · , rϕ
G,Iit

} for the corresponding

Iit -th instruction in outputs for computation. The
process is as follows:

Ao
i,t =

roi − mean({ro1, · · · , roG})
std({ro1, · · · , roG})

, (7)

Aϕ
i,t =

rϕ
i,Iit

− mean({rϕ
1,Iit

, · · · , rϕ
G,Iit

})
std({rϕ

1,Iit
, · · · , rϕ

G,Iit
})

, (8)

Ai,t =Ao
i,t +Aϕ

i,t. (9)

Rewards. Specifically, we employ both LLM-
based and rule-based systems to determine the re-
wards. For each response oi to the query q, roi
captures accuracy and format compliance. Our rule-
based system mandates that reasoning is enclosed
between ‘start_think’ and ‘end_think’ tags, and an-
swers between ‘start_answer’ and ‘end_answer’.
The format score, rfi , is one if the format is ad-
hered to, otherwise zero. We assess ILAi and
CLAi metrics using state-of-the-art LLMs (i.e.,
Qwen2.5-72B-Instruct), with scores increased
if all instructions are correctly executed. Further-
more, for the t token in the response oi associated
with the Iit -th instruction, we define the segment
reward rϕ

i,Iit
as 1 if all the constraints in the Iit -th

instruction are satisfied, else 0. Details of the train-
ing template are provided in the Appendix E. The
reward process is summarized as follows:

roi = ILAi + CLAi +

mi∏

j=1

ci,j∏

k=1

Si,j,k + rfi , (10)

rϕ
i,Iit

=

c
i,Iit∏

k=1

Si,Iit ,k
. (11)

5 Experiments

5.1 Baselines

We compare the performance of both propri-
etary and open-source LLMs trained on diverse
corpora. In the proprietary category, we eval-
uate models such as GPT-4o (OpenAI, 2023),
GPT-4o-mini (OpenAI, 2023), Claude3.5-Sonnet
(Anthropic, 2024b), Claude3.5-Haiku (Anthropic,
2024a), gemini-1.5-Pro (Reid et al., 2024), gemini-
2.0-Flash and GPT-o3-mini. Among open-source
models, we assess LLaMA3.1 (Dubey et al., 2024),
Qwen2 (Yang et al., 2024a), Qwen2.5, DeepSeek-
V3 (DeepSeek-AI et al., 2024), DeepSeek-R1
(Reid et al., 2024), QwQ-32B (Yang et al., 2024b),
and Qwen3 (Yang et al., 2025) to explore their
efficiency.

5.2 Settings

For inference, we efficiently process proprietary
models through their APIs. For open-source mod-
els, we employ a robust setup consisting of four
Nvidia A100 GPUs, each equipped with 80GB of
VRAM, utilizing the vLLM framework on EIF-
BENCH where applicable. This configuration en-
ables the completion of all tasks in roughly 30
minutes. During evaluation, the GPT-4o model
serves as the evaluator, with assessment durations
ranging from 4 to 10 hours based on task complex-
ity. Our code and dataset are publicly available for
reproducibility.3

5.3 Results Analysis

5.3.1 How do existing LLMs perform?
The EIFBENCH evaluation, detailed in Tables 4,
challenges language models by simulating real-
world scenarios across three datasets: plain text
tasks, dialogue tasks, and multi-party dialogue

3Available at https://github.com/Hope-Rita/
EIFBench and https://github.com/Tongyi-CCAI/
Complex-IF.

20935

https://github.com/Hope-Rita/EIFBench
https://github.com/Hope-Rita/EIFBench
https://github.com/Tongyi-CCAI/Complex-IF
https://github.com/Tongyi-CCAI/Complex-IF

Model Plain Text Dyadic Dialogue Multi-party Dialogue

ILA ↑ CLA ↑ ILA ↑ CLA ↑ ILA ↑ CLA ↑
Closed-Source LLMs
GPT-4o 0.2480 0.6518 0.2166 0.5631 0.2226 0.5786
Claude-3.5-Sonnet 0.0896 0.3951 0.0919 0.4142 0.0663 0.3865
GPT-4o-mini 0.0826 0.5299 0.0930 0.4892 0.0952 0.6001
Claude-3.5-Haiku 0.0332 0.2214 0.0251 0.1613 0.0142 0.1081
gemini-1.5-Pro 0.1669 0.6705 0.2717 0.7461 0.1972 0.7693
gemini-2.0-Flash 0.2291 0.7028 0.1813 0.5779 0.1681 0.5383
GPT-o3-mini 0.1743 0.7210 0.0805 0.5901 0.3326 0.8672

Open-Source LLMs
LLaMA3.1-8B-Instruct 0.0127 0.2918 0.0069 0.1845 0.0024 0.2898
LLaMA3.1-70B-Instruct 0.0222 0.3696 0.0250 0.3297 0.0156 0.3774
Qwen2-7B-Instruct 0.0261 0.3531 0.0269 0.2954 0.0136 0.3666
Qwen2-72B-Instruct 0.0823 0.5924 0.1336 0.6458 0.0878 0.6345
Qwen2.5-7B-Instruct 0.0503 0.5051 0.0742 0.5526 0.0572 0.5878
Qwen2.5-72B-Instruct 0.1983 0.7565 0.2787 0.7657 0.2636 0.8308
QwQ-32B 0.0884 0.4724 0.0909 0.4220 0.0820 0.5439
DeepSeek-V3 0.1955 0.6836 0.1864 0.7206 0.1664 0.7395
DeepSeek-R1 0.2219 0.6860 0.3486 0.7906 0.2251 0.7465
Qwen3-32B 0.2050 0.7694 0.2513 0.7799 0.2299 0.8078
Qwen3-32B w/o thinking 0.2073 0.7703 0.2396 0.7794 0.2119 0.7445
Qwen3-235B-A22B 0.1700 0.6712 0.2328 0.7296 0.2120 0.7462
Qwen3-235B-A22B w/o thinking 0.1775 0.6692 0.2252 0.7282 0.2011 0.7444

Table 4: Performance metrics across different task categories: Plain Text, Dyadic Dialogue, and Multi-party
Dialogues. The best and second-best results are highlighted in bold and underlined.

tasks. These datasets reflect diverse practical appli-
cations, with plain text focusing on simple informa-
tion processing, dyadic dialogues examining con-
versational dynamics, and multi-party dialogues
showcasing collaborative discussions.

Our evaluation uses two key metrics: Instruction-
Level Accuracy (ILA) and Constraint-Level Accu-
racy (CLA). Recent studies (Zhang et al., 2024a,b;
Li et al., 2024) emphasize CLA, which measures
models’ effectiveness in meeting individual con-
straints with high accuracy. Yet, ILA reveals chal-
lenges, as models often fail to satisfy all constraints
of a single instruction, resulting in a low probabil-
ity of executing all instructions in an instance. This
highlights the need to enhance multi-task capabili-
ties for adhering to comprehensive instructions in
the challenging contexts of the EIFBENCH dataset.

