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Abstract

Bronze inscriptions from early China are of-
ten fragmentary, with missing or undeciphered
characters and uncertain chronological assign-
ments. To address this, we propose BIRD
(Bronze Inscription Restoration and Dating),
a dataset and framework that leverages pre-
trained language models (PLMs) tailored to the
unique demands of ancient texts. By integrat-
ing domain-adaptive pretraining (DAPT) and
task-adaptive pretraining (TAPT) techniques,
along with a glyph net resource that links
graphemes and allographs, our approach over-
comes key challenges in low-resource settings
and the prevalence of allography. Our results
show marked improvements in both restoration
and dating accuracy.

1 Introduction

Bronze inscriptions from the Chinese Bronze Age
(c. 21st–3rd century BCE) are among the most im-
portant early Chinese textual sources (Li, 2024).
Found on ritual vessels, weapons, and musical
instruments, these inscriptions record military
achievements, feudal enfeoffments, oaths, and an-
cestral rites. Yet as excavated texts, they are often
fragmentary and damaged, with uncertain chrono-
logical assignments.

Traditional restoration and dating rely on expert
comparison of graphic forms and contextual in-
ference, a process that is both labor-intensive and
difficult to scale. Neural models, particularly pre-
trained language models (PLMs), have recently
shown promise in supporting ancient text restora-
tion. However, existing applications of artificial
intelligence to bronze inscriptions focus almost
exclusively on computer vision, such as single-
character recognition or denoising of inscription
images (Guo, 2021; Zhao et al., 2020). By contrast,
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Figure 1: Left: A simplified paleographer’s workflow
for restoring a damaged bronze inscription: identifying
the damaged fragment, inferring from parallel expres-
sions, and proposing a restoration (Zeng, 2011; Wu,
2012; Xie, 2014). Right: A damaged bronze inscription
fragment (CCYZBI.02838A) (CASS, 2007) with expert
annotations (Huang, 2022).

natural language processing (NLP) approaches to
inscriptional texts remain largely unexplored, de-
spite their potential for tasks such as restoration
and dating.

Two factors make NLP modeling of bronze in-
scriptions challenging (Li, 2024):
1. Low-resource setting. Although nearly 20,000

inscriptions have been published, most are ex-
tremely short, with over half containing three or
fewer characters. Compared to modern corpora,
the effective training data is therefore sparse.

2. Allography.1 In the Western Zhou corpus alone,
2,134 graphemes include 572 allograph sets
(48.15%) (Liu, 2009). Current encodings treat
such forms as separate tokens, which prevents
semantically equivalent allographs from being
learned as a unified grapheme, thereby hinder-

1We use the term allograph for distinct graphical forms
that realize the same grapheme, following the graphematic
perspective of Meletis (2020, 2019). In Chinese palaeography,
these correspond to so-called yitizi. As Qiu (Qiu, 2013) notes,
the broad definition of yitizi subsumes two subtypes: narrow
allographs (fully interchangeable forms) and partial allographs
(forms that once overlapped in usage but later diverged, func-
tionally close to tongyongzi).
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Figure 2: Concrete glyph family of Qi (‘to pray’) from
the Shang to the Eastern Zhou. To illustrate the correla-
tion between glyphs and their components, Ideographic
Description Sequences (IDS) are used.

ing generalization in data-hungry Transformers.
Figure 2 shows a representative family of allo-
graphs that share the same grapheme.

Nonetheless, bronze inscriptions also share their
linguistic environment with transmitted and exca-
vated Pre-Qin (c. 21st–3rd century BCE) texts
(Li, 2024), which can serve as auxiliary corpora
for domain-adaptive pretraining (Gururangan et al.,
2020). Moreover, allographic variation is not mere
noise: in downstream tasks such as chronological
dating, these glyph distinctions provide evidence
(Wang, 2015; Su, 2016). Effective modeling must
therefore balance normalization for learning with
preservation of the distinctive historical signal.

The contributions of this paper are as follows:

• BIRD: the first fully encoded bronze inscrip-
tion dataset (41k tokens) with encoding suit-
able for NLP tasks;

• The construction of a glyph net (GN), a re-
source that pairs and clusters graphemes and
their allographs into sets;

• A variant-aware masked language modeling
framework for character restoration and down-
stream dating.

2 Related Work

Scholarly work on bronze texts has a long history.
Paleographically, CASS (2007) provides a compre-
hensive compilation, while Wu (2012), Ma (1986),
and Shirakawa (1962) offer translations and philo-
logical interpretations. Chronological dating has
also been extensively studied, with theories and
frameworks proposed by Tang (2016), Chen (2004),
and Guo (1999).

