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Abstract

Traditional information retrieval (IR) methods
excel at textual and semantic matching but
struggle in reasoning-intensive retrieval tasks
that require multi-hop inference or complex
semantic understanding between queries and
documents. One promising solution is to ex-
plicitly rewrite or augment queries using large
language models (LLMs) to elicit reasoning-
relevant content prior to retrieval. However,
the widespread use of large-scale LLMs like
GPT-4 or LLaMA3-70B remains impractical
due to their high inference cost and limited
deployability in real-world systems. In this
work, we introduce TongSearch QR, a fam-
ily of small-scale language models for query
reasoning and rewriting in reasoning-intensive
retrieval. Our approach frames query reformu-
lation as a reinforcement learning problem and
employs a novel semi-rule-based reward func-
tion. This enables smaller language models
(e.g., 7B and 1.5B) to achieve reasoning per-
formance rivaling large-scale LLMs without
their prohibitive inference costs. Experiment
results on BRIGHT (Su et al., 2024) bench-
mark show that, with BM25 as retrievers, both
TongSearch QR-7B and TongSearch QR-1.5B
models significantly outperform existing base-
lines, including prompt-based query reasoners
and some latest dense retrievers trained for
reasoning-intensive retrieval tasks, offering su-
perior adaptability for real-world deployment.

1 Introduction

The Information retrieval system (IR) (Zhu et al.,
2023) plays a critical role in enabling users to lo-
cate relevant materials from vast repositories of
documents, Web pages, and structured records (Ba-
jaj et al., 2018; Li et al., 2025b; Liu et al., 2025b).
Existing retrieval methods mainly focus on mea-
suring the relevance between queries and docu-
ments via text matching or semantic representa-
tion techniques, e.g., BM25 algorighm (Robertson
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Query ~

Claim in article about why insects are attracted to light

[...] | don't see why attraction to LEDs shows they're not
seeking heat. Could they for example be evolutionarily
programmed to associate light with heat? So that even
though they don't encounter heat near/on the LEDs they
still "expect” to?

1. Identify the essential
problem.

2. Think step by step
3. Draft an answer with
as many thoughts as
you have

Y
RQR Query

Okay, let's tackle this question about why insects are
attracted to light despite LEDs emitting little infrared (heat)
radiation.

The user is confused because the article says that LEDs,
which have low infrared, still trap lots of insects, so maybe
the attraction isn't to heat.

First, | need to recall what's known about insect phototaxis

Figure 1: An example query reasoning with LLM.
The query is sampled from the Biology Subtask of
BRIGHT (Su et al., 2024) benchmark.

and Zaragoza, 2009) or document embedding mod-
els (Devlin, 2018; Liu, 2019; Chen et al., 2024a;
Ma et al., 2024; Li et al., 2023a; Lin et al., 2024),
achieving considerable success (Liu et al., 2021;
Tang et al., 2025). However, in real-world appli-
cations, users may issue questions with high com-
plexity, and finding the relevant documents requires
intensive reasoning (Su et al., 2024). For example,
a programmer may ask a question to find a func-
tion (denoted as F'uncy) that can be an alternative
option to the given function F'unc,. The ground
truth document may be an API document of F'uncy,
while it may be completely disconnected from the
question, both lexically and semantically. The doc-
ument might not mention F'unc, at all, nor contain
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any explicit cues suggesting its substitutability. In
such cases, traditional retrieval methods that rely
on lexical overlap or shallow semantic similarity
often fail, as they cannot capture the implicit rea-
soning chain required to connect the user’s intent
(i.e., “find an alternative to F'unc,”) to the actual
answer (i.e., “The description of F'uncy ™).

This highlights a fundamental challenge in infor-
mation retrieval for complex queries: the need to
bridge a reasoning gap between the user’s implicit
intent and the relevant knowledge. An effective
retrieval system must go beyond matching surface-
level expressions—it needs to infer what the user is
fundamentally trying to achieve, and then identify
which pieces of information in the corpus instan-
tiate or fulfill that abstract goal. This requires not
only modeling the latent intent behind a query, but
also mapping that intent to the appropriate seg-
ments of knowledge, which may be distributed,
implicit, or expressed in entirely different terms.
These kinds of retrieval tasks demand models capa-
ble of aligning abstract user goals with semantically
distant but conceptually relevant content. We refer
to such tasks as reasoning-intensive retrieval (Su
et al., 2024; Shao et al., 2025), which has been
proved to be challenging for most of the existing
retrieval approaches with poor performance.