Model performance varies notably across cate-
gories, revealing task-type dependencies. In closed-

source models, GPT-4o excels in ILA with rel-
atively lower CLA. This indicates its capability
to focus and complete individual sub-tasks effec-
tively, albeit less so on fulfilling comprehensive
constraints. In contrast, the open-weight landscape
presents two successful pathways to achieving com-
petence. The first is through large-scale generalist
architectures, such as Qwen2.5-72B-Instruct. Lack-
ing dedicated reasoning modules, their strong and
balanced performance suggests that sophisticated
constraint management can be an implicitly ac-
quired capability driven by massive scaling and
high-quality instruction tuning. The alternative
pathway is that of specialized reasoning architec-
tures, like DeepSeek-R1 and Qwen3-32B, which
employ explicit deliberation mechanisms to sys-
tematically deconstruct tasks, enabling superior
constraint aggregation.

20936

Model Plain Text Dyadic Dialogue Multi-party Dialogue

ILA ↑ CLA ↑ ILA ↑ CLA ↑ ILA ↑ CLA ↑
Qwen2.5-7B-Instruct 0.0503 0.5051 0.0742 0.5526 0.0572 0.5878
Qwen2.5-7B-Instruct w/ GRPO 0.1345 0.6237 0.1591 0.6393 0.2183 0.7392
Qwen2.5-7B-Instruct w/ SegPO 0.1460 0.6693 0.1797 0.6791 0.2713 0.7727

Table 5: SegPO Performance across different task categories compared to GRPO.

5.3.2 Effectiveness of SegPO
We implement the Group Relative Policy Opti-
mization (GRPO) (Shao et al., 2024) framework,
employing the overall reward ro as the advantage
value to enhance model capabilities. As illustrated
in Table 5, SegPO achieves significant improve-
ments compared to base model and GRPO with
respective 14.85% and 3.40% average increases,
which confirms the effectiveness and necessity of
segment-level advantage computation for accurate
understanding of multiple task. The reason is
that respectively calculating advantages for the re-
sponse corresponding to each instruction in the in-
put may result in a more precise reward, effectively
steering the model’s learning.

5.3.3 Full Constraint Satisfaction Analysis
In real-world scenarios, fully satisfying all con-
straints across all instructions is crucial especially
for LLM agents with long-horizon decision-making
involving multiple tasks, aside from ILA and CLA
metrics. Our analysis revealed that the leading
performance in dyadic dialogue was achieved by
gemini-1.5-Pro and DeepSeek-R1, both scoring
0.0044, with GPT-4o following as the second-best
at 0.0022. All other models recorded a perfor-
mance score of zero. This relatively low perfor-
mance highlights the increased difficulty posed by
our benchmark, which, unlike previous datasets
with limited constraints, is crafted to simulate real-
istic tasks such as smart home operations. These
scenarios require handling multiple interdependent
constraints simultaneously. The results indicate the
current models’ limitations in reasoning and execut-
ing complex, constraint-rich instructions, empha-
sizing the need for further advancements in their
capabilities.

5.4 Quality Assessment

We validated the benchmark’s quality through both
data generation and evaluation processes. First, we
assessed the dataset from Qwen2.5-72B-Instruct

Type Human 1 Human 2 Human 3

Plain Text 0.9234 0.9342 0.9083
Dyadic Dialogue 0.9341 0.9268 0.9326
Multi-Party Dialogue 0.9118 0.9021 0.9164
Average 0.9231 0.9210 0.9191

Table 6: PCC Between Qwen2.5-72B-Instruct and
expert evaluations on quality assessment.

Type Human 1 Human 2 Human 3

Plain Text 0.7123 0.7236 0.7172
Dyadic Dialogue 0.7438 0.7632 0.7524
Multi-Party Dialogue 0.7551 0.7459 0.7376
Average 0.7371 0.7442 0.7357

Table 7: The kappa coefficient between expert evalua-
tions and GPT-4o-as-Judge in the evaluation process.

by randomly selecting 50 instances, comparing
model scores with evaluations from three experts
for contradictions, redundancy, and infeasibility
within instructions and constraints. The Pearson
Correlation Coefficient (PCC) in Table 6 shows
strong consistency, supporting benchmark credibil-
ity. Additionally, we validated LLM-judge evalua-
tions by comparing them with human assessments
across three datasets. We randomly selected 500
constraints per dataset based on LLM-generated re-
sponses and calculated Fleiss’ Kappa scores (Fleiss,
1971) between the results from GPT-4o-as-judge
and human evaluators. High consistency in Table 7
confirms the reliability of our evaluation process.

6 Related work

6.1 Instruction Following

Recent advancements in fine-tuning large language
models (LLMs) show that annotated instructional
data significantly enhances models’ ability to com-
prehend and execute diverse language instructions
(Weller et al., 2020; Ye and Ren, 2021; Mishra
et al., 2022). Building on this, incorporating more
detailed and sophisticated instructions has been

20937

shown to further improve model capabilities (Lou
et al., 2023). For instance, (Xu et al., 2024) presents
a method of incrementally generating complex in-
structions from seed instructions using LLMs, en-
abling LLaMA to surpass 90% of ChatGPT’s per-
formance in 17 out of 29 skills. Additionally, re-
search is increasingly focusing on constrained in-
structions (Sun et al., 2024; Dong et al., 2024; He
et al., 2024a), a subset of complex instructions,
aimed at enhancing models’ ability to handle in-
tricate challenges by increasing instructional con-
straints.

6.2 Evaluation of Instruction Following

Instruction following significantly impacts the ef-
fectiveness of large language models (LLMs) (Liu
et al., 2023). Early work focused on evaluating
compliance with simple directives, often involving
single constraints like semantic (Zheng et al., 2023;
Liu et al., 2024) or formatting (Xia et al., 2024;
Tang et al., 2024) requirements. As LLMs find
their way into more complex real-world applica-
tions, the need to assess their capacity to handle
sophisticated instructions has grown (Qin et al.,
2024; Jiang et al., 2024). For example, (Sun et al.,
2024) introduced the Conifer dataset to enhance
LLMs’ handling of multi-level instructions with
complex constraints, while (Qin et al., 2024) de-
signed a method for decomposing single instruc-
tions into multiple constraints. Moreover, (He et al.,
2024b) created benchmarks using real-world con-
straints, and (Wen et al., 2024) further innovated
by integrating diverse constraint types. Despite
these advancements, current datasets often lack
the extensive constraints seen in multi-instruction,
multi-constraint real-world scenarios.

7 Conclusion

In conclusion, this study introduces the Extremely
Complex Instruction Following Benchmark
(EIFBENCH), addressing existing single-task
dataset limitations by incorporating multi-task
scenarios and constraints for realistic evaluation of
large language models (LLMs). We also propose
the Segment Policy Optimization (SegPO) algo-
rithm algorithm, which enhances LLMs’ multi-task
workflow execution, showing a 14.85% improve-
ment on EIFBENCH over Qwen2.5-7B-Instruct.
Evaluations reveal significant performance gaps,
highlighting the need for models capable of
tackling real-world complexities. This benchmark

sets a new standard, steering future research
toward developing robust and adaptable systems
for practical applications.

Limitations

While EIFBENCH provides a robust evaluation
framework for plain text, dyadic dialogue, and
multi-party tasks, it has two limitations that could
be addressed in future work. First, the inter-task
relationships could be further enhanced to reflect
more complex, real-world dependencies, such as
multi-step reasoning or conditional task execution.
Second, the dataset currently focuses primarily on
Chinese instructions, which limits its applicabil-
ity to multilingual scenarios. Expanding to include
more languages would improve its global relevance
and enable evaluation of LLMs’ cross-lingual capa-
bilities. Addressing these limitations would make
EIFBENCH even more comprehensive and aligned
with practical applications.