Digitization efforts have made significant con-
tributions. The Digital Retrieval Platform for

Shang and Zhou Bronze Inscriptions (Jihewang)
platform2 integrates catalogs, glyph images, and
lexica. Academia Sinica has released two semi-
open databases: the Digital Archives of Bronze Im-
ages and Inscriptions (AS DABII)3, covering vessel
images, rubbings, typology, and metadata; and the
Lexicon of Pre-Qin Oracle, Bronze Inscriptions
and Bamboo Scripts (AS Lexicon)4, spanning or-
acle bones, bronzes, and bamboo manuscripts for
lexical research. However, these resources remain
ill-suited for NLP tasks, as many characters, espe-
cially allographs, are represented only as images.
Hence, addressing allography is crucial, with stud-
ies on variant families across periods (Qi, 2023;
Du, 2020; Su, 2016; Luo, 2013).

Neural model restoration of fragmentary texts
has been well-explored across languages. Most re-
lated to our work, Mo et al. (2021) applied BERT
(Devlin et al., 2019) to masked character predic-
tion on the Shanghai Museum bamboo manuscripts
(1–9, 2,103 characters), simulating the speech case
induction. Wang et al. (2025) further combined
RoBERTa (Liu et al., 2019) with computer vi-
sion for restoring incomplete Chinese steles. In
other low-resource epigraphic domains, similar ap-
proaches have achieved strong performance on
Latin inscriptions (Assael et al., 2025), Arabic
manuscripts (Miloud et al., 2024), Greek inscrip-
tions (Assael et al., 2022), and Akkadian cuneiform
(Lazar et al., 2021). Chronological dating tasks
have also been pursued (Assael et al., 2025; Chen
et al., 2024; Tian and Kübler, 2021).

Distinct from prior work, we provide the fully en-
coded and chronologically labeled bronze inscrip-
tion corpus, accompanied by a grapheme-allograph
resource, which enables neural models to tackle
both restoration and dating.

3 Dataset

3.1 Pre-Qin Corpus (DAPT)

We perform domain-adaptive pretraining on Pre-
Qin texts, covering 40 works across 11 categories
with a total of 2.09M tokens, which were com-
piled from open corpora including the Chinese Text
Project5 and Wikisource6, and were further normal-
ized (Appendix B).

2https://jwdcdbz.ancientbooks.cn
3https://bronze.asdc.sinica.edu.tw
4https://inscription.asdc.sinica.edu.tw
5https://ctext.org
6https://wikisource.org
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Dataset Ava. Dedup. Filt. Enc. Chron.

Jihewang ✗ ✗ ✗ Partial ✓
AS DABII ✗ ✗ ✗ Partial ✓
AS Lexicon ✗ ✗ ✗ Partial ✓
BIRD ✓ ✓ ✓ Full ✓

Table 1: Comparison of bronze inscription digitization
efforts. Our dataset is the only publicly available, dedu-
plicated, and filtered corpus, with complete encoding
and chronological labels.

3.2 BIRD (TAPT)

For bronze inscriptions, existing resources such
as Jihewang, AS DABII, and AS Lexicon function
primarily as retrieval platforms rather than struc-
tured datasets. We therefore release a dataset that
addresses these gaps.

We present the first bronze inscription dataset
designed for NLP applications such as restora-
tion and dating. BIRD contains 41k tokens and
is accompanied by a glyph net resource of 1,078
grapheme–allograph pairs, compiled from Shang,
Western Zhou, and Eastern Zhou studies (Qi, 2023;
Du, 2020; Luo, 2013), following the principle that
graphemes and their allographs are mutually sub-
stitutable (Qiu, 2012).

Inscriptions are also labeled with dynasty and
finer-grained period, which allows supervised ex-
periments on dating. Table 1 compares BIRD with
previous digitization efforts.

The corpus itself is prepared through four steps:
1. Encoding. All inscriptions are converted into

machine-readable text. As shown in Table 2,
characters are categorized as (i) identifiable, (ii)
damaged and unreadable (marked as□), or (iii)
visually legible but undeciphered (encoded as
[UNK-xxxxx-x]). See Appendix F.

2. Filtering. Extremely short inscriptions (≤1
character; 6,078 out of 17,547 in AS DABII),
mostly redundant single-character marks (e.g.,
“Shi Ding” consisting only of the character “Shi,”
CCYZBI.01073–01088 (CASS, 2007)), are re-
moved to avoid trivial patterns and ensure a
more representative corpus.

