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Abstract

Construction grammar posits that constructions,
or form-meaning pairings, are acquired through
experience with language (the distributional
learning hypothesis). But how much infor-
mation about constructions does this distribu-
tion actually contain? Corpus-based analyses
provide some answers, but text alone cannot
answer counterfactual questions about what
caused a particular word to occur. This requires
computable models of the distribution over
strings—namely, pretrained language models
(PLMs). Here, we treat a RoOBERTa model as
a proxy for this distribution and hypothesize
that constructions will be revealed within it
as patterns of statistical affinity. We support
this hypothesis experimentally: many construc-
tions are robustly distinguished, including (i)
hard cases where semantically distinct construc-
tions are superficially similar, as well as (ii)
schematic constructions, whose “slots’ can be
filled by abstract word classes. Despite this
success, we also provide qualitative evidence
that statistical affinity alone may be insufficient
to identify all constructions from text. Thus,
statistical affinity is likely an important, but
partial, signal available to learners.'

1 Introduction

Construction Grammar (CxG, Goldberg 1995,
2003, 2006; Fillmore 1988; Croft 2001) defines
constructions as form-meaning pairings that are
acquired through experience with language (dis-
tributional learning; Goldberg 2003; Bybee 2006).
While the distributional evidence for some con-
structions is clear (e.g., fixed phrases like kick
the bucket), other constructions are less obviously
learnable from distributional evidence. For exam-
ple, I was so happy that I cried and I was so happy
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Figure 1: In s = “It is a secret so do not spill the

beans”, masking beans (1) gives a constrained distribu-
tion, where P\ ), (beans) is high, so beans has high
global affinity (3). By also masking, e.g., spill (2), we
get Ps(i?;m}, compute JSD, and find the words that
constrain beans and thus have high local affinity (4).

that I saw you are instances of subtly different con-
structions: they have similar surface form, but op-
posite causal direction between their component
clauses (Zhou et al. 2024; see Background).

Advocates of CxG have theorized about how
children might abstract constructions over time
from experience with language (Tomasello, 2005;
Diessel, 2004, 2019) and demonstrated the feasi-
bility of distributional learning of constructions in
simplified settings (Casenhiser and Goldberg, 2005;
Dunn, 2017). In general, however, we do not have
access to the distribution over strings from which
children sample. And though the information con-
tained in this distribution has been characterized
using corpus-based methods like collostructional
analysis (Stefanowitsch and Gries, 2003, 2005;
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Hilpert, 2014), text-only methods do not enable
counterfactual questions about what caused a par-
ticular word to occur in a particular position. But
with dramatic recent advances in statistical model-
ing of language (Zhao et al., 2025), we now have
pretrained language models (PLMs) that directly in-
stantiate (to a good approximation) the distribution
of interest, allowing us to ask how constructions are
encoded in statistical relationships between words.

A growing literature explores the use of PLMs
as tools for testing usage-based linguistic theories
(Weissweiler et al., 2023; Goldberg, 2024; Milliere,
2024; Futrell and Mahowald, 2025). Two charac-
teristics of this literature motivate the current study.
First, studies to-date have largely been interested
in PLMs as simulations of the learner, whereas
we are interested in PLMs as simulations of the
distribution from which a learner samples. These
perspectives are not mutually incompatible, but
they naturally prioritize different types of analy-
ses. PLM-as-learner prioritizes questions about the
model’s behavior (studied using, e.g., prompting,
Zhou et al. 2024; Scivetti et al. 2025) or repre-
sentational geometry (studied using e.g., probing,
Garcia et al. 2021). PLM-as-distribution priori-
tizes questions about how the probabilities over
words are influenced by context, irrespective of the
model’s internal computations (e.g., hidden states).
CxG studies that take this perspective are less com-
mon (cf., Veenboer and Bloem, 2023), and none to
our knowledge use causal methods. Second, cur-
rent evidence on the learnability of constructions
by PLMs is mixed, with some studies reporting
success (Potts, 2023; Mahowald, 2023; Misra and
Mahowald, 2024) and others failure (Zhou et al.,
2024; Bonial and Tayyar Madabushi, 2024; Scivetti
et al., 2025; Weissweliler et al., 2024).

To address these limitations, we draw inspiration
from two areas of research: collostructional analy-
sis (Stefanowitsch and Gries, 2003) and interven-
tion methods (see, e.g., Feder et al., 2021; Geiger
et al., 2022). Collostructional analysis measures
the statistical affinities that constructions induce
between lexical items in a corpus. Intervention
methods systematically alter inputs or hidden states
and examine the effects on model behavior. In this
study, we extend perturbed masking (Wu et al.,
2020; Hoover et al., 2021) to develop affinity meth-
ods, which leverage PLMs as computable models
of the language distribution, thereby extending the
correlational methods of collostructional analysis
to counterfactual questions about what causes a

particular word to occur.

Our core hypothesis—that constructions will be
revealed in the distribution—is partially motivated
by idioms, which are loosely defined as semi-fixed
multi-word expressions with non-compositional
meaning (Nunberg et al. 1994; Croft and Cruse
2004, p. 248-53; Espinal and Mateu 2019). When
an idiom is “activated” by the surrounding seman-
tics, any compositional or conventional reading
is precluded (Hoffmann, 2022, p. 169), thus con-
straining the slots of the idiom and motivating our
notion of global affinity; see Methods. Some prior
work has investigated how PLMs capture the non-
compositional aspects of idioms (Zeng and Bhat,
2021; Socolof et al., 2022; He et al., 2025). Since
many constructions exhibit some degree of non-
compositionality (Croft and Cruse, 2004, p. 248—
253), methods that reveal constraints in the dis-
tribution might recover a variety of constructions
(Croft and Cruse 2004; Taylor 2004; Wulff 2013).

Using a PLM (RoBERTa; Liu et al., 2019) as a
simulation model, we show that affinity methods—
using only the PLM’s distribution—recover con-
structional information across diverse construction
types, including in previously reported failure cases
(cf. Zhou et al., 2024) and across the constructional
spectrum from substantive (containing slot(s) that
are “fixed” to a specific word) to schematic (con-
taining slot(s) that admit abstract classes of words)
constructions. Nonetheless, we argue from a com-
bination of first principles and qualitative evidence
that this distributional approach is likely insuffi-
cient to infer the full constructicon from data. In
this study, we claim that constructions are revealed
in word distributions via affinity methods, and we
organize our contributions as follows:

» Extension of prior work (perturbed masking)
as affinity methods that reveal constructions
as patterns of statistical interaction (§3)

* Resolution of previously reported challenges
using the methods (§4)

* Generalization of the methods to a wide
range of other construction types (§5, §6)

* Qualitative analysis to characterize method
behavior and inform the limits of purely dis-
tributional approaches (§7)

2 Background

Prior research on constructions in PLMs has largely
used probing or prompting. Probing has been
used to study the representation of constructions
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in both sentence and contextualized word embed-
dings (Weissweiler et al. 2022; Li et al. 2022;
see also Weissweiler et al. 2023 for broader sur-
vey). Prompting has been used to elicit accept-
ability judgements (Mahowald, 2023), semantic
understanding (Weissweiler et al., 2024), and con-
structional similarity judgements (Bonial and Tay-
yar Madabushi, 2024). As these methods test the
distributional learning hypothesis only indirectly,
they may be susceptible to false negatives and posi-
tives. Successful prompting typically requires mod-
els to have logical, metalinguistic, or instruction-
following abilities above and beyond basic repre-
sentation (McCoy et al., 2019, 2024; Basmov et al.,
2024), and thus prompting might fail to recover
constructions that are, in fact, represented in the
model’s distribution. Likewise, probing can fail to
identify relevant representational distinctions that
are mismatched to the design of the probe (Adi
et al., 2017), or recover distinctions that actually
make no causal contribution to the model’s behav-
ior (Belinkov, 2022; Hewitt and Liang, 2019).

