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Abstract

Autoregressive speech token generation mod-
els produce speech with remarkable variety
and naturalness but often suffer from halluci-
nations and undesired vocalizations that do not
conform to conditioning inputs. To address
these challenges, we introduce Koel-TTS, an
encoder-decoder transformer model for mul-
tilingual TTS that improves contextual adher-
ence of speech generation LLMs through pref-
erence alignment and classifier-free guidance
(CFG). For preference alignment, we design a
reward system that ranks model outputs using
automatic metrics derived from speech recog-
nition and speaker verification models, encour-
aging generations that better match the input
text and speaker identity. CFG further allows
fine-grained control over the influence of condi-
tioning inputs during inference by interpolating
conditional and unconditional logits. Notably,
applying CFG to a preference-aligned model
yields additional gains in transcription accuracy
and speaker similarity, demonstrating the com-
plementary benefits of both techniques. Koel-
TTS achieves state-of-the-art results in zero-
shot TTS, outperforming prior LLM-based
models on intelligibility, speaker similarity, and
naturalness, despite being trained on signifi-
cantly less data. 1

1 Introduction

The advancement of large language models (LLMs)
has brought transformative improvements to speech
synthesis, enabling more natural and contextually
adaptive speech generation. In particular, there has
been a recent surge in the use of LLMs for vari-
ous applications such as text-to-speech (TTS) and
speech-to-speech translation (Wang et al., 2023;
Zhang et al., 2023; Borsos et al., 2023; Neekhara
et al., 2024a; Yang et al., 2024; Susladkar et al.,
2024; Wang et al., 2024). LLM-based TTS sys-
tems enable prompt-based customization, generat-

1Audio Examples: https://koeltts.github.io/

ing speech with human-like intonation while adapt-
ing to stylistic cues, contexts, and expressive nu-
ances. This allows for diverse applications, from
conversational interfaces to expressive narration,
without extensive retraining. However, LLM-based
TTS systems face challenges, with hallucinations
being a prominent issue (Sahoo et al., 2024; Song
et al., 2024; Neekhara et al., 2024a; Borsos et al.,
2023). For example, when encountering text with
repeated or redundant phrases, LLM-based TTS
models may overemphasize these repetitions or
fail to capture the intended flow and naturalness
of the sentence. Additionally, among the multiple
outputs sampled for the same input, there can be
significant variation in quality, with some outputs
sounding more natural, accurate, and appealing
than others. This issue is akin to challenges faced
in text-generation LLMs, where outputs may range
from highly coherent to erroneous, depending on
the model’s response to complex prompts.

To tackle these challenges, we propose prefer-
ence alignment and CFG techniques to enhance
contextual coherence of LLM-based TTS models.
We introduce Koel-TTS, a transformer-based au-
toregressive TTS model that leverages a low-frame-
rate (21.5 FPS) audio codec (Casanova et al., 2025)
to enable low-latency speech generation. To per-
form preference alignment, we first identify key
metrics that strongly correlate with human judg-
ments of generated speech: transcription accuracy
and target speaker similarity. Each metric captures
distinct aspects of the generated output and can
be evaluated using automatic speech recognition
(ASR) and speaker verification (SV) models. We
integrate these metrics into a reward system that
ranks the generated outputs. With this foundation,
we then explore preference alignment algorithms,
focusing on pairwise ranking methods and scalar
reward optimization. Our findings show that fine-
tuning the base model with preference alignment
significantly improves speaker similarity, intelligi-
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bility, and generalization to unseen speakers. More
interestingly, our method also enhances naturalness,
despite not explicitly optimizing for this metric.

To further enhance adherence to conditioning in-
puts using CFG, we train the Koel-TTS model with
both conditional and unconditional inputs by ran-
domly dropping out the text and context audio dur-
ing training. At inference time, we interpolate be-
tween the unconditional and conditional logits us-
ing a CFG scale, resulting in notable improvements
in intelligibility, speaker similarity, and naturalness.
Importantly, CFG can be applied independently
to either the base model or the preference-aligned
model, consistently boosting performance across
all evaluation metrics. By combining preference
alignment with CFG, we train a 1.1 billion param-
eter multilingual Koel-TTS model that achieves
state-of-the-art zero-shot TTS performance across
several human and automatic evaluations. The key
contributions of this work are as follows:

• We introduce Koel-TTS, a multilingual
encoder-decoder transformer model that maps
text and context audio directly to acoustic to-
kens using a low-frame-rate audio codec, en-
abling expressive, robust, and low-latency au-
toregressive speech synthesis.

• We propose a preference alignment frame-
work for LLM-based TTS using ASR and SV
models as reward signals, showing that care-
fully curated text-context pairs and principled
ranking approach to favor high-quality genera-
tions, are key to maximizing alignment gains.

• We adapt CFG for LLM-based speech synthe-
sis, which involves dropping out both the text
and context audio conditioning during train-
ing. We demonstrate that CFG can signifi-
cantly improve naturalness, speaker similarity,
and intelligibility even for token-based speech
LLMs trained with next token prediction loss.

• Our Koel-TTS model, trained with preference
alignment and CFG, achieves state-of-the-art
zero-shot TTS performance while reducing
hallucinations and improving intelligibility.
Our model implementation is publicly avail-
able in the Koel-TTS repository2.

2Koel-TTS model has been renamed to MagpieTTS in
the repository: https://github.com/NVIDIA-NeMo/NeMo/
tree/magpietts_2503

2 Methodology

Koel-TTS is an autoregressive speech token gen-
eration model conditioned on a text transcript and
an audio prompt from the speaker. We begin by
outlining the tokenization scheme and model archi-
tecture, and then introduce two key techniques —
preference optimization and CFG to enhance the
model’s robustness and speaker similarity.

2.1 Tokenization

Speech: We employ a neural audio codec model
to transform raw speech signals into tokenized rep-
resentations. For a given audio signal a, the codec
model outputs a two-dimensional acoustic matrix
CT×N = CodecModel(a). In this representation,
CT×N consists of m-bit discrete codes, where T
corresponds to the downsampled sequence length,
and N represents the number of codebooks per
timestep. We use the Low Frame-rate Speech
Codec (Casanova et al., 2025), which achieves
high-quality audio compression at a bitrate of 1.89
kbps and a frame rate of 21.5 frames per second,
utilizing N=8 independent codebooks. The codec
uses Finite Scalar Quantization (FSQ) (Mentzer
et al., 2024), which ensures independence among
the codebooks. This independence eliminates the
need for additional models or delay mechanisms,
enabling the parallel prediction of all N codebooks
at each timestep.

Text: We explore two text tokenization methods:
phonemes and characters. Phonemes, commonly
used in neural TTS, capture fundamental sound
units but require language-specific grapheme-to-
phoneme (G2P) conversion. In contrast, character-
based tokenization eliminates this need, enabling
direct conversion of graphemes to acoustic infor-
mation. In our experiments, we use IPA phonemes
and character tokenizers for English, German, and
Spanish, while applying only character tokenizers
for other languages. We utilize an aggregated to-
kenizer that maintains separate token embeddings
for each language. Additionally, we perform an
ablation study with a shared character tokenizer
and a multilingual sentencepiece tokenizer across
all languages, with results detailed in Appendix E.

