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Abstract

In practical applications, multimodal data are
often of low quality, with noisy modalities and
missing modalities being typical forms that
severely hinder model performance, robustness,
and applicability. However, current studies ad-
dress these issues separately. To this end, we
propose a framework for multimodal affective
computing that jointly addresses missing and
noisy modalities to enhance model robustness
in low-quality data scenarios. Specifically, we
view missing modality as a special case of noisy
modality, and propose a supervised attention
framework. In contrast to traditional attention
mechanisms that rely on main task loss to up-
date the parameters, we design supervisory sig-
nals for the learning of attention weights, ensur-
ing that attention mechanisms can focus on dis-
criminative information and suppress noisy in-
formation. We further propose a ranking-based
optimization strategy to compare the relative
importance of different interactions by adding a
ranking constraint for attention weights, avoid-
ing training noise caused by inaccurate absolute
labels. The proposed model consistently out-
performs state-of-the-art baselines on multiple
datasets under the settings of complete modali-
ties, missing modalities, and noisy modalities.

1 Introduction

In the real world, objects and events are often de-
picted through multiple modalities, and humans
perceive the world through various senses (seeing,
hearing, etc), which underscores the importance of
integrating data from different sources (Baltrušaitis
et al., 2019). Consequently, multimodal affective
computing (MAC) (Poria et al., 2017), aiming to
effectively integrate language, acoustic, and visual
cues from speakers to comprehensively understand
and predict human sentiments, viewpoints, mental
states, intentions, etc., is a promising area in multi-
modal learning with great application potential.

*Corresponding author

Figure 1: An example of missing and noisy modalities.

However, in practical applications, multimodal
data can be of low quality, with noisy modality and
missing modality data being typical forms that sig-
nificantly hinder the performance, robustness and
applicability of the model (Zhang et al., 2024; Liu
et al., 2024). As shown in Figure 1, missing modal-
ity is often caused by unavailable data collection
equipment or sensor failures, while modality noise
can result from background interference, sensor
noise, or data transmission errors. Current studies
often address missing and noisy modality problems
separately. However, since both problems are com-
mon and often occur simultaneously, separate han-
dling limits the application scope and robustness
of the model.

Consequently, we propose a multimodal frame-
work to jointly address missing and noisy modali-
ties, aiming to enhance the robustness of the model
in low-quality data scenarios. We view missing
modality as a special type of noisy modality, where
the noise generation pattern and affected modal-
ity are known. Then we propose a supervised
attention mechanism for low-quality multimodal
learning (SAM-LML). Attention mechanisms are
widely-used for multimodal fusion and are the ba-
sic units for large language models (Vaswani et al.,
2017; Touvron et al., 2023; Radford et al., 2021;
Chay-intr et al., 2025). However, conventional
attention mechanisms lack explicit supervisory sig-
nals where the update of parameters depends solely
on the loss of main task. This might lead to the
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learning of noisy correlations or the highlighting of
non-discriminative information (see Section 4.6),
potentially leading to poorer interpretability and
suboptimal performance. In contrast, SAM-LML
explicitly designs supervisory signals for the learn-
ing of attention weights, enabling more accurate
capturing of important intra- and inter-modal inter-
actions. This effectively suppresses modality noise
and enhances the interpretability of attention mech-
anisms. Additionally, the ability of attention mech-
anism to handle variable-length sequences makes
it well-suited for addressing missing modalities.

Particularly, SAM-LML involves a supervised
intra-modal attention mechanism, which is suitable
for handling partial feature missing or noise within
unimodal sequences. By incorporating noise addi-
tion, modality decomposition replacement, atten-
tion matrix variance and context constraints, it de-
signs supervisory signals for the learning attention
weights, helping to suppress irrelevant information
and focus on important intra-modal interactions.
Furthermore, the supervised inter-modal attention
applies variance constraints, noise addition and
modality mixing operations to learn discriminative
inter-modal interactions and suppress low-quality
modalities, which is designed for scenarios with
complete missing or noisy modalities.

However, directly defining absolute labels for
attention weights is often inappropriate due to the
difficulty of the definition of absolute labels, which
can leads to training noise. To address this, we fur-
ther propose a ranking-based optimization strategy
to guide the model to compare the relative impor-
tance between different interactions. It seeks to
leverage the flexibility and expressive power of
deep learning models to automatically learn atten-
tion weights, and only requires the learned weights
to follow a constraint introduced by the ranking
relationships of weights, avoiding issues with in-
accurate absolute labels. Moreover, the ranking-
based training strategy explicitly compares the im-
portance of interactions, aligning with the essence
of attention mechanisms, i.e., focusing on more
informative and important interactions.

Our main contributions are listed as below:

• We innovatively address noisy modality and
missing modality problems in a unified frame-
work, which enhances the model’s potential
for application in real-world scenarios.

• We consider missing modality as a special
type of noisy modality, and design supervisory

signals for the learning of attention weights
to capture important intra- and inter-modal in-
teractions more accurately. This effectively
suppresses modality noise and boosts the in-
terpretability of attention mechanisms.

• We propose a ranking-based optimization
strategy to compare the relative importance
between different interactions, which only re-
quires the learned weights to follow a ranking
constraint and can avoid training noise caused
by inaccurate absolute labels.

• SAM-LML outperforms state-of-the-art meth-
ods on multiple MAC datasets under the set-
tings of complete modalities, missing modali-
ties, and noisy modalities. The visualizations
show that SAM-LML can enhance the inter-
pretability of attention mechanisms.

2 Related Work

2.1 Missing Modality
The methods for addressing missing modality is-
sue can be roughly categorized into four categories:
(1) Data augmentation methods simulate the ab-
sence of modality during training to improve gen-
eralizability via introducing modality drop and
noise (Lin and Hu, 2024; Hazarika et al., 2022).
However, simple data augmentation methods often
lead to a decrease in the performance of complete
multimodal fusion; (2) Alignment-based meth-
ods align the representations of incomplete and
complete modalities through contrastive learning
(Lin and Hu, 2023; Poklukar et al., 2022), canoni-
cal correlation analysis (Andrew et al., 2013; Sun
et al., 2020), or knowledge distillation (Li et al.,
2024), etc. However, these methods require train-
ing samples to have complete modalities and often
need to additionally train a teacher network; (3)
Reconstruction-based methods focus on gener-
ating missing modality features using generative
models, including autoencoders (Tran et al., 2017;
Zeng et al., 2022), variational autoencoders (Shi
et al., 2019), graph completion networks (Lian
et al., 2023), diffusion models (Wang et al., 2023),
and prompt-tuning strategies (Guo et al., 2024).
These methods effectively compensate for missing
modality information, but they often suffer from
high complexity; (4) Architecture-based methods
leverage architectures that can naturally handle an
arbitrary number of modalities (such as attention
mechanisms, mixture-of-expert models, ensemble
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algorithms) to address missing modalities (Xu et al.,
2024a; Deng et al., 2025; Xue and Marculescu,
2023). For example, Qian and Wang (2023) design
a masked attention mechanism that replaces miss-
ing values with zeros or negative infinity. However,
they do not design specific strategies to enhance
model performance in missing modality scenarios.

Compared to these methods, SAM-LML views
missing modality as a special type of noisy modal-
ity and designs supervisory signals for the learning
of attention weights, enhancing the model’s adapt-
ability and robustness to missing modalities.

2.2 Noisy Modality
The key methods for handling modality noise
mainly fall into three categories: (1) Noise aug-
mentation methods simulate real-world noise by
adding noise to features or raw inputs and design-
ing defense mechanisms accordingly (Hazarika
et al., 2022; Mao et al., 2023). However, design-
ing defense mechanisms for each type of noise can
be complex and has limited generalizability; (2)
Representation regularization methods use tech-
niques such as tensor rank minimization to extract
discriminative representations from noisy features
(Liang et al., 2019). For example, researchers ap-
ply the information bottleneck principle to filter
modality noise by minimizing mutual information
between encoded features and inputs (Mai et al.,
2023c; Federici et al., 2020). However, they rely
on assumptions that may not hold in real-world
scenarios; (3) Noise identification and filtering
methods aim to identify and suppress noisy infor-
mation (Gong et al., 2025). For example, Xue et al.
(2023) propose a multi-level attention map network
to filter modality noise before fusion. However,
attention-based methods lack explicit supervisory
signals to learn accurate modality weights, making
them prone to focusing on noisy information. Mul-
timodal Boosting (Mai et al., 2024) uses unimodal
predictive losses as supervisory signals to calcu-
late absolute labels for modality contributions, thus
identifying noisy modalities. However, absolute
labels are difficult to define accurately, which may
introduce training noise. In contrast, we propose
a ranking-based training strategy to compare the
relative importance of interactions, which avoids
inaccurate learning and aligns with the nature of
attention: focusing on more important information.