Given these concerns, in this work we empha-
size causal relations between input contexts and
output distributions, irrespective of how construc-
tions are represented internally by the model, since
this provides a more direct test of the distributional
learning hypothesis. Some prior work has followed
a similar vein: for example, researchers have used
PLMs to score the likelihood of phrases and sen-
tences (Hawkins et al., 2020; Misra and Mahowald,
2024) and evaluated semantic effects of construc-
tional context on masked tokens (Weissweiler et al.,
2022; Veenboer and Bloem, 2023). Our study goes
a step further by asking not only whether context in-
forms constructional slots, but zow, by intervening
directly on the context itself.

We are motivated to study the distributional en-
coding of constructions not only by the method-
ological considerations above, buy by prior work
on challenging constructions that seem difficult to
infer from distributions. For example, Zhou et al.
(2024) report that PLMs fail to distinguish the fol-
lowing three superficially similar but semantically
distinct constructions:

Epistemic Adjective Phrase (EAP)
I was so certain that I saw you.
Affective Adjective Phrase (AAP)
I was so happy that I was freed.
Causal Excess Construction (CEC)
It was so big that it fell over.

The general structure is of the form
[ [NP] [V] so [AD]] |; that [S]2

where the causal semantics of the three differ: there
is no causal relation between 1 and 2 in EAP, there
is causation from 2 — 1 in AAP, and vice versa
(1 — 2) in CEC. Zhou et al. probe and prompt
LMs (GPT-3.5/4, OpenAl et al. 2024; Llama2, Tou-
vron et al. 2023) and argue that LMs fail to reliably
distinguish the CEC from the EAP and AAP; see
Section 4. Relatedly, prior studies of other diverse
construction types have suggested that schematic
constructions with slots for abstract categories or
classes, rather than fixed words, may also be espe-
cially difficult (e.g., Weissweiler et al., 2022). In
this work, we revisit many of these cases and find
that distributions often contain strong signals even
for subtle constructional properties.

3 Methods

To test the hypothesis that constructions are re-
vealed as patterns of statistical affinities, we extend
perturbed masking (Wu et al., 2020; Hoover et al.,
2021), developing two approaches that compare
output distributions under input interventions. The
first is global affinity: interaction between a single
word and the entire context. The second is local
affinity: pairwise interactions between words.

We use the RoBERTa language model (Liu et al.,
2019) for three reasons: (1) it is an open-source,
open-weight model with known training data and a
pure language modeling objective (e.g., no instruc-
tion tuning), (2) it is a less performant model than
those used by e.g., Zhou et al. (2024), thus provid-
ing a conservative test of the distributional learning
hypothesis, and (3) it is bidirectional. Although
bidirectionality is implausible for process models
of language comprehension (Frazier and Fodor,
1978; Elman, 1990; Tanenhaus et al., 1995; Alt-
mann and Mirkovi¢, 2009; Smith and Levy, 2013),
our goal is not to study processing but the underly-
ing distribution, and the constructions we explore
here depend on subsequent context. And though
human language learners see much less data than
PLMs, they also engage in active learning, taking
action in the world and in conversational exchanges
(Frank, 2023); thus a human learner may have some
ability to sample more strategically from the over-
all distribution than a PLM trained passively on
text. For simplicity, we analyze only single-token
words, leaving multi-token generalization of these
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methods to future work. As RoBERTa has a rela-
tively large vocabulary (50k), we find that this does
not pose a substantial limitation for our study.

3.1 Global Affinity

Given a string, s, of length, L, words, then s \ Z
is that string with the word indices in Z masked.
Precisely, the masked string, s \ Z, is the string, s,
with word indices 1 < 7 < L masked iff j € 7.

Define /Ps(i)I to be the probability distribution
given by the model for the ith position in the
masked string, s \ Z (note that i € 7). Then global
affinity is simply the probability assigned to the
original word in the bidirectional context:

Pty (w3)

When a word has high global affinity, the context—
potentially involving a construction—strongly in-
forms (Shannon, 1948) the word’s identity. Fig-
ure 8 shows per-word global affinities for the sen-
tence, My favorite band is Green Day.

3.2 Local Affinity

Global affinity alone sheds no light on which parts
of context affect the model’s output distribution
for a particular word position. This is limiting for
the study of constructions because constructions
often involve interactions between multiple slots.
For example, the NPN construction (e.g., day by
day, Jackendoff 2008) introduces an interaction
between the pair of nouns: the nouns are mutu-
ally constrained to be the same. We quantify such
pairwise interactions via local affinity between two
positions, ¢ and j, defined as the distributional dif-
ference at position j in a string s as a function of
whether the word at position ¢ was masked:

- G pl)
Q5 = JSD(PS\{]}’ ps\{i,j})

where JSD represents Jensen-Shannon divergence
(Lin, 1991). Computing the affinity between each
pair of words in an input of length, n, words results
in an n X n affinity matrix, from which construc-
tions’ patterns of affinity can be quantified and
visualized (see e.g., Figure 3).

4 Revisiting a Challenging Case

We first use our methods to address the challenge
of distinguishing the CEC from the EAP and AAP,
which Zhou et al. (2024) test using probing and
prompting. Zhou et al. perform classification by

probing sentence (GPT-3.5, LLama2) and adjec-
tive (Llama2) embeddings. They use prompting
(GPT-3.5/4, Llama2) not for classification, but in-
stead in an experiment that suggests that the mod-
els do not understand the causal entailments of the
constructions. In this section, we show that the
affinity methods not only robustly distinguish the
constructions, but that they also identify mislabeled
examples in the original dataset (see §4.1, §4.3).

4.1 Models distinguish the CEC from the EAP
and AAP in their output distributions

Whereas the so in the EAP and AAP can be re-
placed by other adverbial modifiers (e.g., very), so
is required for the CEC to be grammatical (Kay
and Sag, 2012; Zhou et al., 2024). If RoBERTa dis-
tinguishes the CEC from the EAP and AAP, then
so should be constrained (have high global affinity)
in the CEC but not in the EAP and AAP.

