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Abstract

Accurate grading of rhinitis severity in nasal
endoscopy relies heavily on the characteriza-
tion of key secretion types, notably clear nasal
discharge (CND) and purulent nasal secretion
(PUS). However, both exhibit ambiguous ap-
pearance and high structural variability, pos-
ing challenges to automated grading under
weak supervision. To address this, we pro-
pose Multimodal Learning for Mucus Anomaly
Grading (MMAG), which integrates structured
prompts with rank-aware vision-language mod-
eling for joint detection and grading. Attribute
prompts are constructed from clinical descrip-
tors (e.g., secretion type, severity, location) and
aligned with multi-level visual features via a
dual-branch encoder. During inference, the
model localizes mucus anomalies and maps the
input image to severity-specific prompts (e.g.,
“moderate pus”), projecting them into a rank-
aware feature space for progressive similarity
scoring. Extensive evaluations on CND and
PUS datasets show that our method achieves
consistent gains over Baseline, improving AUC
by 6.31% and 4.79%, and F1 score by 12.85%
and 6.03%, respectively. This framework en-
ables interpretable, annotation-efficient, and
semantically grounded assessment of rhinitis
severity based on mucus anomalies.

1 Introduction

In nasal endoscopy(Yuan et al., 2025c; Sedaghat
et al., 2025; Acharia et al., 2025), the visual pat-
terns of mucus secretions serve as critical indica-
tors for assessing the severity of rhinitis (Gelardi
et al., 2025). Among these, clear nasal discharge
(CND)(Arslan and Çukurova, 2025) and purulent
nasal secretion (PUS)(Usmonov and Jurayev, 2025)
are two representative types frequently observed
across different pathological stages. These secre-
tions not only reflect underlying disease processes
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Figure 1: Motivation of the proposed grading frame-
work. (a) Basic CLIP-based image-text classification
lacks spatial and ordinal modeling. (b) Ranking-aware
prompts model severity progression but ignore regional
ambiguity. (c) Our method introduces attribute-guided
localization and region-level alignment to enable inter-
pretable, progression-consistent grading.

but also play a direct role in clinical decisions such
as treatment planning and monitoring. As such,
reliable detection and grading of mucus anomalies
is a key component of intelligent decision-support
systems in ENT diagnostics.

However, automated analysis of mucus in en-
doscopic imagery presents two major challenges.
First, these secretions exhibit highly ambiguous
visual properties—they(Gan et al., 2025) are of-
ten transparent, reflective, and conform to complex
anatomical surfaces—making them difficult to seg-
ment or classify using conventional pixel-based
or global methods. Second, the clinical progres-
sion of rhinitis is inherently continuous, evolving
along semantic axes such as mucus type (CND
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→ PUS) and discharge volume (no → severe). Yet,
existing methods typically formulate severity grad-
ing as a fixed-class classification task(Yang et al.,
2022), disregarding the ordinal and progressive
nature of the underlying pathology, thus limiting
interpretability and generalization.

To address the challenges of grading mucus
anomalies in nasal endoscopy, we analyze two rep-
resentative vision-language modeling strategies, as
illustrated in Figure 1: (a) Classification as Grad-
ing: This approach treats severity estimation as
a global image-to-prompt matching task based on
predefined category prompts. However, it lacks spa-
tial awareness and cannot capture the ordinal nature
of disease progression, often resulting in confusion
between adjacent severity levels such as mild and
moderate. (b) Prompt-based Ordinal Alignment
with Grading: Building on (a), this strategy intro-
duces learnable ranking-aware prompts (Yu et al.,
2024) to represent ordered severity levels (e.g.,
mild → moderate → severe). While this improves
ordinal modeling, it still relies on whole-image in-
ference, making it less effective in localizing subtle
anomalies in low-contrast or weak-structure sce-
narios. In contrast, we propose a new design (c)
Multimodal Learning for Mucus Anomaly Grad-
ing (MMAG). We propose a new framework that
first performs anomaly localization using struc-
tured attribute prompts (e.g., the secretion type is
PUS) and then aligns the localized features with
severity-specific ranking prompts. This detection-
to-grading paradigm enables spatially grounded
and semantically consistent predictions, particu-
larly under weak supervision.