Moreover, research that can simultaneously ad-
dress noisy and missing modalities remains under-
developed. Since missing and noisy modalities

often coexist in real-world low-quality data scenar-
ios, we aim to simultaneously address these two
issues to expand the applicability of the model.

3 Algorithm

The diagram of SAM-LML is shown in Figure 2.
SAM-LML is evaluated on multiple tasks of MAC,
including multimodal sentiment analysis (MSA)
(Zadeh et al., 2016), multimodal humor detection
(MHD) (Hasan et al., 2019), and multimodal sar-
casm detection (MSD) (Castro et al., 2019). The
input is a video segment of a speaker described by
acoustic (a), visual (v), and language (l) modali-
ties. The input feature sequences are denoted as
{Zm ∈RT×dm |m ∈ {a, v, l}}, where T is the se-
quence length and dm is the feature dimensionality.
When one modality is absent, we use Gaussian
noise to serve as the features of that modality.

3.1 Intra-Modal Attention
Given multiple unimodal features Um ∈ RT×d

output by unimodal networks (see Section A.1), we
first apply regular self-attention modules (Vaswani
et al., 2017) to explore intra-modal interactions:

Am =
QKR

√
d
∈ RT×T (1)

Xm = LN(Softmax(Am)V ) (2)

where Q = UmWm,q, K = UmWm,k, V =
UmWm,v, Am denotes the attention matrix for
modality m, R is the matrix transpose operation,
LN is the layer normalization, and Xm ∈ RT×d is
the high-level unimodal representation for modality
m.

However, current attention mechanisms lack ex-
plicit supervisory information for learning attention
weights, making them prone to focusing on noise
and irrelevant interactions. Our experiments show
that conventional attention mechanisms sometimes
fail to detect noise (see Section 4.6 and A.7). Un-
like traditional methods, SAM-LML enables super-
vised learning of attention weights, enhancing the
interpretability of attention mechanisms and ensur-
ing more accurate detection of noise. Specifically,
we design the following supervisory signals and
constraints for intra-modal attention:

(1) Noise Addition: This operation randomly
adds noise to the features of keys. If the model can
assign lower weights to noisy information, it can
have a clearer understanding of informative inter-
actions. A straightforward supervised approach is
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Figure 2: Diagram of the overall framework.

to encourage the attention weights between queries
and noisy features as small as possible. However,
this strategy does not provide supervisory signals
to the weights between queries and original keys,
and cannot ensure the original weights will not also
be minimized. Moreover, noisy features might still
preserve discriminative modality information. To
address this, we propose a ranking-based opti-
mization strategy, encouraging the attention val-
ues between queries and original keys to be greater
than those between queries and noisy data plus
a pre-defined margin. It guides attention mecha-
nisms to compare and learn the relative importance
of interactions, which aligns with the nature of
attention mechanisms, i.e., focusing on more in-
formative and important interactions. Compared
to methods that assign absolute labels to attention
weights (Mai et al., 2024; Li et al., 2018), our strat-
egy can avoid the inaccuracies of absolute labels
assigned based on human experience, and retains
the expressiveness and flexibility of deep neural
networks to automatically determine more accurate
weights under ranking constraints. Specifically, the
ranking-based noise addition loss Lnm is defined as:

An
m =

UmWm,q(NWm,k)
R

√
d

∈ RT×T (3)

Lnm = max(An
m −Am + γ1, 0) (4)

where N ∈ RT×d denotes the Gaussian noise, and
γ1 is the margin (a hyperparameter) that controls
the magnitude of differences between weights. Lnm
forces the original attention weights to be larger

than noisy weights plus the margin γ1, which
guides the model to explicitly identify noisy inter-
actions and thus implicitly helps the model better
understand the nature of informative interactions.

Additionally, to simulate real-world noise, we
add Gaussian noise to the key features to generate
augmented noisy features, and encourage the atten-
tion values between queries and augmented noisy
features to be greater than those between queries
and pure noisy data:

Kn′
m = λ ·Um + (1− λ) · N (5)

Lnm ←− Lnm +max(An
m −An′

m + γ1, 0) (6)

where An′
m is the attention matrix of Um and Kn′

m ,
and λ is a random number between 0 and 1. In this
way, the model can learn to extract discriminative
information from augmented features (augmented
features still contain modality information).

(2) Modality Decomposition Replacement: To
further enable the model to recognize discrimina-
tive information, the proposed modality decomposi-
tion replacement orthogonally decomposes modal-
ity representations into label-irrelevant and discrim-
inative components. The original key representa-
tions are replaced with the label-irrelevant ones,
and the model is required to assign higher attention
weights to the original key-query pairs than to the
replaced key-query pairs:

Ade
m =

UmWm,q(K
de
mWm,k)

R

√
d

∈ RT×T (7)

Ldem = max(Ade
m −Am + γ1, 0) (8)
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where Kde
m denotes the label-irrelevant representa-

tion. By minimizing Ldem , we encourage the model
to explicitly identify more discriminative informa-
tion and interactions. The proposed modality de-
composition operation is defined as:

Kde
m , Ude

m = Decomm(Um; θdecomm)

Lorm = ||Ude
m (Kde

m )R||2
(9)

LMI
m =MI(y,Kde

m )+α ·max(||Um−Kde
m ||2−ϵ,0)

(10)
Ûm =Compom(Kde

m ,Ude
m ; θcompom)

Lrem = ||Um − Ûm||2
(11)

where Decomm and Compom denote the decom-
position and composition networks for modality m,
Ude

m is the label-relevant representation, y is the
ground true label, and MI(y,Kde

m ) quantifies the
mutual information between the label-irrelevant
representation Kde

m and y. The hyperparameter
α is the weight of loss, ϵ is the maximum dis-
tance between Um and Kde

m (which ensures Kde
m

and the original representation Um maintain a de-
gree of similarity but are not identical), and Ûm

is the reconstructed representation. The orthog-
onality loss Lorm in Eq. 9 enforces orthogonality
between Ude

m and Kde
m . The mutual information

constraint LMI
m ensures that Kde

m lacks discrim-
inative information by minimizing MI(y,Kde

m ),
and maintains relevance to Ude

m by minimizing
max(||Um −Kde

m ||2−ϵ, 0), thus preventing Kde
m

from only containing information unrelated to Um.
The reconstruction loss Lrem forces Ude

m and Kde
m to

fully encompass the information in Um, preventing
information loss during decomposition. These con-
straints enable the model to derive label-irrelevant
yet Um-related representation Kde

m .
To minimize the mutual information

MI(y,Kde
m ) in Eq. 10 for effective modal-

ity decomposition, we can apply the information
bottleneck principle (Mai et al., 2023c; Tishby
et al., 2000) which however adds complexity to the
model and relies on assumptions that might not
hold in real-world scenarios. Therefore, we design
a simpler and effective operation that encourages
the prediction derived from Kde

m to be the same as
the prediction derived from Gaussian noise, so that
Kde

m cannot contain discriminative information
with respect to the label:

MI(y,Kde
m ) = ||Predictor(Kde

m ; θpre)−
Predictor(N ; θpre)||2

(12)

where N is the Gaussian noise, and Predictor is
the final predictor parameterized by θpre.

The final loss for modality decomposition re-
placement is:

Ldem ←− Ldem + αde · (Lorm + LMI
m + Lrem) (13)

where αde is the weight of decomposition losses.
(3) Variant Constraint: To prevent the learned

attention weights from being overly similar and
losing the ability to distinguish different interac-
tions, we impose a variance constraint on the atten-
tion matrix, ensuring that the variance of the ele-
ments within the attention matrix exceeds a certain
threshold. In this way, we enable different attention
weights to have sufficient distinguishability:

Lvarm =max(0,−Std(Softmax(Am))+β) (14)

where Std function calculates the variance of each
row in the attention matrix. The variance constraint
loss ensures that the variance of each row in the
attention matrix exceeds the hyperparameter β.

(4) Context Constraint: In the self-attention
matrix, due to contextual correlations, the features
of each time step should be highly correlated with
the features of its adjacent time steps. In other
words, elements near the diagonal of attention
matrix should have larger correlation values. To
achieve this, we propose a context constraint:

Lconm =max(0,mean(Am)+γ−meandiaρ(Am))
(15)

where mean(Am) calculates the average of all el-
ements in each row of the attention matrix, while
meandiaρ(Am) calculates the average of the η ele-
ments near the diagonal in each row. Lconm ensures
that the average of ρ elements near the diagonal in
each row is greater than the average of all elements
in that row plus the margin γ.