3. Deduplication. Many inscriptions recur across
vessels (e.g., ten identical “Bo Xian Fu Li,”
CCYZBI.00649–00658 (CASS, 2007)), as ex-
act formulaic repetitions. Keeping all copies
would inflate token counts and risk leakage, so
we retain only one representative instance.

4. Correction. Clerical transcriptions (liding) and
chronological assignments are updated in line

Type Count Proportion

Identifiable 39,565 99.24%
Unreadable (□) 236 0.59%
Undeciphered ([UNK]) 56 0.14%

Table 2: Types of tokens and their proportions in BIRD.

with recent philological research, with dynasty
and period labels attached to each inscription.
Refer to Appendix G for more information.

4 Model

We use standard Transformer (Vaswani et al., 2017)
masked-language-model (MLM) backbones, which
have proven effective in text restoration tasks. Ap-
plying it to bronze inscriptions, however, presents
two challenges: (i) the low-resource nature of the
corpus, and (ii) the prevalence of allographs, where
semantically equivalent forms appear as distinct
tokens.

To address these issues, we introduce three modi-
fications to the MLM pipeline: (1) domain-adaptive
pretraining (DAPT) on contemporaneous a Pre-
Qin corpus, with shallow layers frozen to stabi-
lize training; (2) a glyph net (GN) constructed
from grapheme–allograph pairs, where transitive
closure yields glyph families and new glyphs are
aligned to family centroids; (3) GN-aware mask-
ing and substitution, which bias token sampling
toward glyph tokens and encourage in-family re-
placements, thereby promoting family-level learn-
ing. These modifications preserve the effectiveness
of MLM training while fully exploiting glyph in-
formation to benefit downstream tasks. Figure 3
illustrates the overall architecture.

5 Experiments
5.1 Baselines
We evaluate a BiLSTM sequence model as the
restoration baseline (Luong et al., 2015; Sutskever
et al., 2014), and an SVM classifier, which has
shown strong performance in dynasty classification
of historical Chinese texts (Tian and Kübler, 2021).
For pretrained backbones, we consider Multilin-
gualBERT (mBERT), XLM-RoBERTa (base and
large) (Conneau et al., 2020), and SikuRoBERTa
(Wang et al., 2021). Multilingual BERT and
RoBERTa have demonstrated strong transfer per-
formance in low-resource and cross-lingual set-
tings (Lazar et al., 2021; Chau et al., 2020), while
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Figure 3: Our pipeline enhances masked language mod-
eling for bronze inscriptions by combining domain-
adaptive pretraining (DAPT), task-adaptive pretraining
(TAPT), and a Glyph Net module (as illustrated in the
lower-right component, each grapheme G1..n is linked
to its allographs A1..n) that integrates variant glyph in-
formation into a BERT or RoBERTa backbone.

domain-specific models trained on the Siku Quan-
shu corpus are widely adopted in ancient Chinese
NLP (Hua and Xu, 2025; Ge, 2022; Mo et al.,
2021).

5.2 Implementation Details

Bronze inscriptions are extremely short (median
length four characters in BIRD), so standard BERT
masking often erases all context. We instead use
stride-based masking (s), ensuring that sequences
of length ≤ s lose at most one token. The stride
is tuned per backbone via Bayesian search with
Weights & Biases (Biewald, 2020).

5.3 Tasks

We model two complementary tasks that reflect real
palaeographic challenges. For restoration, we ap-
ply the stride-based masking scheme (Section 5.2),
and require the model to recover the gold charac-
ter from incomplete inscriptions. Predictions are
evaluated both at the exact character level and at
the glyph-family level, where allographs under the
same grapheme are treated as interchangeable.

For dating, we fine-tune a linear head on the en-
coder representations to predict both dynasty-level
and finer-grained period labels. The same back-
bone, settings, and adaptation schedules are shared
across both tasks, which ensures comparability.

Model Params E@1 E@5 E@10 F@1 F@5 F@10

BiLSTM 20M 39.02 42.98 53.10 57.41 57.63 62.50
SikuRoBERTa 109M 48.50 63.59 68.47 53.52 68.82 72.86
mBERT 110M 42.42 58.30 63.52 46.62 61.77 66.46
XLM-Base 278M 42.91 58.25 62.63 45.38 60.78 65.10
XLM-Large 550M 45.35 59.78 64.47 47.58 60.85 65.65

Table 3: Restoration results on zero-shot held-out glyph
forms. E@K = Exact@K; F@K = Family@K. All
scores are percentages.

