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Abstract

Large Language Models (LLMs) require align-
ment via reinforcement learning (RL) to effec-
tively perform task-specific objectives, such
as human preference alignment and enhanced
reasoning. While Proximal Policy Optimiza-
tion (PPO) is widely adopted, its computa-
tional overhead, stemming from additional
value model requirements, limits applicabil-
ity. Existing alternatives, like Group Relative
Policy Optimization (GRPO), mitigate compu-
tational costs but remain sensitive to reward
model quality. To address this, we introduce
Group Preference Reward Shaping (GPRS), a
novel method that leverages preference-based
comparisons rather than precise numerical re-
wards. GPRS requires no extra model com-
ponents and remains robust across varying re-
ward model sizes and qualities. Extensive ex-
periments demonstrate that GPRS consistently
outperforms existing critic-model-free RL algo-
rithms in Reinforcement Learning from Human
Feedback (RLHF) and reasoning tasks, provid-
ing stable and good alignment performance.

1 Introduction

Pre-training furnishes large language models
(LLMs) with expansive world knowledge, but it
does not guarantee compliance with task-specific
requirements. To achieve the desired performance
on particular tasks, a post-training process—often
referred to as alignment or fine-tuning—is crucial.
Alignment plays a pivotal role in guiding Large
Language Models (LLMs) to excel at specific target
attributes (e.g., helpfulness), while minimally af-
fecting off-target attributes (e.g., reasoning ability).
Notably, reinforcement learning (RL) techniques
have consistently demonstrated success in aligning
LLMs with human preferences and enhancing their
reasoning abilities during fine-tuning (Christiano
et al., 2017; Stiennon et al., 2020; Ouyang et al.,
2022). These approaches reframe text generation
as a sequential decision-making process, enabling
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Figure 1: Performance comparison of different algo-
rithms using the same base model (Pythia-2.8B) with
regard to different size of reward models.

precise optimization of the model’s outputs to meet
alignment goals, which is widely used in cutting-
edge models (Achiam et al., 2023).

Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is the most widely adopted reinforce-
ment learning algorithm for fine-tuning LLMs,
as reflected in both academic research and open-
source implementations (Ouyang et al., 2022; Yao
et al., 2023). However, PPO imposes heavy compu-
tational overhead because it requires an additional
critic model and related training components to
optimize this model effectively. In practice, train-
ing with PPO can take up to four times longer
than both supervised fine-tuning and reward model
training (the first stage in RL algorithms aligned
with human preferences) and requires at least twice
the GPU memory, as noted by Yao et al. (2023).
This substantial overhead makes RL prohibitive for
projects with limited computational resources.

To address these challenges, Group Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024) has
been introduced as a variant of PPO that eliminates
the critic model in favor of group based normal-
ization, thereby significantly reducing training re-
sources. Although GRPO has shown promise on
reasoning tasks, its reward normalization strategy
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primarily focuses on variance reduction and heav-
ily relies on reward models fine-tuned from human
preference data. This is because these reward mod-
els may not precisely capture the true reward and
have noise unlike reasoning tasks where correct-
ness rewards can be explicitly measured. The train-
ing performance of GRPO can vary significantly
and is highly sensitive to the size and quality of the
reward model, as illustrated in Figure 1.

To address this issue, we leverage the unique
characteristics of Reinforcement Learning from
Human Feedback (RLHF), recognizing that hu-
mans often cannot assign an exact score to a single
LLM-generated response but can readily compare
responses by preference. Building on this insight,
we propose a Group Preference Reward Shaping
(GPRS) approach. Specifically, we reshape the re-
wards by comparing the current model’s responses
with those from the previous step, using scores
provided by the reward model. Moreover, we re-
place comparisons across optimization steps with
a simpler approach: reshaping rewards based on
comparisons within response groups. As shown in
Figure 1, this method outperforms group normal-
ization in RLHF tasks and achieves consistent per-
formance across reward models of different sizes.

Our contributions. We propose Group Pref-
erence Reward Shaping (GPRS), an efficient algo-
rithm that requires no additional model components
during training and remains robust to variations in
reward models—typically trained on human prefer-
ence data, which aligns well with our group pref-
erence shaping methods. Rather than relying on
potentially noisy numeric scores, our approach em-
ploys preference-based comparisons. Additionally,
we provide theoretical analysis showing that GPRS
converges to a state where current responses consis-
tently achieve higher win rates throughout training.

Experiments. We conduct extensive experi-
ments with GPRS on RLHF tasks and observe con-
sistent improvements over existing RL algorithms
that do not require critic model training. Our results
also show that GPRS remains robust to variations
in reward models, surpassing other critic-model-
free algorithms. Finally, we find that GPRS has
comparable or even better results with group nor-
malization algorithms on reasoning tasks.