3.2 Inter-Modal Attention
After using supervised intra-modal attention to
learn unimodal representation Xm, for each pair of
modalities, we take one modality as the query and
the other as the key and value, and employ inter-
modal attention to learn cross-modal interactions,
extracting meaningful modality correlations and
complementary information to learn discriminative
multimodal representations. For modalities m1 and
m2, the procedure can be expressed as:

Am1,m2 =
Xm1Wm1,qM (Xm2Wm1,kM )R√

d
(16)
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Xm1,m2=LN(Softmax(Am1,m2)Xm2Wm1,vM ))
(17)

where Xm1,m2 ∈ RT×d represents the cross-modal
representation. To simplify calculation and reduce
complexity, we conduct average pooling on cross-
modal representations at the time dimension:

X̂m1,M =

m2 ̸=m1∑

m2

{Xm1,m2}⊕ (18)

Xm1,M =
1

T · (|M|−1)

T ·(|M|−1)∑

t=1

(X̂m1,M )t (19)

where
⊕

is the concatenation operation at time di-
mension, |M| represents the number of modalities,
Xm1,M ∈ R1×d denotes the concatenated cross-
modal representation where modality m1 is the
query. After obtaining multiple cross-modal repre-
sentations, we define a learnable query Q ∈ R1×T

for attention pooling to acquire the multimodal rep-
resentation X and then generate prediction:

X̂=
∑

m1

{Xm1,M}⊕ ∈ R|M|×d (20)

AM =
QWM,q(X̂WM,k)

R

√
d

∈ R1×|M| (21)

X=LN(Softmax(AM )X̂WM,v)) (22)

p=Predictor(X; θpre) (23)

pm1,M =Predictor(Xm1,M ; θpre) (24)

Lp=Loss(p, y)+
αp

|M|
∑

m1

Loss(pm1,M , y) (25)

where p is the final prediction, αp is the weight of
loss, and Lp is the predictive loss. Notably, here we
calculate the predictive losses of cross-modal repre-
sentations Xm1,M to enhance their discriminative
power. Similarly, we design multiple supervisory
signals for the learning of inter-modal attention
mechanisms to capture important inter-modal inter-
actions and suppress useless and noisy interactions:

(1) Modality Mixing Operation: Drawing in-
spiration from the mix-up technique (Zhang et al.,
2018; Verma et al., 2019) that mixes two samples to
obtain an augmented sample, we design a modality
mixing operation that generates mixed represen-
tations by weightedly mixing the representations
of queries and keys. Since the query itself is used
to generate the mixed representation, the mixed
representation contains more information relevant
to the query than the original key. Therefore, we

adopt a ranking-based training strategy to ensure
that the attention value between the query and the
original key is less than that between the query and
the mixed representation, enabling the model to
identify more informative inter-modal interactions.
Taking modality m1 as the query and m2 as the key
and value, modality mixing operation is defined as:

Kmix
m1,m2

= λ ·Xm2 + (1− λ) ·Xm1 (26)

Amix
m1,m2

=
Xm1Wm1,qM (Kmix

m1,m2
Wm1,kM )R√

d
(27)

where λ is a random value between 0 and 1, and
Kmix

m1,m2
denotes the mixed representation. The

modality mixing loss is then defined as:

Lmix
m1,m2

=max((Am1,m2−Amix
m1,m2

)·I+γ1,0)

(28)

where I ∈ RT×T represents a diagonal matrix with
values of 1 on the diagonal and 0 elsewhere. We
add I to enable a more accurate and safer super-
vised learning, ensuring that the query features
used for mixing and the query features used for
attention come from the same time slice. Lmix

m1,m2

encourages attention mechanisms to identify fea-
tures that are more relevant to the target query.

(2) Noise Addition and Variant Constraint:
These two techniques for inter-modal attention are
consistent with those for intra-modal attention, and
therefore the description is omitted here.

3.3 Model Optimization

We jointly optimize the predictive loss and the su-
pervised losses for attention mechanisms:

L =Lp + α · (Lde + Ln)
+ αmix · Lmix + αc · (Lstd + Lcon)

(29)

where L is the final loss of the model, α, αmix and
αc are the weights of the supervised losses. Ln is
the sum of all intra- and inter-modal noise addition
losses, and other losses vice verse.

4 Experiments

SAM-LML is evaluated on CMU-MOSI (Zadeh
et al., 2016), CMU-MOSEI (Zadeh et al., 2018),
UR-FUNNY (Hasan et al., 2019), and MUStARD
(Castro et al., 2019) datasets. Due to space limita-
tions, the introductions of experimental settings,
baselines, and datasets are shown in Appendix.
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Table 1: The results on the CMU-MOSI and CMU-MOSEI datasets. The results labeled with † are obtained from
their papers, and other results are derived from our experiments. The best results are highlighted.

CMU-MOSI CMU-MOSEI
Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑ Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑

MFM (Tsai et al., 2019) 33.3 80.0 80.1 0.948 0.664 50.8 83.4 83.4 0.580 0.722
Self-MM (Yu et al., 2021) 45.8 84.9 84.8 0.731 0.785 53.0 85.2 85.2 0.540 0.763

ConFEDE† (Yang et al., 2023) 42.3 85.5 85.5 0.742 0.782 54.9 85.8 85.8 0.522 0.780
DMD + MCIS† (Yang et al., 2024a) 46.5 86.3 86.3 - - 55.2 87.3 87.2 - -

AtCAF† (Huang et al., 2025) 46.5 88.6 88.5 0.650 0.831 55.9 87.0 86.8 0.508 0.785
C-MIB (Mai et al., 2023c) 47.7 87.8 87.8 0.662 0.835 52.7 86.9 86.8 0.542 0.784
ITHP (Xiao et al., 2024) 47.7 88.5 88.5 0.663 0.856 52.2 87.1 87.1 0.550 0.792

Multimodal Boosting (Mai et al., 2024) 49.1 88.5 88.4 0.634 0.855 54.0 86.5 86.5 0.523 0.779
SAM-LML 49.4 89.2 89.1 0.628 0.861 55.0 87.9 87.9 0.516 0.795

Table 2: The comparison on UR-FUNNY.

Model Accuracy Number of Parameters
HKT‡ (Hasan et al., 2021) 77.4 -

DMD+SuCI‡ (Yang et al., 2024b) 70.8 -
AtCAF‡ (Huang et al., 2025) 72.1 -

HKT (Hasan et al., 2021) 76.5 17,066,564
MCL (Mai et al., 2023a) 77.7 13,762,973

MGCL (Mai et al., 2023b) 78.1 14,062,342
SAM-LML 78.7 14,809,023

4.1 Performance Under Complete Input

The results on MSA are shown in Table 1. On
CMU-MOSI, SAM-LML outperforms ITHP (Xiao
et al., 2024) that also applies DeBERTa (He et al.,
2021) as the language network by 1.7 points in
Acc7 and 1.4 points in Acc2. On CMU-MOSEI,
SAM-LML obtains the best results in Acc2, F1
score, and Corr.Generally, SAM-LML achieves
state-of-the-art results on MSA. This is mainly be-
cause the proposed supervised attention mecha-
nisms can highlight informative interactions and
suppress noisy information, improving the robust-
ness of fusion. Compared to Multimodal Boost-
ing (Mai et al., 2024), SAM-LML demonstrates
a considerable performance improvement (its uni-
modal networks are the same as ours to ensure a fair
comparison). Multimodal Boosting transforms uni-
modal predictive losses to generate deterministic la-
bels for unimodal contributions, which might be in-
accurate as absolute labels of weights are hard to de-
termine. In contrast, we use a ranking-based train-
ing strategy to encourage attention mechanisms
to compare the relative importance of interactions,
aligning well with the nature of attention: focusing
on ‘more’ important information.

4.2 Results on MHD and MSD

To justify the generalizability of SAM-LML, we
carry out experiments on the tasks of MHD and
MSD on the UR-FUNNY (Hasan et al., 2019) and
MUStARD (Castro et al., 2019) datasets. As shown

Table 3: The results on MUStARD.

Model Accuracy Number of Parameters
HKT‡ (Hasan et al., 2021) 79.4 -

MO-Sarcation‡ (Tomar et al., 2023) 79.7 -
HKT (Hasan et al., 2021) 76.5 17,101,372
MCL (Mai et al., 2023a) 77.9 13,828,449

MGCL (Mai et al., 2023b) 77.9 14,282,000
SAM-LML 80.9 13,589,833

in Table 2 and Table 3, SAM-LML outperforms
state-of-the-art methods MGCL (Mai et al., 2023b)
and MO-Sarcation (Tomar et al., 2023), respec-
tively. Moreover, SAM-LML has moderate pa-
rameters compared to baselines. Therefore, SAM-
LML obtains state-of-the-art results with moderate
complexity, indicating the generalizability of SAM-
LML with respect to other multimodal tasks.