6 Results and Discussion

6.1 Evaluation Criteria

For restoration, we follow prior work (Assael et al.,
2022; Lazar et al., 2021) in single-position predic-
tion. Every s-th non-boundary character is masked,
and performance is measured by: Exact@K, which
checks if the gold token appears within the top-K
predictions, and Family@K, which counts a pre-
diction correct if any member of the gold token’s
allograph family appears within the top-K. All
reported results are zero-shot on held-out glyph
forms excluded from training. This setup simulates
the real conditions of restoration.

For dating, we evaluate at two granularities:
dynasty-level (Shang, Western Zhou, Spring and
Autumn, Warring States period), and period-level
(Early, Middle, Late). We report accuracy and
macro-F1, and additionally compute a hierarchi-
cal score that first verifies the dynasty label and
then the period label within the predicted dynasty.

6.2 Restoration Results

Table 3 shows restoration results. SikuRoBERTa
achieves the best performance on five of six metrics,
including 48.50 Exact@1 and 72.86 Family@10,
outperforming BiLSTM by +9.5 p.p. (Exact@1)
and +10.4 p.p. (Family@10). BiLSTM only leads
on Family@1 (57.41). Multilingual PLMs lag
SikuRoBERTa by 3–6 p.p. on Exact@1, which con-
firms the advantage of in-domain pretraining.

6.3 Dating Results

Table 4 reports dynasty- and period-level dating.
All backbones trained on bronze-domain text sub-
stantially outperform the uniform random base-
line. SIKUROBERTA achieves the strongest results
overall (dynasty accuracy 85.19; macro-F1 76.69)
and the highest hierarchical period F1 (63.55).
MBERT lags by 2–12 absolute points across met-
rics, while larger multilingual encoders (XLM-
BASE/LARGE) fail to match domain-adapted per-
formance; for XLM-BASE, learning fine-grained
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Model Params Dynasty Hier-Dyn Hier-Per

Acc F1 Acc F1 Acc F1

Random – 25.00 – 25.00 – 8.33 –

SVM 0.08M 75.31 49.44 76.32 42.67 58.55 49.43
SikuRoBERTa 109M 85.19 76.69 84.87 53.95 67.76 63.55
mBERT 110M 81.48 64.25 82.89 54.67 65.13 60.06
XLM-Base 278M 78.40 48.13 80.92 50.24 60.53 55.57
XLM-Large 550M 83.95 70.12 83.55 52.58 61.18 56.09

Table 4: Dating performance across baselines and pre-
trained models. Dynasty = four-way classification;
Hier-Dyn / Hier-Per = hierarchical evaluation at dy-
nasty and period levels. Random baselines: 25.00 (dy-
nasty), 8.33 (period). All scores are percentages.

period distinctions modestly improves dynasty pre-
diction. Overall, period classification remains more
challenging than dynasty classification.

6.4 Analysis

For restoration, through correct predictions, we
find that the model has learned relatively stable
conditional distributions. Restoration is especially
strong in formulaic segments of bronze inscrip-
tions, where contextual patterns are fixed. Nouns
denoting vessels, temporal adverbs, and modal par-
ticles, elements with syntactically fixed functions
(Wu, 2023), are likewise restored with high accu-
racy. Overall, due to the stereotyped and narrative-
regular nature of bronze texts (Ma, 2003), charac-
ters embedded in stable co-occurrence contexts are
easier to restore.

On the error side, the model tends to default
to high-frequency template positions when uncer-
tain. Confusions also arise among official titles
and kinship nouns, within prepositional groups in-
troducing causes or objects, and across semanti-
cally related action verbs. Numerals are mutually
confusable, which reflects the lack of fine-grained
discriminative signals. Nevertheless, even in mis-
predictions, the predicted top candidates often fall
into the correct syntactic category, indicating gram-
matical awareness.

For dating, common errors across models are
that they tend to overfit on official titles while ne-
glecting chronological distinctions. In terms of
the overall error distribution, the Spring and Au-
tumn and Warring States periods are less stable,
which corresponds to the textual feature of inscrip-
tions from these eras being relatively free in style
(Ma, 2003). In addition, formulaic expressions are
shared across periods, which blurs the boundaries
between dynasties. Under conditions where the
majority class dominates the data, misclassifica-

tions are more likely to be pulled toward Western
Zhou. Nevertheless, it is essential to note that se-
vere misplacements across distant periods are rela-
tively rare, and the accuracy for the majority class
remains very high, which reveals that the models
have indeed learned effective chronological signals
from the data.