We propose the first nasal endoscopic mucus
grading framework that innovatively integrates
attribute-guided localization with rank-aware mod-
eling. Our key contributions include:

• Clinical attributes (e.g., secretion type, color,
volume, anatomical site) are structured into
semantic prompts to facilitate fine-grained
vision-language alignment.

• Multi-level visual feature adapters and a dual-
branch inference mechanism are employed to
improve detection and localization robustness
under weak supervision.

• An ordinal-consistent representation space is
established, with a ranking-aware loss Lrank
enforcing severity-aware alignment for inter-
pretable, continuous grading.

We validate our framework on two clinically an-
notated datasets (CND and PUS), demonstrating
significant performance gains in anomaly detec-
tion and severity grading tasks, along with strong
semantic consistency and clinical applicability.

2 Related Works

2.1 Limitations of Medical Image
Segmentation in Fluidic Regions

Medical image segmentation has long been a cor-
nerstone for delineating anatomical or pathological
structures. Classic CNN-based models (Long et al.,
2015; Ronneberger et al., 2015), have evolved into
multi-scale and Transformer-based variants (Cao
et al., 2022; Zhong et al., 2024b,a). However, most
of these methods are optimized for well-bounded,
high-contrast regions.

In contrast, fluidic targets like mucus present low
boundary saliency, optical ambiguity, and dynamic
morphology. While prior works explored liquid re-
gions in gastrointestinal imaging, they often rely on
motion cues or dense labels, limiting their applica-
bility to nasal endoscopy. Even advanced methods
(Fan et al., 2020; Ma et al., 2024) struggle with
vague boundaries and lack semantic grounding in
low-contrast mucus scenarios.

2.2 Zero/Few-Shot Anomaly Detection with
Vision-Language Models

Anomaly detection (AD) offers a more flexible and
label-efficient alternative to dense segmentation, es-
pecially for fluidic patterns like nasal mucus. How-
ever, most AD methods (Hua et al., 2024, 2025;
Yuan et al., 2025a) focus on rigid structures (e.g.,
brain (Baid et al., 2021), chest (Wang et al., 2017)),
neglecting the ambiguity and dynamics of mucosal
regions.

Unsupervised AD methods (Roth et al., 2022;
Gudovskiy et al., 2022) rely only on normal data
and perform poorly on diffuse or low-contrast
anomalies. Few-shot AD methods (Ding et al.,
2022; Yao et al., 2023) use limited abnormal la-
bels and improve robustness via contrastive learn-
ing, but still face challenges with data imbalance
and fluidic variability. Zero-shot AD leverages
vision-language models (VLMs) like Anomaly-
CLIP (Zhou et al., 2023) and WinCLIP (Jeong et al.,
2023) distinguish anomalies using handcrafted or
learned prompts.

Despite progress in natural image tasks, VLMs
struggle with medical images due to limited paired
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Figure 2: Framework overview. (a) Attribute Prompt Construction(APC): Structured clinical attributes are
converted into textual prompts for visual-semantic alignment. (b) Anomaly-Aware Region Alignment(AARA):
Visual features are aligned with prompts via adapters and a projector, supporting zero-/few-shot prediction. (c)
Rank-aware Severity Assessment(RSA): Severity levels are modeled with prompt ranking, guided by rank loss
Lrank for ordinal consistency.

data, noisy labels, and weak spatial alignment. Ex-
isting static (Bozinis et al., 2021) and dynamic (Wu
et al., 2025) prompt strategies focus on rigid ob-
ject reasoning, limiting region-aware detection in
deformable, low-contrast mucus areas. This moti-
vates a spatially grounded, attribute-aware VLM
framework for zero/few-shot medical AD.

2.3 Ordinal Modeling for Medical Image
Grading

Medical image grading often involves ordinal la-
bels indicating disease progression (e.g., mild, mod-
erate, severe in diabetic retinopathy)(Yang et al.,
2022; Che et al., 2023). Traditional multiclass
methods use one-hot encoding and cross-entropy
loss(Wang et al., 2023), ignoring ordinal structure
and treating all misclassifications equally.