2.2 Model Architecture

Our speech generation model is an autoregressive
(AR) transformer decoder conditioned on text en-
codings from a non-autoregressive (NAR) trans-
former encoder using cross-attention (Figure 1).
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This encoder-decoder architecture allows us to
encourage monotonic text and speech alignment
through an attention prior and CTC loss on cross-
attention scores without interfering with the self-
attention mechanism of the AR decoder (Sec-
tion 2.3). The AR transformer predicts audio to-
kens frame by frame, generating all N codebooks
in parallel at each time step, conditioned on previ-
ous predictions and the cross-attention inputs. At
each decoder timestep, the input acoustic embed-
ding is derived by referencing and summing the
embedding of each of the N codebooks.

To enable speaker and style conditioning through
context audio (alternate audio from the target
speaker), the context audio tokens are directly
prepended to the target audio tokens. In addition
to the above described decoder-context mechanism
for speaker conditioning, we explore two addi-
tional architectures—SV Conditioned Koel-TTS
and Multi-Encoder Koel-TTS—in Appendix A.

Text 
NAR Encoder

AR Decoder

Predicted Audio Tokens (T X N)

Transcript Tokens

x-attention

Context Audio Tokens (T X N)

Figure 1: Koel-TTS Decoder Context Model Architec-
ture

2.3 Training Objective
The output of each decoder-timestep is mapped to
a vector of size N × 2m using a linear layer to
obtain the logits of all N codebooks (each of size
m-bits) at that timestep. Thereby, for all decoder
time-steps, we obtain logits ℓ of size T ×N × 2m

and calculate cross-entropy as follows:

Ltoken = CE
(
softmax (ℓ) , targetN×T

)

In addition to the above, to improve text and speech
alignment, past work (Neekhara et al., 2024a) rec-
ommends biasing the cross-attention scores be-
tween the transcript encoder and AR decoder to
be monotonic, using an attention prior and Connec-
tionist Temporal Classification (CTC) loss. Specifi-
cally, given the cross-attention score matrix Al,h

T×M ,
of the hth cross-attention head in decoder layer l,
between the audio timesteps (T ) and text timesteps
(M ), we generate a static prior using the 2D beta-
binomial distribution PT×M . Given this prior, we
obtain the re-scaled attention scores as:

Al,h
T×M ← Al,h

T×M ⊙PT×M

The attention prior is applied for the first 10,000
training iterations and then linearly annealed to a
uniform distribution (all ones) for the next 5,000
iterations and turned off thereafter. Turning off the
prior is necessary since we cannot use this prior
during inference3 and annealing ensures stability
during training.

Additionally, to encourage valid monotonic sam-
pling from the alignment matrix, we calculate like-
lihood of all possible monotonic reductions using
the CTC algorithm. That is, given the alignment
matrix A

softl,h
T×M = softmax(Al,h

T×M ), we obtain the
alignment loss for a decoder layer and head as:

Ll,halign = CTCLoss
(
A

softl,h
T×M , qM

)

where qM = {1, 2, . . .M} is the target monotonic
sequence from 1 to M . The alignment loss is
summed across all cross-attention heads and layers
to obtain Lalign =

∑
l,h L

l,h
align. The final training

loss is obtained as L = Ltoken + αLalign, where α
is the alignment loss coefficient set as 0.002.

2.4 Preference Alignment
We employ preference optimization methods to
steer the outputs of Koel-TTS towards more de-
sirable results. For a given text and context audio
input x = (xtext, xaudio), the model’s response dis-
tribution π(y|x) encompasses a range of potential
outputs y with varying levels of alignment to the
desired criteria. By constructing a dataset that ex-
plicitly labels certain responses yc as chosen and
others yl as rejected, we can leverage preference-
based optimization algorithms to shift the model’s
distribution toward producing more preferred re-
sponses.

One such approach is Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024). DPO uses
preference comparisons to modify the policy π by
contrasting it against a reference policy πref. Specif-
ically, given an input x and a chosen response yc
that is preferred over a rejected response yl, DPO
seeks to increase the likelihood ratio π(yc|x)

πref(yc|x) rel-

ative to π(yl|x)
πref(yl|x) . The core objective can be ex-

pressed as:

LDPO = Ex,yc,yl

[
β log

π(yc|x)
πref(yc|x)

− β log
π(yl|x)
πref(yl|x)

]

where β is a parameter for controlling the devia-
tion from the base reference policy πref. The above

3The final audio sequence length is unknown during infer-
ence.
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Challenging LLM-generated Texts

He wrote his name boldly at the top of 
tile sheet.

Turn a quart of lukewarm milk on to a 
quart of flour.
……

Regular TTS Training Texts

She sells sea shells on the sea shore..
Soft serene sound of the slow silver..
His phone number is eight eight..
……

Pair texts with context audios
CER 0.0, 
SSIM 0.8

CER 0.05 
SSIM 0.7

CER 0.01 
SSIM 0.79

                                      …

Context audios from training data

ASR 
Model

SV 
Model

Koel
TTS

Update policy network using DPO/RPO on the Preference Dataset

Preference 
Dataset

   Turn a quart of lukewarm milk on..
   She sells sea shells on the sea shore..
   Soft serene sound of the slow silver..
   His phone number is eight eight..
   ……

Generate multiple 
samples

Rank generated 
samples

Figure 2: Preference Alignment for Koel-TTS: Koel-TTS generates multiple outputs for challenging text and context
audio prompts, which are then rewarded using ASR and SV models to create a preference dataset for DPO and RPO.

formulation, encourages π to produce responses
more similar to yc than yl, effectively aligning the
model with the desired preferences.

Building upon DPO, we also leverage Reward-
aware Preference Optimization (RPO) (Adler et al.,
2024), which considers the magnitude of reward
differences in the optimization process. Rather than
treating all chosen versus rejected distinctions as
equal, RPO utilizes scalar rewards to measure how
much better the chosen response is compared to
the rejected one. The RPO objective introduces a
factor that scales the preference updates based on
the reward gap r∗(x, yc)− r∗(x, yl) as follows:

LRPO(x, yc, yl) = D

[
β log

π(yc | x)
πref(yc | x)

− β log
π(yl | x)
πref(yl | x)

∥∥∥ η
(
r∗(x, yc)− r∗(x, yl)

)
]

where η is a scaling parameter and D is a dis-
tance metric given by D [a∥b] := σ(b) log σ(b)

σ(a) +

(1−σ(b)) log 1−σ(b)
1−σ(a) Thereby, RPO mitigates over-

fitting to narrowly better responses since the loss
value is scaled as per the reward difference.

Preference Data Creation and Reward Sys-
tem: To construct the preference dataset (x, yc, yl),
we begin by selecting a diverse set of text and
speaker prompt combinations that challenge the
model’s ability to produce accurate and natural
speech. The text data includes a mix of regular
sentences from standard TTS datasets, and care-
fully curated challenging transcripts generated by
prompting text LLMs. These challenging texts are
designed to test the model’s robustness and include
elements such as repeated words, numbers, and
phonetically complex sequences. The inclusion of
standard texts ensures generalizability, while the
challenging examples target specific weaknesses of
the TTS model as illustrated in Figure 2.