To address this issue, two research directions
have been proposed. One is to train novel retriever
or reranker models (Shao et al., 2025; Weller et al.,
2025) with task-specific reasoning data. The other
is to apply query reasoning and rewriting to the
given query (Su et al., 2024; Niu et al., 2024; Jager-
man et al., 2023), leveraging the frontier reasoning
capabilities of large language models (LLMs) (Guo
et al., 2025; Face, 2025) with chain-of-thought rea-
soning (Wei et al., 2022; Li et al., 2025a) to gen-
erate an intermediate reasoning result as reasoned
query, which instead will be used to retrieve the
relevant documents. Figure 1 shows an example of
query reasoning. These two directions are orthog-
onal: a retriever designed for reasoning-intensive
tasks can take the reasoned queries as input, leading
to further improvements of retrieval performance.
Existing query reasoning approaches mainly rely
on large-scale LLMs (e.g., GPT-40 (OpenAl et al.,
2024) or LLama3-70B (Grattafiori et al., 2024))
with chain-of-thought prompts. This limits the
applicability of such methods, as in many real-
world RAG scenarios, high-performance commer-
cial models like GPT-40 are not accessible due
to inference cost or information security concerns.
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Figure 2: Cost vs. Performance comparison of different
models. Details about the cost and performance can be
found in Table 2.
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Figure 3: Performance on different reasoning models.
Details can be found in Table 1.

Moreover, the query rewriting model deployed is
generally not expected to outperform the main
model (Shao et al., 2025) in RAG pipelines. For
example, suppose that an RAG system is primarily
built around a small-scale model instance such as
Qwen2.5-7B-Instruct. In that case, the query rea-
soning module is typically constrained to use a
model of equal or smaller capacity, which cannot
outperform the main model of Qwen2.5-7B men-
tioned above. As a result, query reasoning methods
that rely on high-performance models and Chain-
of-Thought prompts are not feasible in such realis-
tic RAG settings.

In this paper, we introduce TongSearch QR (also
known as “TongSearch Reasoner” previously), a
family of small-scale language models for query
reasoning and rewriting (QR). To the best of our
knowledge, this is the first model family specif-
ically trained for query reasoning in reasoning-
intensive retrieval tasks. Inspired by previous works
using Reinforcement Learning with Verifiable Re-
wards (RLVR) to enhance LLMs’ reasoning (Guo
et al., 2025; Qwen et al., 2025; Liu et al., 2025b;
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Zhao et al., 2025), we developed a novel semi-
rule-based reward function for GRPO (Group Rel-
ative Policy Optimization) (Shao et al., 2024; Guo
etal., 2025), enabling RL on the query reasoning of
smaller language models. Beyond that, we propose
an automatic data curation pipeline for training
reasoning-based rewriting with publicly available
dataset (Lambert et al., 2023). Experiment results
on the BRIGHT (Su et al., 2024) benchmark show
that our model achieves an NDCG@ 10 metric of
27.9, outperforming GPT-40’s metric of 26.5. This
metric is comparable to some large-scale reasoning
models, e.g., ol-preview!, DeepSeek R1(Guo et al.,
2025), and QwQ-32B (Qwen et al., 2025), with sig-
nificantly lower cost of inference shows in Figure 2.
Besides, our proposed models can also work with
reasoning-intensive retrievers (Shao et al., 2025) to
achieve the best performance, as shown in Figure 3.
This demonstrates that our models possess strong
flexibility to adapt to different retrieval pipelines.

In summary, our main contributions are listed
as follows:

* Query reasoning models for retrieval tasks:
We propose TongSearch QR family (7B and
1.5B) specifically trained for query reasoning and
rewriting in reasoning-intensive retrieval tasks.
Our small-scale language models are compara-
ble to state-of-the-art large-scale language mod-
els such as GPT-40 on specific tasks. These re-
sults make it possible to apply query reasoning in
many real-world RAG system settings. Our query
reasoners can be jointly applied to different ex-
isting retrievers to achieve better performance.
Semi-rule-based reward function for RL: The
reward function inherits the advantage of existing
functions based on semantic similarity, which
evaluates the relevance enhancement between
queries and retrieval documents. It offers a range
of advantages, including strong robustness, high
computational efficiency, and the avoidance of
reward hacking.

Automatic data curation pipeline: The data cu-
ration pipeline proposed in this paper is specif-
ically designed to build training data for query
rewriting tasks. It optimizes training without the
need for large-scale supervised query reasoning
data, which is often unavailable in real applica-
tions and scenarios.

"https://openai.com/index/introducing-openai-ol-
preview/

2 Related works

Reasoning-intensive Retrieval In recent years,
dense retrieval has achieved remarkable progress
in retrieval accuracy, propelled by the rapid evo-
lution of foundation models and innovative train-
ing methodologies. Nowadays, BERT (Devlin,
2018)-based and LLM-based (Wang et al., 2023;
Lin et al., 2024) embedding models have been
widely used in multiple retrieval tasks, achieving
great success as general-purpose retrievers (Wang
et al., 2022; Li et al., 2023b; Chen et al., 2024a;
Khattab and Zaharia, 2020). However, previous
works (Su et al., 2024) have demonstrated that most
of those existing BERT-based or LL.M-based re-
trievers and re-rankers cannot handle the task of
reasoning-intensive retrieval. Most of those sparse
or dense retrievers perform poorly on BRIGHT
benchmark®. These results indicate that the tasks
of reasoning-intensive retrieval should be han-
dled with reasoning-enhanced models specifically.
Some researchers tried to train reasoning-enhanced
retrievers (Shao et al., 2025) or rerankers (Weller
et al., 2025; Liu et al., 2025a; Zhuang et al., 2025)
with public or LLM-Synthesized datasets (Li et al.,
2023a). Another way is to apply LLMs for query
reasoning and rewriting. The LLMs take the origi-
nal queries as input to generate Chain-of-Thought
reasoning steps as pseudo queries. The pseudo
queries will be issued to the retrievers instead of
the original queries. These two approaches are or-
thogonal and can be combined synergistically. To
the best of our knowledge, most of those exist-
ing query reasoning approaches (Su et al., 2024;
Niu et al., 2024) are based on prompting large-
scale LLMs, e.g., GPT-40 (OpenAl et al., 2024) or
LLama3-70B (Grattafiori et al., 2024), which is too
expensive and time-consuming. To the best of our
knowledge, none of those previous works focus on
training a small-scaled language model for query
reasoning and rewriting tasks.