To address this, CLIP-DR(Yu et al., 2024) refor-
mulates DR grading as an image-text matching task
with ranking-aware prompts and KL-divergence to
align image features with ordered text semantics.
Its Similarity Matrix Smoothing (SMS) mitigates
long-tail imbalance. Other methods explore or-
dinal regression or domain generalization(Wang
et al., 2025), but typically depend on clean fun-
dus images, limiting generalization to ambiguous
endoscopic scenarios. Spatial structure modeling
has also been explored. For instance, OF-AR(Yuan
et al., 2025b) leverages an inverse area relationship

between lesion and background regions in monocu-
lar endoscopy, using segmentation and contrastive
learning to improve grading robustness.

Inspired by prior work, we extend ordinal mod-
eling to fluidic nasal endoscopy by proposing a
prompt-guided framework that aligns localized
anomalies with severity-ordered prompts, enabling
fine-grained and progression-aware predictions in
complex scenes.

3 Methods

3.1 Overview

As illustrated in Figure 2, the framework performs
visual-language reasoning for anomaly localization
and severity grading in nasal endoscopy, compris-
ing three key components: Attribute Prompt Con-
struction(APC). Clinical attributes (e.g., secre-
tion type, color, location, inflammation) are parsed
into natural language prompts (e.g., the secre-
tion type is PUS) to guide cross-modal alignment.
Anomaly-Aware Region Alignment(AARA). Im-
ages are encoded by a frozen visual backbone with
lightweight adapters and a projector. Cross-modal
similarity aligns image features with prompts. A
dual-branch design combines zero-shot and few-
shot inference for classification and localization.
Rank-aware Severity Assessment(RSA). Ordinal
prompts represent severity levels, and the ranking-
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Figure 3: Qualitative comparison of detection-guided grading. (a) Zero-shot baseline detection. (b) Two-Branch
Ensemble prediction. Compared to the baseline, our method produces more accurate and concentrated anomaly
heatmaps across severity levels on both CND and PUS datasets, with improved robustness under challenging
conditions such as blurred boundaries and specular reflections.

aware loss Lrank enforces progressive alignment for
fine-grained, interpretable grading.

3.2 APC

We construct lightweight prompts from structured
attributes to align image features with clinical se-
mantics. Given an attribute space A(e.g., secretion
type, color, location), attribute values are converted
into short sentences (e.g., the secretion type is PUS)
and embedded into the template a photo of the
[Attribute]. This enables fine-grained alignment,
supervised by two objectives: Image-Attribute Con-
trastive (IAC) and Matching (IAM).

Attribute Representation in words

Inflammation "yes", "no"
Secretion Type "PUS", "CND", "none"
Color "white", "yellow", "clear",...
Volume "no", "mild", "moderate", "severe"
Attachment "free", "adherent to mucosa",...
Location "nasal passages", "nasopharynx",...

Table 1: Core Attributes for Endoscopic Mucus Analy-
sis

IAC. We construct image-attribute prompt pairs
for cross-modal alignment: For each image I , de-
scriptive sentences (e.g., secretion is PUS) are em-

bedded into the template a photo of the [Attribute]
to form positive prompt Ta, while negative prompt
T̄a is generated by replacing key terms (e.g., PUS
→ CND). The cosine similarities are defined as
s+ = s(FI , FTa) and s− = s(FI , FT̄a

), where FI

denotes the visual [CLS] feature and FTa/FT̄a
rep-

resent the text features of corresponding prompts.
The temperature parameter τ is introduced to adjust
the probability distribution sharpness:

Si2a(I) =
exp(s+/τ)

exp(s+/τ) + exp(s−/τ)
(1)

In each training batch, we sample all matched
pairs to form the set Ba. The loss function is:

Liac = − 1

|Ba|
∑

(I,Ta)∈Ba

logSi2a(I) (2)

Liac encourages the model to align with correct
prompts and suppress mismatches, enhancing fine-
grained attribute discrimination.