For each text and speaker prompt, we generate
P audio samples using multinomial sampling at
temperature=0.7. Each generation is evaluated us-

ing the Parakeet TDT 1.1B ASR (Xu et al., 2023)
and Titanet-large SV (Koluguri et al., 2022a) mod-
els. Specifically, we obtain the character error rate
(CER) between the transcript of the generated au-
dio and input text using the ASR model, and cosine
similarity (SSIM) between the embeddings of the
context audio and the generated audio obtained
from the SV model. Based on the CER and SSIM,
we perform Pareto optimal ranking (Deb, 2011) on
the set of P generated audio samples for a given in-
put pair—First, we identify the Pareto front, which
consists of all audio samples that are not domi-
nated by any other sample. That is, no other audio
is strictly better on at least one metric and equally
good or better on the other. Once we identify the
first Pareto front, we remove those samples and
repeat the process on the remaining audios to find
the next front, and so on. Within each Pareto front,
we prioritize samples by assigning higher ranks
to those with lower CER scores. If there are ties
based on CER, we further differentiate by favoring
samples with higher SSIM values. We detail this
pareto ranking procedure in Appendix D.

After ranking the examples, we select the
highest-ranked as chosen and the lowest-ranked as
rejected for DPO, since we empirically find high-
contrast pairs to be beneficial for DPO. For RPO,
which handles scalar reward differences, we pair
the top two with the bottom two in all combina-
tions. In both cases, we discard pairs where the
chosen example scores worse on any metric (CER
or SSIM) than the rejected one.

To assign scalar rewards for RPO, we normalize
the CER and SSIM differences between the chosen
and rejected examples, and set the reward gap as:

r∗(x, yc)− r∗(x, yl) = Φ( ˜∆CER) + Φ( ˜∆SSIM)

where Φ is the cumulative distribution function
(CDF) of the standard normal distribution, and

˜∆CER and ˜∆SSIM are the normalized differences
of CER and SSIM respectively, between the chosen
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and rejected examples.

2.5 Classifier Free Guidance
To adapt CFG for autoregressive token prediction
models, we train both a conditional and an uncondi-
tional model simultaneously by randomly dropping
out the text and context/speaker conditioning dur-
ing training. At inference time, conditional and
unconditional outputs are combined to guide the
speech generation process. This approach allows
for more precise control over the generated speech,
which can lead to improved pronunciation, prosody,
robustness, and overall audio quality.

Distinct from the previous work that only deals
with text-independent conditionals (Darefsky et al.,
2024), in our approach, we randomly dropout both
audio and text conditioning inputs (with a probabil-
ity of 10%) during training and interpolate condi-
tional logits (ℓc) with the unconditional logits (ℓu)
during inference,

ℓcfg = γ ∗ ℓc + (1− γ) ∗ ℓu

where γ ≥ 1 is the CFG interpolation scale control-
ling the strength of guidance. Higher scale values
steer the generation to follow the text/audio inputs,
while lower scale values allow more variations. In
practice, we sweep around a range of values to find
the optimal scale γ. Figure 3 demonstrates the CFG
inference process.

A cat sat on a map Text Encoder
AR Decoder

(shared)
Audio

Context Encoder/ 
Speaker Encoder

Context 
Audio

Multi-encoder or
SV-conditioned

Decoder-context

Next Token 
Prediction

AR Decoder 
(shared)[Unconditional Input]

Model 
Type

Figure 3: CFG Inference: Logits from conditional and uncon-
ditional inputs are combined using a CFG scale γ>1, steering
model predictions towards better alignment with conditional
inputs.

3 Experiment Setup

3.1 Datasets
For our primary experiments, we train the mod-
els on a datablend containing 18k hours of En-
glish TTS data from the following datasets: train-
clean-360 and train-clean-100 subsets of Lib-
riTTS (Zen et al., 2019), HiFiTTS (Bakhturina
et al., 2021), a 17k-hour subset of the LibriVox
MLS dataset (Pratap et al., 2020) and a proprietary,
2-speaker, 63-hour dataset.

For multilingual TTS, we investigate six lan-
guages English, Spanish, German, French, Italian,

and Dutch. For non-English languages, we use the
CML dataset (Oliveira et al., 2023) that contains
1,562 hours of German, 642 hours of Dutch, 476
hours of Spanish, 283 hours of French, 131 hours
of Italian speech data. Additionally, we incorporate
42 hours of internal Spanish data from two speak-
ers. Combining this with our 18k hours of English
TTS data, we create a final blend of 21k hours of
multilingual TTS data.

3.2 Baseline Model Training
With the above datasets, we create (context audio,
transcript, target audio) triplets where context and
target audio are distinct utterances from the same
speaker. During training, we use a random 5 second
slice of the context audio. For our primary exper-
iments, we train a 380 million parameter model
(Koel-TTS 380m English) that consists of 12 de-
coder transformer layers using a hidden dimension
of 768 and a feed-forward network (FFN) dimen-
sion of 3072. Rather than a standard FFN sub-layer,
our decoder uses a causal convolution layer with a
kernel size 3. The transcript encoder comprises of
6 transformer layers that do not use causal masking,
but otherwise match the decoder’s specifications.
We use multi-headed self and cross attention lay-
ers with 12 heads in each layer. In addition to
the above archiectute, we train a larger 1.1 billion
parameter model for multilingual-TTS (Koel-TTS
1.1b Multilingual). In this architecture, we use 16
decoder layers and 6 encoder layers, with hidden
dimension of 1536 and FFN dimension of 6144.
Other hyper-parmaters match the Koel-TTS 380m
English model.

The Koel-TTS 380m English model is trained
on 16 NVIDIA A100 GPUs using a global batch
size of 256, optimized using Adam optimizer with
an initial learning rate of 1e − 4. The learning
rate is annealed every 1000 training steps using
an exponential decay factor of 0.998. Training
on the English dataset converges in around 200k
steps. The Koel-TTS 1.1b Multilingual follows the
same training procedure and hyper-parameters on
32 NVIDIA A100 GPUs. Training for the 1.1b
model converges in around 150k steps.

3.3 Preference dataset and alignment
To perform preference alignment, we create a pref-
erence dataset using the procedure described in
Section 2.4. Specifically, we first curate 800 chal-
lenging texts generated using Llama-8b (Touvron
et al., 2023). It is prompted to generate texts with
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repeated words and alliterations. The complete list
of these texts can be found on our webpage. We
pair each challenging text with 10 random context
audios sampled from our training dataset. Next, we
sample 50,000 regular transcripts from our training
data, and pair each text with one random context
audio from our training data. This results in a total
58,000 text and context audio pairs. For preference
alignment of the multilingual model, we create 10k
text and context audio pairs per language (by pair-
ing texts with a random context audio), from the
CML training data of each language. We combine
these pairs with 20k English text and context audio
pairs randomly sampled from the 58k pairs used in
our primary experiments. We utilize the whisper-
large-v3 (Radford et al., 2022) ASR model in our
reward system to create preference pairs.

For each pair, we generate 6 audio samples from
Koel-TTS and create chosen-rejected pairs using
the reward and filtering criteria outlined in Sec-
tion 2.4. Starting from our base checkpoints, we
perform DPO or RPO finetuning for a maximum
of 4,000 mini-batch iterations using a batch-size
of 64 pairs, optimized using Adam optimizer with
a fixed learning rate (LR) 2e-7. For RPO, we use
β=0.01 and η=1.0; for DPO we try β=0.01 and
β=0.05 and choose the checkpoint with the best
validation metrics.