Reasoning Enhanced by Reinforcement Learn-
ing Large reasoning models, e.g., OpenAl o1,
Gemini Flash-Thinking?, DeepSeek-R1 (Guo
et al., 2025) and QwQ-32B (Qwen et al., 2025), have
achieved great success in reasoning-intensive ar-
eas like coding and mathematical proofs. These
models adopt a "slow-thinking" (Wu et al., 2024;
Chen et al., 2024b; Xie et al., 2021) approach when

2https ://brightbenchmark.github.io/
3https://deepmind.google/technologies/gemini/flash-
thinking/
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handling reasoning-intensive tasks: the models will
first output a sequence of thinking processes with
the tags of “<think></think>" before providing the
actual answer. This method has allowed LLMs to
enhance reasoning capabilities. Based on the techni-
cal report released by DeepSeek (Guo et al., 2025),
researchers (Face, 2025; Xie et al., 2025) have tried
to reproduce the slow-thinking ability on smaller-
scaled LLMs via reinforcement learning based on
GRPO (Group Relative Policy Optimization) (Shao
et al., 2024) and rule-based reward functions. Com-
pared with process reward models (PRM), the rule-
based reward functions have the advantages of be-
ing simple and effective, making the model training
process easier to scale up. Besides, the rule-based
reward functions only focus on the correctness of
output results, ignoring the intermediate process,
making it immune to reward hacking and increas-
ing the robustness of model training. Moreover,
unlike supervised fine-tuning (SFT), reinforcement
learning based methods do not force the model to
fit every generated token, thereby yielding superior
generalization capabilities.

3 Reinforced Query Reasoner

3.1 Task formulation

Given a query ¢ and a set of candidate documents
D = {dy,...,d,}, the objective is to identify and
retrieve a subset of relevant documents from D:
DY ={df,...df,...,d}}, where m << n lever-
aging a retriever R7. In the scenario of reasoning-
intensive retrieval, we leverage a large language
model £LLM to generate the rewritten query ¢ af-
ter query reasoning based on ¢q. RT will later use
q/ to retrieve the documents relevant to q. The pro-
cesses mentioned above can be described with the
following equations:

¢ = LLM(Inst; q), DT =RT(q)

where Inst denotes the instructions for query rea-
soning and rewriting.

3.2 Reinforcement Learning with
Semi-Rule-Based Reward

Preliminary Inspired by previous works of large
reasoning models e.g., DeepSeek R1 (Guo et al.,
2025), we employ the GRPO-based reinforcement
learning algorithm to train the LLMs for query
reasoning, where the model takes the given query
q as input and generates a reasoned query q . The
GRPO objective is defined as:

- Algq)s

’

Larro(0) = E(q,a)~m,y [wg - min (Te (¢,q

clip(ra(q, q/)7 1—¢14€)- fl(q, q

)]

Here, 79(q,q ) = m0la 0 g the importance

o0 (4 1)
ratio between the current and reference policy. The

advantage function fl(q, q/) is computed based on
the group-normalized reward:

R(q,q) — g
og+6

~ /

Alg,q) =

where R(q, ¢ ) is the reward assigned to the rea-
soned query q, ig and o4 denote the mean and
standard deviation of rewards within the group g,
and ¢ is a small constant to avoid division by zero.
The weight w, optionally re-scales the advantage
based on group-level reward variance. This formu-
lation stabilizes training when rewards are sparse
or highly variable across different query groups.
Limitations for Previous Rule-based Reward
Function Previous approaches (Jiang et al.,
2025) of rule-based reward for retrieval tasks are
usually calculated based on retrieval evaluation
metrics like Recall@K. The metric-based reward
function requires both annotated training data and
an existing large-scale document collection to serve
as the retrieval source, which is difficult to access
in reasoning-intensive retrieval tasks.
Semi-Rule-Based Reward for Query Reason-
ing In this work, we introduce a reward function
to evaluate the incremental relevance score from
< ¢,DT >to < ¢,Dt > . For an reasoning-
intensive task, the goal of query reasoning and
rewriting is to improve the retrieval performance
using reasoned query g with higher relevance score
compared to q. Since the relevance score is com-
puted via an existing relevance model, the reward
function is defined as “semi-rule-based reward
function”.