IAM. IAM models the image-attribute prompt
relationship. For each batch, we sample 5|B| pairs
(I, Ta), including matched (from image attributes)
and mismatched pairs. Each is encoded to extract
the ccls representation from [CLS], with match-
ing probability computed as: pmatch(I, Ta) =
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Sigmoid
(
MLP(ccls)

)
. The cross-entropy loss is

defined as:

Liam =

− 1

|Ba|
∑

(I,Ta)∈Ba

(
ymatch
a log pmatch(I, Ta)

+ (1− ymatch
a ) log

(
1− pmatch(I, Ta)

))
(3)

where ymatch
a = 1 indicates a matching pair

(i.e., the prompt is consistent with the image’s at-
tributes); otherwise, it is 0.

3.3 AARA
To enhance localization in low-contrast, complex
regions, we propose the AARA module. It uses
the Multi-level Visual Feature Adapter (MVFA)
(Huang et al., 2024) to align encoder features across
stages, which are then fused with attribute prompts
via a cross-modal projector. The aligned features
support dual-branch inference for attribute classifi-
cation (AC) and anomaly scoring (AS).

MVFA. The image is encoded by a pre-trained
CLIP visual encoder to extract multi-level features
(S1–S3), where each stage outputs Fl ∈ RG×d,
with l ∈ {1, 2, 3}, G denoting spatial grids, and d
the feature dimension. To improve adaptability and
prevent overfitting, lightweight adapters Al(·) are
applied at each stage as learnable linear transfor-
mations. The adaptation is defined as:

F ∗
l = γAl(Fl)

T + (1− γ)Fl (4)

here, Al(·) is the adapter for the l-th layer, and γ
is a residual weight (default 0.1) controlling adap-
tation strength. This enables multi-level feature
adjustment without altering the CLIP encoder.

Feature Alignment. For feature alignment, we
optimize the alignment between image features F ∗

l

and text prompts Ftext based on their similarity. We
first compute the similarity score Salign(F

∗
l , Ftext)

between the image and text, using cosine similarity
as the metric:

Salign(F
∗
l , Ftext) =

F ∗
l · Ftext

∥F ∗
l ∥∥Ftext∥

(5)

Then, to enhance image-text alignment, we max-
imize similarity scores and define an alignment
loss Lalign(F

∗
l , Ftext) for each layer l to measure

visual-textual consistency:

Lalign = −
3∑

l=1

Salign(F
∗
l , Ftext) (6)

Lalign encourages multi-level semantic alignment
between image and text, improving the accuracy of
anomaly localization.

Two-Branch Ensemble. We employ a dual-
branch combining zero-shot and few-shot paths.
The zero-shot branch requires no labeled data, pre-
dicting anomalies via image-text similarity using
pretrained features and multi-level adapters.

For each layer’s classification feature Fcls,l and
text prompt feature Ftext, we compute their similar-
ity and apply softmax to obtain layer-wise anomaly
classification scores:

Czero =
1

4

4∑

l=1

max
G

softmax(Fcls,l · Ftext) (7)

where softmax measures image-text similarity
across layers to identify potential anomaly regions.

For each segmentation feature Fseg,l, we com-
pute its similarity with the text feature, apply soft-
max for anomaly scoring, and use bilinear interpo-
lation (BI) to restore the original resolution:

Szero =
1

4

4∑

l=1

BI (softmax(Fseg,l · Ftext)) (8)

where BI(·) denotes bilinear interpolation used to
upsample the anomaly map to image resolution.

In the Few-Shot branch, Constructs multi-level
memory bank Gsing limited labeled normal im-
ages, enabling anomaly classification/localization
via layer-wise feature distance during inference:

Cfew =
1

4

4∑

l=1

max
G

(
min
m∈G

Dist(Fcls,l,m)

)
(9)

where Dist(·) denotes cosine distance between the
test feature Fcls,l and memory feature m.