Acknowledgments

We would like to thank the reviewers for their help-
ful reviews and feedback. This work was supported
by Alibaba Research Intern Program.

References
Minttu Alakuijala, Ya Gao, Georgy Ananov, Samuel

Kaski, Pekka Marttinen, Alexander Ilin, and Harri
Valpola. 2025. Memento no more: Coaching ai
agents to master multiple tasks via hints internal-
ization. arXiv preprint arXiv:2502.01562.

AI Anthropic. 2024a. The claude 3 model family: Opus,
sonnet, haiku. Claude-3 Model Card, 1.

AI Anthropic. 2024b. Claude 3.5 sonnet model card
addendum. Claude-3.5 Model Card, 3(6).

Azam Bakhshandeh and Seyed Mohammad
Javad Mirzapour Al-e-hashem. 2024. A multi-
objective scheduling model in medical tourism
centers considering multi-task staff training. Eng.
Appl. Artif. Intell., 131:107808.

Xinyi Chen, Baohao Liao, Jirui Qi, Panagiotis Eustra-
tiadis, Christof Monz, Arianna Bisazza, and Maarten
de Rijke. 2024. The sifo benchmark: Investigating
the sequential instruction following ability of large
language models. In Findings of the Association for
Computational Linguistics: EMNLP 2024, Miami,
Florida, USA, November 12-16, 2024, pages 1691–
1706. Association for Computational Linguistics.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Sou-
janya Poria. 2023. INSTRUCTEVAL: towards holis-
tic evaluation of instruction-tuned large language
models. CoRR, abs/2306.04757.

20938

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang
Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan,
T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao,
and Wangding Zeng. 2024. Deepseek-v3 technical
report. CoRR, abs/2412.19437.

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu
Xia, Bowen Yu, Chang Zhou, and Jingren Zhou.
2024. Self-play with execution feedback: Improving
instruction-following capabilities of large language
models. CoRR, abs/2406.13542.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate

Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi
Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. 2023. Al-
pacafarm: A simulation framework for methods that
learn from human feedback. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Jie Gao, Simret Araya Gebreegziabher, Kenny Tsu Wei
Choo, Toby Jia-Jun Li, Simon Tangi Perrault, and
Thomas W. Malone. 2024. A taxonomy for human-
llm interaction modes: An initial exploration. In
Extended Abstracts of the CHI Conference on Hu-
man Factors in Computing Systems, CHI EA 2024,
Honolulu, HI, USA, May 11-16, 2024, pages 24:1–
24:11. ACM.

Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and
Yanghua Xiao. 2024a. From complex to simple:
Enhancing multi-constraint complex instruction fol-
lowing ability of large language models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2024, Miami, Florida, USA, November
12-16, 2024, pages 10864–10882. Association for
Computational Linguistics.

Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin
Xiao, Qianxi He, Xunzhe Zhou, Jiaqing Liang, and
Yanghua Xiao. 2024b. Can large language mod-
els understand real-world complex instructions? In
Thirty-Eighth AAAI Conference on Artificial Intelli-
gence, AAAI 2024, Thirty-Sixth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI
2024, Fourteenth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2014, Febru-
ary 20-27, 2024, Vancouver, Canada, pages 18188–
18196. AAAI Press.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli
Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing
Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li,
Kun Kuang, Yang Yang, Hongxia Yang, and Fei Wu.
2024. InfiAgent-DABench: Evaluating agents on
data analysis tasks. In Proceedings of the 41st Inter-
national Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research,
pages 19544–19572. PMLR.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun
Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin

20939

Jiang, Qun Liu, and Wei Wang. 2024. Follow-
bench: A multi-level fine-grained constraints fol-
lowing benchmark for large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 4667–4688. Association for
Computational Linguistics.

Yizhi Li, Ge Zhang, Xingwei Qu, Jiali Li, Zhaoqun
Li, Noah Wang, Hao Li, Ruibin Yuan, Yinghao Ma,
Kai Zhang, Wangchunshu Zhou, Yiming Liang, Lei
Zhang, Lei Ma, Jiajun Zhang, Zuowen Li, Wenhao
Huang, Chenghua Lin, and Jie Fu. 2024. Cif-bench:
A chinese instruction-following benchmark for eval-
uating the generalizability of large language models.
In Findings of the Association for Computational Lin-
guistics, ACL 2024, Bangkok, Thailand and virtual
meeting, August 11-16, 2024, pages 12431–12446.
Association for Computational Linguistics.

Yong Li, Xuan-Yu Jiao, Bai-Qing Sun, Qiu-Hao Zhang,
and Junyou Yang. 2021. Multi-welfare-robot cooper-
ation framework for multi-task assignment in health-
care facilities based on multi-agent system. In IEEE
International Conference on Intelligence and Safety
for Robotics, ISR 2021, Tokoname, Japan, March 4-6,
2021, pages 413–416. IEEE.

Xiao Liu, Xuanyu Lei, Shengyuan Wang, Yue Huang,
Andrew Feng, Bosi Wen, Jiale Cheng, Pei Ke, Yi-
fan Xu, Weng Lam Tam, Xiaohan Zhang, Lichao
Sun, Xiaotao Gu, Hongning Wang, Jing Zhang,
Minlie Huang, Yuxiao Dong, and Jie Tang. 2024.
Alignbench: Benchmarking chinese alignment of
large language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
11621–11640. Association for Computational Lin-
guistics.

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying
Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov,
Muhammad Faaiz Taufiq, and Hang Li. 2023. Trust-
worthy llms: a survey and guideline for evalu-
ating large language models’ alignment. CoRR,
abs/2308.05374.

Renze Lou, Kai Zhang, and Wenpeng Yin. 2023. A com-
prehensive survey on instruction following. arXiv
preprint arXiv:2303.10475.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 3470–3487. Association for Com-
putational Linguistics.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao,
Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu,
Fei Liu, Pengfei Liu, and Dong Yu. 2024. In-
fobench: Evaluating instruction following ability
in large language models. In Findings of the As-
sociation for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-
16, 2024, pages 13025–13048. Association for Com-
putational Linguistics.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy P. Lillicrap, Jean-Baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan
Firat, Julian Schrittwieser, Ioannis Antonoglou, Ro-
han Anil, Sebastian Borgeaud, Andrew M. Dai, Katie
Millican, Ethan Dyer, Mia Glaese, Thibault Sotti-
aux, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, James Molloy, Jilin Chen, Michael
Isard, Paul Barham, Tom Hennigan, Ross McIl-
roy, Melvin Johnson, Johan Schalkwyk, Eli Collins,
Eliza Rutherford, Erica Moreira, Kareem Ayoub,
Megha Goel, Clemens Meyer, Gregory Thornton,
Zhen Yang, Henryk Michalewski, Zaheer Abbas,
Nathan Schucher, Ankesh Anand, Richard Ives,
James Keeling, Karel Lenc, Salem Haykal, Siamak
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Ro-
man Ring, Stephen Spencer, Eren Sezener, and et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. CoRR,
abs/2403.05530.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Bao-
hua Dong, Ran Lin, and Ruohui Huang. 2024.
Conifer: Improving complex constrained instruction-
following ability of large language models. CoRR,
abs/2404.02823.