3.4 Evaluation
We evaluate synthesized speech on intelligibility,
speaker similarity, and naturalness. Intelligibil-
ity is measured using ASR-based character er-
ror rate (CER) and word error rate (WER), with
Parakeet-TDT (Xu et al., 2023) for English and
whisper-large-v3 (Radford et al., 2022) for other
languages. Speaker similarity is assessed via co-
sine similarity (SSIM) between speaker embed-
dings of synthesized and context audio, using
Titanet-Small (Koluguri et al., 2022a) which is dif-
ferent from the Titanet-Large used for preference
alignment. Naturalness is evaluated with Squim-
MOS (Kumar et al., 2023), and we also conduct
a human evaluation for two of our zero-shot Koel-
TTS models, benchmarking them against others
in Section 4.1. For inference, we use multinomial
sampling with temperature=0.6. Due to proba-
bilistic generation, each experiment is repeated five
times, reporting mean metrics with 95% confidence
intervals.

For unseen English speakers, we create a subset
of test-clean LibriTTS containing 180 utterances

from a total of 36 out of the 40 speakers, using 5
distinct context and target audios from each speaker.
We use a random 5 second slice from the context
audio during inference for all experiments. For non-
English languages, we use 100 speaker-balanced
utterances for each language from the CML test
set.

4 Results

We report the results of the Baseline model and
the improvements through preference alignment
and CFG for the Koel-TTS 380m English model
in Table 1. As evident, both DPO and RPO signifi-
cantly improve intelligibility and speaker-similarity
metrics over the baseline. Interestingly, preference
alignment significantly improves zero-shot speaker
similarity on unseen speakers, even though we do
not include any new speakers in the preference data
creation. The naturalness metric Squim-MOS also
shows an improvement over the baseline models,
even though we don’t explicitly include it in our
reward system. This suggests that CER and SSIM
metrics serve as good proxy for human preferences
and can be automatically computed, thereby allow-
ing easy scaling up of the preference alignment
process. In practice, we find RPO to be less sensi-
tive to hyper-parameter tuning and number of train-
ing iterations than DPO. RPO also works reliably
when preference data does not have high-contrast
chosen-rejected pairs, since it considers reward dif-
ferences instead of a binary pair, in its optimization
objective.

Table 1: Preference Alignment (DPO, RPO) and CFG im-
provements over a baseline Koel-TTS 380m English model for
zero-shot TTS. Both methods improve intelligibility, speaker
similarity and naturalness metrics, with best results achieved
when they are used together.

Model/Technique CER(%) ↓ WER(%) ↓ SSIM ↑ Squim-MOS

Ground Truth 0.80 1.83 0.771 3.93± 0.03

Baseline (BL) 2.68± 1.13 4.02± 1.12 0.637± 0.008 4.35± 0.02
BL + DPO 0.89± 0.15 1.90± 0.28 0.667± 0.003 4.40± 0.01
BL + RPO 1.17± 0.94 2.09± 1.00 0.681± 0.005 4.40± 0.01
BL + CFG 0.57± 0.11 1.37± 0.11 0.720± 0.004 4.42± 0.01

BL + DPO + CFG 0.55± 0.10 1.42± 0.28 0.729± 0.003 4.41± 0.01
BL + RPO + CFG 0.55± 0.11 1.41± 0.19 0.729± 0.003 4.42± 0.01

For CFG, by controlling the scale γ during in-
ference, we can steer the generations to be better
aligned with conditional inputs. We vary γ between
1 to 3 at 0.2 intervals and show the results of this ex-
periment in Figure 5. Increasing γ significantly re-
duces the CER and simultaneously increases SSIM
across all models. From these observations, we
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Figure 4: Evaluations for the Koel-TTS 1.1b Multilingual model across various languages and text tokenizers. Both
CFG and preference alignment, independently and in combination (green), improve CER and SSIM over the base
model (gray).

set γ=2.5 as the optimal value. Additionally, CFG
inference on a preference aligned model results in
further improvements across all metrics (Table 1).
The reduction in CER/WER confidence intervals
indicates that we can generate accurate speech reli-
ably. In Appendix B, we report results for English-
TTS on alternate model architectures and observe
similar improvements from preference alignment
and CFG across all experiments.

Figure 5: Effect of CFG scale on CER/SSIM for Koel-
TTS 380m English Model

Figure 4 presents the results of multilingual-TTS
evaluations on unseen speakers from each language.
As shown by the results, both preference alignment
and CFG (with γ=2.5) yield substantial improve-
ment in both intelligibility and speaker similarity
metrics across various languages and tokenizers.
More interestingly, CFG inference on a DPO fine-
tuned checkpoint, yields substantial speaker simi-
larity improvements over using either DPO or CFG
in isolation, especially for non-English languages.

We find that Koel-TTS can work effectively on
raw character tokens, and achieve similar results
as using phonetic inputs, for languages in which
we consider both phoneme and character tokeniz-
ers (English, Spanish and German). Incorporating

both CFG and DPO, Koel-TTS 1.1b Multilingual
achieves similar CER as the Koel-TTS 380m En-
glish model and improves speaker similarity (0.740
vs. 0.726). We present ablations with alternate mul-
tilingual tokenization schemes in Appendix E.

0 20 40 60 80 100
Percentage

Koel TTS 1.1b Multilingual VS E2-TTS

Koel TTS 1.1b Multilingual VS F5-TTS

Koel TTS 1.1b Multilingual VS StyleTTS-2

Koel TTS 1.1b Multilingual VS T5-TTS

Koel TTS 1.1b Multilingual VS VALLE-X

Koel TTS 1.1b Multilingual VS XTTS-v2

Koel TTS 1.1b Multilingual VS YourTTS

Koel TTS 380m English VS E2-TTS

Koel TTS 380m English VS F5-TTS
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Figure 6: Koel-TTS vs. Previous Models: Dark green bars
indicate the percentage of instances where human listeners
preferred Koel-TTS for audio naturalness during side-by-side
evaluations.

4.1 Comparison against Past Work

We benchmark both the Koel-TTS 380m English
and Koel-TTS 1.1b Multilingual models against
past work and open source models. We evalu-
ate all models for zero-shot TTS on the unseen
speaker evaluation set (test-clean LibriTTS sub-
set), using the same evaluation procedure as de-
scribed in Section 3.1. We also compute three
human evaluation metrics on Amazon Mechani-
cal Turk namely Naturalness Mean Opinion Score
(MOS), Speaker similarity MOS (SMOS) and Com-
parative MOS (CMOS). For complete details on
MOS studies, see Appendix H. As shown in Ta-
ble 2, Koel-TTS achieves state-of-the-art intelli-
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gibility scores (CER/WER) despite being trained
on significantly less data than competing models.
While Koel-TTS outperforms LLM-based base-
lines (VALLE-X and XTTS-v2) in SSIM scores,
it slightly underperforms Conditional Flow Match-
ing (CFM)-based systems (F5-TTS and E2-TTS),
which leverage 100k+ hours of speech data, com-
pared to 21k hours for our largest model. Human
evaluations of naturalness (MOS) and speaker sim-
ilarity (SMOS) show Koel-TTS to be equally or
more preferred compared to all other models. We
attribute the difference between SSIM scores and
SMOS to SSIM’s emphasis on timbre similarity,
whereas human ratings consider additional factors
such as style and accent. CMOS results in Figure 6,
further confirm that Koel-TTS is preferred over all
competing approaches.

Table 2: Intelligibility, SSIM and naturalness evaluation of
various zero-shot TTS models on a subset of test-clean Lib-
riTTS data.