For each segmentation feature Fseg,l, we com-
pute the minimum distance to memory features to
obtain the anomaly score per layer:

Sfew =
1

4

4∑

l=1

BI
(
min
m∈G

Dist(Fseg,l,m)

)
(10)

Dist(·) computes the cosine distance between test
and memory segmentation features, and BI(·) up-
samples the scores to the original resolution.

During training, the Zero-Shot and Few-Shot
branches independently produce anomaly classifi-
cation and region-level predictions, integrated via
weighted summation:

Cpred = β1Czero+β2Cfew, Spred = β1Szero+β2Sfew
(11)
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Figure 4: Attribute-prompt grading analysis: Ground-truth prompts show peak similarity with progressively
decreasing non-matching scores, demonstrating precise pathology grading (normal/mild/moderate/severe).

where β1 and β2 are weighting coefficients (default:
β1 = β2 = 0.5) controlling the contribution of
each branch.

3.4 RSA
Rank-Aware Feature Space. This space aligns
anomaly localization images with severity-ordered
prompts. Let s̃i,j be the similarity between image
i and class-j prompt. To enforce correct severity
ordering, we introduce a Rank Loss encouraging
s̃i,j > s̃i,j+1 > · · · > s̃i,K and s̃i,j > s̃i,j−1 >
· · · > s̃i,1, guiding the model to rank severe anoma-
lies higher than mild ones.

Right Loss. Right Loss encourages the model
to correctly order the predicted similarity scores
across adjacent classes. Specifically, it compares
the similarity score of the current category s̃i,j′

with that of its rightward neighbor s̃i,j′+1, encour-
aging s̃i,j′ > s̃i,j′+1. The loss is defined as:

Li
right = −

k−1∑

j′=j

log
exp(s̃i,j′/τ)

exp(s̃i,j′/τ) + exp(s̃i,j′+1/τ)

(12)
where s̃i,j′ is the predicted similarity between im-
age i and the prompt for class j′, τ is a temperature
parameter (set to 1 in our experiments), and k is
the total number of severity classes.

Left Loss. Left Loss similarly compares the
similarity score of the current category s̃i,j′ with its
leftward neighbor s̃i,j′−1, enforcing s̃i,j′ > s̃i,j′−1

to preserve the ordinal relationship. The loss is
defined as:

Li
left = −

j∑

j′=2

log
exp(s̃i,j′/τ)

exp(s̃i,j′/τ) + exp(s̃i,j′−1/τ)

(13)
where s̃i,j′ is the similarity between image i and
the class j′ prompt, τ is the temperature parameter,
and j is the index of the current ground-truth class.

The rank loss function. The overall rank loss
is averaged over all M training samples:

Lrank =
1

M

M∑

i=1

(
Li

right + Li
left

)
(14)

4 Experiments

4.1 Experimental Setups
Datasets. This study uses a curated nasal en-
doscopy dataset collected from a tertiary Grade-A
hospital, comprising 1,000 high-definition images
(1920×1080) selected from 2,880 rhinitis cases.
Each image shows clear nasal discharge (CND), pu-
rulent nasal secretion (PUS), or normal structures,
anonymized and ethically approved, and indepen-
dently annotated by two ENT specialists. Blurred
or ambiguous frames were excluded. The dataset
supports grading and detection algorithm develop-
ment and is split into training, validation, and test
sets in a 7:2:1 ratio.
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Dataset Method
Metrics 1 Metrics 2

AC AS ACC F1 AUC no mild moderate severe

CND

GDRNet (Che et al., 2023) - - 48.92 43.27 74.75 98.08 55.71 77.56 74.28
GDRNet+Ours 97.49 88.56 59.57 51.19 79.02 99.42 75.95 80.81 72.85

CLIP (Rame et al., 2022) - - 40.23 31.52 70.54 83.61 64.88 67.45 64.10
CLIP+Ours 96.27 84.27 50.37 53.66 75.89 96.11 61.30 65.37 73.86
OrdinalCLIP (Niu et al., 2016) - - 46.33 41.44 72.45 94.43 55.48 64.72 67.61
OrdinalCLIP+Ours 96.70 85.03 61.71 53.27 79.11 99.27 74.28 82.97 73.21
CLIP-DR (Yu et al., 2024) - - 65.96 56.93 81.83 98.35 76.19 85.40 76.78
CLIP-DR+Ours 99.97 92.34 71.97 69.78 92.99 99.78 94.70 82.47 94.50