Xiangru Tang, Yiming Zong, Jason Phang, Yilun Zhao,
Wangchunshu Zhou, Arman Cohan, and Mark Ger-
stein. 2024. Struc-bench: Are large language mod-
els good at generating complex structured tabular

20940

data? In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies: Short Papers, NAACL 2024, Mexico City,
Mexico, June 16-21, 2024, pages 12–34. Association
for Computational Linguistics.

Connor J Taylor, Kobi C Felton, Daniel Wigh, Mo-
hammed I Jeraal, Rachel Grainger, Gianni Chessari,
Christopher N Johnson, and Alexei A Lapkin. 2023.
Accelerated chemical reaction optimization using
multi-task learning. ACS Central Science, 9(5):957–
968.

Minzheng Wang, Yongbin Li, Haobo Wang, Xinghua
Zhang, Nan Xu, Bingli Wu, Fei Huang, Haiyang
Yu, and Wenji Mao. 2025a. Adaptive thinking via
mode policy optimization for social language agents.
CoRR, abs/2505.02156.

Minzheng Wang, Xinghua Zhang, Kun Chen, Nan Xu,
Haiyang Yu, Fei Huang, Wenji Mao, and Yong-
bin Li. 2024a. Reframing dialogue interaction
with fine-grained element modeling. arXiv preprint
arXiv:2412.04905.

Minzheng Wang, Xinghua Zhang, Kun Chen, Nan Xu,
Haiyang Yu, Fei Huang, Wenji Mao, and Yongbin Li.
2025b. DEMO: reframing dialogue interaction with
fine-grained element modeling. In Findings of the As-
sociation for Computational Linguistics, ACL 2025,
Vienna, Austria, July 27 - August 1, 2025, pages
11373–11401. Association for Computational Lin-
guistics.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Lingpeng Kong, Qi Liu,
Tianyu Liu, and Zhifang Sui. 2024b. Large language
models are not fair evaluators. In Proceedings of
ACL, pages 9440–9450. Association for Computa-
tional Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484–13508. Association for Computational
Linguistics.

Orion Weller, Nicholas Lourie, Matt Gardner, and
Matthew E. Peters. 2020. Learning from task de-
scriptions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
1361–1375. Association for Computational Linguis-
tics.

Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao
Huang, Jinfeng Zhou, Wenchuang Li, Binxin Hu,
Wendy Gao, Jiaxing Xu, Yiming Liu, Jie Tang,
Hongning Wang, and Minlie Huang. 2024. Bench-
marking complex instruction-following with multiple
constraints composition.

Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang,
Yihao Feng, Ran Xu, Wenpeng Yin, and Caiming
Xiong. 2024. FOFO: A benchmark to evaluate llms’
format-following capability. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
680–699. Association for Computational Linguistics.

Fu Xiong, Cang Yeliang, Zhu Lipeng, Hu Bin, Deng
Song, and Wang Dong. 2016. Deadline based
scheduling for data-intensive applications in clouds.
The Journal of China Universities of Posts and
Telecommunications, 23(6):8–15.

Guangzhi Xiong, Qiao Jin, Xiao Wang, Yin Fang,
Haolin Liu, Yifan Yang, Fangyuan Chen, Zhix-
ing Song, Dengyu Wang, Minjia Zhang, et al.
2025. Rag-gym: Optimizing reasoning and search
agents with process supervision. arXiv preprint
arXiv:2502.13957.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. Wizardlm: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, et al. 2025. Qwen3
technical report. arXiv preprint arXiv:2505.09388.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024a. Qwen2 techni-
cal report. CoRR, abs/2407.10671.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024b. Qwen2.5 technical report. CoRR,
abs/2412.15115.

20941

https://aclanthology.org/2024.acl-long.511
https://aclanthology.org/2024.acl-long.511

Qinyuan Ye and Xiang Ren. 2021. Learning to gener-
ate task-specific adapters from task description. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 2: Short
Papers), Virtual Event, August 1-6, 2021, pages 646–
653. Association for Computational Linguistics.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Danqi Chen. 2024. Evaluating large lan-
guage models at evaluating instruction following. In
Proceedings of ICLR.

Lijun Zhang, Xiao Liu, and Hui Guan. 2022. Au-
tomtl: A programming framework for automating
efficient multi-task learning. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Tao Zhang, Yanjun Shen, Wenjing Luo, Yan Zhang, Hao
Liang, Tao Zhang, Fan Yang, Mingan Lin, Yujing
Qiao, Weipeng Chen, Bin Cui, Wentao Zhang, and
Zenan Zhou. 2024a. Cfbench: A comprehensive
constraints-following benchmark for llms. CoRR,
abs/2408.01122.

Xinghua Zhang, Bowen Yu, Haiyang Yu, Yangyu Lv,
Tingwen Liu, Fei Huang, Hongbo Xu, and Yongbin
Li. 2023. Wider and deeper llm networks are fairer
llm evaluators. arXiv preprint arXiv:2308.01862.

Xinghua Zhang, Haiyang Yu, Cheng Fu, Fei Huang,
and Yongbin Li. 2024b. IOPO: empowering llms
with complex instruction following via input-output
preference optimization. CoRR, abs/2411.06208.

Xinghua Zhang, Haiyang Yu, Yongbin Li, Minzheng
Wang, Longze Chen, and Fei Huang. 2024c. The
imperative of conversation analysis in the era of llms:
A survey of tasks, techniques, and trends. CoRR,
abs/2409.14195.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein.
2021. Adapting language models for zero-shot learn-
ing by meta-tuning on dataset and prompt collections.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 16-20 November, 2021, pages
2856–2878. Association for Computational Linguis-
tics.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,

and Nan Duan. 2024. Agieval: A human-centric
benchmark for evaluating foundation models. In
Findings of the Association for Computational Lin-
guistics: NAACL 2024, Mexico City, Mexico, June
16-21, 2024, pages 2299–2314. Association for Com-
putational Linguistics.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. 2023. Instruction-following evaluation for
large language models. CoRR, abs/2311.07911.

20942

https://openreview.net/forum?id=tr0KidwPLc
https://openreview.net/forum?id=tr0KidwPLc

A Taxonomy of Constraint

We present the taxonomy of constraint in Table 8.

B Detailed Information on GRPO

The ratio ri,t(θ) represents the probability ratio
or importance sampling weight between the new
policy πθ and the old policy πθold :

ri,t(θ) =
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, (12)

and GRPO estimates the KL divergence with the
following unbiased estimator:

DKL [πθ||πref] =
πref(oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)

− log
πref(oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
− 1. (13)

C Experiment Analysis

C.1 Factors Influencing Instruction Following

To conduct our investigation, we sampled both
open-source and closed-source models with vary-
ing performance levels—some exemplary and oth-
ers average—and visualized their results. Our in-
vestigation identifies two critical dimensions influ-
encing instruction adherence in language models:
(1) the number of instructions per instance and
(2) the number of constraints per instruction. As
illustrated in Fig. 6, performance degrades pro-
gressively as these variables increase, though with
minor patterns. This decline is particularly pro-
nounced with an increase in constraints, likely be-
cause each additional constraint raises the complex-
ity of completing a task, making it more challeng-
ing for the model to meet all requirements. Con-
versely, the interdependence between instructions
is generally low, meaning that an increase in the
number of instructions does not lead to as steep a
performance decline. This is primarily because the
difficulty lies in managing multiple tasks simultane-
ously, rather than the instructions themselves being
interrelated. In some instances, especially where
there are larger numbers of instructions and con-
straints, performance may inexplicably improve.
This can be attributed to the smaller sample sizes
in these scenarios, leading to greater variability in
performance outcomes. Overall, this analysis un-
derscores the intricacies of maintaining consistent
instruction adherence across diverse scenarios.