We calculate the global affinity for so in each
sentence and observe that the score distinguishes
the CEC: thresholding global affinity at 0.78 cor-
rectly characterizes 272/277 sentences (98.2%). In
fact, Figure 2 shows that there is a wide margin,
since any threshold between 0.6 and 0.9 achieves
similar separation. Zhou et al. (2024) separately
classify CEC vs. EAP/AAP and report percentage
accuracies of 79.3, 86.5, 68.5 for CEC vs. EAP
and 78.8, 86.5, 68.0 for CEC vs. AAP using GPT,
Llama, and LLama-adj, respectively. Given the
strength of our results, we did not reimplement
their procedure; it is clear that our untrained ap-
proach produces a better result.’

Out of 277 examples, 11 originally appeared to
be misclassified using the 0.78 threshold, but upon
review, three were mislabeled and three were in-
valid. For example, “This was so funny that I had
to buy another copy and read it to my better half,”
was originally labeled AAP. We report results and
plots with labels corrected; we provide details of
corrected examples in Appendix B.2. The clear
distinction in the model’s distribution between the
CEC and EAP/AAP—which are superficially indis-
tinguishable—provides strong evidence that PLMs
do in fact “retrieve and use meanings associated
with patterns involving multiple tokens” (cf. Weiss-
weiler et al., 2023).

%In fact, Zhou et al. upsample the underrepresented EAP
and AAP classes. As our threshold correctly categorizes 100%
of EAP and AAP examples—miscategorizing only 5 CEC
examples— upsampling would improve our accuracy.
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4.2 Models capture causal relations in the
CEC

We have shown that global affinity challenges a
previously reported failure of PLM construction
representation. Now we push this finding a step fur-
ther by using affinity matrices to assess how well
PLMs capture the causal semantics of the CEC, as
revealed by cases involving multiple clausal com-
plements. Consider I was so excited that, I saw
you thats I told my Mom. Given the requirement
of so to license the CEC, we hypothesize that if the
model captures the causal semantics of the CEC,
then so will have a greater affinity to the causal
thato than to the affective one (see Figure 3).

To test this hypothesis in general, we draw CEC
instances from Zhou et al. (2024) and insert addi-
tional complementizer (that. . .) phrases to create
a small multi-that dataset of 31 test sentences (see
B.3.1). Across all 31 sentences—even one with
five that-phrases—we observe perfect correspon-
dence: so always has the highest affinity with the
that at the beginning of the causal excess clause.
This result suggests that the distribution both dis-
tinguishes the CEC from similar constructions, and
also provides signal for the underlying semantics.

4.3 Affinity patterns distinguish the EAP and
AAP

Lastly we consider whether the model distinguishes
the EAP and AAP. Zhou et al. (2024) showed that
the EAP and AAP can be reasonably distinguished,
reporting classifier accuracies of 77.1, 71.7, 84.3
for GPT, Llama, and Llama-adj, respectively. How-
ever, given that epistemic and affective adjectives

do themselves differ, has the probe recovered a con-
structional distinction or has it just recovered the
adjective class? We cannot answer this question via
global affinity: unlike the CEC, which is character-
ized by the fixed slot constraint for so, no words in
the EAP/AAP are fixed, and in some cases when
the adjective is masked, both the EAP and AAP
are possible (e.g., I was so (happy | certain) that 1
saw you). We therefore instead compare them by
analyzing patterns in the local affinity matrix.

First, we align examples by identifying the fol-
lowing parts common to all inputs: <subj;, verby,
so, adj, that, subjo, verbs>. For example in I was so
happy that I saw you, we have <[, was, so, happy,
that, 1, saw>. For each example we extract all
pairwise affinities between these seven positions.
We test the hypothesis that the constructions have
distinct signatures of internal interactions by exam-
ining whether the two classes cluster together using
UMAP (Mclnnes et al., 2018), a low dimensional
projection. A UMAP projection of all 49 (7 x 7)
dimensions does not separate the two classes; how-
ever, this projection considers all affinities equally,
even those which may not be related to the construc-
tion (see e.g., Figure 7). To address this, we identify
potentially salient differences in the interaction pat-
terns and produce the UMAP plot in Figure 4 using
only the five most substantially different affinities
across 26 AAP and 14 EAP examples (admittedly
few examples; see Appendix B.4 for details).

This method, though imperfect, suggests separa-
bility using patterns of interaction between parts of
the input. (See B.4 for further discussion of sepa-
rability.) Zhou et al. were moderately successful
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in distinguishing the EAP and AAP using probing
and unsuccessful with prompting. Our results sug-
gest that the distribution may be able to distinguish
EAP and AAP examples, even without access to
the adjective’s identity.

5 Generalizing to Other Substantive
Constructions

In this and §6, we investigate how well our distri-
butional approaches generalize. In this section, we
study generalization to partially substantive con-
structions using two datasets: the Construction
Grammar Schematicity corpus (CoGS, Bonial and
Tayyar Madabushi 2024) and MAGPIE (Haagsma
et al., 2020), a corpus of potentially idiomatic ex-
pressions labeled as either figurative or literal.

5.1 Global affinity distinguishes fixed slots in
numerous constructions

CoGS contains roughly 50 examples for each of
10 construction types. Six of these constructions
are partially substantive and have at least one fixed
word for which we calculate global affinity (ex-
amples from Bonial and Tayyar Madabushi; fixed
words italicized):

Causative-with: She loaded the truck with books.
Comparative correlative: The more the merrier.
(In our analysis the two the words are considered
as a single class.)

Conative: He kicked ar the ball.

Let-alone: None of these arguments is particularly
strong, let alone conclusive.

Much-less: He has not been put on trial, much less
found guilty.

Way-manner: We made our way home.

As motivated in the introduction, we expect that
constructions will manifest as high global affinities
on fixed words. For example, just as the interac-
tions between words in the CEC constrain so, in the
let-alone cxn, we expect interactions to constrain
the non-compositional let and alone.

As shown in Figure 5, the fixed words—in all
but the conative—have high global affinities. The
at in the conative has low affinity (e.g., He kicked at
the ball) because various other non-conative com-
pletions are possible: for this example the model
produces out, at, over. These results show that the
distribution simulated by RoBERTa captures the
contextual cues associated with various partially
substantive constructions, and that global affinity
reflects that contextual affinity.

5.2 Global affinity helps distinguish literal
from figurative usages

Next, we ask whether global affinity helps discrim-
inate figurative and literal usages in potentially id-
iomatic expressions (PIEs). We use MAGPIE, a
corpus of ~50,000 sentences with PIEs that are
hand-labeled as either figurative or literal. Idioms
(e.g., kick the bucket) have long been of interest to
CxG (e.g. Fillmore, 1988; Croft and Cruse, 2004;
Wulff, 2008) and were a key motivation for the
approaches in this study (see Introduction).