4.3 Ablation Experiments

(1) The importance of supervised attention: As
presented in Table 4, in the case of ‘W/O Super-
vised Learning’, the performance of SAM-LML
decreases by over 3.5 points in Acc7 and Acc2.
Moreover, when intra- or inter-modal attention has
no supervisory signals, the performance also de-
creases, indicating both self-attention and cross-
modal attention require explicit supervisory signals
to enhance their performance. These results demon-
strate the importance of supervised attention learn-
ing that can capture more informative interactions
and highlight more discriminative representations.

(2) The importance of different compo-
nents: When any component of SAM-LML is re-
moved, the performance of SAM-LML deteriorates.
Among them, the noise addition operation is the
most crucial. This is because the noise addition op-
eration is key to identifying noisy data and learning
effective information from noisy interactions.The
variance constraint is also relatively important as it
enables the attention matrix to better distinguish the
significance of different interactions, preventing all
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Table 4: Ablation experiments on CMU-MOSI.

Acc7 Acc2 F1 MAE Corr
W/O Supervised Learning 45.8 85.6 85.4 0.680 0.821

Unsupervised Intra-Modal Attention 47.4 87.9 87.9 0.648 0.840
Unsupervised Inter-Modal Attention 46.6 89.0 89.0 0.666 0.837

W/O Noise Addition Operation 47.3 87.8 87.8 0.655 0.840
W/O Modality Mixing Operation 46.3 88.7 88.7 0.648 0.846

W/O Modality Decomposition Replacement 48.4 88.2 88.2 0.649 0.846
W/O Variance Constraint 47.7 88.1 88.1 0.664 0.841
W/O Context Constraint 48.1 89.2 89.1 0.659 0.849

SAM-LML 49.4 89.2 89.1 0.628 0.861

interactions from being assigned the same weight.
In contrast, the context constraint is less impor-
tant because it is only applied to the self-attention
matrix and the constraint is relatively simple.

4.4 Performance Under Incomplete Inputs

As shown in Table 5, we evaluate the performance
of SAM-LML under different modality missing
rates (MR), with the missing rate ranging from mild
(0.1) to severe (0.7). The baselines include MCTN
(Pham et al., 2019), MMIN (Zhao et al., 2021),
GCNet (Lian et al., 2023), IMDer (Wang et al.,
2023), and MoMKE (Xu et al., 2024b). The results
suggest that SAM-LML outperforms competitive
baselines in the majority of missing settings on two
widely-used datasets, highlighting its robustness
under missing modalities. Moreover, the average
performance (Avg) of SAM-LML across various
missing rates consistently outperforms all base-
lines. Specifically, On CMU-MOSI, SAM-LML
achieves average Acc2 and Acc7 of 74.6% and
35.9%, respectively, demonstrating improvements
of 1.2 and 6.7 points over GCNet (Lian et al., 2023).
On CMU-MOSEI, the average Acc2 and Acc7 of
SAM-LML reach 80.0% and 48.2%, respectively,
outperforming advanced baselines MoMKE (Xu
et al., 2024b) and IMDer (Wang et al., 2023). We
argue that this is mainly because SAM-LML ex-
plicitly simulates the absence of modalities via the
noise addition operation, which enables the model
to better adapt to scenarios with missing modalities
and allows the model to focus more on discrimina-
tive information in the presence of missing or noisy
modalities.

4.5 Discussion on Noisy Modalities

We mix all modalities with Gaussian noise during
training and testing to evaluate the effectiveness
of SAM-LML in handling noisy modalities. The
noisy rate (NR) is set to 10% - 70%. For a com-
prehensive comparison, we present the results of C-
MIB (Mai et al., 2023c) and Multimodal Boosting
(Mai et al., 2024) that also address noisy modality

issue. Following our baselines, we use Acc2 and
MAE as evaluation metrics. As shown in Table 13,
SAM-LML significantly outperforms competitive
baselines in all settings (especially for MAE), and
the performance of SAM-LML does not show a sig-
nificant decrease even when NR is as high as 0.7.
This is mainly because our supervised attention
explicitly recognizes noisy information and interac-
tions, and the noise addition operation in Eq. 5- 6
encourages augmented noisy features to be more in-
formative than pure noise data, enabling the model
to discover discriminative information within aug-
mented noisy features. These results indicate the
superiority and robustness of SAM-LML.

Figure 3: Visualization of attention matrices.

4.6 Visualization of Attention Matrices
Figure 3 (b) displays an inter-modal attention ma-
trix between language and visual modalities for
a sample in CMU-MOSEI. For comparison, Fig-
ure 3 (a) visualizes the attention matrix learned
without explicit supervisory signals. To assess
whether SAM-LML can identify noisy interactions,
we randomly replace the features of specific time
slices in the language sequence with Gaussian noise
(columns 7, 17, 18, 35, and 41). When super-
vised attention is applied, SAM-LML assigns lower
weights to noisy information, suggesting that it can
accurately identify noise. In contrast, when the
attention mechanism is trained without explicit su-
pervisory signals, the model sometimes fails to rec-
ognize noisy interactions, and even assigns higher
weights to noisy interactions (columns 17 and 18),
indicating attention mechanism learned without
supervisory signals is prone to focusing on noisy
interactions and often has poorer interpretability.
Additionally, the values of the elements within the
attention matrix learned with supervisory signals
show greater differences, indicating stronger dis-
criminability of the attention mechanism.

4.7 Learning Curves of Supervised Losses
Here we present the learning curves of the noise
addition loss and modality mixing loss. As shown
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Table 5: The results under incomplete modalities on the CMU-MOSI and CMU-MOSEI datasets.

Datasets MR MCTN MMIN GCNet IMDer MoMKE SAM-LML
Acc2 / F1 / Acc7 Acc2 / F1 / Acc7 Acc2 / F1 / Acc7 Acc2 / F1 / Acc7 Acc2 / F1 / Acc7 Acc2 / F1 / Acc7

MOSI

0.1 78.4 / 78.5 / 39.8 81.8 / 81.8 / 41.2 82.2 / 82.3 / 35.4 83.5 / 83.4 / 42.1 82.5 / 81.6 / 35.1 84.8 / 84.7 / 45.6
0.2 75.6 / 75.7 / 38.5 79.0 / 79.1 / 38.9 79.4 / 79.5 / 34.6 80.5 / 80.5 /41.6 78.5 / 76.6 / 32.9 81.2 / 81.2 / 42.9
0.3 71.3 / 71.2 / 35.5 76.1 / 76.2 / 36.9 77.1 / 77.2 / 32.5 77.4 / 77.6 / 37.4 74.4 / 71.7 / 30.6 78.0 / 78.1 / 37.5
0.4 68.0 / 67.6 / 32.9 71.7 / 71.6 / 34.9 75.3 / 75.4 / 30.3 66.5 / 66.3 / 35.2 70.7 / 67.5 / 28.4 74.8 / 74.7 / 37.8
0.5 65.4 / 64.8 / 31.2 67.2 / 66.5 / 34.2 72.4 / 72.4 / 29.3 65.2 / 65.4 / 29.5 66.9 / 63.2 / 26.2 71.0 / 70.9 / 32.8
0.6 63.8 / 62.5 / 29.7 64.9 / 64.0 / 29.1 64.3 / 64.5 / 23.6 66.0 / 65.5 / 27.0 63.2 / 58.9 / 23.9 66.8 / 66.6 / 28.1
0.7 61.2 / 59.0 / 27.5 62.8 / 61.0 / 28.4 64.8 / 64.9 / 18.9 62.2 / 60.4 / 26.5 60.6 / 55.9 / 22.4 65.9 / 65.6 / 26.4

Avg. 69.1 / 68.5 / 33.6 71.9 / 71.5 / 34.5 73.6 / 73.7 / 29.2 71.6 / 71.3 / 34.2 71.0 / 67.9 / 28.5 74.6 / 74.5 / 35.9