Each training sample consists of < ¢, D" >,
where D indicates single or multiple positive doc-
uments for g. We define score, as the sum of the
relevance scores between ¢ and each positive docu-
ment in DT:

scoreq = Y;cp+Rel(q, d)

where Rel(q, d;") denotes the relevance score be-
tween ¢ and d;” computed via a relevance model.
Here we use a pretrained embedding model to en-
code queries and documents into embeddings, with
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the cosine similarities as relevance scores. The pa-
rameters of the relevance model will not be updated
during the model training process. Similarly, the
score of the reasoned query score J is also com-
puted as:

score, = Siep+Rel(q d;)

The overall reward is defined as the average rele-
vance score increment from q to q/ of each positive
document:

f SCOTGq/ — SCOT€q

R(q,q) = D+

Our semi-rule-based reward function inherits a
few advantages from the existing rule-based re-
wards as below: Firstly, the function depicts the
semantic relevance based on the existing embed-
ding model like bge-base-en (Chen et al., 2024a),
which has been proved to exhibit good performance
with robustness and low computational cost. Sec-
ondly, unlike the process reward models (PRMs),
our method does not rely on intermediate processes
supervision, and is therefore inherently immune
to reward hacking. These properties collectively
contribute to the high computational efficiency and
robustness of our method, enhancing its tolerance
to noise present in the training data.

3.3 Training Data Curation

Existing training datasets like e.g., MS-
MACRO (Bajaj et al., 2018) are helpful for
semantic-based retrieval tasks, which are not
specifically designed for reasoning-intensive
retrieval. Inspired by the data construction process
in benchmark BRIGHT (Su et al., 2024), we
use the publicly available H4 Stack Exchange
Preferences (Lambert et al., 2023) dataset to
construct our training data. The dataset contains
questions and answers from the Stack Overflow
Data Dump for the purpose of preference model
training. Each question in the dataset includes
at least two answers, and each answer is labeled
“is_selected” or not, indicating if the answer is
selected and marked as useful by the real users
who issued the question. We select QAs with texts
only for data curation.

Here are two ways we further obtain the rewrit-
ten queries as the “supervision” for query reasoning
training:

(1) Given a query for reasoning, a large rea-
soning model, e.g., QwQ-32B or DeepSeek-R1 is

asked to generate the rewritten query based on
Chain-of-Thought(CoT) reasoning. The curated
data is denoted as V1-R1 and V1-QwQ.

(2) For each question, we use the answer with
“selected” tag as the reasoned query from Stack-
Exchange by real users, which is denoted as V2.
Notice that not every question includes a selected
answer.

4 Experiment

4.1 Experiment setting

4.1.1 Dataset and metrics

Training We employ two types of the con-
structed data mentioned in Section 3.3 for training.
Details about the construction of training data are
described as follows:

* Version 1: sampling at most 1200 questions
for each selected category to generate an-
swers with large reasoning models. The se-
lected categories include: ’biology’, ’chem-
istry’, "codereview’, ’cs’, ’earthscience’, ’eco-
nomics’, “math’, *physics’, 'robotics’. The
Version 1 dataset includes around 10k sam-
pled questions. In this paper, the correspond-
ing datasets are denoted as V1-R1 and V1-
QwQ, indicating that the answers are gener-
ated by DeepSeek R1 or QwQ-32B.

* Version 2: sampling at most 1500 ques-
tions for each selected category with se-
lected answers. Those questions can also
be used to generate answers via large
reasoning models. The categories include:
’ai’, “biology’, *chemistry’,’ codereview’, ’cs’,
“earthscience’, "economics’, ’computergraph-
ics’, “math’, *mathoverflow’, ’philosophy’,
“physics’, ‘robotics’, *stackoverflow’, ’sustain-
ability’, ’softwareengineering’, *bioinformat-
ics’. The Version 2 dataset includes around
30k sampled questions, nearly three times as
many as Version 1, making answer genera-
tion with large reasoning models unaffordable
since the inference time is too long. In this
paper, the dataset is denoted as V2.