D Data Instance

In this section, we present an example instance to
illustrate the application and analysis of the idiom.

Instruction_0: "Explain the origin
and significance of the Chinese idiom
’drawing legs on a snake’ (huà shé tiān
zú)"

Constraints:

• Must provide a detailed account of
the idiom’s historical background
and origin.

• Avoid using the words "meaning"
or "explanation" to describe its
significance.

• Follow the context → story →
implications structure.

Instruction_1: "Create a sentence
containing the idiom ’drawing legs on
a snake’ "

Constraints:

• The sentence must be 20-30 Chinese
characters long.

• The sentence must be
non-declarative (e.g., rhetorical
question, exclamation, or
imperative).

Instruction_2: "Analyze the specific
scenario of ’drawing legs on a snake’
in your created sentence."

Constraints:

• Describe in detail the superfluous
action within the scenario.

• Include a root-cause analysis of
why this "unnecessary addition"
leads to negative consequences.

20943

Constraint Type Constraint Dimension

Content Constraint Theme Constraint
Exclusion Constraint
Inclusion Constraint
Value Constraint
Privacy Constraint
Numerical Constraint

Situation Constraint Role-Playing Constraint
Target Audience Constraint
Prior Condition Constraint
Natural Language Process Background Information Constraint
Markdown Process Background Information Constraint
Table Background Information Constraint
Text Background Information Constraint

Style Constraint Tone and Style Constraint
Emotion Constraint
Linguistic Characteristics Constraint
Multilingual Constraint

Format Constraint Output Format Constraint
Text Pattern Constraint
Grammar Structure Constraint
Citation Constraint
Numbering and List Constraint
Hierarchical Structure Constraint
Template Constraint

Table 8: Constraints and Their Dimensions

Figure 6: Performance on different numbers of instructions and constraints.

20944

E Prompt

E.1 Prompt for task expansion
You are an assistant to help generate
comprehensive multi-task tasks from
basic tasks/basic texts/basic dialogues.
Based on the given basic task, please
design 5-10 different types of extended
tasks, which must be reasonable and
meet actual needs. The generated tasks
should be placed after “-output-:”.

Please follow these rules when
generating tasks:

1. Task design must be based on the
input text content or the already
designed task output content.

2. Task instructions should be clear
and specific.

3. Each task should include explicit
output format requirements.

5. Aim to increase task difficulty,
selecting tasks that require multi-step
reasoning and thinking.

6. Tasks should be related; specific
task details can vary. The connections
can be selective, sequential, parallel,
etc. At least three types of connections
are needed, including:
A. Parallel Task Mode: Analyzing
multiple dimensions simultaneously
B. Sequential Task Mode: Task chain
dependency
C. Conditional Selection Mode: Branch
based on different situations,
considering possible branches of
the task, and design different tasks
for different branches
D. Nested Task Mode: Hierarchical task
structure
7. Task Design Principles:
- Clear goals
- Clear instructions
- Specific steps
- Standardized format
- Evaluability
8. Task types may repeat, but task
content may not.

9. Note that expansion must be based
on the given basic task, expanding into
richer, more comprehensive, and varied
integrated tasks. The text material in
the given basic task must be retained,
as subsequent tasks will all involve it!

10. Write the extended tasks after
“-output-:”, and the thought process and
analysis for generating the extended
tasks after “-explanation-:”.

–input–:
{text}

-output-:

-explanation-:
...

Task-type examples should be chosen
from the following categories. The
specific task examples are listed in
each task category. Note that you are
only required to design tasks, not
provide example outputs:

1. Classification Task
- Sentiment Analysis
- Text Classification
- Toxic Content Detection
- Empathy Detection
- Stereotype Detection
- Social Norm Judgment

2. Information Extraction
- Named Entity Recognition
- Keyphrase Annotation
- Coreference Resolution
- Entity Relationship Classification

3. Text Generation - Story Creation
- Poetry Generation
- Recipe Generation
- Outline Generation
- Text Expansion/Compression
- Title Generation
- Data Description Generation
- Text Rewriting/Simplification

4. Dialogue Systems
- Dialogue Generation
- Intent Recognition
- Question Generation/Rewriting
- Dialogue State Tracking
- Role-playing Dialogue

5. Reasoning and Logic
- Common Sense QA
- Multi-hop QA
- Critical Thinking Judgment
- Mathematical Reasoning
- Theory of Mind Reasoning

6. Language Style
- Style Transfer
- Language Detection
- Sarcasm Detection
- Spelling/Punctuation Error Detection

7. Evaluation and Verification
- Text Quality Evaluation
- Fact-checking
- Answer Verification
- Uncertainty Judgment

8. Programming-related
- Code Generation/Debugging

20945

- Code Explanation
- Code Translation

Each example format is as follows:
Task x:
Type:
Specific Requirements:
- ...
- ...

E.2 Prompt for task revision
You are a task optimization expert.
Please analyze and optimize the given
task set.

Input text and tasks are as follows:

--input--:
query: {input_text}
task: {task}

First, output all optimized tasks (if
there are no modifications, output
the original tasks) in Chinese after
“-output-”. Secondly, write the
optimized rationale and analysis process
after“-explanation-”. Please strictly
follow this format.

The output format is as follows:

-output-:
Task 1: ...
Task 2: ...

-explanation-:

Please follow these steps for analysis
and optimization:
1. Input Analysis
Input Type Judgment:
- Determine if it’s a complete text or
a task requirement
- Check if it includes a
creative/analytical directive
- Assess the amount of information
provided by the text/task
- Preserve textual information if input
text analysis is involved

2. Task Reasonability Check Analyze
each task:
Reasonability of Task X:
A. Matching Degree with Input
- Does the task rely on the actual
provided information, and is there
excessive speculation or extension?

B. Executability of the Task
- Is there sufficient information to
support it, and are the scoring criteria
operable?

C. Existing Problems
- [List specific problems]

3. Modification Suggestions
If modification is required, provide
specific modification directions and
design of revised tasks, and modify the
tasks according to this suggestion.

E.3 Prompt for task combination
You are an integration assistant for
input and task requirements. Your goal
is to combine the basic tasks (including
tasks and reading materials) given in
“–input–”: and the expanded tasks in
“–task–”: to generate comprehensive
tasks that include reading material
information and task information. Please
note that the integrated tasks will
not fetch text information from
elsewhere, so ensure that the generated
comprehensive tasks include the text
material. Please integrate all tasks
from the expanded tasks into the
comprehensive tasks. Identify all
expanded tasks and ensure the number of
sub_instructions matches the number of
sub-tasks in the expanded tasks. Please
ensure to extract and integrate the
materials and text information involved
in –input–:, and do not omit any details.