Model CER (%) ↓WER (%) ↓ SSIM ↑ MOS ↑ SMOS ↑
Ground Truth 0.80 1.83 0.771 3.937± 0.028 -
VALLE-X (Zhang et al., 2023) 6.65 11.28 0.679 3.532± 0.046 3.709± 0.045
YourTTS (Casanova et al., 2022) 2.44 5.19 0.581 3.235± 0.047 3.229± 0.053
T5-TTS (Neekhara et al., 2024a) 1.66 3.28 0.459 3.533± 0.046 3.366± 0.050
E2-TTS (Eskimez et al., 2024) 1.29 2.66 0.848 3.889± 0.040 3.793± 0.045
F5-TTS (Chen et al., 2024) 1.23 2.55 0.834 3.930± 0.042 3.785± 0.045
XTTS-v2 (Casanova et al., 2024) 0.99 2.09 0.680 3.715± 0.043 3.434± 0.050
StyleTTS-2 (Li et al., 2024) 0.75 1.52 0.579 4.047± 0.039 3.786± 0.044

Koel-TTS 380m English 0.55 1.41 0.726 4.054± 0.039 3.826± 0.044
Koel-TTS 1.1b Multilingual 0.63 1.42 0.740 4.058± 0.040 3.848± 0.043

4.2 Related Work
For text-generation, preference alignment tech-
niques (Christiano et al., 2017; Ouyang et al.,
2022; Shao et al., 2024; Rafailov et al., 2024;
Adler et al., 2024) have been fundamental in im-
proving usability and reasoning abilities of text
LLMs. These approaches, including RLHF and
offline ranking methods, are now being extended
to speech and audio (Ouyang et al., 2022; Rafailov
et al., 2024; Cideron et al., 2024). For instance,
SpeechAlign (Zhang et al., 2024), proposes an it-
erative strategy to align speech language models
with human preferences by addressing the distri-
bution gap between golden AR tokens (from real
speech) and synthetic AR tokens (generated during
inference). Although ground truth speech can be
used to guide preference optimization training, we
show in Appendix C that it introduces inconsisten-
cies due to its fundamentally different distribution
from model-generated tokens. This issue makes
preference-based optimization such as DPO less
effective.

Previous works such as Seed-TTS (Anastassiou
et al., 2024) and (Tian et al., 2025) explore pref-

erence alignment in TTS but fall short in design
clarity and improvements over the baseline model.
For example, Seed-TTS (Anastassiou et al., 2024)
performs DPO but does not specify how the gen-
erations are ranked to create the preference pairs.
Moreover, their gains are marginal as compared to
the improvements we observe in our experiments.
In Seed-TTS, the WER over the baseline model im-
proved by 15% and SSIM improved by 0.5% on En-
glish TTS. In contrast, our models with only DPO
finetuning achieve a WER reduction from 4.02%
to 1.90% (67% improvement) and SSIM improve-
ment from 0.637 to 0.667 (6.4% improvement) for
English TTS. Similarly, (Tian et al., 2025) relies
primarily on SSIM to construct chosen-rejected
pairs, claiming that WER-based optimization is
less effective for preference alignment, as it focuses
more on local transcription errors. In contrast, we
demonstrate that both CER and SSIM can be used
as reward signals in the Pareto ranking procedure
of the generations, yielding consistent improve-
ments across intelligibility, speaker similarity, and
naturalness.

While CFG has been successfully used in diffu-
sion and flow-based speech generation models (Ho
and Salimans, 2021; Le et al., 2024; Du et al., 2024;
Chen et al., 2024; Eskimez et al., 2024), there has
been limited application of CFG in pure autoregres-
sive LLMs trained with the next token prediction
loss. In our work, we demonstrate that by dropping
out the conditioning inputs during training, we can
effectively interpolate between conditional and un-
conditional logits during inference, significantly
enhancing contextual adherence in Speech LLMs.
Notably, we observe the complementary benefits of
preference alignment and CFG demonstrating the
best results are achieved when both the techniques
are applied together.

5 Conclusion

We introduce Koel-TTS, an LLM-based TTS model
that accurately and efficiently maps text and ref-
erence audio to acoustic speech tokens, achieving
state-of-the-art zero-shot performance. We pro-
vide a principled approach for ranking generated
outputs such that we can maximize gains from
preference alignment training. By integrating pref-
erence alignment—guided by transcription accu-
racy and speaker similarity—and Classifier-Free
Guidance, Koel-TTS significantly reduces hallu-
cinations while enhancing intelligibility, speaker

21226



similarity, and naturalness of generated speech.

Limitations

In our work, we demonstrate that preference opti-
mization can be effective in enhancing measurable
attributes of the generated speech such as transcrip-
tion accuracy and speaker similarity. However,
speech has several other attributes that are hard
to automatically measure such as prosody, natu-
ralness, accent and artifacts. We recommend fu-
ture work in designing reliable metrics that can
be automatically computed and integrated into a
controllable reward system suitable for preference
optimization. Such a controllable reward system
can be used for improving the desired aspects of
generated speech.

DPO and RPO provide a scalable and stable
framework for aligning generative models using
precomputed pairwise comparisons. However, of-
fline preference optimization methods lack a feed-
back loop between training and preference pair
generation, meaning that the chosen-rejected pairs
are not strictly from the output distribution of the
current state of the model. The effectiveness of
such techniques could be further improved with on-
line preference optimization methods, where both
the model updates and reward assignments are per-
formed iteratively. Exploring such approaches for
generative speech LLMs remains a promising di-
rection for future work.
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A Alternate Model Architectures

In addition to the decoder context Koel-TTS ar-
chitecture described in our paper, we explore two
alternate Koel-TTS architectures (See Figure 7):

SV Conditioned Koel-TTS: In this configu-
ration, a speaker embedding vector is extracted
from the context audio using a pre-trained SV
model (Koluguri et al., 2022b). This embedding
vector is projected to hidden dimension of the trans-
former network, temporally expanded (repeated
across the time axis) and added to the text en-
coder’s output. The resulting combined representa-
tion serves as the input to the cross-attention layers
of the AR decoder, enabling the prediction of au-
dio codes while conditioning on the speaker iden-
tity. The advantage of this design is the ability
to leverage transfer learning from the SV model,
thereby enhancing generalization in scenarios with
limited data. However, since the speaker vector is a
compressed representation that primarily preserves
voice identity, it does not capture other nuanced
aspects of the context audio, such as speaking style
and accent, which limits control over the generated
speech.

Multi encoder Koel-TTS: In this architecture,
context audio tokens are processed by a dedicated
context encoder, which is a separate NAR trans-
former encoder. The outputs of the context en-
coder and text encoder are fed into alternate cross-
attention layers of the AR decoder, as illustrated
in Figure 7c. This design allows for a clear sepa-
ration of modalities, where each encoder operates
independently, and the decoder employs dedicated
cross-attention mechanisms to integrate the outputs.
This model also allows cross-attention biasing over
the text tokens independently for learning mono-
tonic alignment, while allowing variable length
context audios.