We hypothesize that figurative uses will have
higher global affinity, by virtue of being entrenched
and non-compositional: consider that one can spill
the beans but that in the same context, one would
not spill the water, so beans should have high affin-
ity. Nonetheless, this signal may be confounded:
other factors can constrain words (see e.g., §7), and
frequent PIEs might have high affinities even when
used literally (e.g., “nuts and bolts in the garage”;
see, e.g., Rambelli et al. 2023).

We compute global affinity for each of 114k
words that are part of a PIE in 45k sentences (10k
literal, 34k figurative; details in Appendix D). Un-
der the hypothesis, we treat affinity as a classifica-
tion probability for figurative usage and produce a
receiver operating characteristic curve, achieving
an area of 0.71 under the curve (plot in D), which
shows that global affinity provides a meaningful
signal for classifying figurative vs. literal usages.’?

We further compare average figurative and lit-
eral scores for each idiom (graphical results in D.3).
For example, nuts and bolts behaves as expected,
scoring 0.90 fig and 0.84 lit, reflecting entrench-
ment of the literal usage. On the other hand turn
someone’s head gives 0.37 vs. 0.74, but this “fail-
ure” may stem from the relative non-entrenchment
of the figurative use (that Yankee sun hasn’t turned
your head) versus the more common literal use
(she turned her head). Moreover, qualitative anal-
ysis suggests that affinity can be useful to further
characterization of PIEs: for example, the low-
est scoring figurative usages are generally less fa-
miliar to the authors, and affinity helped identify
some mislabeled or questionable examples. Future
research combining affinity methods with other
approaches might produce further quantitative in-
sights for PIEs.

3 “The AUC of a classifier is equivalent to the probability
that [it] will rank a randomly chosen positive instance higher
than a randomly chosen negative instance,” (Fawcett, 2006).
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acceptability > 4.

6 Generalizing to Schematic
Constructions

Our analyses thus far have mostly focused on how
constructions manifest in affinities for particular
fixed words in specific slots, but constructions can
also be schematic with abstract slots (Croft and
Cruse, 2004; Goldberg, 2003). Here we generalize
our approach to study how well the distribution cap-
tures two such constructions, the noun-preposition-
noun construction (NPN; Jackendoff 2008) and the
comparative correlative (CC; Fillmore 1986).

6.1 Models generalize the NPN’s covarying
noun-noun slots

The NPN construction (e.g., day after day) is a
schematic construction (see e.g., Sommerer and
Baumann 2021 for a recent study using collostruc-
tional analysis). Since the construction is entirely
schematic (no slots are constrained to be fixed
words), a distributional learner can acquire it only
by generalizing to abstract classes (i.e., noun and
preposition).

To study whether the distribution reflects gen-
eralization of the NPN to arbitrary nouns, we ran-
domly sample 100 singly-tokenized, singular nouns
from RoBERTa’s vocabulary and prompt GPT-4 to
produce NPN sentences with each of the preposi-
tions by, after, upon, and 0% giving 400 sentences.
We compute global affinities for the nouns in the
NPN and obtain acceptability ratings (scale 1-5)

“There are other varieties of NPN than the symmetric
N+P+N and other prepositions can be used (Jackendoff, 2008;
Sommerer and Baumann, 2021); this analysis is intended only
to show generalization, not to be an exhaustive study.

Figure 6: Global affinity for nouns
in the NPN construction, grouped
by preposition, for sentences with

hammer - B
O QO <@ & DL > S
ROt & AN Q
by to Y}m@ \\’g,qx‘&é@ e %\g\ﬁo &é\
& AUV
AN

Figure 7: The local affinity matrix en-
codes diverse types of interactions, in-
cluding both constructional and non-
constructional interactions.

from the last author, who is blind to the affinity
scores. These ratings are used only to segment our
analysis by acceptability. In Figure 6 we plot affin-
ity scores for nouns in sentences with acceptability
> 4 (upon: 65, after: 73, by: 52, to: 54; total 244).
We include the same plot but without acceptability
filtering in the Appendix, Figure 16; lower accept-
ability sentences have lower affinity, reflecting that
affinity is sensitive to linguistic acceptability.

In Figure 6, affinity scores for upon and after sug-
gest that the distribution captures the form of the
NPN: the model generally expects the two nouns
to be the same. Moreover, the lower affinity for
NPNs with by and fo (and also the relative counts
of acceptable generations) accords with prior char-
acterization of the NPN: after and upon are more
flexible in NPN use than other prepositions, and to
is only semi-productive (Jackendoff, 2008).

As our objective is to test generalization to
unseen NPNs, we generate a separate challenge
dataset of ~ 100 nouns: Using the infinigram API
(Liu et al., 2024), we sample nouns that are not
used in an NPN (with any of the four prepositions)
in the Pile-train dataset (Gao et al. 2020; see E.2
for details). Though the affinity distribution for
entirely unattested NPNs is more skewed toward
lower affinities, we still see clear evidence of gen-
eralization (Figure 17).

6.2 Models generalize the comparative
correlative’s category constraint

We test whether the distribution encodes the seman-
tic category of the comparative adjective/adverb in
the CC (see Weissweliler et al., 2022, for a recent

2122



study), which is of the form, e.g., The better your
distribution, the more constructions it will encode.
Whereas in §5.1, we showed that the in the CC
has high global affinity, here we test whether the
distribution also encodes an abstract slot constraint
for the comparative adjective/adverb. Using the
54 CC examples from the CoGS dataset, we mask
each comparative adjective/adverb, obtain the set of
highest probability outputs at the masked position
that sum to 98% probability mass, and calculate a
comparative score: the percentage of this set that
is a comparative adjective/adverb (see F).

Out of 99 comparative adjectives/adverbs, 95
score 100%; another 3 score > 99%, and one
(The higher up the nicer!) scores 86%, with non-
comparatives ladder and mountain in the top 10
fills, perhaps because it is uncommon for a compar-
ative to come at the end of the sentence. This result
shows that the distribution captures the abstract
syntactic (comparative adjective/adverb) constraint
of the CC nearly perfectly, with 98/99 examples
having scores > 99%.

7 The Limits of Distributional Analysis

How far can we push these distributional ap-
proaches for identifying constructions in text?
Could they allow us to identify a model’s complete
constructicon bottom-up (see, e.g., Dunn, 2017,
2019, 2024; Feng et al., 2022; Lyngfelt et al., 2018;
Xu et al., 2024)? We argue the answer is likely
“no”: although affinity is a highly useful diagnos-
tic of models’ knowledge of constructions, here
we show that it cannot be directly equated with
constructionhood.

First, consider the sentence Alice went to the
hardware store and bought a hammer. The affinity
matrix (Figure 7) reveals various interactions of
interest. Some of these are likely constructionally
mediated, including tense agreement in coordinated
verb phrases (went, bought), as well as subject-verb
(she, bought), head-modifier (hardware, store), and
determiner-noun (a, hammer) dependencies. But
other interactions are less obviously constructional,
such as coreference (Alice, she) and semantic re-
latedness (hardware, hammer). So although the
affinity matrix does reflect constructional relations,
it also shows that other contextual interactions can
produce high local affinities. Thus affinity is an
insufficient criterion for constructionhood.’