--input--:
{input_text}
--tasks--:
{task}

Please put the generated content in
Chinese after “-output-:”, including:
1. First, place the comprehensive
task and the text materials involved
in the task after “INSTRUCTION:”.
Please ensure to fully include the
reading materials from the basic
tasks. 2. Then, sequentially output
all sub-instructions, each starting
with “SUB_INSTRUCTION_X:”, including
“instruction:” and “constraints:” parts.
After “instruction:”, write the content
of the sub-instruction, and after
“constraints:”, write several constraint
items. Each constraint should follow
the format “- constraint content
[constraint type]”. Lastly, provide
the specific combination process after
“-explanation-:”.

The output format is as follows:

-output-:
INSTRUCTION:
...
SUB_INSTRUCTION_x:
instruction: ...
constraints:
- ... [...]
- ... [...]

--explaination--:
...

20946

Please follow these steps for analysis
and combination:

1. Input Analysis
- Extract **original tasks** and
corresponding **text materials** from
–input–
- Extract specific text content and basic
requirements
- Extract all specific requirements from
the input text
- If the input involves text, it must
be placed in the comprehensive task to
avoid missing the input text

2. Task Expansion Analysis
- Extract **sub-task** information
(information type, information volume,
target) from –task–
- Retrieve related expanded tasks (such
as information extraction, reasoning,
etc.)
- Understand the relevance and
progression relationship between
tasks
- Identify all constraints and
restrictions
- Record keywords and special conditions
- Note that all tasks are prefixed with
“Task”, be sure to identify all tasks,
and the number of tasks should match
the number of sub_instructions
- List all tasks and their sub-tasks

3. Combine into a New Comprehensive Task
- Expand **original tasks**, **text
materials**, and all **sub-tasks** into
a comprehensive analysis task, and
output to INSTRUCTION
- Maintain logical connections between
tasks
- Ensure the INSTRUCTION meets all
sub-task requirements
- Make sure to integrate all tasks and
incorporate the input
- Ensure all original requirements are
covered

4. Integrated Output
- A unified main instruction, output the
new comprehensive task (INSTRUCTION):
* Use natural language connectors, the
task requirements should be connected
with natural language, such as “then”,
“next”, “finally”, to maintain fluency
* Ensure the integration of input
and task, the combined content should
be output to INSTRUCTION, forming
a coherent and smooth instructional
language
* Ensure all requirements are covered

- A series of sub-instructions
(SUB_INSTRUCTION)
* Each sub-instruction contains specific
tasks (instruction)
* Each sub-instruction includes specific
constraints (constraints), generating
5-10 specific constraints
* The purpose of the constraints is to
complete the task as much as possible,
the more detailed, the better, with
difficulty ranging from simple to

complex
* Note that constraints should not be
ambiguous or unclear
* Each constraint and its type should
be selected from the following 24 types:

• Theme Constraint

• Exclusion Constraint

• Inclusion Constraint

• Value Constraint

• Privacy Constraint

• Numerical Constraint

• Role-Playing Constraint

• Target Audience Constraint

• Prior Condition Constraint

• Natural Language Process Background

• Markdown Process Background

• Table Background Information

• Text Background Information

• Tone and Style Constraint

• Emotion Constraint

• Linguistic Characteristics

• Multilingual Constraint

• Output Format Constraint

• Text Pattern Constraint

• Grammar Structure Constraint

• Citation Constraint

• Numbering and List Constraint

• Hierarchical Structure Constraint

• Template Constraint

Precautions:
1. Sub-tasks must be clearly mentioned
in the integrated instruction.
2. Do not change the wording
and expressions of the original
instructions.
3. Split according to the order in which
the tasks appear in the instructions.
4. Each sub-task is equipped with 5-10
constraint items, with constraint types
selected from the above 24 types.
5. When integrating, ensure that new
tasks are organically combined with the
original content, i.e., do not generate
instructions based only on information
from input.

E.4 Prompt for constraint expansion
You are an expert at generating
constraints.
Please modify the original constraint
information for each instruction.
For every SUB_INSTRUCTION, generate
6-10 high-quality constraints.
Each constraint must address key
requirements of the task with measurable
analysis rather than general statements.

Input information is as follows:

--input--:
{input_text}

20947

When outputting content, please place
the generated content after “-output-”
first.
Begin with “INSTRUCTION”, followed by
each sub-instruction sequentially, with
each sub-instruction starting with
“SUB_INSTRUCTION_X”, including both
“instruction” and “constraints”.
After “instruction”, write the content
of the sub-instruction, and after
“constraints”, write several constraint
items.
Each constraint should follow the format
“- constraint content [constraint
type]”.

Finally, place the analysis of
the modification process after
-explanation-.

The generated format is as follows:

-output-:
INSTRUCTION:
...

SUB_INSTRUCTION_0:
instruction: ...
constraints:
- ... [...]
- ... [...]
...

SUB_INSTRUCTION_1:
instruction: ...
constraints:
- ... [...]
...

--explaination--:
...

Specific modification requirements:
1. Each constraint must be specific
and clear, avoiding vague expressions,
and the constraint structure should use
“and,” “or,” “not” types.
2. Each constraint must include
measurable standards, such as specific
numbers, clear criteria, etc.
Also, note that these constraints are
for the model to follow, avoiding
situations that are impossible to
assess, such as “Please respond within
5 seconds after reading,” which cannot
be evaluated for compliance.
3. Avoid generic vocabulary; examples
below:
Avoid using generic words often found
in constraints:

Quality Descriptors:
“appropriate,” “suitable,” “adequate,”
“sufficient,” “complete,” “detailed,”
“accurate,” “clear,” “varied”

Logical Descriptors:
“logicality,” “coherent,” “orderly,”

“hierarchical,” “structured,”
“systematic”

Effect Descriptors:
“comprehensive,” “practical,” “vivid,”
“specific,” “pictorial,” “persuasive,”
“effective,” “helpful”

Standard Descriptors:
“meets requirements,”
“standard-compliant,” “sufficient,”
“as stipulated,” “qualified,” “standard
fit”

Feature Descriptors:
“characteristic,” “feature,”
“prominent,” “obvious,” “outstanding”

These words should be replaced with
specifically measurable standards, for
example:
“suitable” -> “must include 3 specific
examples”
“detailed” -> “no less than 100 words”
“vivid” -> “must use more than 3 figures
of speech”
“logicality” -> “must follow
[cause-process-result] order”
“persuasive” -> “must cite 1
authoritative data source”

4. Each constraint must be of one of the
following types:

• Theme Constraint

• Exclusion Constraint

• Inclusion Constraint

• Value Constraint

• Privacy Constraint

• Numerical Constraint

• Role-Playing Constraint

• Target Audience Constraint

• Prior Condition Constraint

• Natural Language Process Background

• Markdown Process Background

• Table Background Information

• Text Background Information

• Tone and Style Constraint

• Emotion Constraint

• Linguistic Characteristics

• Multilingual Constraint

• Output Format Constraint

• Text Pattern Constraint

• Grammar Structure Constraint

• Citation Constraint

• Numbering and List Constraint

• Hierarchical Structure Constraint

• Template Constraint

E.5 Prompt for constraint revision
You are an assistant for modifying
constraints.
Please analyze the original constraint
information in the instruction for
potential issues, and modify the
constraints for each SUB_INSTRUCTION to
generate 6-10 high-quality constraints.

20948

Each constraint must address specific,
measurable requirements for the task,
rather than general statements.