Evaluation We use BRIGHT (Su et al., 2024), a
novel benchmark for reasoning-intensive retrieval
that aims to evaluate the ability of retrieval models
to handle complex queries that require deep reason-
ing. It consists of 1,384 real-world queries from
diverse domains with 12 sub-tasks. We adopt the
metric nDCG @10 for the following evaluations.
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‘ StackExchange Coding Theorem-based Avg
‘ Bio. Earth. Econ. Psy. Rob. Stack. Sus. Leet. Pony AoPS TheoQ. TheoT.
Retrievers with Original Queries
BM25 189 272 149 125 13.6 184 150 244 179 6.2 10.4 4.9 14.5
BGE 11.7 246 16.6 17,5 11.7 108 133 267 5.7 6.0 13.0 6.9 13.7
ReasonIR 262 314 233 300 180 239 205 350 105 147 319 272 | 244
Seed1.5-Embedding 348 469 234 316 191 254 21.0 432 49 12.2 333 305 | 272
Query Reasoner with BM25
GPT-40 536 53.6 243 386 188 227 259 193 177 39 18.9 20.2 | 26.5
Doubao 548 533 237 372 222 281 250 212 164 7.8 21.8 22.7 | 27.8
Deepseek-V3 566 542 258 388 199 267 264 198 151 6.7 22.5 20.7 | 27.8
ol-mini 602 574 247 393 233 264 254 235 134 69 22.8 16.5 | 283
ol-preview 642 579 276 431 256 29.1 280 212 159 56 24.0 20.5 | 302
Deepseek-R1 62.7 583 260 429 218 281 303 196 107 6.0 25.8 224 | 29.6
R1-distill-qwen-7B 339 416 199 31.8 151 188 164 197 107 6.8 24.5 222 | 218
R1-distill-qwen-32B 506 499 229 38.1 203 246 192 195 113 5.6 24.2 202 | 255
QwQ-32B 575 563 299 418 192 257 272 215 128 6.5 254 22.8 | 289
TongSearch QR-1.5B | 46.0 47.1 21.1 312 198 21.7 243 225 21.7 43 19.7 159 | 24.6
TongSearch QR-7B 579 509 219 370 213 270 256 236 144 170 26.1 220 | 279
Query Reasoner with ReasonIR

LLama3.1-8B-Instruct | 37.8 39.6 29.6 353 241 31.1 274 288 145 9.2 26.6 323 | 28.0
GPT-4 436 429 327 388 209 258 275 315 196 74 33.1 35.7 | 299
TongSearch QR-1.5B | 36.4 41.1 299 340 252 307 256 333 168 9.7 357 327 293
TongSearch QR-7B 462 451 312 396 253 287 284 312 163 108 40.0 39.3 | 319

Table 1: Performance comparison on BRIGHT. The best score is shown in bold and the second best is underlined.

4.1.2 Baselines

The baselines in our experiments can be divided
into these three categories:

Retrievers with Original Queries There are
two types of baselines: 1) Traditional baselines in
IR systems like BM25 (Robertson and Zaragoza,
2009) for sparse retrieval and bge-large-en (Chen
et al., 2024a) for dense retrieval; 2) Reasoning-
intensive retrievers like ReasonIR (Shao et al.,
2025) and Seed 1.5-Embedding*. We keep the same
with the experiments reported in (Su et al., 2024)
for fair comparison and all the retrievers use the
original queries in BRIGHT to retrieve documents.
Since Seed1.5-Embedding is not public available
when this work is done, we directly use the experi-
ment results reported on their model card.

Query Reasoner with BM25 We include two
types of baselines using state-of-the-art large
language models: 1) Non-reasoning models in-
cluding GPT-40, doubao-1.5-pro >, DeepSeek-
V3 (DeepSeek-Al et al., 2025); 2) Reasoning mod-
els including DeepSeek R1 (Guo et al., 2025), ol-

“https://huggingface.co/ByteDance-Seed/Seed1.5-
Embedding
>https://seed.bytedance.com/en/special/doubao_1_5_pro

mini®, ol —preview7 , DeepSeek-R1-Distill-Qwen-
7B8, DeepSeek-R1-Distill-Qwen-32B° and QwQ-
32B (Qwen et al., 2025). All the models use the
prompt in Appendix A for reaoning. For each base-
line, we only remain the prediction result of after
reasoning and use BM25 for further retrieval.
Query Reasoner with Reasoning-Intensive Re-
trievers (ReasonIR) ReasonlR (Shao et al,
2025) is the most recently acknowledged retriever
specifically trained for reasoning-intensive retrieval
tasks. We further combine TongSearch QR with
ReasonlR for comparsion to explore further im-
provements with the specialized reasoner and re-
triever in this task.

4.1.3 Implementation Details

With the initial checkpoint of Qwen2.5-
7B-Instruct'® and Qwen2.5-1.5B-Instruct!’,
TongSearch QR 7B and 1.5B are both trained

®https://openai.com/index/openai-o1-mini-advancing-
cost-efficient-reasoning/
"https://openai.com/index/introducing-openai-o1-
preview/
8https://huggingface.co/deepseek-ai/DeepSeek-R1-
Distill-Qwen-7B
“https://huggingface.co/deepseek-ai/DeepSeek-R 1-
Distill-Qwen-32B
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
"https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
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with TRL'? on a single node with 4 NVIDIA
A800-80G GPUs. Following the instructions
of Open-R1 (Face, 2025), we use 1 GPU for
vLLM (Kwon et al., 2023) serving and the rest
3 GPUs for model training. DeepSpeed (Rasley
et al., 2020) ZeRO-3 and Gradient Checkpoint are
applied to reduce the cost of VRAM. It takes about
16 hours for 1.5B model training and about 48
hours for 7B model training. We set the learning
rate le — 6, the batch size per device 16, and the
KL coefficient 0.008. For each input prompt, 16
samples are generated to estimate the advantage
in GRPO. Since we use bge-base-en-v1.5'3
embedding model to compute relevance, the
maximum completion length is set to 500 to
avoid exceeding the input length limitation of
the embedding model. Experiments on all the
above-mentioned baselines are conducted without
reranking.