SInsufficiency holds for global affinity as well: Figure 19
shows that hardware has high global affinity (0.92).

Second, consider the sentence My favorite
band is Green Day, which includes the non-
compositional collocation Green Day (a well-
known band name). Figure 8 shows that Green
Day has low global affinity until an appropriate
contextual trigger is given, i.e., band. This shows
that even substantive constructions may exhibit low
global affinities when the surrounding context is
insufficient to trigger them.®

Additionally, Figure 9 shows the local affinity
matrix for the Green Day example. As expected,
it reflects affinity between band, Green, and Day.
However, in a different context (I saw my favorite
band, Green Day, in concert), the interactions be-
tween Green Day and band vanish (Figure 10).
This appears to be due to the co-presence of an
additional semantic cue (concert): since band and
concert are both individually sufficient to cue the
construction Green Day, neither individually ex-
hibits strong pairwise affinity with Green Day (i.e.,
neither when masked substantially changes the
model’s output distribution for Green or Day).

Taken together, the hardware store and Green
Day examples show that affinity is neither sufficient
nor necessary for a construction to be present. In-
sufficiency arises out of the tension between contex-
tual and constructional interactions. Non-necessity
arises from a methodological challenge: eliciting
global affinity requires masking, but under mask,
the context may not trigger a construction. These
results thus warrant caution in mapping between
observables (affinities) and hypothetical constructs
(like constructions). They also suggest avenues for
future work, which we explore below.

8 Discussion

We used input interventions to investigate whether
constructions result in patterns of statistical affini-
ties and thereby manifest in PLMs’ output distri-
butions. Our methods showed that ROBERTa’s
distribution distinguishes semantically distinct but
formally similar constructions that were previously
reported as failures, and our approach even identi-
fied mislabeled and unclear examples. We gener-
alized our results to six partially-substantive con-
structions, potentially idiomatic expressions, and
two schematic constructions that have abstract con-
straints. These results support the distributional
learning hypothesis: the distribution over strings,

®See also Figure 21 in the Appendix, for an additional
example with the idiom kicked the bucket.
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Figure 8: Green Day (a cxn) is
present in top/bottom panels but
without/with band, it has low/high
global affinity (white = 0, black = 1).  expected.

as simulated by PLMs, contains rich information
about the constructicon. Nonetheless, we also
showed that the distributional measures we devel-
oped are, in general, neither necessary nor suffi-
cient to induce constructions. Instead, statistical
affinity is likely one of a broader set of cues, both
for linguistic analysis and for language learning.

Compared to prior work, we presented a purely
distributional approach to the study of construc-
tions in PLMs: RoBERTa is a statistical represen-
tation of the corpus, obtained via an unsupervised
masked-language-modeling objective (Devlin et al.,
2019). That representation, which encodes a com-
putational model of language, was interrogated via
perturbations on strings. Whereas prior work has
used NLI-style entailment queries and bespoke
probes trained to identify particular constructions,
we instead—and more simply—directly examined
the model’s output distribution over tokens.

With respect to the open problem of construction
induction, our methods may prove useful: Global
affinity can identify what is constrained (potentially
by a construction), and local affinity can identify
why it is constrained. Given that induction over
schematic constructions requires assigning seman-
tic categories, our results on the NPN and compar-
ative correlative suggest that the distribution (and
thus contextual representations) may encode cate-
gories of interest (see also Chronis et al., 2023).

Future work to distinguish constructional from
contextual interactions could be part of an effort to
understand constructions information-theoretically
(cf. Futrell et al., 2019). Given recent questions
about the falsifiability of CxG (see, e.g., Cap-
pelle, 2024), an information-theoretic approach

Figure 9: The local affinity matrix
reflects interactions (pink) between
between band, Green, and Day, as

N o

my
favorite
band
Green
Day
in

concert . .

& e@é\ Q@ \%%4& f;o.*\@:&i@@%@ :Z&éx

Figure 10: In contrast with Figure 9,
with additional context (...in con-
cert), affinities between band and
Green Day seem to disappear (pink).

might provide a quantitative constructional crite-
rion. Though we studied only affinity here, fur-
ther research might investigate how statistical affin-
ity relates to existing dimensions of constructional
analysis like degree of idiomaticity (Wulff, 2008),
frequency, and entrenchment (Stefanowitsch and
Gries, 2003, p. 239).

9 Conclusion

The distributional learning hypothesis is a funda-
mental assumption of construction grammar. We
have shown experimentally that the distribution
over strings, as approximated by a PLM, contains
rich information about constructions’ syntactic and
semantic properties. Across a wide range of con-
struction types, including previously reported hard
cases involving semantically distinct but superfi-
cially similar constructions, we find that construc-
tional information is reliably reflected in the causal
interactions between words and their surrounding
context. This finding both complements existing
approaches in linguistics that attempt to charac-
terize constructions using passive text, and sup-
ports the hypothesis that distributional information
is a major source of signal available to language
learners. Our work offers a methodology that may
contribute to the growing field of research on con-
structions in PLMs, may inform construction in-
duction, and suggests the possibility of a quantita-
tive, information-theoretic approach to modeling
constructions. For linguists our methods offer a
new kind of PLM-based approach to corpus study—
one which extends existing methods like collostruc-
tional analysis to direct counterfactual inquiry.
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Limitations

Our analysis is limited to a single (bidirectional)
masked language model, RoBERTa, and could be
rerun on other models of different sizes. In choos-
ing masked language models, a straightforward
analysis of the sort that we have performed is lim-
ited to words that are single tokens; multi-token
generalization of these methods is left to future
work. Our approach for §4.3 removed numerous ex-
amples, leaving relatively few for analysis; nonethe-
less the approach still recovered mislabeled exam-
ples. We studied only English constructions, and
future work should look to apply these methods to
other languages.

CxG is a broad theory (Goldberg, 2003, 2024;
Hoffmann, 2022). We did not consider the question
of precisely defining what a construction is nor did
we study any particular constructionist approach
(see, e.g., Goldberg, 2013). Unlike with other the-
ories of syntax, there is no complete inventory of
constructions available, so our study necessarily
focused on specific ones that had already been dis-
cussed in previous literature.

CxG is furthermore one of many extant theories
of natural language syntax (Chomsky, 1995; Pol-
lard and Sag, 1994; Steedman, 2001; Bresnan et al.,
2015, inter alia). Although our study targets a key
premise of CxG (usage-based learning), we do not
claim that CxG is the only appropriate analysis of
the phenomena we study, nor are we arguing for
CxG over alternative approaches. Our results take
CxG as a starting point and thus do not allow us to
weigh in on these important theoretical questions.
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A Supplement: Methods

In this paper we restricted consideration to singly-
tokenized words. Multi-tokenized words cannot be
studied with a single mask (the remaining token
would substantially shape the outcome), and it is
not trivial to turn a multivariate distribution over
multiple masks into a univariate distribution over
words. In practice, most words we encountered in
this study were singly-tokenized and this was not a
substantial limitation.