Table 3 presents the baseline results of different
Koel-TTS architectures on seen and unseen En-
glish speakers, without incorporating preference
alignment training or CFG inference. All three ar-
chitectures achieve similar intelligibility, but the
decoder context model outperforms the multi en-
coder model on unseen speaker similarity, while
the latter performs slightly better on seen speakers.
These results suggest that decoder context model
generalizes better to unseen speakers making it a
more suitable choice for zero-shot TTS. The multi
encoder architecture tends to overfit to the training
speakers, as indicated by worse speaker similarity

(SSIM) on unseen speakers, and better speaker sim-
ilarity on seen speakers across all our experiments
(also in Table 4). While SV conditioned model also
achieves similar SSIM as decoder context, percep-
tually, we find the decoder context model captures
the intended style of the context audio better.

Table 3: Baseline TTS results on seen and unseen speak-
ers for different Koel-TTS models, without using CFG or
preference alignment. Lower CER(%) & WER(%) indicate
higher intelligibility. Higher SSIM indicates higher speaker
similarity to ground-truth.

Eval Set Model CER(%) ↓ WER(%) ↓ SSIM ↑ Squim-MOS ↑
Ground Truth 0.51± 0.00 1.42± 0.00 0.763± 0.000 4.616± 0.03

Seen Decoder context 1.73± 0.60 2.98± 0.59 0.700± 0.001 4.350± 0.038
Speakers SV Conditioned 1.71± 0.41 2.82± 0.41 0.697± 0.003 4.360± 0.021

Multi Encoder 1.92± 0.68 3.02± 0.76 0.712± 0.002 4.346± 0.028

Ground Truth 0.80± 0.00 1.83± 0.00 0.771± 0.000 4.588± 0.020
Unseen Decoder Context 2.68± 1.13 4.02± 1.12 0.637± 0.008 4.347± 0.024

Speakers SV Conditioned 3.12± 0.98 4.22± 1.02 0.619± 0.003 4.318± 0.034
Multi Encoder 2.56± 1.44 3.74± 1.36 0.601± 0.004 4.318± 0.059

B DPO and RPO on all model
architectures

We perform DPO and RPO preference optimization
on all models and evaluate the preference aligned
checkpoint with and without CFG. Results are re-
ported in Table 4. We observe a significant improve-
ment in CER, WER and SSIM across all baseline
models, when preference alignment or CFG is done
in isolation. Across most architectures, the best
metrics are achieved by CFG inference on a pref-
erence aligned checkpoint (DPO + CFG or RPO +
CFG). Both DPO and RPO perform similarly, but
in practice, we find DPO to be more sensitive to β
hyperparameter as compared to RPO.

C Comparison with SpeechAlign

To compare with a prior technique proposed in
SpeechAlign (Zhang et al., 2024), we perform an
ablation in which the ground-truth audio tokens
are selected as our chosen examples (as opposed
to generated samples). We use a subset of train-
clean-360 LibriTTS data as chosen examples, and
the worst ranked of the 6 generations (for an input)
as the rejected example, creating a similar sized
preference dataset as our other experiments. We
find that preference alignment algorithms find it
trivial to differentiate ground-truth examples from
generated ones with the preference loss reducing to
nearly zero within the first few hundred iterations.
With our default DPO hyperparameters (β=0.01,
LR=2e-7) such a setup leads to model degenera-
tion and a very high CER (>90%). Fine-tuning DPO
hyperparameters (β=1.0, LR=1e-7) and early stop-
ping, prevents model degeneration, but does not
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Figure 7: Koel-TTS Model Architectures: Three methods for conditioning TTS synthesis on context audio and
transcripts. The Decoder Context approach utilizes the decoder’s self-attention mechanism for speaker conditioning.
The Multi Encoder and SV Conditioned models employ cross-attention layers for speaker conditioning.

Table 4: Evaluation of DPO, RPO and CFG on baseline models for all Koel-TTS architectures. We consider two DPO
experiments with β = (0.01, 0.05).

Seen Speakers Unseen Speakers

Model/Technique CER(%) ↓ WER(%) ↓ SSIM ↑ Squim-MOS ↑ CER(%) ↓ WER(%) ↓ SSIM ↑ Squim-MOS ↑
Multi Encoder (BL-1) 1.92± 0.68 3.02± 0.76 0.712± 0.002 4.346± 0.028 2.56± 1.44 3.74± 1.36 0.601± 0.004 4.318± 0.059
BL-1 + RPO (β = 0.01) 1.01± 0.58 1.76± 0.59 0.737± 0.002 4.408± 0.010 0.79± 0.12 1.72± 0.18 0.641± 0.002 4.389± 0.021
BL-1 + DPO (β = 0.01) 0.67± 0.17 1.48± 0.34 0.737± 0.004 4.406± 0.011 0.62± 0.12 1.49± 0.20 0.645± 0.001 4.402± 0.029
BL-1 + DPO (β = 0.05) 1.30± 0.51 2.25± 0.53 0.737± 0.003 4.401± 0.014 1.01± 0.40 2.01± 0.49 0.643± 0.005 4.402± 0.013
BL-1 + CFG (γ = 2.5) 0.73± 0.16 1.63± 0.24 0.752± 0.003 4.420± 0.010 0.69± 0.07 1.59± 0.10 0.653± 0.005 4.415± 0.007
BL-1 + RPO + CFG (γ = 2.5) 0.75± 0.23 1.56± 0.32 0.766± 0.003 4.422± 0.011 0.51± 0.12 1.25± 0.18 0.674± 0.004 4.392± 0.029
BL-1 + DPO (β = 0.01) + CFG (γ = 2.5) 0.51± 0.12 1.32± 0.23 0.767± 0.004 4.418± 0.012 0.58± 0.17 1.38± 0.08 0.678± 0.005 4.417± 0.015
BL-1 + DPO (β = 0.05) + CFG (γ = 2.5) 1.12± 0.83 1.87± 0.85 0.766± 0.002 4.420± 0.011 0.49± 0.07 1.24± 0.11 0.676± 0.004 4.390± 0.025

Decoder Context (BL-2) 1.73± 0.60 2.98± 0.59 0.700± 0.001 4.350± 0.038 2.68± 1.13 4.02± 1.12 0.637± 0.008 4.347± 0.024
BL-2 + RPO (β = 0.01) 1.01± 0.60 2.03± 0.62 0.719± 0.002 4.403± 0.013 1.17± 0.94 2.09± 1.00 0.681± 0.005 4.401± 0.012
BL-2 + DPO (β = 0.01) 1.32± 0.40 2.39± 0.46 0.708± 0.004 4.392± 0.017 0.89± 0.15 1.90± 0.28 0.667± 0.003 4.400± 0.012
BL-2 + DPO (β = 0.05) 1.25± 0.83 2.27± 0.97 0.716± 0.004 4.393± 0.016 0.98± 0.46 2.03± 0.49 0.676± 0.004 4.408± 0.010
BL-2 + CFG (γ = 2.5) 0.62± 0.20 1.58± 0.44 0.741± 0.003 4.418± 0.009 0.57± 0.11 1.37± 0.11 0.720± 0.004 4.417± 0.007
BL-2 + RPO + CFG (γ = 2.5) 0.51± 0.12 1.38± 0.25 0.751± 0.002 4.415± 0.013 0.55± 0.11 1.41± 0.19 0.729± 0.003 4.415± 0.012
BL-2 + DPO (β = 0.01) + CFG (γ = 2.5) 0.62± 0.09 1.53± 0.17 0.744± 0.002 4.409± 0.019 0.60± 0.10 1.40± 0.31 0.720± 0.001 4.387± 0.038
BL-2 + DPO (β = 0.05) + CFG (γ = 2.5) 0.54± 0.08 1.43± 0.19 0.749± 0.005 4.413± 0.018 0.55± 0.10 1.42± 0.28 0.729± 0.003 4.413± 0.013