4.2 Main results

Table 1 shows that our 7B model outperforms all
query reasoning baselines of non-reasoning LL.Ms,
including GPT-40 and DeepSeek V3, performing
comparable to the large reasoning models, e.g., 0l-
mini, QwQ-32B and DeepSeek R1. Our 7B model
strikes a favorable balance between inference effi-
ciency and reasoning performance, offering a com-
pelling trade-off for query reasoning tasks. Besides,
our 1.5B model also achieves performance compa-
rable to that of large-scale language models, mak-
ing it an effective solution for resource-constrained
scenarios.

To quantitatively assess the efficiency of dif-
ferent models, we report both their Performance
and Cost in Table 2. Here, Performance is de-
fined as the nDCG@10 score achieved by each
model on the BRIGHT benchmark (Su et al., 2024)
with BM25 retriever. Meanwhile, Cost represents
the price of each model (USD per 1M output
tokens) when accessed via the OpenRouter plat-
form'#, indicating the actual monetary expense re-
quired to obtain outputs from the model'>. Based
on the calculated efficiency (Eff = Performance /
Cost), TongSearch QR-1.5B and TongSearch QR-
7B achieve the highest cost-effectiveness among all

Phttps://github.com/huggingface/trl

Bhttps://huggingface.co/BAAl/bge-base-en-v1.5

"*https://openrouter.ai

'SWe use the price of Qwen2.5-7B-Instruct as the price of
TongSearch QR-7B, and we define the price of TongSearch
QR-1.5B as 0.01 since the price of Qwen2.5-1.5B is free.

Table 2: Model performance (Perf.), cost, and efficiency
(Eff. = Perf. / Cost).

Model Performance Cost Efficiency
GPT-4o 26.5 10.0 2.7
DeepSeek V3 27.8 0.9 31.6
DeepSeek R1 29.6 22 13.6
QwQ-32B 28.9 0.2 144.5
ol-preview 30.2 60.0 0.5
ol-mini 28.3 4.4 6.4
TongSearch QR-7B 279 0.1 279.0
TongSearch QR-1.5B 24.6 0.01 2460.0

evaluated models, with efficiency scores of 2460.0
and 279.0, respectively. This highlights the strong
cost-performance advantage of the our method.

Compared to the retrievers specifically trained
for reasoning, both the 7B and 1.5B models can
both outperform ReasonIR with original query, and
our 7B model can outperform Seed 1.5-Embedding.
Since ReasonlR is an embedding model based on
the backbone of LLaMA3.1-8B, the computational
cost of pre-encoding documents can be prohibitive
when the corpus is large. In contrast, TongSearch
QR can work with BM25 retrievers, incurring sig-
nificantly lower pre-processing costs than LLM-
based embedding models.

As ReasonIR can work with reasoned queries
to achieve better performance, we apply the rea-
soned queries generated by our method for further
exploring the effect of combining reasoned queries
with reasoning-intensive retrievers. We confirmed
that our method can achieve further improvements
based on ReasonIR. Our 1.5B model can outper-
form LLama3.1-8B-Instruct which is more than
5 times larger in parameters, and our 7B model
can outperform GPT-4. Comparing with the rea-
soned queries of GPT-4 and our 7B model , the per-
formance improvement based on ReasonIR (29.9-
>31.9) is higher than the improvement based on
BM25 (26.5->27.9). These results incidate that our
method is flexible and can work with different re-
trievers, the improvement of retriever will further
expand the advantage of our method.

4.3 Ablation studies

4.3.1 Effect of Data Size and Quality

DeepSeek R1 performs better than QwQ-32B while
the performance of V1-R1 and V1-QwQ is close
on most BRIGHT subtasks. V1-R1 exhibits a no-
table advantage only in the Biology and Earth Sci-
ence subtasks. We hypothesize that this may be at-
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Table 3: Results on different training data for TongSearch QR-1.5B with BM25 retriever.

Dataset ‘ Bio. Earth. Econ. Psy. Rob. SO SL LC Pony AoPS TQ TT Avg
V1-QwQ| 423 436 191 319 186 237 228 21.5 177 40 17.2 10.1 227
VI-R1 48.0 465 199 314 152 236 223 212 180 53 188 11.3 235
V2 46.0 471 211 312 198 21.7 243 225 218 43 19.7 159 24.6

tributed to the fact that these two subtasks are more
knowledge-intensive compared to others, thereby
granting the larger-parameter DeepSeek R1 model
with 671B parameters a more pronounced advan-
tage over QwQ-32B. The V2 dataset with more
samples leads to the best performance. Instead of
using large reasoning models to generate answers
for distillation, a better approach may be to use the
answers selected by the users in the StackExchange
datasets. It can be easily scaled since generating
answers with large reasoning models on large-scale
question set is too expensive.