Calculating a local affinity matrix is more ex-
pensive than calculating global affinities: n 4 n?
forward passes versus n. Note that the affinity ma-
trix is asymmetric—positions (i,j) and (j,i) involve
three different distributions and are computed as
JSD(A,B) vs. JSD(C,B)—and that the diagonal of
the matrix, a;; is 0.

We use RoBERTa large. Most experiments are
run locally on an M3 Macbook Pro or on a single
Nvidia RTX A6000 GPU on a cluster. Total time
to run all experiment code is less than an hour.

B Supplement for Section 4: Revisiting a
Challenging Case

B.1 Data and preprocessing

We preprocess the dataset examples to identify the
indices of so, that, and the adjective. The original
dataset has 323 examples, and our pre-processor
and method pipeline fails on 46 examples, leaving
277 for our analysis. Some of the failures are the
result of how our processing interacts with punc-
tuation, others are issues in the dataset. Particu-
lar failures can be obtained by re-running our pro-
cessing code provided in the repository. The final
dataset on which we run our analyses has 24 EAP,
70 AAP, and 183 CEC sentences, for a total of 277
sentences.

B.2 Supplement for Section 4.1: Models
distinguish the CEC from the EAP and
AAP in their output distributions

Here we discuss the misclassified examples in the
Zhou et al. (2024) dataset.

Our approach when run on the original dataset
appears to misclassify 11 examples (1 EAP, 2 AAP,
8 CEC). As we detail here, only 5 of these are
actually misclassified. Figure 11 shows the same
histogram as presented in the main text (Figure 2)
but without any corrected labels or omissions.

For each apparently misclassified sentence, we
categorize as
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Figure 11: This figure is the same as Figure 2, but
without correction of mislabeled examples. As only 5
examples differ, the plots are very similar.

1. Misclassified: Our (untrained) classifier was
wrong; the original label was correct. No
changes are made.

2. Mislabeled: Our classifier identified a mis-
labeled example. We correct the label and
present the analysis in the main text with the
corrected label.

3. Unclear: An example that is sufficiently am-
biguous in interpretation to be omitted or lin-
guistically invalid. We omit the example from
analysis in the main text.

B.2.1 CEC with prob < 0.8

There are 9 CEC examples originally labeled as
CEC that appear to be misclassified (low global
affinity on so). Of these 9, 2 are mislabeled and 1
is linguistically invalid.

Mislabeled or Unclear:

1. It’s his lucky quarter and Pop feels so bad
that Lucky lost it.

Mislabeled (Relabeled to AAP from CEC)
2. I am so fortunate to have had it recommended
to me so highly that I bought the eight pack.

This sentence is unclear and does not seem
to be an instance of any of the three construc-
tions. We omit it.

3. I am so ashamed of myself that I ignored
other reviewers and paid money for this book.

Mislabeled (Relabeled to AAP from CEC)

Misclassified

1. It has also been noted that he was so satisfied
that he did this without fee or reward and was
publicly thanked.

This example is ambiguous: It can be read
as a CEC (“so satisified” — “did this without
fee”) or as an EAP (he was satisfied that he
was thanked). We conservatively leave this
example in the dataset.

2. The judges were so surprised that one of them
had a "spasm,” one leaned against the wall
for support, and the other fell backwards into
a barrel of flour!

This is a valid example, although an affective
interpretation is possible.
. But, a friend was so adamant that I tried it.
4. I was so confident that [ made changes on my
own.
5. There are a couple of false notes along the
way, such as a dreadful rendition in front of
a room of people of "You’re So Vain," but so
many moments are so right that I had no trou-
ble forgiving them the few missteps.

B.2.2 AAP with prob > 0.8

There are 2 sentences labeled as AAP with proba-
bilities > 0.8. One is mislabeled, and the other is
unclear.

(98]

1. This was so funny that I had to buy another
copy and read it to my better half.

Mislabeled (Relabeled to CEC from AAP)
2. After a series of fires in 1741, the city became

so panicked that blacks planned to burn the

city in conspiracy with some poor whites.

This sentence is unclear. As written the sen-
tence suggests that the panic may be causing
the plan to burn down the city (hence the CEC
interpretation). However, a closer review of
the entire sentence suggests that the intended
meaning is that a series of fires (potentially
arson) led the city to be afraid that there was a
conspiracy to commit further arson. The best
expression of intended AAP meaning could
be achieved by removing so, and changing
verb tense:

After a series of fires in 1741, the city became
panicked that blacks were planning to burn
the city in conspiracy with some poor whites.
We omit this sentence.
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B.2.3 EAP with prob > 0.8

The 1 EAP example with probability > 0.8 is un-
clear.

1. In Burma, the belief was once so widespread
that the Sumatran rhino ate fire.

Arguably unclear. For one of the authors, this
sentence seems to suggest (nonsensically) that
the belief’s being widespread was the cause
of the rhino’s eating fire. The so could be
replaced with, e.g., surprisingly to achieve the
apparently intended meaning. Alternatively
so could simply be omitted.

We omit this sentence.

B.3 Supplement for Section 4.2: Models
capture causal relations in the CEC

B.3.1 Dataset (multiple-that)

To produce the augmented multiple-that dataset,
we searched for existing examples in the dataset
(Zhou et al., 2024) that already had two or more
that words. In some cases, we insert additional
complementizer (that...) phrases. Some exam-
ples are created with two CEC phrases to test that
each so has high local affinity with its associated
causal that. We label the correct causal that for the
analysis.

We provide two examples from the 31-sentence
multi-that dataset:

1. This example has 5 that-phrases. The affinity
of so with the correct that is more than two
orders of magnitude higher than with any
other that.

John worked so hard on helping his friend
improve his argument that the policy was bad
and that America should adopt the resolution
that the policy had failed that he was too tired
to debate the topic that the policy had failed
himself.

2. Some examples are double CEC with multiple
so-that pairs. We test that both each so has
the highest affinity with the correct that. For
example:

Li shiji was so, thankful that, he wept and bit
his finger so2 hard thats he bled.

e higher
subj n
AAP
verb
S0
adj
subj
highcr
verb EIAP
1 L
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Figure 12: This plot shows which interactions, on aver-
age, most substantially differ between EAP and AAP
examples. From highest to lowest in absolute value we
have that with itself, so with adj, so with itself, verb
with itself, and so with verb.