MOSEI

0.1 81.8 / 81.6 / 49.8 81.9 / 81.3 / 50.6 84.3 / 84.5 / 46.9 82.9 / 82.9 / 52.1 85.1 / 84.7 / 47.2 84.7 / 84.5 / 51.9
0.2 79.0 / 78.7 / 48.6 79.8 / 78.8 / 49.6 83.3 / 82.3 / 45.1 80.6 / 79.7 / 51.3 83.3 / 82.7 / 45.4 83.8 / 83.7 / 51.7
0.3 76.9 / 76.2 / 47.4 77.2 / 75.5 / 48.1 81.2 / 81.5 / 44.5 78.7 / 77.8 / 49.6 81.6 / 80.7 / 43.6 81.9 / 81.6 / 48.7
0.4 74.3 / 74.1 / 45.6 75.2 / 72.6 / 47.5 79.3 / 77.7 / 43.4 73.7 / 73.3 / 48.0 79.8 / 78.7 / 41.7 80.1 / 79.5 / 48.3
0.5 73.6 / 72.6 / 45.1 73.9 / 70.7 / 46.7 77.3 / 74.7 / 41.8 72.1 / 68.4 / 46.6 78.1 / 76.7 / 39.8 77.8 / 77.4 / 46.9
0.6 73.2 / 71.1 / 43.8 73.2 / 70.3 / 45.6 75.9 / 73.2 / 38.6 70.8 / 65.9 / 45.0 76.3 / 74.7 / 37.9 76.7 / 76.4 / 45.6
0.7 72.7 / 70.5 / 43.6 73.1 / 69.5 / 44.8 75.0 / 73.7 / 38.1 69.1 / 66.6 / 44.1 75.2 / 73.3 / 36.7 74.9 / 74.6 / 44.5

Avg. 75.9 / 75.0 / 46.3 76.3 / 74.1 / 47.6 79.5 / 78.2 / 42.6 75.4 / 73.5 / 48.1 79.9 / 78.8 / 41.8 80.0 / 79.7 / 48.2

(a) Noise Addition Loss (b) Modality Mixing Loss

Figure 4: Learning curves of the proposed losses on the CMU-MOSI dataset. We average the data of every 10
iterations to make losses smoother.

Table 6: Discussion on noisy modalities on the CMU-
MOSI and CMU-MOSEI datasets.

Datasets NR C-MIB Multimodal Boosting SAM-LML
Acc2 / MAE Acc2 / MAE Acc2 / MAE

MOSI

0.1 87.8 / 0.670 86.7 / 0.678 88.4 / 0.636
0.2 87.5 / 0.726 86.1 / 0.738 88.1 / 0.665
0.3 86.4 / 0.912 86.4 / 0.785 87.8 / 0.663
0.4 83.2 / 1.366 85.5 / 0.841 87.6 / 0.666
0.5 84.9 / 1.660 86.1 / 1.172 88.1 / 0.666
0.6 80.8 / 2.595 82.0 / 1.355 87.5 / 0.660
0.7 82.1 / 3.146 84.4 / 1.750 87.3 / 0.669

Avg. 84.7 / 1.582 85.3 / 1.046 87.8 / 0.661

MOSEI

0.1 86.1 / 0.545 86.4 / 0.544 87.0 / 0.521
0.2 84.5 / 0.582 86.6 / 0.557 87.0 / 0.525
0.3 85.6 / 0.622 85.5 / 0.623 87.3 / 0.522
0.4 84.4 / 0.703 85.3 / 0.682 87.2 / 0.525
0.5 83.7 / 0.875 84.1 / 0.724 86.6 / 0.529
0.6 82.4 / 1.054 85.4 / 0.924 87.0 / 0.532
0.7 80.5 / 1.404 80.3 / 1.125 85.9 / 0.545

Avg. 83.9 / 0.826 84.8 / 0.740 86.9 / 0.528

in Fig. 4, both the losses decrease significantly as
training deepens, indicating that they are optimized
in the desired directions. Among them, the learn-
ing of modality mixing loss is relatively difficult,
and the loss curve oscillates severely. This may be
because in the modality mixing operation, the two
inter-modal interactions used for comparison both

contain rich modality correlation information, mak-
ing them hard to distinguish. The noise addition
loss decreases significantly, but the final loss does
not approach 0. This is mainly because we impose
an additional constraint on the noise addition op-
eration, requiring the weights between augmented
noisy features and the query to be greater than those
between pure noise data and the query. This de-
mands the model to extract useful information from
augmented noisy features, which is challenging but
beneficial for handling noisy modalities.

5 Conclusion

We propose a framework that jointly addresses
missing and noisy modalities. Specifically, we de-
sign supervisory signals for the learning of atten-
tion weights to ensure that attention mechanisms
can focus on discriminative information and sup-
press noisy information. We further propose a
ranking-based optimization strategy that can avoid
training noise caused by inaccurate absolute labels.
Our SAM-LML obtains state-of-the-art results on
multiple datasets under various settings.
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Limitations

The limitation of this paper is that the operations of
generating supervisory signals for attention weights
increase the training time, which might be a poten-
tial drawback when scaling to multimodal large lan-
guage models. Nevertheless, the inference time of
SAM-LML will not increase as the axillary losses
will not be calculated during inference (see Sec-
tion A.8).
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A Appendix

A.1 Unimodal Networks
In this section, we outline the structures of uni-
modal networks and illustrate how to generate uni-
modal representations for later fusion. Follow-
ing the state-of-the-art methods (Xiao et al., 2024;
Hasan et al., 2021), we use pre-trained language
models (He et al., 2021; Lan et al., 2020) to gener-
ate high-level language features. For all tasks, the
procedures of the language network are as follows:

Ûl = PLM(Zl; θl) ∈ RT×dl

Ul = (ÛlWpro + bpro) ∈ RT×d
(30)

where PLM represents the pre-trained language
model, Zl denotes the input token sequence and T
denotes the sequence length. Wpro ∈ Rdl×d and
bpro ∈ R1×d are trainable parameters that trans-
form the output dimensionality of the language
network to match the pre-defined shared feature
dimensionality d. For the task of MSA, the proce-
dures for the acoustic and visual networks, which
use transformer encoders (Vaswani et al., 2017),
are shown as below (m ∈ {a, v}):

Ûm = Conv 1D(Zm; Km) ∈ RT×d

Um = Transformer(Ûm; θm) ∈ RT×d
(31)

where Conv 1D is the temporal convolution with
kernel size Km being 3. The obtained unimodal
representation Um is used for attention learning.

Please note that for MHD and MSD, to effec-
tively identify humor-related information, follow-
ing prior methods (Hasan et al., 2021; Mai et al.,
2023b), Human Centric Feature (HCF) is addition-
ally extracted from the language modality to serve
as the fourth modality (see (Hasan et al., 2021)
for more details) and is denoted as Zh ∈ RT×dh .
Furthermore, each sample includes a target punch-
line segment along with its preceding context seg-
ments. By concatenating the feature sequences

of the punchline and context segments in the tem-
poral dimension, we obtain the unimodal inputs
Zm ∈ RT×dm (m ∈ M = {a, v, l, h}). The uni-
modal network for the HCF modality, which also
consists of transformer encoders, has a structure
similar to those for the visual and acoustic modal-
ities. Specifically, for MHD and MSD, the proce-
dures of the transformer-based unimodal networks
are outlined as follows (m ∈ {a, v, h}):

Ûm=Transformer(Zm; θm) ∈ RT×dm

Um = Conv 1D(Ûm; Km) ∈ RT×d
(32)

Moreover, to simplify the subsequent modeling
process, we merge the language and HCF modali-
ties using a straightforward linear layer:

Ul ←− Linear(Ul ⊕Uh; θlin) ∈ RT×d (33)

A.2 Dataset Composition
We use the following datasets to evaluate the per-
formance of SAM-LML:

(1) CMU-MOSI (Zadeh et al., 2016): CMU-
MOSI is a widely-used dataset for MSA that con-
sists of more than 2,000 video segments sourced
from the Internet. Each video segment is man-
ually labeled with sentiment intensity on a scale
from -3 to 3, where 3 denotes the strongest posi-
tive sentiment and -3 denotes the strongest negative
sentiment.

(2) CMU-MOSEI (Zadeh et al., 2018): CMU-
MOSEI is a large-scale MSA dataset with over
22,000 video segments from over 1,000 YouTube
speakers across 250 varied topics. These segments
are selected at random from a wide variety of topics
and solo video presentations. Each video segment
is annotated with two kinds of labels: emotions
that are divided into six different classes and sen-
timent scores that range from -3 to 3. To assess
the performance of SAM-LML on the MSA task,
we employ the sentiment labels from the CMU-
MOSEI dataset, which align with the sentiment
scale of the CMU-MOSI dataset.

(3) UR-FUNNY (Hasan et al., 2019): Designed
for the task of MHD, this dataset comprises TED
talk videos with 1,741 speakers. Each target video
segment in the dataset, termed a ‘punchline’, en-
compasses language, acoustic, and visual modal-
ities. The segments preceding these punchlines,
known as context segments, are input into the
model alongside the punchlines for contextual anal-
ysis. The punchlines are identified using the ‘laugh-
ter’ tag in the transcripts, which indicates when the
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audience laughed during the talk. Negative sam-
ples are identified in a similar manner, with target
punchline segments not followed by the ‘laughter’
tag. UR-FUNNY comprises 7,614 training, 980
validation, and 994 testing samples. To be con-
sistent with state-of-the-art methods (Hasan et al.,
2021; Mai et al., 2023a,b), we utilize version 2 of
the UR-FUNNY dataset to evaluate the proposed
model.