SV Conditioned (BL-3) 1.71± 0.41 2.82± 0.41 0.697± 0.003 4.360± 0.021 3.12± 0.98 4.22± 1.02 0.619± 0.003 4.318± 0.034
BL-3 + RPO (β = 0.01) 0.72± 0.14 1.61± 0.22 0.717± 0.001 4.408± 0.010 1.25± 0.38 2.06± 0.49 0.668± 0.003 4.389± 0.026
BL-3 + DPO (β = 0.01) 0.62± 0.19 1.46± 0.31 0.705± 0.003 4.402± 0.011 0.76± 0.12 1.67± 0.11 0.650± 0.003 4.384± 0.023
BL-3 + DPO (β = 0.05) 1.24± 0.33 2.19± 0.33 0.713± 0.002 4.416± 0.042 1.64± 0.70 2.64± 0.69 0.663± 0.003 4.385± 0.019
BL-3 + CFG (γ = 2.5) 0.48± 0.12 1.38± 0.33 0.738± 0.003 4.407± 0.025 0.52± 0.11 1.38± 0.20 0.703± 0.002 4.418± 0.011
BL-3 + RPO + CFG (γ = 2.5) 0.46± 0.10 1.25± 0.14 0.750± 0.003 4.423± 0.010 0.57± 0.15 1.33± 0.21 0.715± 0.003 4.416± 0.014
BL-3 + DPO (β = 0.01) + CFG (γ = 2.5) 0.46± 0.05 1.24± 0.11 0.743± 0.002 4.417± 0.015 0.47± 0.07 1.26± 0.09 0.706± 0.004 4.412± 0.014
BL-3 + DPO (β = 0.05) + CFG (γ = 2.5) 0.45± 0.13 1.27± 0.06 0.747± 0.001 4.403± 0.021 0.70± 0.45 1.51± 0.44 0.715± 0.004 4.373± 0.055

yield significant improvement over the baseline
model (Table 5). This suggests it is important to
obtain chosen-rejected pairs from model’s output
distribution, for preference optimization such as
DPO to work effectively.

Table 5: Comparison between preference alignment using
generated output ranking (BL-1 + DPO), vs using GT audio
tokens as chosen outputs in the preference pairs (BL-1 + DPO
(GT as Chosen))

Seen Speakers

Model/Technique CER(%) ↓ WER(%) ↓ SSIM ↑ Squim-MOS ↑
Ground Truth 0.51± 0.00 1.42± 0.00 0.763± 0.000 4.616± 0.03

Multi Encoder (BL-1) 1.92± 0.68 3.02± 0.76 0.712± 0.002 4.346± 0.028
BL-1 + DPO 0.67± 0.17 1.48± 0.34 0.737± 0.004 4.406± 0.011
BL-1 + DPO (GT as Chosen) 1.58± 0.42 2.88± 0.41 0.710± 0.005 4.344± 0.038

D Pareto optimal ranking for creating
preference pairs

Pareto optimal ranking is a technique for multi-
attribute decision making (Deb, 2011). The key

idea is to find non-dominated solutions and remov-
ing them from the current set recursively till we
have ranked all items. When we find multiple items
in the same pareto front, we break the ties by pri-
oritizing our preference for more robust examples
(lower CER), and we break any remaining ties by
preferring higher SSIM. We provide the python
code for ranking for this procedure in Listing 1.

E Multilingual Tokenization Ablations

We train three decoder-context Koel-TTS models
considering three tokenization schemes besides
phonemes — Model A: Aggregated characters
from different languages (Vocab size = 256 ×
Number of Languages). Model A is the default
model in our primary multilingual experiments.
Model B: Shared character tokenizer (256 char-
acter tokens shared across all languages). Model C:
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def pareto_ranking(items):
"""
Given a list of (cer , ssim , item_idx), return the list of items
sorted by their Pareto rank (rank 1 is best). Items in the same
rank are sorted by ascending cer and incase of a tie , by descending ssim.

:param items: List of tuples (cer , ssim , item_idx).
:return: A list of tuples (rank , cer , ssim , item_idx), sorted first by rank ,

then by ascending cer within the same rank.
"""

# A helper function to check if item A is dominated by item B
# A: (cerA , ssimA , item_idxA), B: (cerB , ssimB , item_idxB)
def is_dominated(A, B):

return (B[0] <= A[0]) and (B[1] >= A[1]) and (B[2] != A[2])

remaining = items [:]

ranked_items = [] # Will hold tuples of (rank , cer , ssim , item_idx)
current_rank = 1

while remaining:
# Find all non -dominated items in the current set ’remaining ’
non_dominated = []
for i in range(len(remaining)):

dominated = False
for j in range(len(remaining)):

if i != j:
if is_dominated(remaining[i], remaining[j]):

dominated = True
break

if not dominated:
non_dominated.append(remaining[i])

# Assign current_rank to all non -dominated items
# and remove them from remaining
for nd in non_dominated:

ranked_items.append (( current_rank , nd[0], nd[1], nd[2]))
remaining.remove(nd)

current_rank += 1

# Now sort the ranked items by (rank asc , cer asc , ssim desc)
ranked_items.sort(key=lambda x: (x[0], x[1], -x[2]))

return ranked_items

Listing 1: Pareto Optimal Ranking of generated outputs for a given text-context pair using CER and SSIM metrics

Multilingual sentence piece tokens 4 (Vocab size
110k). In all models, the we use separate phoneme
tokens for each language and aggregate them into
our tokenizer. We find that character-based tok-
enizers perform significantly better than sentence
piece tokenizer on intelligibility metrics, especially
when unseen words are encountered during infer-
ence. Table 6 compares the different models for
each language studied in our work. All results are
reported using CFG scale γ = 2.5, without any
preference alignment. Additionally, we find the ag-
gregated char tokenizer to perform better for cross-

4https://huggingface.co/google-bert/
bert-base-multilingual-uncased

lingual TTS synthesis (when the context audio has
a different language than the input text). This is
because token embeddings for each language are
independent from the others and not shared (as in
the case of the shared character tokenizer).

F Evaluation on hard sentences with
repeated words

Autoregressive TTS models often struggle with
challenging sentences containing repeated words.
Issues such as infinite silences, looping of words
become more prominent when presented with such
challenging inputs. While cross-attention bias-
ing (Badlani et al., 2022; Neekhara et al., 2024a)
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Table 6: Comparison of decoder context Koel-TTS models trained using different text tokenizers, considering all allowed
tokenizations at test time. (CFG Scale γ = 2.5, No Preference Alignment). Evaluation conduced on unseen speakers for each
language on the test set described in Section 3.4

Model Language Tokenizer CER(%) ↓ WER(%) ↓ SSIM ↑
Model A (Phoneme + Aggregated characters) English Phonemes 0.78± 0.77 1.65± 0.85 0.735± 0.002
Model B (Phoneme + Multilingual sentencepiece) English Phonemes 0.59± 0.10 1.57± 0.21 0.746± 0.003
Model C (Phoneme + Shared characters) English Phonemes 0.60± 0.20 1.41± 0.23 0.739± 0.002
Model B (Phoneme + Multilingual sentencepiece) English Multilingual sentencepiece 0.58± 0.09 1.44± 0.17 0.747± 0.000
Model C (Phoneme + Shared characters) English Shared characters 0.52± 0.04 1.37± 0.08 0.739± 0.001
Model A (Phoneme + Aggregated characters) English Aggregated characters 0.77± 0.49 1.67± 0.47 0.731± 0.005