PUS

GDRNet (Che et al., 2023) - - 72.36 68.45 90.96 99.47 85.95 86.75 97.50
GDRNet+Ours 95.55 94.78 80.46 83.03 96.16 99.51 93.25 87.78 97.69

CLIP (Rame et al., 2022) - - 68.06 53.59 88.61 98.85 90.47 86.75 86.75
CLIP+Ours 92.92 90.64 75.58 78.44 94.90 99.89 93.21 87.06 96.78
OrdinalCLIP (Niu et al., 2016) - - 70.21 63.17 90.69 99.04 85.47 89.18 96.07
OrdinalCLIP+Ours 94.32 93.95 76.80 79.57 95.25 99.77 93.05 85.91 98.67
CLIP-DR (Yu et al., 2024) - - 74.46 69.90 91.71 99.45 86.90 88.10 96.78
CLIP-DR+Ours 99.13 96.45 84.13 85.93 96.24 99.98 93.78 88.79 99.24

Table 2: Performance comparison of different architectures and methods on CND and PUS datasets

Dataset Type AS AC ACC F1 AUC

Hyper-Kvasir
Polyp 97.96 99.98 81.15 78.04 94.75

Mucus_CND 91.23 99.98 76.90 71.16 87.09
Mucus_PUS 91.02 99.31 60.54 62.29 77.45

CVC_ColonDB Polyp 97.77 99.95 79.71 76.68 94.47
CVC_ClinicDB Polyp 97.80 99.96 78.26 76.91 95.07

Table 3: Transfer performance of our method on Hyper-
Kvasir, ColonDB, and ClinicDB, including both polyp
and mucus subsets.

CVC_ClinicDB. CVC_ClinicDB (Bernal et al.,
2015) contains 612 colonoscopy frames with pixel-
wise polyp annotations. It is widely used for bench-
marking segmentation methods, with challenges
such as blurred boundaries and low-contrast flat
polyps. We use it both for polyp segmentation eval-
uation and for testing generalization from mucus-
trained models. We split the dataset into training,
validation, and test sets in a 7:2:1 ratio.

CVC_ColonDB. CVC_ColonDB (Tajbakhsh
et al., 2015) includes 380 frames from different pro-
cedures, featuring greater variation in polyp size,
shape, and texture than ClinicDB. It is used to as-
sess model robustness under diverse appearances
and as a transfer target in our mucus-to-polyp gen-
eralization experiments. We split the dataset into
training, validation, and test sets in a 7:2:1 ratio.

Hyper-Kvasir. Hyper-Kvasir (Borgli et al.,
2020) is the largest publicly available gastroin-
testinal endoscopy dataset, containing more than
110,000 images and video frames. In our study, we

use its mucus-related subset as an external evalua-
tion domain to examine the generalization ability
of models trained on CND and PUS when trans-
ferred to gastrointestinal mucus analysis tasks. We
split the subset into training, validation, and test
sets in a 7:2:1 ratio.

Evaluation Metrics. We adopt a dual evalua-
tion protocol comprising detection metrics (AC-
AUC, AS-AUC) and grading metrics (ACC, F1,
AUC). Detection metrics assess anomaly identifica-
tion and localization quality, while grading metrics
evaluate classification accuracy across severity lev-
els (normal/mild/moderate/severe). All metrics are
reported on a 0–100% scale, with higher scores
indicating better performance.