7 Conclusion

We present BIRD (Bronze Inscription Restoration
and Dating), a dataset and an approach to restoring
and dating by leveraging masked language models
(MLMs) adapted to the unique challenges posed
by these ancient texts. The results demonstrate
that our proposed framework, particularly on the
SikuRoBERTa backbone, performs well and pro-
vides substantial improvements in restoration and
dating tasks. By integrating domain-adaptive pre-
training (DAPT), task-adaptive pretraining (TAPT),
and glyph net-aware training, we achieve high ac-
curacy in both tasks. This work sets a foundation
for future NLP applications in bronze inscriptions.

Limitations

Despite promising gains in both restoration and
dating, several limitations remain. First, BIRD-
still suffers from sparsity and long-tail imbalance,
which constrains generalization for rare forms. Re-
lated effort in this area can be found in (Li et al.,
2025; Nguyen et al., 2020) and similar studies.

Second, glyph-level modeling remains a chal-
lenge. Different characters may not consistently
represent the same word (Qiu, 2013), and our glyph
network currently relies merely on group-level in-
ductive bias. Its generalization could be strength-
ened by incorporating stricter palaeographic con-
straints (Chou and Huang, 2005) and expanding
knowledge bases of loan characters (Wang et al.,
2023). Moreover, diachronic distributions of al-
lographs are not well-modeled, and the system is
prone to semantically plausible but orthographi-
cally inappropriate predictions.

Third, our setup lacks phonological supervision.
Bronze and other early Chinese inscriptions fre-
quently employ phonetic loans (Baxter and Sagart,
2014), yet sound-based substitution is invisible to
a token-only model. Incorporating phonetic-series
embeddings may capture such regularities, follow-
ing phoneme-aware strategies that have proven ef-
fective in non-Latin scripts (Nguyen et al., 2025,
2023).
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Fourth, fragmentary evidence poses a major ob-
stacle. Many inscriptions are partially legible, with
subcomponents visible even when the full graph
is damaged. A token-level MLM cannot lever-
age such partial signals. Structure-aware encod-
ings such as Ideographic Description Sequences
(IDS), shown to be effective in related tasks (Yu
et al., 2023; Pan et al., 2026), which could enable
component-conditioned modeling for more robust
restoration and dating.

Fifth, our framework omits archaeological and
multimodal signals that are central to traditional
chronology. Vessel shape, decorative motifs, and
casting techniques provide independent chronolog-
ical evidence (Chen, 2004), yet remain unexploited.
Integrating textual modeling with such modalities
would bring the system closer to expert palaeo-
graphic practice.

Finally, it is important to clarify the position-
ing of this work. BIRD provides the first fully
encoded, NLP-ready dataset and baseline frame-
work for bronze inscription restoration and dat-
ing. As such, its role is primarily to supply stan-
dardized resources and computational baselines for
future research, rather than to replace traditional
philological methods. Current Language Model-
based predictions should be regarded only as aux-
iliary hypotheses, offering preliminary guidance
for palaeographers. Ultimately, expert interpreta-
tion grounded in palaeographic and archaeological
context remains indispensable.
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Mask Position Gold Pred@1 Top5

1 室 室 室廟宮寢廷
2 王 王 王君公伯尹
3 巿 (or芾) 芾 芾衣衡純戈
4 Unde 鑾 鑾旂馬舄車
5 命 亡 亡無有多毋
6 于 宜 宜告御命掖
7 年 年 年人世壽
8 Unde 伯 伯室守圃大

Table 5: Greedy (Top-1) predictions versus gold char-
acters (excerpt of the first 8 positions). Unde denotes
undeciphered characters. Parenthetical alternatives or
reflect variant readings attested in other expert transcrip-
tions (CASS, 2007).

A Case Study: Hu Ding Restoration

We applied our model to restore a partially dam-
aged inscription from the Hu Ding bronze vessel,
dating back to the mid-Western Zhou period. The
transcription of the inscription is shown in Figure 4.

Figure 4: Left: Rubbing of the Hu Ding inscriptions
(CCYZBI.02838A, 02838B) (CASS, 2007), image cour-
tesy of AS DABII. Right: Transcription from (Huang,
2022), which serves as the model input.