(4) MUStARD (Castro et al., 2019): MUStARD
is a sarcasm detection dataset derived from well-
known TV shows including Friends, The Big Bang
Theory, The Golden Girls, and Sarcasmaholics.
The dataset includes 690 video segments, each
manually labeled as sarcastic or non-sarcastic. In
addition to the punchline segments, MUStARD
also contains the preceding conversations (context
segments) for each punchline to provide contextual
information.

A.3 Assessment Criteria

For MSA, we evaluate the performance of SAM-
LML and baselines using the following assessment
criteria: (1) Acc7: Acc7 measures the model’s
ability to accurately categorize sentiment scores
into seven specific classes. For calculating Acc7,
predictions and labels are rounded to the nearest
integer between -3 and 3; (2) Acc2: Acc2 mea-
sures the model’s ability to accurately distinguish
positive and negative sentiments in a binary clas-
sification setting; (3) F1 score: It is a metric that
averages precision and recall for binary sentiment
classification task. Neutral segments are discarded
when calculating both the Acc2 and the F1 score;
(4) MAE: the mean absolute error between model
predictions and annotated labels; (5) Corr: the
correlation coefficient measuring the strength and
direction of alignment between model predictions
and annotated labels.

For MHD and MSD, in alignment with prior
methodologies (Hasan et al., 2021; Mai et al.,
2023a,b), we report the binary accuracy (i.e.,
humorous or non-humorous, sarcastic or non-
sarcastic) of the model.

A.4 Feature Extraction Strategy

We use the following tools to extract the features
of the modalities:

(1) Visual Modality: For the MSA task, fol-
lowing prior works (Mai et al., 2023d; Xiao et al.,

2024), we use Facet1 to extract visual features such
as facial action units, facial landmarks, and head
positioning, forming a temporal sequence that cap-
tures facial expressions and body gestures over
time. For the MHD and MSD tasks, to be consis-
tent with state-of-the-art algorithms (Hasan et al.,
2021; Mai et al., 2023a), we adopt OpenFace 2
(Baltrusaitis et al., 2018) to extract facial action
units, rigid and non-rigid facial shape parameters,
etc.

(2) Acoustic Modality: We use COVAREP (De-
gottex et al., 2014) to extract time-series acoustic
features, including 12 Mel-frequency cepstral co-
efficients, pitch tracking, speech polarity, glottal
closure instants, and spectral envelope, etc. Ex-
tracted over the full audio of each segment, these
features capture dynamic variations in vocal tone
throughout the speech.

(3) Language Modality: For the MSA task, fol-
lowing the state-of-the-art methods (Xiao et al.,
2024), DeBERTa (He et al., 2021) is employed to
extract high-level textual representations. For the
MHD and MSD tasks, following the state-of-the-art
methods (Hasan et al., 2021; Mai et al., 2023a), AL-
BERT (Lan et al., 2020) is applied as the language
network. Notably, for MHD and MSD, we concate-
nate the punchline and context token sequences to
generate the final input of the language network:
Ul = Cl ⊕ [SEP ] ⊕ Pl, where the [SEP ] token
is used to separate the context tokens Cl from the
punchline tokens Pl (Hasan et al., 2021).

For the CMU-MOSI dataset, the dimensionality
of language, acoustic, and visual features are 768,
74, and 47, respectively. For the CMU-MOSEI
dataset, the dimensionality of the corresponding
unimodal features are 768, 74, and 35, respectively.
For the UR-FUNNY and MUStARD datasets, the
feature dimensionality of language, acoustic, vi-
sual, and HCF modalities are 768, 60, 36, and 4
respectively. For the feature extraction details of
the HCF modality, please refer to (Hasan et al.,
2021).

A.5 Experimental Details

(1) Hyper-parameter setting: We implement the
proposed SAM-LML using the PyTorch framework
on an NVIDIA RTX2080Ti GPU with CUDA ver-
sion 11.6 and PyTorch version 1.13.1, using the
AdamW optimizer (Loshchilov and Hutter, 2019).
Hyperparameter settings are detailed in Table 7.

1iMotions 2017. https://imotions.com/
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Figure 5: The structures of composition and decompo-
sition networks in the modality decomposition replace-
ment operation.

Following previous work (Gkoumas et al., 2021),
we perform a random grid search with 50 random
iterations on the validation set to find optimal hy-
perparameters, and save the best-performing hy-
perparameter configuration. After hyperparameter
search, we retrain the model for five times with the
optimal settings under different random seeds, and
report the mean results of the five-time running.
The structures of composition and decomposition
networks in the modality decomposition replace-
ment operation are shown in Figure 5.

(2) Protocol for the evaluation of missing
modalities: For the evaluation of missing modali-
ties, we comprehensively evaluate the effectiveness
of various methods on multimodal datasets under
different modality missing rates. The missing rate
is defined as:

MR = 1−
∑N

i=1Mi

N × |M| (34)

where Mi denotes the number of available modal-
ities in the i-th sample, N is the total number of
samples, and |M| is the number of modalities for
the task. For each sample with |M| modalities,
we randomly mask a subset of modalities with
a probability corresponding to the missing rate
MR, while ensuring that at least one modality is
retained for each sample, i.e., Mi ≥ 1. This con-
straint guarantees that the missing rate does not
exceed |M|−1

|M| . In our experiments, when the num-
ber of modalities is |M|= 3, we select te MR
from the set {0.1, 0.2, . . . , 0.7}. Particularly, when
MR = 0.7, each multimodal sample randomly re-
tains one modality, which is the most severe modal-
ity missing scenario. To make a fair comparison

with baselines, the same missing rate configuration
is applied across the training, validation, and test
phases, following the protocol adopted in previous
works (Wang et al., 2023; Lian et al., 2023).

(3) Protocol for the evaluation of noisy modali-
ties: For the evaluation of noisy modalities, we gen-
erate the noisy features using the following equa-
tion:

Un
m = (1−NR) ·Um +NR · N (35)

where Um is the unimodal representation, NR is
the noisy rate ranging from 0.1 to 0.7, N is the
Gaussian noise data of mean 0 and variance 1, and
Un

m is the noisy representation that is used in the
attention mechanisms. Notably, for all modalities
of all samples, we apply the aforementioned noise
mixing operation to simulate noise in the real world.
Since noise at the input level ultimately affects the
features, it is acceptable to apply noise at the fea-
ture level. Moreover, for the sake of fairness and
privacy protection, different algorithms for multi-
modal affective computing typically model based
on the same set of features, making it more feasible
to apply noise at the feature level.

A.6 Baselines

The compared baselines for MSA include:
(1) Multimodal Factorization Model (MFM)

(Tsai et al., 2019): MFM decomposes multimodal
features into two independent factor sets: multi-
modal discriminative factors and modality-specific
generative factors. This decomposition facilitates
learning effective multimodal representations, and
the factorized features can be used to understand
critical inter-modal interactions for multimodal
learning.

(2) Contrastive FEature DEcomposition
(ConFEDE) (Yang et al., 2023): ConFEDE concur-
rently engages in contrastive representation learn-
ing and feature decomposition, thereby enhancing
the multimodal representation.

(3) Information-Theoretic Hierarchical Per-
ception (ITHP) (Xiao et al., 2024): Based on the
information bottleneck principle, ITHP designates
one core modality and regards the remaining modal-
ities as detectors within the information pathway
that serve to distill information flow.

(4) Decoupled Multimodal Distillation (DMD)
(Li et al., 2023): To enhance the discriminative
features of each modality, DMD facilitates flexible
and adaptive cross-modal knowledge distillation,
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Table 7: Hyperparameter Settings of SAM-LML. MSE and BCE denotes mean square error and binary cross-entropy,
respectively.

CMU-MOSI CMU-MOSEI UR-FUNNY MUStARD
Loss Function MSE MSE BCE BCE

Batch Size 48 64 64 48
Learning Rate 1e-5 1e-5 1e-6 5e-6

Shared Dimensionality d 120 180 150 48
Diagonal Elements ρ 5 5 6 7
Variance Margin β 0.1 0.1 0.1 0.1
Context Margin γ 0.5 0.5 0.5 1

Margin γ1 1 1 0.3 0.8
Predictive Loss Weight αp 1 0.1 1e-5 0.05
Decouple Loss Weight αde 0.01 0.5 1e-4 0.01

Loss Weight α 0.005 0.005 1e-4 1e-4
Loss Weight αmix 0.01 0.01 0.1 1e-5

Loss Weight αc 0.005 0.005 1e-5 0.05

which decouples each unimodal representation into
modality-irrelevant/-exclusive spaces and employs
a graph distillation unit to process each decoupled
part in a more specialized and effective manner.