Implementation Details. This study employs
the CLIP-ViT/L14 architecture, with all exper-
iments conducted on an NVIDIA Tesla V100
GPU (16GB memory) at 240×240 resolution. The
AdamW optimizer (learning rate 0.0001) was used
for 100-epoch training (batch size=16) enhanced
by a lightweight multi-view feature adapter. For en-
doscopic mucus characterization, we established an
annotation system (Table 1) encompassing six clin-
ical attributes: inflammatory status, secretion type,
color characteristics, volume grading, attachment
properties, and anatomical location, with all an-
notations strictly complying with endoscopic stan-
dards to ensure clinical relevance and visual dis-
criminability.
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Methods CND PUS

F1 AUC F1 AUC

Baseline 20.52 45.25 23.18 49.21
+Attribute 25.05 58.99 25.53 60.05
+Attr.+Adapter 34.76 64.10 35.23 64.79
+Attr.+Adap.+Lrank 41.01 67.83 42.40 71.45

Table 4: Ablation study on Model Components under
Zero-shot Setting

4.2 Comparison with Grading Methods

We present a multimodal framework for detecting
and grading mucus anomalies in nasal endoscopy,
focusing on two discharge types: clear nasal dis-
charge (CND) and purulent nasal secretion (PUS).
As shown in Table 2, our method consistently
outperforms several baselines. For CND, ACC
improves from 65.96% to 71.97%, and F1 from
56.93% to 69.78%; for PUS, ACC and F1 reach
84.13% and 85.93%, demonstrating stronger repre-
sentation and classification robustness.

Compared with existing approaches, our frame-
work shows notable advantages. Against GDR-
Net (Che et al., 2023), it remains more robust under
boundary ambiguity. Unlike CLIP (Radford et al.,
2021), we introduce perception modules tailored to
endoscopic imaging. Relative to OrdinalCLIP (Niu
et al., 2016) and CLIP-DR (Yu et al., 2024), our
method achieves higher specificity and produces
grading results that are more consistent with clini-
cal practice.

Although our main experiments are based on
two nasal endoscopy datasets (CND and PUS), this
choice is justified and representative. Nasal en-
doscopy is more challenging than other modalities
(e.g., gastroscopy, colonoscopy, cystoscopy), which
mostly visualize homogeneous wall structures. The
nasal cavity involves complex anatomy (septum,
turbinates, sinuses) and diverse mucus presenta-
tions, leading to substantial visual heterogeneity.
Moreover, clear and purulent discharges are clin-
ically informative early indicators of rhinitis, yet
their low contrast and weak boundaries make them
difficult to model. Thus, CND and PUS serve
as high-difficulty benchmarks for robustness and
transferability. To further validate the generaliza-
tion ability of our method beyond nasal endoscopy,
we conduct transfer experiments on colonoscopy
datasets, including both polyp and mucus subsets.
As shown in Table 3, the results on Hyper-Kvasir,
ColonDB, and ClinicDB confirm that our frame-

Setting
CND PUS

AS F1 AUC AS F1 AUC

0-shot 60.76 43.56 74.79 68.31 45.54 75.45
1-shot 79.29 50.37 75.89 90.64 58.92 88.61
2-shot 88.59 51.19 79.02 91.38 67.63 90.69
4-shot 90.06 53.27 79.11 94.73 69.82 90.96
8-shot 91.28 56.92 81.74 95.52 73.70 91.71
16-shot 93.47 77.12 94.43 97.98 78.54 96.76

Table 5: Ablation study on few-shot learning perfor-
mance with different sample sizes (Average AUC(%),
best F1(%) and Accuracy Score(AS%)).

work maintains strong performance when adapting
from nasal to colonoscopy domains.

Overall, our detection-then-grading strategy
aligns with clinical workflows and enhances
both performance and interpretability for mucus
anomaly assessment.

4.3 Ablation Studies

To assess the contribution of each module, we con-
ducted ablation studies under both zero-shot and
multi-shot settings, see Table 4 and Table 5.

Zero-shot setting. Introducing attribute prompts
improves F1 by 4.53% (CND) and 2.35% (PUS),
and AUC by 13.74% and 10.84%. Adding the
adapter yields further F1 gains of 9.71% and 9.70%,
and AUC gains of 5.11% and 4.74%. Finally, apply-
ing Lrank boosts F1 by 6.25% and 7.17%, and AUC
by 3.73% and 6.66%, confirming its effectiveness
for severity modeling.