We first removed Hu Ding from the BIRD corpus
to prevent data leakage. Then, we used a state-of-
the-art SikuRoBERTa-based restoration model with
greedy decoding (Lazar et al., 2021) to predict the
missing parts of the inscription. The predictions are
compared to gold-standard characters in Table 5.

Compared to the 22 characters restored by paleo-
graphic experts (Huang, 2022), our model achieved
an Exact@1 of 40.91% (9/22), Exact@5 of 63.64%
(14/22), and Exact@10 of 77.27% (17/22). In addi-
tion, it generated plausible completions for seven
characters that remain undeciphered by experts (Ta-
ble 6).

Mask Position Pred@1 Top5

4 鑾 鑾旂馬舄車
8 伯 伯室守圃大
15 內 內外之邑大
16 于 于杜喬柞訊
17 則 則毋弗不勿
18 不 不帛毋勿弗
28 若 若其弋汝余

Table 6: Undeciphered characters and their predicted
completions by our model.

B DAPT Composition

The DAPT (Pre-Qin) corpus consists of 40 transmit-
ted and excavated texts, compiled and normalized
from open sources. Following the classification of
the Chinese Text Project, Table 7 presents a catego-
rized subset. These texts provide broad coverage of
syntactic and lexical patterns closely aligned with
inscriptional Chinese.

C Model Architecture

Our models consist of a transformer encoder
domain-adaptive pre-trained on a large corpus of
Pre-Qin Chinese texts, and task-adaptive pretrained
on BIRD, extended with special tokens for unseen
glyphs.

The training objective is a masked language mod-
eling (MLM) loss:

LMLM = −
N∑

i=1

logP (yi | Xi; θ),

where yi represents the target glyph, Xi the input
context, and θ the model parameters.

To encourage consistent representations across
allographs, we further integrate a glyph-net (GN)
regularization term. For each variant group G, let
T (G) denote the token set belonging to the same
graphemic cluster, and let p̂i be the predicted dis-
tribution at a masked position i. The GN loss is:

LGN = − 1

|M|
∑

i∈M

1

|T (Gi)|
∑

t∈T (Gi)

log p̂i(t),

where M is the set of masked positions and Gi the
variant group of the gold glyph at position i.

The final objective interpolates between the
MLM and GN terms:

L = (1− α)LMLM + αLGN,

with α gradually scheduled during training.
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Category Titles

Confucianism Analects, Mengzi, Liji, Xiao Jing, Xunzi, Yili
Mohism Mozi
Daoism Laozi, Zhuangzi, Liezi, He Guan Zi, Yu Liaozi
Legalism Hanfeizi, Shang Jun Shu, Shenzi, Jian Zhu Ke Shu, Guanzi
School of Names Gongsunlongzi
School of the Military Sunzi Bingfa, Wu Zi, Liu Tao, Si Ma Fa
Miscellaneous Schools Gui Gu Zi, Lü Shi Chun Qiu
Histories Guo Yu, Yanzi Chun Qiu, Zhan Guo Ce, Mutianzi Zhuan, Zhushu Jinian, Zuo Zhuan
Ancient Classics Book of Poetry, Shang Shu, Book of Changes, Rites of Zhou, Chu Ci, Shan Hai Jing, Yizhoushu
Medicine Huangdi Neijing
Excavated Guodian, Mawangdui

Table 7: Subset of Pre-Qin texts included in the DAPT corpus.

D Training Setup

We consider four adaptation schedules: (i) no adap-
tation, (ii) domain-adaptive pretraining (DAPT),
(iii) task-adaptive pretraining (TAPT), and (iv) a
two-stage pipeline of DAPT followed by TAPT.
To disentangle the effect of structural priors, each
schedule is further combined with two orthogonal
mechanisms: a glyph net alignment and a group-
biased masking bias. Three baseline models are all
augmented with UNK placeholders and extended to
cover unseen glyph characters. During DAPT, we
freeze the bottom six transformer layers and train
for ten epochs on a large Pre-Qin corpus. TAPT
resumes with all layers unfrozen and adapts to in-
scriptional data. The two stages are interpolated
with a weighting parameter λ that balances the con-
tribution of DAPT and TAPT losses.

E Hyper-parameters

We found the best hyperparameters for each model
during the search via WandB (Biewald, 2020), as
detailed in Table 8.