B.4 Supplement for Section 4.3: Affinity
patterns distinguish the EAP and AAP

As described in §4.3, we identify potentially salient
differences in the EAP and AAP patterns: we com-
pute a single average (position-wise) affinity matrix
for all EAP examples and another average matrix
for all AAP examples. We fill the diagonal of the
matrices with the average global affinity score (as
probability). We then subtract these two average
matrices and then take the position-wise absolute
value. The largest values in the resulting matrix
provide the interactions that seem to most distin-
guish the EAP and AAP. The heatmap in Figure 12
shows the most potentially informative interactions
across EAP and AAP examples. Here we see that
the most different interactions (between EAP and
AAP examples) on average are that with itself, so
with adj, and so with itself.

After running the pre-processing pipeline for to-
kenization we have 68 AAP and 24 EAP examples
(see B.1). For our analysis, we exclude any that
have multitokenized words in one of the seven po-
sitions we consider, or for which Spacy (Honnibal
et al., 2020) fails to label a POS. This leaves us with
14 EAP and 26 AAP examples for the analysis.

All UMAP projections use n_neighbors 10 and
min_dist 0.1. Figure 14 shows UMAP plots
using different numbers of affinities: each row
corresponds to the number of informative dimen-
sions that are chosen using the heatmap. The two
columns show two random seeds for the UMAP
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Figure 13: This figure is the same as Figure 4 but with
labels for examples which would likely cluster with the
wrong class or are on the boundary.

projection. From the multiplot, we see that using
five dimensions produces seems to mostly separate
the two classes, and we use five dimensions in the
main text (Figure 4).

Finally, we label five sentences in the plots (Fig-
ure 14) which either look to violate separability or
which are on the boundary.

1. Label 10: It’s his lucky quarter and Pop feels
so bad that Lucky lost it.

After our CEC correction (relabeled to AAP
from CEC), this would likely be misclassified
using UMAP, since it clusters with EAP.

2. Label 99: An hour later, however, they’re still
alive which confuses Elijah and Rebekah, as
they were so positive that Klaus originated
their bloodline and were sure it wasn’t Kol
Mikaelson (Nathaniel Buzolic).

This is epistemic, and could be misclassified
using UMAP.

3. Label 113, In the police court, Mrs. Jones
says she was so shocked that her husband had
the box.

This is affective and would likely be misclas-
sified using UMAP.

4. Label 119: I am so sure that the lack of men
on stage made some men feel excluded.

This is epistemic, and could be misclassified
using UMAP.

5. Label 301: I am so optimistic that I made the
best choice.

This is labeled as epistemic, though optimism
conveys some degree of affect. This label is
arguably ambiguous.

C Supplement for CoGS (Section 5.1)

CoGs has the following counts of examples for
each construction type:

. Causative-with: 50 (for with)

. Comparative correlative: 54 (for the)
. Conative: 51 (for at)

. Let-alone: 51 (for /et and alone)

. Much-less: 50 (for much and less)
Way-manner: 54 (for way)

Nk W=

We did not have any errors, so the number of
examples reported in Figure 5 are exactly these,
except for the comparative correlative “the”, for
which there are 2 X 54 = 108, since we treat the
two the as a single class in the analysis.

D Supplement for MAGPIE (Section 5.2)
D.1 Data Sample

Here we provide two examples drawn from the
MAGPIE dataset for nuts and bolts:

Literal usage: They would include orders for rou-
tine raw materials such as steel stock; screws; nuts
and bolts; lubricants and fuel oil.

Figurative usage: Jay comes from a different end
of the spectrum to Dave Ambrose, but the two both
like to talk nuts and bolts.

D.2 Methods

Each of the 49,395 sentences in MAGPIE has a PIE
that is labeled as either figurative or literal. The
words that participate in the PIE are annotated with
character spans.

We omit 3,944 sentences for which annotation
confidence (figurative or literal) is < 99%. We omit
2,016 where labeled word offsets are wrong (i.e.
the indicated word does not match the characters
in the span). This gives us 45,450 sentences and
117,385 individual PIE word spans (roughly 2.6
words per PIE) for the analysis. Of these, 10,313
sentences (23,484 spans) are literal and 34,138
(95,917) are figurative. Using RoBERTa, 3,556
words were multitokenized and there were 39 other
errors. These were omitted. Our analysis is con-
ducted on the remaining 113,790 singly-tokenized
words.

For each labeled character span that is part of
a PIE, we simply calculate the global affinity and
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Figure 14: Multiplot version of Figure 4. UMAP projections for EAP (orange) and AAP (blue). Each row
corresponds to the number of dimensions that are used for the projection (2-6). Columns correspond to different
random seeds. Potentially “misclassified” sentences (those that were near the class boundary) are labeled with their
original dataset IDs for discussion.
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Figure 15: ROC curve reflects informativeness of global
affinity in figurative vs. literal usages of PIEs.

treat it as a classification signal for figurative ver-
sus literal use. Our reported AUC of 0.71 in the
main text includes only dataset entries in which the
example sentence is at least ten words long (suf-
ficient context), and where the individual word is
at least four characters (avoiding, e.g., determiners
and other short words). If no filtering is performed
the AUC for the ROC is 0.69 (versus 0.71).

D.3 Figurative vs. Literal Analysis

Figure 22 compares per-idiom figurative versus lit-
eral averages global affinity scores. Only idioms
with at least 5 example sentences for both figura-
tive and literal are shown (203 total). Idioms are
sorted by figurative score. Brackets give number
of examples of each type: [#figurative, #literal]. Id-
ioms where figurative (green) is higher than literal
(orange) suggest “success” of the method (e.g., in
a rut, nuts and bolts).

Though we do not conduct a full analysis of
MAGTPIE in this study, we report a few examples
from qualitative analysis. In the same way that
affinity was able to help identify mislabeled exam-
ples in the CEC dataset, affinity draws attention to
certain issues or areas of interest in MAGPIE.

For example, consider join the club (0.20 fig vs.
0.49 lit), which we examine to understand why the
literal score is higher than the figurative. MAG-
PIE’s literal examples include usages of the form
join a club (e.g., A player joining a new club. .. ). In
figurative usages, join the club does not generally
admit of lexical or syntactic modification. High

affinity for literals reflects contextual activation of
Jjoin a club or join a/an X club type usages. More-
over, of the few (6) figurative usages in the dataset,
many are quoted discourse ( “Join the club,” said
Connie), which do not produce sufficient activa-
tion since other completions like “Join the group”
would be valid (hence low affinities). In this dataset,
Jjoin a/an X club literal usages tend to be longer and
better formed. A fairer comparison might enforce
a common context length.

Similarly, for play the field (0.22 fig, 0.42 lit;
figuratively meaning to hold an interest in a num-
ber of people or things), many literal usages refer
to a playing field (for sports). The syntactic pat-
terns clearly differ, and affinity has no mechanism
to attend to this. For example, playing fields in
playing fields and football pitches is entrenched as
its own collocation that is likely unrelated to the
entrenchment of the figurative play the field.