4.3.2 Effect of Reinforcement Learning with
Semi-Rule-Based Rewards

We further explore the effect of our proposed ap-
proaches with semi-rule-based reward functions
compared to traditional supervised fine-tuning
(SFT). Following the same experimental settings in
Section 4.3.1, we use Qwen2.5-1.5B-Instruct, with
BM25 as retrievers. With the dataset of V1-QwQ
and V2, we separately trained the model with SFT
and RL. Results are shown in Table 4, where “RL”
is for our proposed reinforced learning approaches
and “SFT” is for supervised fine-tuning. Both RL
and SFT are in full parameters.

These results indicate that when using the train-
ing data generated by large reasoning models, the
performance of RL is slightly higher than SFT. -
While using the user-selected answer data for train-
ing, the performance of SFT experienced a sig-
nificant decline. This is likely because the user-
selected answers written by actual users may ex-
hibit substantial quality deficiencies (e.g., higher
perplexity) compared to data synthesized by large
reasoning models. In addition, we did not apply
fine-grained data cleaning for the answer. As a re-
sult, the answers of the questions may include URL
links of pictures which do not include available
information. Using such data for supervised fine-
tuning may lead to catastrophic forgetting in the
model (Jia et al., 2024). In contrast, our proposed
reinforcement learning approach with semi-rule-
based reward functions does not strictly require the

Table 4: Results on different training data and methods.

Training Data Training Method Avg

V1-QwQ SFT 224
V1-QwQ RL 22.7
V2 SFT 12.8
V2 RL 24.6

Table 5: Results on different relevance model types and
competition length settings.

Model Type Length Avg
bge-base-en-v1.5 Dense 500 23.5
bge-m3 Sparse 500 23.1
bge-m3 Sparse 1000 22.9

model to fit the answers per token exactly. Since
the relevance score in reward function is based on
the embedding similarity of generated answers and
selected answers, the noisy signals in selected an-
swers may not explicitly affect the similarity scores.
As a result, our proposed approach demonstrates
stronger generalization capabilities and greater tol-
erance for noisy data.

4.3.3 Effect of Relevance Model in Reward
Functions

As we mentioned in Section 3.2, the relevance
model is playing an important role in our proposed
semi-rule-based reward functions. We further ex-
plore the effect of different relevance models in
our proposed reward functions. Besides the dense
embedding model of bge-base-en-v1.5, we also
implement the relevance function via the sparse
model of bge-m3 (Chen et al., 2024a). As the bge-
m3 model can accept a longer input length, we
also explore the effect of extending the maximum
completion length to 1000. With Qwen2.5-1.5B-
Instruct as base model and BM25 as retriever, we
train the model on different reward functions and
completion length settings on the training data of
V1-R1. Results are shown in Table 5.

Since all experiments are conducted with the
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Table 6: Results on explicit thinking process.

Content Explicit Thinking Avg
Answer No 22.7
Thinking+Answer  Yes 214
Answer Yes 20.9

sparse retriever of BM25, we initially expected bge-
m3, as a sparse relevance model, to offer perfor-
mance improvements. However, bge-m3 actually
underperforms compared to the dense embedding
model bge-base-en-v1.5, which has fewer param-
eters (110M vs 550M)!6. This result suggests that
for our proposed semi-rule-based reward function,
overly fine-grained relevance matching signals may
harm the model’s generalization ability. It is worth
noting that our training data is based on V1-R1
rather than V2, these results are unlikely to be pri-
marily attributed to data noise since the answers
are generated by DeepSeek R1. Furthermore, we
observed that even increasing the output length
did not improve performance, indicating that ex-
cessively long outputs might dilute the effective
relevance signals (Wu et al., 2025), thus providing
no benefit to final retrieval performance.

4.3.4 Effect of Explicit Thinking

Inspired by DeepSeek R1 (Guo et al., 2025) and
some recent works (Weller et al., 2025; Xie et al.,
2025), we further investigate the effect of explicit
thinking process. When the explicit thinking pro-
cess is applied, the model will first think about
the reasoning process explicitly and then provide
the actual answer. The reasoning process and an-
swer are enclosed with “<think></think>" and
“<answer></answer>" tags. With the dataset of
V1-QwQ, we train the model on Qwen2.5-1.5B-
Instruct, and evaluate the query reasoners with
BM25 retriever. Since the thinking process re-
quires external output tokens, the max comple-
tion length is set to 1000 when the explicit think-
ing process is applied. Details about the prompt
and reward settings are listed in Appendix B. Re-
sults are shown in Table 6. In the table, “Explicitly
Thinking” denotes if the explicitly thinking pro-
cess is applied for model training, and “Content”
denotes if the output query contains the thinking
process within the “<think></think>" tags. “Think-
ing+Answer” means that the contents within the
“<think></think>" and “<answer></answer>"" tags

1%pge-m3 is based on XLM-RoBERTa-Large

are concatenated as the reasoned queries, and “An-
swer” means that only the answer content is re-
turned.