Model A (Phoneme + Aggregated characters) Spanish Phonemes 1.37± 1.53 3.63± 1.99 0.693± 0.013
Model B (Phoneme + Multilingual sentencepiece) Spanish Phonemes 1.52± 0.71 4.01± 0.35 0.698± 0.011
Model C (Phoneme + Shared characters) Spanish Phonemes 1.41± 0.56 3.73± 0.59 0.703± 0.007
Model B (Phoneme + Multilingual sentencepiece) Spanish Multilingual sentencepiece 1.96± 0.68 4.93± 0.67 0.701± 0.007
Model C (Phoneme + Shared characters) Spanish Shared characters 1.64± 0.81 4.03± 1.08 0.704± 0.011
Model A (Phoneme + Aggregated characters) Spanish Aggregated characters 1.03± 0.11 3.11± 0.18 0.693± 0.008

Model A (Phoneme + Aggregated characters) German Phonemes 2.69± 2.36 5.75± 3.25 0.607± 0.008
Model B (Phoneme + Multilingual sentencepiece) German Phonemes 4.01± 3.89 6.88± 5.05 0.613± 0.021
Model C (Phoneme + Shared characters) German Phonemes 1.67± 0.71 4.54± 1.05 0.645± 0.007
Model B (Phoneme + Multilingual sentencepiece) German Multilingual sentencepiece 4.28± 3.13 7.77± 2.90 0.611± 0.014
Model C (Phoneme + Shared characters) German Shared characters 1.93± 1.06 4.76± 1.08 0.644± 0.005
Model A (Phoneme + Aggregated characters) German Aggregated characters 2.02± 1.13 4.81± 0.95 0.614± 0.003

Model B (Phoneme + Multilingual sentencepiece) French Multilingual sentencepiece 6.77± 2.12 10.33± 2.17 0.638± 0.009
Model C (Phoneme + Shared characters) French Shared characters 2.30± 0.70 5.35± 0.81 0.643± 0.006
Model A (Phoneme + Aggregated characters) French Aggregated characters 2.28± 1.26 5.50± 1.57 0.641± 0.011

Model B (Phoneme + Multilingual sentencepiece) Italian Multilingual sentencepiece 3.68± 0.65 12.83± 1.07 0.650± 0.003
Model C (Phoneme + Shared characters) Italian Shared characters 4.99± 1.83 12.81± 2.15 0.649± 0.009
Model A (Phoneme + Aggregated characters) Italian Aggregated characters 2.37± 0.50 9.64± 1.09 0.615± 0.003

Model B (Phoneme + Multilingual sentencepiece) Dutch Multilingual sentencepiece 4.19± 1.24 11.49± 1.96 0.607± 0.004
Model C (Phoneme + Shared characters) Dutch Shared characters 3.05± 0.93 9.79± 1.57 0.613± 0.008
Model A (Phoneme + Aggregated characters) Dutch Aggregated characters 3.32± 1.51 10.14± 1.18 0.594± 0.006

Table 7: Intelligibility and Speaker similarity evaluation on
challenging sentences with repeated words on base models
and the preference aligned models with CFG.

Model CER(%) ↓ WER(%) ↓ SSIM ↑
Multi Encoder (Baseline) 5.62± 0.52 10.60± 0.90 0.788± 0.002
Multi Encoder (w Pref Align and CFG) 5.03± 0.16 9.19± 0.46 0.807± 0.001

Decoder Context (Baseline) 5.70± 0.56 10.38± 0.35 0.790± 0.003
Decoder Context (w Pref Align and CFG) 4.69± 0.14 9.04± 0.24 0.798± 0.002

SV Conditioned (Baseline) 5.59± 0.84 10.33± 0.94 0.785± 0.001
SV Conditioned (w Pref Align and CFG) 4.67± 0.37 8.50± 0.66 0.798± 0.002

partially addresses this issue, we find CFG and
preference alignment can further improve robust-
ness of the base model by mitigating hallucinations.
Table 7 presents evaluation of base model and pref-
erence aligned + CFG models on a set of 91 hard
sentences linked in our webpage. We conduct these
evaluations by pairing the challenging texts with 2
seen speakers in our training dataset. As indicated
by the results, while CFG and preference align-
ment improve CER and WER, there is scope for
further improvement using inference-time mono-
tonic alignment strategies.

G SSIM with WavLM

We provide additional SSIM evaluations using a
different speaker verification model architecture

WavLM (Chen et al., 2022) in Table 8. We observe
similar improvements with CFG and preference
alignment as reported by Titanet small in Table 1

Table 8: Preference Alignment (DPO, RPO) and CFG im-
provements over a baseline Koel-TTS 380m English model
for zero-shot TTS using WavLM as the speaker verification
model.

Model/Technique CER(%) ↓ WER(%) ↓ SSIM ↑ Squim-MOS

Ground Truth 0.80 1.83 0.771 3.93± 0.03

Baseline (BL) 2.68± 1.13 4.02± 1.12 0.929 4.35± 0.02
BL + DPO 0.89± 0.15 1.90± 0.28 0.940 4.40± 0.01
BL + RPO 1.17± 0.94 2.09± 1.00 0.943 4.40± 0.01
BL + CFG 0.57± 0.11 1.37± 0.11 0.944 4.42± 0.01

BL + DPO + CFG 0.55± 0.10 1.42± 0.28 0.945 4.41± 0.01
BL + RPO + CFG 0.55± 0.11 1.41± 0.19 0.946 4.42± 0.01

H MOS, SMOS and CMOS Evaluation

Naturalness MOS Evaluation: We ask human lis-
teners to rate the audio on a scale of 1 to 5 point nat-
uralness scale with 1 point increments. We present
180 audio examples of each technique and each
audio is independently rated by at least 11 listen-
ers. This results in a total of 1980 evaluations per
technique. The template used for the Naturalness
human study is shown in Figure 10. We report the
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MOS with 95% confidence intervals in Table 2 of
the paper.

Speaker Similarity MOS (SMOS): For SMOS
evaluation, we ask human listeners to rate the
speaker similarity of a given pair of utterances.
For this evaluation, each synthetic utterance is
paired with a real context utterance of the target
speaker. We create pairs for all of the 180 syn-
thesized utterances of each technique. Each pair
is rated by at least 11 independent listeners result-
ing in at least 1800 speaker similarity evaluations
of each technique. We ask the listeners to judge
only the voice/speaker of the utterances and ignore
the accent, content, grammar and expressiveness
of speech. following past work (Casanova et al.,
2022; Hussain et al., 2023; Neekhara et al., 2024b).
The templates used for this user study are shown in
Figures 8, 9 and 10.

Comparative MOS (CMOS): For CMOS, lis-
teners are asked to compare two audio utterances
on naturalness and indicate their preference as one
of the five options shown in Figure 9. We pair the
two Koel-TTS models with all other models. We
evaluate the percentage of times across 1800 evalu-
ations that Koel-TTS is preferred over an alternate
model.

Figure 8: User Study template used for Speaker Similar-
ity (SMOS) evaluation

Figure 9: User Study template used for Comparative-
CMOS evaluation

Figure 10: User Study template used for MOS evaluation
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