(5) Multimodal Boosting (Mai et al., 2024): It
employs multiple base learners, where different
base learners focus on different aspects of mul-
timodal learning. To assess individual contribu-
tions, Multimodal Boosting introduces a contribu-
tion learning module that dynamically determines
each base learner’s contribution and the noisy level
of unimodal representations.

(6) Complete Multimodal Information Bottle-
neck (C-MIB) (Mai et al., 2023c): It uses the infor-
mation bottleneck principle to reduce redundancy
and noise in unimodal and multimodal features,
which is use for the baseline of noisy modality
handling.

(7) Self-Supervised Multi-task Multimodal
sentiment analysis network (Self-MM) (Yu et al.,
2021): It calculates sentiment labels of individual
modalities by leveraging the global labels of multi-
modal samples in a self-supervised manner, thereby
extracting more discriminative unimodal features.

(8) Multimodal Counterfactual Inference Sen-
timent (MCIS) (Yang et al., 2024a): MCIS is a
framework based on causality to identify harmful
biases in pre-trained models and generate unbiased
decisions from biased observations by comparing
factual and counterfactual outcomes.

(9) Attention-based Causality-Aware Fusion
(AtCAF) (Huang et al., 2025): AtCAF uses a coun-
terfactual cross-modal attention module to capture

causal relationships in training data, constructing
a comprehensive causality chain to trace causal
trajectories from user inputs to model outputs.

(10) Missing Modality Imagination Network
(MMIN) (Zhao et al., 2021): MMIN generates
robust joint multimodal representations via cross-
modal imagination, enabling the prediction of any
missing modality from the available ones under
diverse missing modality conditions.

(11) Multimodal Cyclic Translation Network
(MCTN) (Pham et al., 2019): MCTN proposes
a translation-based approach to learn robust joint
representations by translating between each two
modalities, enabling sentiment prediction using
only one source modality during testing.

(12) Graph Complete Network (GCNet) (Lian
et al., 2023): GCNet tackles the missing modal-
ity issue in conversational scenarios by introduc-
ing Speaker GNN and Temporal GNN to model
speaker and temporal dependencies, and jointly
optimizes classification and reconstruction tasks
to utilize both complete and incomplete modality
data.

(13) Incomplete Multimodality-Diffused emo-
tion recognition (IMDer) (Wang et al., 2023):
IMDer introduces a score-based diffusion model to
recover missing modalities by transforming Gaus-
sian noise into modality-specific distributions, and
leverages available modalities as conditional guid-
ance to ensure consistency and semantic alignment
during recovery.

(14) Mixture of Modality Knowledge Experts
(MoMKE) (Xu et al., 2024b): MoMKE uses a two-
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stage framework: unimodal experts are first trained
independently, then jointly trained with combined
unimodal and joint representations. A Soft Router
is introduced to dynamically mix these representa-
tions to enable enriched and adaptive multimodal
learning under incomplete modality scenarios.

The additional baselines for the MHD and MSD
tasks include:

(1) Multimodal Adaptation Gate ALBERT
(MAG-ALBERT) (Rahman et al., 2020): MAG-
ALBERT incorporates a multimodal adaptation
gate, allowing large pre-trained transformers to han-
dle multimodal data during fine-tuning.

(2) Multimodal Global Contrastive Learning
(MGCL) (Mai et al., 2023b): MGCL conducts
supervised contrastive learning on multimodal rep-
resentations and devises various operations to gen-
erate positive and negative samples for each repre-
sentation.

(3) Multimodal Correlation Learning (MCL)
(Mai et al., 2023a): MCL designs supervised multi-
modal correlation learning task to retain modality-
specific information and acquire a more discrimi-
native embedding space.

(4) Subject Causal Intervention (SuCI) (Yang
et al., 2024b): It proposes a simple and effective
causal intervention module to disentangle the im-
pact of subjects as unobserved confounders and
achieve unbiased predictions via true causal effects.

(5) Humor Knowledge Enriched Transformer
(HKT) (Hasan et al., 2021): HKT is a promising
method for MHD and MSD, utilizing humor centric
feature as external knowledge to address ambiguity
and sentiment information hidden in the language
modality.

(6) Modality Order-driven module for Sar-
casm detection (MO-Sarcation) (Tomar et al.,
2023): It introduces a modality order-driven fu-
sion module that is integrated into a transformer
network, which can fuse modalities in an ordered
way.

A.7 Additional Visualizations for Attention
Matrices

Figure 3 displays the visual-language attention ma-
trix where the features of specific time slices in
the language sequence are replaced with Gaussian
noise. In this section, we visualize the language-
acoustic attention matrix and language-visual at-
tention matrix as well as their counterparts learned
without supervisory signals. As illustrated in Fig-
ure 6, similar to the case in Figure 3, when the

Table 8: The running time of SAM-LML for one epoch
on the CMU-MOSEI dataset.

Training Time (s) Testing Time (s)
ITHP (Xiao et al., 2024) 111.1 6.9

SAM-LML (W/O Supervision) 109.8 6.7
SAM-LML 144.5 6.7

features of some specific time slices in the vi-
sual/acoustic sequence are replaced with Gaussian
noise, the proposed attention mechanism can accu-
rately identify the noise and assign very low atten-
tion values to noisy interactions. In contrast, when
the attention mechanism is trained without explicit
supervisory signals, the model fails to recognize
noisy interactions, and even assigns higher weights
to noisy interactions, indicating attention mecha-
nism learned without supervisory signals is prone
to focusing on noisy interactions and often has
poorer interpretability. In fact, we found that the
aforementioned problem is more severe when vi-
sual/acoustic features are replaced by noise, where
the attention mechanism trained without explicit
supervisory signals tends to highlight all noisy in-
teractions. This is because, compared to the lan-
guage modality, visual/acoustic features contain
less discriminative information, making it difficult
for conventional attention mechanisms to distin-
guish between visual/acoustic features and noisy
features. These findings further underscore the ne-
cessity of designing supervisory signals for atten-
tion mechanisms to enable them to more effectively
learn the discriminability of different interactions
and information.

A.8 Running Time Analysis

In this section, we examine the computational ef-
ficiency of SAM-LML. The introduction of mul-
tiple supervisory signals to optimize the attention
mechanisms leads to an increase in the running
time of SAM-LML. However, by employing a sim-
ple model architecture, we manage to mitigate the
complexity of SAM-LML, thereby offsetting the
extended running time to some extent. As demon-
strated in Table 8, SAM-LML requires 144.5 sec-
onds for a training epoch and 6.7 seconds for a
testing epoch on the CMU-MOSEI dataset, while
the state-of-the-art model ITHP takes 111.1 sec-
onds for training and 6.9 seconds for testing (under
identical conditions). These results suggest that
while the training time of SAM-LML increases, its
testing time experiences a slight reduction. Fur-
thermore, eliminating the supervision on atten-
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(a) Language-Acoustic Attention Matrix (W/O Supervi-
sory Signals)

(b) Language-Acoustic Attention Matrix

(c) Language-Visual Attention Matrix (W/O Supervisory
Signals)

(d) Language-Visual Attention Matrix

Figure 6: Additional visualizations for attention matrices.
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tion mechanisms shaves off 34.7 seconds per train-
ing epoch for SAM-LML, which is approximately
24.0% of its initial training time. Note that the
number of parameters of SAM-LML remains ac-
ceptable as we only introduce modality decompo-
sition and composition networks in our supervised
attention mechanisms (see Table 2 and Table 3).

Table 9: GFLOPs comparison on UR-FUNNY and
MUSTARD datasets.

UR-FUNNY MUSTARD
Metric GFLOPs GFLOPs
HKT 5.27 6.36

MGCL 5.07 6.14
SAM-LML 5.01 6.07

A.9 Model Complexity Analysis

In this section, we further test the FLOPs of the
models on the MHD and MSD tasks to evaluate the
time complexity. As shown in Table 9, the FLOPs
of SAM-LML are fewer than the baselines in both
datasets. Therefore, we believe that the computa-
tional overhead of SAM-LML is acceptable.