Hyper-parameter mBERT XLM-Base XLM-Large SikuRoBERTa
Learning Rate 0.00005 0.00005 0.00005 0.00012
Epochs 60 40 40 40
Batch Size 32 32 32 32
Attention Dropout 0.1 0.1 0.1 0.1
Hidden Dropout 0.1 0.1 0.1 0.1
Stride 12 10 12 10
mlm_prob 0.2 0.2 0.2 0.2
Weight Decay 0.01 0.01 0.01 0.01

Table 8: Best hyperparameters found during WandB
hyperparameter search for mBERT, XLM-Base, XLM-
Large, and SikuRoBERTa.

F Undeciphered Characters

Figure 5 shows glyphs from bronze inscriptions
that remain undeciphered by paleographers. The
complete collection of undeciphered forms can be
found in our GitHub repository.

Figure 5: Examples of undeciphered glyphs represented
by UNK placeholders in BIRD.

G Paleographical References

We draw on recent paleographical and historical
studies of bronze inscriptions to update character
forms and chronological assignments in our corpus.
For example, an inscription previously dated to the
Early Spring and Autumn period (CCYZBI.02737
(CASS, 2007)) has been reassigned to the Middle
Spring and Autumn period in (Wu, 2012); similarly,
another item formerly placed in the Middle Western
Zhou (CCYZBI.02737 (CASS, 2007)) has been
revised to the Middle Spring and Autumn period
in (Jin, 2014). For further details, please refer to
our GitHub repository, which will continue to be
updated in the future.

H Ablation

We conduct ablation studies across four backbones
(SIKUROBERTA, MBERT, XLM-BASE, XLM-
LARGE) to disentangle the effects of domain- and
task-adaptive pretraining, glyph-aware supervision,
and biasing. Restoration accuracy is summarized
in Table 9, representation cohesion and separation
are analyzed in Table 10, and dating performance
is reported in Table 11.
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Model Scenario E@1 ↑ E@5 ↑ E@10 ↑ G@1 ↑ G@5 ↑ G@10 ↑

SIKUROBERTA

Baseline 23.59 37.73 43.95 24.37 39.47 45.75
DAPT_only 25.95 42.31 49.37 25.26 43.17 51.15
TAPT_Bias 48.25 62.60 67.55 54.39 67.84 73.07
TAPT_GN 49.47 65.20 70.15 54.32 68.05 73.07
TAPT_GN_Bias 49.24 63.83 68.58 55.40 68.82 72.86
TAPT_from_DAPT 48.50 63.59 68.47 53.52 68.12 72.89
TAPT_only 48.83 63.85 68.41 53.87 68.12 72.33

MBERT

Baseline 11.22 22.38 28.20 9.30 20.51 26.69
DAPT_only 14.78 28.26 35.30 13.87 27.84 35.50
TAPT_Bias 42.73 57.16 62.22 46.35 61.71 66.53
TAPT_GN 43.55 58.57 63.71 46.93 61.28 65.92
TAPT_GN_Bias 42.42 58.30 63.52 46.62 61.77 66.46
TAPT_from_DAPT 43.11 57.37 62.34 46.38 60.68 65.68
TAPT_only 42.73 57.03 61.27 46.53 60.62 64.77

XLM-BASE

Baseline 12.24 19.48 23.43 11.16 18.72 22.77
DAPT_only 16.07 27.89 33.68 15.05 26.99 33.18
TAPT_Bias 43.16 57.24 62.20 45.38 59.78 64.35
TAPT_GN 43.51 58.35 62.94 44.28 59.49 64.03
TAPT_GN_Bias 42.91 58.25 62.63 45.38 60.78 65.10
TAPT_from_DAPT 43.38 58.27 62.88 44.66 59.46 63.87
TAPT_only 42.35 55.69 60.22 43.37 56.80 61.43

XLM-LARGE

Baseline 14.02 22.50 26.53 13.20 20.79 25.66
DAPT_only 17.80 32.11 38.19 16.64 31.20 38.44
TAPT_Bias 45.31 59.51 64.00 47.88 61.53 65.59
TAPT_GN 45.64 60.92 64.91 47.16 61.17 65.36
TAPT_GN_Bias 45.35 59.78 64.47 47.58 60.85 65.65
TAPT_from_DAPT 45.60 60.01 64.78 47.13 60.40 64.94
TAPT_only 43.49 57.69 62.08 44.21 58.35 62.24

Table 9: Restoration results under different adaptation schedules across four pretrained models. E@k denotes
Exact@k and G@k denotes Group@k.Best results per column are bolded.
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Model Scenario IntraCos Avg (↑) Nearest-InterCos Avg (↓)