--input--:
{input_text}

When outputting content, first combine
the modification analysis process
and output the modified content
(if no modifications, output the
original content) after “-output-”,
including INSTRUCTION and the modified
SUB_INSTRUCTION information, where each
SUB_INSTRUCTION consists of instruction
and constraints.
Each constraint should follow the
format “- specific constraint content
[constraint type]”.
Finally, provide the analysis of
the modification process after
-explanation-.

The generated format is as follows:

-output-:
INSTRUCTION:
...

SUB_INSTRUCTION_x:
instruction: ...
constraints:
- ... [...]
- ... [...]
...

-explanation-:
...

Please follow these steps for analysis
and modification:

1. Examine each instruction for the
following 8 types of issues and modify
any issues found

1.1 Vague constraints/lack of specific
evaluation metrics need to be detailed
into evaluable metrics
Example:
Original constraint:
- The article structure must be
reasonable

Modified to:
- The article must include introduction,
analysis, and conclusion sections, with
each section not less than 200 words

Below are frequently used vague words
that should be avoided:
Quality Descriptors: “appropriate”,
“suitable”, “adequate”, “sufficient”,
“complete”, “detailed”, “accurate”,
“clear”, “varied”
Logical Descriptors: “logicality”,
“coherent”, “orderly”, “hierarchical”,
“structured”, “systematic”
Effect Descriptors: “comprehensive”,
“practical”, “vivid”, “specific”,

“pictorial”, “persuasive”, “effective”,
“helpful”
Standard Descriptors: “meets
requirements”, “standard-compliant”,
“sufficient”, “as stipulated”,
“qualified”, “standard fit”
Feature Descriptors: “characteristic”,
“feature”, “prominent”, “obvious”,
“outstanding”

First, check if any vague words appear
in the constraints, then refine the
vague constraints into evaluable metrics
based on the specific task context.
Here are some examples:
“suitable” -> “must include 3 specific
examples”
“detailed” -> “no less than 100 words”
“vivid” -> “must use more than 3 figures
of speech”
“logicality” -> “must follow
[cause-process-result] order”
“persuasive” -> “must cite 1
authoritative data source”
“rich emotional color” -> Use at least
two rhetorical devices (parallelism,
contrast, metaphor, personification, or
exaggeration) to express emotions

1.2 Duplicate constraints need to be
distinguished
Example:
Original constraint:
- Must use formal language
- Must use standard language
Problem: The two constraints are similar
and lack distinction
Modification suggestion:
- Must use honorific words like “you,
your, respectfully”
- Must avoid using interjectory words
like “oh, ah, um”

1.3 Logical contradictions
Example:
Original constraint:
- Both “relaxed and gentle” and
“professional terminology” require a
remedy
Suggested modification:
- The tone must be friendly and
professional, with easy-to-understand
explanations provided for professional
terminology

1.4 Lack of key constraints
Example:
E-commerce customer service scenario
Suggested modification:
- Must explain the shop’s specific
compensation plan
- Must provide direct contact details
for customer service
- Must specify the follow-up timeline

Original constraint:
- Modify according to the following
format
Modification suggestion:

20949

- Modify according to the table format

1.5 Contradictory constraints:
Original constraint:
- Requires classical Chinese style
- Requires vividness
Suggestion: Adjust to:
- Use classical vocabulary but ensure
modern readers can understand
- Provide modern explanations for each
term

1.6 Lack of key definitions:
Original constraint:
- The calculation of the number of
“events” lacks a clear definition
Suggestion: Add:
- Clearly define “event” as “an
independent action and its corresponding
object”
- Provide specific examples for event
judgment

1.7 Data source missing
Original constraint:
- “Must include specific data or factual
references”
- “Must be based on specific data and
facts”
But no instructions on how to obtain
and verify data sources
Suggestion: Add data source
requirements:
- “Must cite authoritative market
research agencies or official
publications, and specify the source”
- “Data must be from statistical results
within the past 2 years”

1.8 Evaluation criteria unclear:
Original constraint:
- “Applicable scenarios must be
reasonable and consistent with market
reality”
- “Usage suggestions must be specific
and feasible”
But no evaluation criteria provided
Suggestion: Set specific evaluation
indicators:
- “Each suggestion must include usage
scenarios, expected effects, and cost
considerations”
- Add feasibility verification:
- “Each suggestion must be supported by
actual cases”

2. Constraint types should be selected
from the following 24 categories while
varying the types as much as possible to
enrich the diversity of the constraints:

• Theme Constraint

• Exclusion Constraint

• Inclusion Constraint

• Value Constraint

• Privacy Constraint

• Numerical Constraint

• Role-Playing Constraint

• Target Audience Constraint

• Prior Condition Constraint

• Natural Language Process Background

• Markdown Process Background

• Table Background Information

• Text Background Information

• Tone and Style Constraint

• Emotion Constraint

• Linguistic Characteristics

• Multilingual Constraint

• Output Format Constraint

• Text Pattern Constraint

• Grammar Structure Constraint

• Citation Constraint

• Numbering and List Constraint

• Hierarchical Structure Constraint

• Template Constraint

E.6 Prompt for constraint combination
Now you are an assistant in integrating
tasks and constraints; please help
me optimize this comprehensive
task’s instruction (INSTRUCTION),
sub-instructions (SUB_INSTRUCTION), and
constraints.
Please ensure that the input
information/reading materials in
the INSTRUCTION are retained; otherwise,
subsequent tasks cannot be completed.

Input information is as follows:

--input--:
{input_text}

First, output the modified comprehensive
task content (if no modifications,
output the original content) after
“-output-”, including INSTRUCTION
and the modified SUB_INSTRUCTION
information. Each SUB_INSTRUCTION
consists of instruction and constraints,
with each constraint structured
as follows: “- specific content
[constraint type]”.
Finally, put the specific modification
analysis process after -explanation-.

The output format is as follows:

-output-:
INSTRUCTION:
...

SUB_INSTRUCTION_0:
instruction: ...
constraints:
- ... [...]
- ... [...]
...

SUB_INSTRUCTION_1:
instruction: ...
constraints:

20950

- ... [...]
- ... [...]
...

-explanation-:
...

Please follow these steps for analysis
and modification:

1. Analyze the existing instructions and
constraints for issues:
- Check if the structure is reasonable
- Identify duplicate or contradictory
requirements
- Discover vague or non-executable
constraints
- Find missing key requirements

2. Provide update suggestions:
- Instruction update: Make it clearer
and more targeted for the comprehensive
task
- Sub-instruction update: Specify each
atomic task
- Constraint update: Provide executable
and verifiable constraints
- Start with -output-, output the
modified instructions (INSTRUCTION),
sub-instructions (SUB_INSTRUCTION), and
constraints
- Each constraint includes two parts:
content [type]

3. When modifying, be sure to keep
the input information such as reading
materials in the original INSTRUCTION.
Do not delete specific query information,
causing text errors.