Sometimes low scoring figurative usages or high
scoring literal usages are mislabeled. For example,
the top scoring literal example for in black and
white (0.92 fig, 0.90 lit overall) is actually misla-
beled as literal: ... but the complicated plot is hard
to follow and the characters are starkly drawn in
black and white.

E Supplement for NPNs (Section 6.1)

E.1 Methods

We use GPT-4 via the OpenAl API, version gpt-
4-0613, temperature 0.7, max tokens 100. Total
cost to produce 400 sentences is less than $5. We
prompt as follows, where “{phrase}” is the particu-
lar targeted NPN (e.g., day by day):

An NPN construction is one like "day
by day" or "face to face". It has a re-
peated singular noun with a preposition
in the middle. Other prepositions are
also possible: "book upon book", "week
over week", "year after year". Please
use "{phrase}" in an NPN construction,
placing "{phrase}" in the middle of the
sentence. Make sure the sentence estab-
lishes a context in which the noun makes
sense. Please provide only the sentence
in the response.

We verify that generations match the desired form
noun+prep-+noun.

To obtain acceptability judgements, we ran-
domly sort all sentences and the last author an-
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Figure 16: Same as Figure 6, but
with all sentences shown (no accept-
ability filter). Scores skew lower,
reflecting that less acceptable sen-
tences have lower global affinities.

notates with a score between 1 and 5, inclusive.
During acceptability judgement, 2 of the 100 sam-
pled nouns were deemed to be inappropriate, and
thus we omitted (2 x 4 = 8) of the generations.

We produce two datasets: The first is a random
sample from all of RoBERTa’s singly-tokenized,
singular nouns. The second uses the same sampling
procedure but rejects any sampled noun for which
the infinigram API has a non-zero count in Pile-
train for any of the four NPNs (i.e., the sampled
noun with any of the four prepositions).

E.2 Infinigram and the Pile

RoBERTza is trained on five corpora and com-
prises 160GB of text. Rather than recreating the
RoBERTa dataset for our frequency analysis, we
search the Pile-train (800GB) using the infinigram
API. The Pile is roughly five times larger than
RoBERT2’s training data and the five datasets on
which RoBERTa was trained are likely included, or
partially included, in the Pile:

* A newer version of BookCorpus is included
in Pile

* English wiki is included in the Pile

* CC-news is likely included in the Pile-CC,
and we verify this by spot-checking CC-news
examples using infinigram, finding that most
queries are successful

* A newer version of OpenWebText is included

e Stories, as part of CommonCrawl is likely
included in the Pile-CC, though spot-checks
do not find all queried strings

Figure 17: Global affinity for NPNs
using the challenge dataset of en-
tirely unattested NPNs with accept-
ability > 4. Compare to the non-
challenge result shown in Figure 6.

by to upon after by to

Figure 18: Same as Figure 17 but
with all sentences shown (no accept-
ability filter).

E.3 NPN Dataset: Random sample

When filtered to sentences with acceptabilities of
at least 4, we have 244 sentences (upon: 65, after:
73, by: 52, to: 54) and 488 nouns (two for each
sentence).

E.4 NPN Dataset: Zero frequency in the Pile

We initially sample 94 nouns and censor 3 of them
giving 91 nouns. We generate 364 sentences. When
filtered to sentences with acceptability of at least 4,
we have 171 sentences (upon: 51, after: 54, by: 34,
to: 32).

Figure 17 shows that affinities are lower for this
challenge set, but most NPNs using upon still have
high affinities, and over half of NPNs using after
have high affinity (median affinity > 0.9. This
provides good evidence for generalization of the
NPN with these prepositions. NPNs using by and
to have lower affinity scores, which accords with
the view that they are less productive. Again we
observe lower overall affinities when we include
sentences judged to be unacceptable (Figure 18).

E.S5 Dataset examples

We provide selected examples from our dataset:

1. Generation in the random sample with high
acceptability:
As a diligent scholar, he poured over
his research, analyzing manuscript after
manuscript to ensure the accuracy of his find-
ings.
Acceptability 5; affinity scores: 99.7, 99.7.

2. Generation in random sample, with low ac-
ceptability:
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Figure 19: Corresponding global affinity plot for the lo-
cal affinity plot in Figure 7. hardware has global affinity
(probability) of 0.92, and is mostly affected by hammer,
a contextual rather than constructional constraint. See
discussion in §7.

Through the philosophical discussions, they
delved deeper into the subject, unraveling
ambiguity by ambiguity, until clarity was
achieved.
Acceptability 1; affinity scores 99.1, 96.2.

3. Generation from the challenge dataset with
high acceptability:
They lived a nomadic life, moving from reset-
tlement to resettlement, always searching for
a place to call home.
Acceptability 5; affinity scores 98.4, 96.0.

4. Generation from the challenge dataset with
low acceptability:
The two rival politicians went ire to ire in a
heated debate.
Acceptability 1; affinity scores 0.0, 0.0.

F Supplement for Comparative
Correlative (Section 6.2)

For each sampled word, we substitute it into the
original sentence and use Spacy to check whether
it is a comparative adverb or comparative adjective.
To calculate the percentage of the output distribu-
tion nucleus that is a comparative adj/adv, we order
the outputs by probability and iterate through them
until reaching a total probability mass of p > 0.98
(a nucleus using 0.98). The final score is the pro-
portion of the sample (the 98% nucleus) that is a
comparative adjective or adverb.

Of the 108 (= 54 x 2) candidate slots, 99 of
them are singly tokenized and thus amenable to
study using our methods.

G Supplement for Section 7: The Limits
of Distributional Analysis

This supplement provides three additional figures.
Figure 19 provides the global affinity plot for the
example in Figure 7, Section 7.
Figure 20 shows the affinity matrix for the Green

My

favorite

QGreen

Day -

» 0&0 ~ @é\ Q‘Z’Q’

Figure 20: Affinity matrix for Green Day without band.
Compare Figure 9.

Figure 21: Idioms are not always activated by context.
kicked the bucket does not have high global affinity until
it is clear that the old man has died. (The squares for
kicked and bucket are dark only in the final sentence.)

Day examples when no musical context is provided
(compare Figure 9).

Figure 21 provides an additional example us-
ing the idiom kick the bucket (compare Figure 8),
illustrating again that even substantive construc-
tions may exhibit low global affinities when the
surrounding context is insufficient to trigger them.

H Use of AI Assistant

ChatGPT4o0 was used to produce initial versions of
python matplot generation code in some cases. Any
code produced was subsequently adapted/ modified.
ChatGPT4o0 was not used to write any part of this
paper. Some candidate related work was found
using ChatGPT4o as a search tool.
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Figure 22: Per-idiom global affinity scores for MAGPIE: average affinity for figurative uses (green) and literal uses

(orange). Only idioms with at least 5 example sentences for both figurative and literal are shown (203 total). Idioms
are sorted by figurative score. Brackets give number of examples of each type: [#figurative, #literal]. Idioms where

figurative (green) is higher than literal (orange) suggest “success” of the method.
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