SIKUROBERTA

Baseline 0.494 0.252
DAPT_only 0.488 0.266
TAPT_Bias 0.503 0.292
TAPT_GN 0.515 0.291
TAPT_GN_Bias 0.514 0.290
TAPT_from_DAPT 0.504 0.295
TAPT_only 0.486 0.255

MBERT

Baseline 0.496 0.218
DAPT_only 0.470 0.197
TAPT_Bias 0.483 0.215
TAPT_GN 0.492 0.219
TAPT_GN_Bias 0.493 0.220
TAPT_from_DAPT 0.482 0.215
TAPT_only 0.471 0.199

XLM-BASE

Baseline 0.516 0.309
DAPT_only 0.522 0.317
TAPT_Bias 0.551 0.349
TAPT_GN 0.553 0.349
TAPT_GN_Bias 0.553 0.349
TAPT_from_DAPT 0.557 0.356
TAPT_only 0.519 0.313

XLM-LARGE

Baseline 0.530 0.342
DAPT_only 0.532 0.345
TAPT_Bias 0.553 0.366
TAPT_GN 0.554 0.365
TAPT_GN_Bias 0.555 0.367
TAPT_from_DAPT 0.554 0.366
TAPT_only 0.532 0.344

Table 10: Representation analysis of variant clusters. IntraCos Avg (↑) measures within-cluster cohesion by
averaging cosine similarity between tokens and their cluster centroids. Nearest-InterCos Avg (↓) measures between-
cluster separation by averaging the cosine similarity of each cluster to its nearest neighbor. Together, indicate how
well the embedding space encodes palaeographic variant structure. Best results per column are bolded.
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Model Scenario Acc_Dyn ↑ F1_Dyn ↑ Acc_Hier_Dyn ↑ F1_Hier_Dyn ↑ Acc_Hier_Per ↑ F1_Hier_Per ↑

SIKUROBERTA

TAPT_GN_Bias 0.852 0.767 0.849 0.539 0.678 0.635
DAPT_only 0.833 0.728 0.836 0.552 0.684 0.630
TAPT_GN 0.840 0.698 0.842 0.542 0.684 0.638
TAPT_Bias 0.864 0.778 0.842 0.543 0.671 0.629
TAPT_only 0.846 0.727 0.849 0.570 0.651 0.605
TAPT_from_DAPT 0.840 0.698 0.836 0.544 0.671 0.627

MBERT

TAPT_GN_Bias 0.815 0.642 0.829 0.547 0.651 0.601
TAPT_GN 0.846 0.745 0.822 0.534 0.618 0.575
Baseline 0.809 0.672 0.822 0.515 0.638 0.583
TAPT_Bias 0.846 0.748 0.822 0.531 0.638 0.586
TAPT_only 0.846 0.762 0.836 0.540 0.664 0.616
TAPT_from_DAPT 0.846 0.752 0.822 0.534 0.658 0.616

XLM-BASE

Baseline 0.673 0.277 0.763 0.379 0.592 0.520
DAPT_only 0.778 0.483 0.796 0.493 0.625 0.567
TAPT_GN 0.765 0.429 0.803 0.433 0.632 0.569
TAPT_Bias 0.790 0.503 0.809 0.513 0.625 0.573
TAPT_only 0.778 0.476 0.789 0.498 0.612 0.566
TAPT_from_DAPT 0.784 0.486 0.809 0.484 0.618 0.576
TAPT_GN_Bias 0.784 0.481 0.809 0.502 0.605 0.556

XLM-LARGE

Baseline 0.747 0.444 0.803 0.436 0.618 0.542
DAPT_only 0.772 0.566 0.822 0.540 0.612 0.580
TAPT_GN 0.821 0.705 0.809 0.512 0.572 0.534
TAPT_Bias 0.840 0.746 0.816 0.531 0.651 0.630
TAPT_only 0.815 0.667 0.849 0.572 0.678 0.657
TAPT_from_DAPT 0.809 0.655 0.849 0.581 0.658 0.630
TAPT_GN_Bias 0.840 0.701 0.836 0.526 0.612 0.561

Table 11: Classification results for dynasty- and period-level dating under different adaptation schedules. Acc =
accuracy, F1 = macro-F1. Dyn = dynasty-level classification (single-task); Hier_Dyn = dynasty-level accuracy/F1
in the hierarchical model; Hier_Per = period-level accuracy/F1 in the hierarchical model, where period prediction
is conditioned on the predicted dynasty. Best results per column are bolded.
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