Experimental results indicate that applying ex-
plicit thinking process does not improve perfor-
mance on query reasoning tasks. Previous stud-
ies (Weller et al., 2025) have shown that explic-
itly generating the reasoning process within the
“<think></think>" tags can be beneficial for cer-
tain reasoning-intensive tasks, possibly because
these tasks require the model to produce answers
in specific output formats. For example, in rank-
ing tasks, the model receives a query and a docu-
ment as input and must output a binary relevance
judgment (true or false). In such cases, applying
explicit thinking process can help the model fully
leverage its reasoning capabilities through chain-
of-thought prompting, thereby enhancing inference
performance. However, in the case of query reason-
ing tasks, the generated reasoned query inherently
encapsulates the reasoning process and is not con-
strained by output format requirements. As a result,
explicitly generating the reasoning process does
not lead to further performance gains.

5 Conclusion

In this work, we present TongSearch QR, a family
of compact and efficient language models tailored
for query reasoning and rewriting in reasoning-
intensive retrieval. By leveraging the learning al-
gorithm of GRPO with a novel semi-rule-based re-
ward function, our approach enables effective and
robust reinforcement learning without relying on
expensive human-annotated datasets and retrieval
sources. Our proposed models demonstrate strong
performance on the BRIGHT benchmark, rivaling
or even surpassing large-scale commercial LLMs,
while significantly reducing inference cost and la-
tency. Furthermore, TongSearch QR models ex-
hibit strong compatibility with both traditional and
reasoning-intensive retrievers, making them highly
versatile for real-world deployment. Our findings
highlight a promising direction toward building
lightweight, affordable, and high-performing rea-
soning components for retrieval-augmented genera-
tion pipelines and the latest deep research products.
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Limitations

Our work still has several limitations that we plan
to address in future works:

* Besides reasoning-intensive retrieval, due to
the limitation of time and computational cost,
we omit the effect of query reasoning in
other reasoning-intentsive RAG tasks includ-
ing MMLU (Hendrycks et al.,, 2021) and
GPQA (Rein et al., 2024).

* We directly used the publicly available Stack-
Exchange dataset to build our training data,
and we did not wash the answers carefully.
Although our proposed approach may not be
easily affected by the noisy training data, it
may still be beneficial to use a high-quality
training set.

e By the time this work is done, the latest
Qwen3'” model family is released. Replac-
ing the initial checkpoints to Qwen3-1.7B, 8B
and 14B may lead to further improvements.
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A Prompt Templates

Figure 4 shows the prompt template for the instructions of chain-of-thought query reasoning. The reasoner
model takes the instructions and original query as input, and return a “pseudo-answer” with thoughts
including as much relevant information as possible. The “pseudo-answer” can be used as the reasoned
query, and the retriever can benefit from the external information provided by the reasoned query.

Instruction Templates for Query-Reasoning

Instructions:

1. Identify the essential problem.

2. Think step by step to reason and describe what information could be relevant
and helpful to address the questions in detail.

3. Draft an answer with as many thoughts as you have

Query: {query}

Figure 4: The prompt template for the instructions of Chain-of-Thought query reasoning.

B System Prompt and Reward for Explicit Thinking

Inspired by previous works (Xie et al., 2025; Weller et al., 2025), we use the following system prompt
to instruct the model to output the thinking process explicitly in the format of “<think>thinking pro-
cess</think><answer>the answer</answer>".

System Prompt

You are a helpful assistant. The assistant first thinks about the reasoning process in the mind and
then provides the user with the answer. The reasoning process and answer are enclosed within
<think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here
</think> <answer> answer here </answer>.

When the explicit thinking process is applied, we also design a format reward to force the model
returning an output in the correct format. Our format checking strategy is identical to (Xie et al., 2025). If
the model’s output fails the format checking, the reward function will immediately return a score of -1,
and the subsequent computation of the query reasoning reward will be skipped.

C License

In this section we list the artifacts we used and the corresponding URL and licenses:
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Name Type URL License

StackExchange-Preferences Dataset https://huggingface.co/ cc-by-sa-4.0
datasets/HuggingFaceH4/
stack-exchange-preferences

BRIGHT Benchmark Dataset https://huggingface.co/datasets/ cc-by-4.0
xlangai/BRIGHT

Qwen2.5-1.5B-Instruct Model https://huggingface.co/Qwen/Qwen2. apache-2.0
5-1.5B-Instruct

Qwen2.5-7B-Instruct Model https://huggingface.co/Qwen/Qwen2. apache-2.0
5-7B-Instruct

bge-base-en-v1.5 Model  https://huggingface.co/BAAI/ mit
bge-base-en-v1.5

bge-m3 Model https://huggingface.co/BAAI/bge-m3 mit

QwQ-32B Model https://huggingface.co/Qwen/QwQ-32B  mit

DeepSeek R1 Model https://huggingface.co/deepseek-ai/  mit
DeepSeek-R1

DeepSeek V3 Model https://huggingface.co/deepseek-ai/  mit
DeepSeek-V3-0324

ReasonlIR Model https://huggingface.co/reasonir/ cc-by-nc-4.0

ReasonIR-8B

Table 7: List of datasets and models used, along with their URLs and licenses.
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