Multi-shot setting. We evaluate the model un-
der 0-shot, 1-shot, 2-shot, 4-shot, 8-shot, and 16-
shot conditions. Both CND and PUS tasks show
steady improvements across F1, AUC, and AS met-
rics. For example, on PUS, F1 increases from 45.54
(0-shot) to 78.54 (16-shot), AUC from 75.45 to
96.76, and AS from 68.31 to 97.98. For CND,
F1 rises from 43.56 to 77.12, AUC from 74.79 to
94.43, and AS from 60.76 to 93.47. Gains begin
to saturate beyond 8-shot, showing that the model
achieves high accuracy with limited supervision.

As shown in Table 6, the dual-branch configura-
tion consistently outperforms the individual zero-
only and few-only branches in AS and F1, high-
lighting their complementary strengths. Visual re-
sults confirm that the dual-branch design delivers
clearer segmentation under glare or blurred bound-
aries, highlighting its robustness.

These results validate the effectiveness of each
component and the robustness of our framework
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Setting
CND PUS

AS F1 AUC AS F1 AUC

Zero-only 60.76 43.56 74.79 68.31 45.54 75.45
Few-only 89.24 42.17 82.01 93.75 47.69 81.97
Dual-branch 90.06 53.27 79.11 94.73 69.82 90.96

Table 6: Ablation study under the 4-shot setting on CND
and PUS datasets, evaluating zero-only, few-only, and
dual-branch settings to validate the architecture.

(a) Baseline (b) Ours

Figure 5: Comparison of two grading strategies on PUS
dataset: (a) direct grading baseline, (b) detection-guided
grading with Lrank constraint.

across various supervision regimes.

4.4 Visualization Analysis
As shown in Figure 3, visual results on the CND
and PUS datasets highlight the effectiveness of our
detection-guided grading framework. Compared
to the zero-shot baseline in (a), the Two-Branch
Ensemble in (b) yields more accurate and concen-
trated anomaly maps, even under challenging con-
ditions like blurred edges and specular reflections.
As severity increases, the heatmaps become sharper
and better aligned with semantic cues, reflecting
strong grading awareness and interpretability.

Figure 4 further demonstrates that the model ef-
fectively aligns attribute prompts with localized
mucus regions. From mild to severe cases, ac-
tivations intensify, and category-wise similarity
becomes more distinct, enabling reliable severity
quantification.

In Figure 5, the similarity matrix of baseline
grading (a) shows off-diagonal confusion between
adjacent categories, whereas our rank-aware model
(b) achieves diagonal dominance, indicating clearer
inter-class boundaries. This confirms that integrat-
ing anomaly localization with Lrank improves both
semantic alignment and grading consistency.

Overall, our framework supports precise localiza-
tion and interpretable severity estimation, offering
clinically valuable insights for automated mucus
anomaly assessment.

5 Conclusion

This study proposes the MMAG framework for ob-
jective inflammation severity assessment through
nasal mucus characteristics. The framework con-
sists of three core modules: (1) attribute prompt
construction for clinical feature representation, (2)
anomaly-aware region alignment for precise lesion
localization, and (3) rank-aware assessment mod-
eling severity ordinal relationships. Experiments
demonstrate MMAG’s accurate grading capability
for both CND and PUS discharges. Future work
will focus on borderline mucus feature extraction
and fine-grained recognition algorithms for secre-
tions in hidden nasal areas to enhance clinical dis-
crimination.

Limitations

Although our framework demonstrates promising
performance in grading mucus anomalies under var-
ied endoscopic conditions, it still faces challenges
in extremely low-illumination regions. Specifically,
in dark nasal cavities where the endoscope light
is insufficient or obstructed, transparent or low-
contrast mucus may be overlooked or misclassi-
fied as absent. This can lead to underestimation
of inflammation severity, which may affect clini-
cal interpretation in real-world scenarios. Future
work may explore adaptive enhancement or uncer-
tainty modeling techniques to improve robustness
in underexposed areas.
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