4. Each constraint type must be one of
the following, if it is not among these
types, please modify the constraint
type to one of the following types.
If it cannot be modified, regenerate
constraints that meet these types:

• Theme Constraint

• Exclusion Constraint

• Inclusion Constraint

• Value Constraint

• Privacy Constraint

• Numerical Constraint

• Role-Playing Constraint

• Target Audience Constraint

• Prior Condition Constraint

• Natural Language Process Background

• Markdown Process Background

• Table Background Information

• Text Background Information

• Tone and Style Constraint

• Emotion Constraint

• Linguistic Characteristics

• Multilingual Constraint

• Output Format Constraint

• Text Pattern Constraint

• Grammar Structure Constraint

• Citation Constraint

• Numbering and List Constraint

• Hierarchical Structure Constraint

• Template Constraint

E.7 Prompt for instruction-level validation
You are now an assistant to modify
sub-tasks.
You need to modify the given sub-tasks
according to the following steps:

1. Analyze the relationship between
sub-tasks and evaluate their role
in the comprehensive task, removing
contradictory sub-tasks.
2. Note that sub-tasks are carried out
by a large model, so remove tasks that
the large model cannot complete, such
as internet searches, finding related
information, statistical data analysis,
etc.
3. Delete tasks with weak logical
connections. The relationships between
sub-tasks can be: A. Parallel Task
Mode: Analyzing multiple dimensions
simultaneously
B. Serial Task Mode: Chain-dependent
tasks
C. Conditional Selection Mode: Branching
based on different situations,
considering possible branches of a
task, and designing different tasks for
different branches
D. Nested Task Mode: Hierarchical task
structure
4. Sub-task selection criteria: -
Remove tasks that an AI model cannot
accomplish (such as network searches,
finding information)
- Remove tasks with weak logical
connections
- Remove redundant, contradictory, or
unreasonable tasks
- Optimize sub-task content to be of
moderate difficulty and meet practical
needs
- It is acceptable to propose some
creative tasks
- Ensure that the number of generated
sub-tasks is between 6 and 14
- Try to diversify task types, with at
least 3 different styles of tasks
- Remove tasks that require an AI model
to use tools, such as Named Entity
tools, etc.

5. Select the main task categories from
the following, and the directions under
each category can be diversified: 1.
Classification Task
- Sentiment Analysis
- Text Classification
- Toxic Content Detection
- Empathy Detection
- Stereotype Detection
- Social Norm Judgment

2. Information Extraction
- Named Entity Recognition

20951

- Keyphrase Annotation
- Coreference Resolution
- Entity Relationship Classification

3. Text Generation - Story Creation
- Poetry Generation
- Recipe Generation
- Outline Generation
- Text Expansion/Compression
- Title Generation
- Data Description Generation
- Text Rewriting/Simplification

4. Dialogue Systems
- Dialogue Generation
- Intent Recognition
- Question Generation/Rewriting
- Dialogue State Tracking
- Role-playing Dialogue

5. Reasoning and Logic
- Common Sense QA
- Multi-hop QA
- Critical Thinking Judgment
- Mathematical Reasoning
- Theory of Mind Reasoning

6. Language Style
- Style Transfer
- Language Detection
- Sarcasm Detection
- Spelling/Punctuation Error Detection

7. Evaluation and Verification
- Text Quality Evaluation
- Fact-checking
- Answer Verification
- Uncertainty Judgment

8. Programming-related
- Code Generation/Debugging
- Code Explanation
- Code Translation

Input Total Task:
{input_text}

Input Sub-tasks:
{sub_instruction}

6. First, output the modified
comprehensive task content (if
no modifications, output the
original content) after -output-,
including the modified INSTRUCTION
and SUB_INSTRUCTION_x, where
SUB_INSTRUCTION_x is formatted as
’sub-task content [task type]’.
Finally, place the specific modification
analysis process after -explanation-.

-output-:
INSTRUCTION:
...

SUB_INSTRUCTION_0:

... [task type]

SUB_INSTRUCTION_1:
... [task type]

-explanation-:
...

E.8 Prompt for constraint-level validation
You are a constraint evaluation
assistant.
Your task is to determine whether the
given constraints can be completed by a
large model. Please evaluate according
to the following rules:

1. **Input**:
- Constraint content: A segment of text
describing the task requirements.
- Input dialogue: A segment of the
user’s conversation with the model.

2. **Evaluation Rules**:
- If the input dialogue **lacks the
critical information needed to fulfill
the constraint** (e.g., the constraint
requires extracting person entities,
but no person is mentioned in the
dialogue), then output “No”.
- If the constraint **goes beyond
the model’s capability** (e.g., needs
real-time data or external resources),
then output “No”.
- If the input dialogue provides
sufficient information and the
constraint falls within the model’s
capability, then output “Yes”.
- If the model outputs “No”, minimally
modify the constraint content to make
it feasible for the model to complete it.

3. **Output**:
- If the output is “No”, provide the
modified constraint content to make it
feasible for the model.
- If the output is “Yes”, no modification
is needed.

4. **Examples**:
- Example 1:
- Instruction content: Extract entities
- Constraint content: Extract person
entities from the dialogue.
- Input dialogue: User says, “Yesterday
I went to the park with Xiaoming.”
- Output: Yes
- Example 2:
- Instruction content: Extract entities
- Constraint content: Extract person
entities from the dialogue.
- Input dialogue: User says, “The
weather was great yesterday, and I went
for a walk in the park.”
- Output: No
- Reason: No person entities in the
dialogue
- Modified content: If any person

20952

entities are present, extract them.
- Example 3:
- Instruction content: Generate text
- Constraint content: Generate a
100-word text describing the summer
scenery, using at least 3 similes.
- Input dialogue: User says, “Please
write a passage about summer.”
- Output: Yes
- Example 4:
- Instruction content: Generate text
- Constraint content: Generate a
100-word text describing the summer
scenery, and cite at least 2 academic
papers.
- Input dialogue: User says, “Please
write a passage about summer.”
- Output: No
- Reason: Unable to cite academic papers
- Modified constraint: Generate a
100-word text describing the summer
scenery, using at least 3 similes.

5. **Task**:

- Instruction content: {instruction}
- Constraint content: {constraint}
- Input dialogue: {input}
- Output:
- Reason:
- Modified constraint:

E.9 Prompt for training process
You are now an AI assistant responsible
for generating answers to specified
tasks. You need to generate answers
following these requirements:

1. Strictly generate answers based
on the given input material and
corresponding sub_instruction.
2. Generate answers for each
sub_instruction, ensuring consistency
among answers to different
sub_instructions.
3. Follow the constraints of each
sub_instruction strictly to generate
answers.
4. First, think through each sub-task
in detail using analytical skills to
deeply understand the issues, and then
provide answers. The thought process
for each sub-task should be detailed
between start_think and end_think, and
the answer should be fully presented
between start_answer and end_answer.
5. The thought process and answer
for each sub_instruction should be
placed between start_sub_instruction_x
and end_sub_instruction_x, where
sub_instruction_x is the specific
identifier for the sub-task. Ensure
there are no extra spaces, quotes, or
symbols before and after these markers.

Notes: 1. Strictly adhere to the
constraints.
2. Ensure the quality of answers.

3. Do not output the input content.
4. The format is as follows:

start_sub_instruction_0
start_think
Deeply analyze this sub-task, ...
end_think
start_answer
Based on the above analysis, the detailed
answer to sub-task 0 is ...
end_answer
end_sub_instruction_0

start_sub_instruction_1
start_think
In this sub-task, consider various
factors, ...
end_think
start_answer
Based on the above analysis, the answer
to sub-task 1 is ...
end_answer
end_sub_instruction_1
...

Referring to the above format and
generation requirements, please think
through and generate specific answers
for the following task:

--input--:
{input_text}
--output--:

20953