A.10 Significant Test

In this section, we present the results of a signifi-
cant test conducted between SAM-LML and cur-
rent state-of-the-art (SOTA) approaches, utilizing
the t-test method. The SOTA1 and SOTA2 for the
MSA task are ITHP (Xiao et al., 2024) and Mul-
timodal Boosting (Mai et al., 2024) respectively,
while for the MSD and MHD tasks are HKT (Hasan
et al., 2021) and MGCL (Mai et al., 2023b) respec-
tively. To make a comprehensive comparison, each
model is executed ten times with distinct random
seeds. As illustrated in Table 10, the t-test results
indicate that there is a statistically significant di-
vergence between SAM-LML and the SOTA meth-
ods across the majority of the assessment metrics
(where p<0.05 signifies a statistically significant
difference). This suggests that the enhancements
made by the proposed SAM-LML are acceptable.

A.11 Discussion on Unaligned Data

In this section, we evaluate the proposed SAM-
LML and previous SOTA methods on the unaligned
data. As shown in Table 11, generally there is a
slight decrease in the performance when the data
become unaligned, partly due to the excessively
long acoustic and visual sequences (as acoustic

and visual modalities contain relatively less dis-
criminative information compared to the language
modality). However, the performance of SAM-
LML is still better than competitive baselines. This
is mainly because the proposed supervised atten-
tion mechanism can effectively handle arbitrary-
length sequences and accurately mine the correla-
tion between these sequences even if the sequences
are extremely long. Thus, unaligned data do not
have a significant impact on the performance of
SAM-LML.

A.12 Importance of Ranking-based Training
Strategy

In this section, we analyze the benefits of ranking-
based training strategy by reformatting it as de-
terministic training strategy that directly assigns
absolute labels for weights. In deterministic set-
ting, for the modified noise addition loss (NAL-v2),
we set the attention labels for noisy interactions
to zero after softmax. For the modified modality
mixing loss (MML-v2), we set a large label (0.1)
for attention values between the query and mixed
features after softmax. For the modified modality
decomposition replacement loss (MDRL-v2), we
set a very small label (1e-4) for attention values
between the query and Kde

m after softmax.
It can be inferred from Table 12 that converting

ranking-based losses to deterministic forms leads
to performance degradation. It is mainly because
ranking-based losses avoid inaccurate learning and
guide the model to compare importance, aligning
with the nature of attention: focusing on more in-
formative interactions.

A.13 Hyperparameter Analysis
In this section, we conduct the experiments for
some important hyperparameters to analyze how
they influence the robustness and performance of
SAM-LML on the CMU-MOSI dataset, where α,
αc, and αmix are the weights for modality mix-
ing loss, context and variance constraints, and the
combination of noise addition and modality de-
composition replacement losses, respectively. As
presented in Fig. 7 (a), (b), and (c), for all weights,
the optimal performance is achieved when they are
moderate values. This is because when the weights
are too small, the effect of losses is not significant
enough, and when they are too large, they can in-
terfere with the training of the main task.

Moreover, we have also analyzed γ1, which is a
hyperparameter that determines the minimal mar-
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Table 10: Paired t-test analysis between SAM-LML and state-of-the-art baselines.

CMU-MOSI CMU-MOSEI UR-Funny MUStARD
Acc7 Acc2 F1 MAE Corr Acc7 Acc2 F1 MAE Corr Acc Acc

SOTA1 3.68e-4 0.008 0.007 1.73e-4 0.452 1.17e-4 9.82e-4 8.57e-4 8.33e-5 0.362 0.003 0.007
SOTA2 0.035 0.006 0.006 0.052 0.398 0.009 6.24e-4 1.93e-4 0.022 0.003 0.017 0.008

Table 11: Performance comparison of different models on CMU-MOSI and CMU-MOSEI datasets.

Model Data CMU-MOSI CMU-MOSEI
Acc7 Acc2 MAE Acc7 Acc2 MAE

C-MIB aligned 47.7 87.8 0.662 52.7 86.9 0.542
unaligned 47.4 87.5 0.655 52.2 86.7 0.539

Multimodal Boosting aligned 49.1 88.5 0.634 54.0 86.5 0.523
unaligned 47.9 88.1 0.642 53.7 86.8 0.529

SAM-LML aligned 49.4 89.2 0.628 55.0 87.9 0.516
unaligned 49.1 89.5 0.623 55.2 87.8 0.518

Table 12: Performance comparison on CMU-MOSI and
CMU-MOSEI datasets.

MOSI MOSEI
Model Acc7 Acc2 Acc7 Acc2

NAL-v2 48.6 88.6 54.5 87.4
MML-v2 47.4 88.5 54.0 87.2
MDRL-v2 47.9 88.3 53.9 87.0
SAM-LML 49.4 89.2 55.0 87.9

gin between two weights. As shown in Fig. 7 (d), γ1
should be a large value so that we can increase the
distinguishability between different weights and en-
hance the attention mechanism’s ability to differen-
tiate interactions of varying degrees of importance.
Furthermore, we find that when the hyperparam-
eters are set to specific values (e.g., when γ1 is
2), the performance is better than that obtained by
grid search, indicating the performance of SAM-
LML can be further improved after a more careful
hyperparameter tuning.

A.14 Additional Results on Other Noise

In addition to Gaussian noise, we evaluate the ro-
bustness of SAM-LML against Laplace noise and
random erasing noise (randomly select a portion of
the features and set them to zero to simulate data
loss). For each sample, we randomly select one
type of noise to add to the features, and the results
are shown in Table 13. The noisy rate (NR) is set
to 10% - 70%. For a comprehensive comparison,
we present the results of C-MIB (Mai et al., 2023c)
and Multimodal Boosting (Mai et al., 2024), which
use the same training and testing settings as ours.
It can be seen from Table 13 that SAM-LML still

Table 13: Additional results on other types of noise on
the CMU-MOSI and CMU-MOSEI datasets.

NR C-MIB Multimodal Boosting SAM-LML
Acc2 / MAE Acc2 / MAE Acc2 / MAE

MOSI

0.1 87.6 / 0.681 87.3/0.660 88.1 / 0.647
0.2 87.3 / 0.695 85.8/0.726 87.8 / 0.661
0.3 85.0 / 0.890 85.6/0.757 87.8 / 0.649
0.4 83.7 / 1.019 87.6/0.798 87.9 / 0.659
0.5 81.5 / 1.629 86.9/0.839 87.6 / 0.648
0.6 79.4 / 1.274 84.6/1.048 87.6 / 0.656
0.7 81.4 / 3.443 85.4/1.432 87.4 / 0.673
Avg 83.7 / 1.376 86.2/0.894 87.7 / 0.656

MOSEI

0.1 86.8 / 0.531 86.8 / 0.555 87.3 / 0.525
0.2 85.9 / 0.587 86.0 / 0.581 87.1 / 0.530
0.3 85.7 / 0.606 85.2 / 0.586 86.8 / 0.532
0.4 84.0 / 0.646 85.4 / 0.680 86.9 / 0.525
0.5 83.9 / 0.798 85.0 / 0.746 86.7 / 0.527
0.6 82.2 / 1.046 86.0 / 0.957 86.5 / 0.526
0.7 77.6 / 1.271 81.2 / 1.018 86.5 / 0.529
Avg 83.7 / 0.784 85.1 / 0.732 86.8 / 0.528

significantly outperforms competitive baselines un-
der other noises (especially when the noise rate is
large), demonstrating the effectiveness and gener-
alization ability of SAM-LML.

Table 14: Performance comparison of different models
across modalities.

Modality Model Acc7 Acc2 MAE
Acoustic HuBERT 49.7 89.6 0.630

Covarep (Default) 49.4 89.2 0.628
Visual CLIP 49.4 89.5 0.623

Facet (Default) 49.4 89.2 0.628
Language DeBERTa-v3-large 50.6 90.5 0.597

DeBERTa-v3-base (Default) 49.4 89.2 0.628

A.15 Discussion on Unimodal Models
In this section, we conduct experiments to eval-
uate the performance of SAM-LML under vari-
ous unimodal model. For acoustic modality, we
change the default COVAREP with more powerful
HuBERT (Hsu et al., 2021). For visual modal-
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Figure 7: Model performance w.r.t the change of hyperparameters.

ity, we compare the popular CLIP (Radford et al.,
2021) with the default Facet. For language modal-
ity, we change the default DeBERTa-v3-base with
more powerful DeBERTa-v3-large. As shown in
Table 14, using more advanced language network
leads to more significant performance improve-
ment. Moreover, using more advanced acoustic
and visual models generally brings improvement to
the multimodal framework. Specifically, HuBERT
and CLIP achieve the best performance in acous-
tic and visual feature extraction, respectively, as
they are both highly expressive pre-trained models
trained on large-scale data. Nevertheless, the per-
formance improvement is not as significant as the
change of language model, further indicating the
dominant role of the language modality in multi-
modal affective computing.
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