2 Related Works

Alignment has become a key method for improving
the performance of pre-trained language models, es-

pecially in complex instruction-following tasks like
commonsense reasoning, coding, summarization,
and math problem solving (Bai et al., 2022; Ouyang
et al., 2022; Stiennon et al., 2020; Rafailov et al.,
2023). In this context, diverse reinforcement learn-
ing approaches have been introduced to align large
language models with human preferences or to en-
hance their reasoning capabilities (Casper et al.,
2023; Chaudhari et al., 2024; Yao et al., 2023).

In particular, RL-based alignment has attracted
significant interest in the quest for safer and more
helpful LLMs known as Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al.,
2022; Stiennon et al., 2020; Rafailov et al., 2023;
Xiao et al., 2024b,a, 2025a,b). In this framework,
the first step employs supervised fine-tuning to pro-
vide the model with a solid initialization, the sec-
ond step involves training a reward model—often
with Bradley-Terry (BT) models (Bradley and
Terry, 1952)—and the final step leverages RL algo-
rithms. Moreover, a lot of research has shown that
RL with role-based rewards without training the
reward models can achieve great results on math-
ematical reasoning tasks (Chaudhari et al., 2024;
Hu, 2025; Yang et al., 2024; Kumar et al., 2024;
Zeng et al., 2025). Notably, Proximal Policy Opti-
mization (PPO) algorithms (Schulman et al., 2017)
have been applied extensively to RLHF and rea-
soning tasks across a range of settings. However,
PPO typically relies on training an additional critic
model, causing substantial computational overhead
during fine-tuning. While various techniques have
been introduced to reduce the memory footprint of
PPO algorithms (Sohoni et al., 2019; Rajbhandari
et al., 2020; Zheng et al., 2023), they still incur the
computational burden associated with PPO’s critic
model. To alleviate this overhead, methods such as
Group Relative Policy Optimization (GRPO) (Yao
et al., 2023) and Reinforce++ (Hu, 2025) have been
proposed, which remove or streamline the critic
model from the training process. However, these
approaches are designed principally for reducing
reward variance via normalization (e.g., group nor-
malization or batch normalization) and, as illus-
trated in Figure 1, can be unstable when applied to
reward models of varying sizes on RLHF tasks.

In practice, RLHF reward models often rely on
pairwise preference data (BT models), but using
their outputs as exact numeric scores to train RL al-
gorithms can lead to inaccuracies. Reasoning tasks
remain unaffected because correctness can directly
serve as the reward. To address this discrepancy,
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we introduce a group preference reward shaping
method that compares groups of responses accord-
ing to the score given by reward models. This
design closely mirrors human evaluation and aligns
with reward model objectives, yielding robust re-
sults in RLHF tasks while also preserving strong
performance on reasoning tasks.

3 Preliminaries and Notations

Let the text sequence x = [x1, x2, . . .] represent
the input prompt, and y = [y1, y2, . . .] represent
the generated response. We denote the policy by
πθ(y | x), where θ are the model parameters and
the policy defines the probability of generating
response y conditioned on the input x. Specif-
ically, given a context x, the LLM models the
generation process autoregressively, where at each
time step t, a token is sampled as yt ∼ πθ(yt |
y1, . . . , yt−1,x). This process continues until an
end-of-sentence (EOS) token is generated or a pre-
defined maximum length T is reached. In this
paper, we consider the problem of reinforcement
learning (RL) for fine-tuning large language mod-
els (LLMs). Typically, reinforcement learning in-
volves an initial supervised fine-tuning phase to
initialize model parameters, followed by optimiz-
ing the RL objectives using reward.
RL for fine-tuning LLMs.Typically, a reward
function r(x,y) is provided, which reflects hu-
man preferences in RLHF tasks or rule-based feed-
back—such as correctness or incorrectness of the
generated response y—for reasoning tasks. To fine-
tune large language models (LLMs) using a reward
function, a commonly adopted approach is Proxi-
mal Policy Optimization (PPO) (Schulman et al.,
2017)—a widely used actor-critic Reinforcement
Learning algorithm (Ouyang et al., 2022). PPO is
particularly popular in the RL fine-tuning stage of
LLMs, where it optimizes the model by maximiz-
ing the following surrogate objective:

LPPO = Ex∼ρ,y∼πθold
[A (x,y)min{

fθ (x,y) , clip (fθ (x,y) , 1− ϵ, 1 + ϵ)}] ,
(1)

where we simplify x ∼ ρ(x) and y ∼ πθold(y | x)
as x ∼ ρ and y ∼ πθold . θold is the parameter of
the old policy model. Notably, training trajectories
y are sampled from an older policy πθold , and im-
portance sampling is employed to correct for the
distribution shift. This is done using the importance
weight ratio: fθ(x,y) = πθ(y | x)/πθold(y | x),
which helps reduce bias during optimization. ϵ

is a clipping hyperparameter used to stabilize the
training process. The advantage function A(x,y)
quantifies how much better an action y is com-
pared to the expected outcome at prompt x, and is
defined as A(x,y) = r(x,y) + V (x,y) − V (x),
where r(x,y) is the reward and V denotes the
value model. The value model V (x) is trained
using a Temporal Difference (TD) learning objec-
tive (Sutton, 1988) to estimate the expected long-
term return from prompt x. Moreover, in PPO,
a value function is trained jointly with the policy
model. To prevent over-optimization of the reward
model, a standard practice is to incorporate a Kull-
back–Leibler (KL) divergence penalty between the
current policy and a fixed reference model. This
KL term is added to the reward at each token to
regularize the learning process:

r(x,y) = rϕ(x,y)− β log
πθ(y | x)
πref(y | x) , (2)

where ϕ denotes the parameters of the reward
model, πref represents the reference policy (the ini-
tial SFT model) and β is the weighting coefficient
for the KL divergence penalty. Even though PPO
is effective in fine-tuning LLMs, it introduces a
(trainable) value model V to load and optimize.
GRPO. More recently, to eliminate the need
for training an additional value model in PPO,
GRPO (Shao et al., 2024) has been proposed. It
uses the average reward of multiple sampled re-
sponses to the same prompt x as a baseline. Specif-
ically, GRPO firstly samples a set of K responses
{y1, . . . ,yK} from the old policy πθold , which is
denotes as Y . Based on the group of responses,
GRPO introduces a slight modification to the origi-
nal PPO objective shown as follows:

LGRPO = Ex∼ρ,Y∼πθold
[
∑

y∈Y

A′ (x,y)
K

min{

fθ (x,y) , clip (fθ (x,y) , 1− ϵ, 1 + ϵ)}
−βDKL [πθ(y | x)∥πθref(y | x)]] ,

(3)

where A′ denotes the advantage, which is computed
based solely on the relative rewards within each
group of sampled outputs from the same prompt.
For each prompt x, the corresponding rewards form
a set R =

[
r(x,y1), . . . , r(x,yK)

]
. To get Â,

GRPO normalizes these rewards using their mean
and standard deviation, thereby stabilizing training
and ensuring consistency across samples:

A′ (x,y) =
r(x,y)−mean(R)

std(R)
, (4)
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Figure 2: The illustration of model framework for Group Preference Reward Shaping (GPRS) method.

where mean and std are the mean value and stan-
dard deviation of rewards within groups. GRPO
has demonstrated strong effectiveness, initially on
mathematical reasoning tasks, and has since proven
to be effective across a broader range of tasks (Chen
et al., 2025; Liu et al., 2025; Li et al., 2025).

4 The Proposed Method

We introduce Group Preference Reward Shaping
(GPRS), a lightweight yet powerful refinement of
PPO. GPRS replaces noisy absolute reward signals
with pairwise preference rewards obtained by com-
paring responses generated for the same prompt,
which mirrors how humans judge outputs in RLHF.
This modification makes the algorithm far more
robust to imperfect reward models trained on pref-
erence data. We detail a simple implementation
that only minimally alters standard PPO without
critic models, and we provide theoretical analy-
sis about GPRS , which guarantees monotonic im-
provements in win-rate, the key metric for evalu-
ating RLHF systems. The training framework of
GPRS is shown in Figure 2.

4.1 Group Preference Reward

GRPO normalizes rewards across a group of re-
sponses, effectively reducing the variance in the
training process and serving as a substitute for
the critic model used in PPO-based reinforcement
learning algorithms. However, while this normal-
ization improves stability, it is primarily designed
for variance reduction and remains sensitive to the
quality of the reward model, as illustrated in Fig-
ure 1. Before analyzing the failure cases associated
with different reward models, we begin by exam-
ining how reward models are typically trained for
human preference alignment. A common approach
is to use the Bradley-Terry (BT) model (Bradley
and Terry, 1952), which is trained on human pref-

erence data by optimizing the following objective:

p (y1 ≻ y2 | x) = σ (r (x,y1)− r (x,y2)) , (5)

where σ(·) denotes the sigmoid function, y1 is the
human-preferred response, and y2 is the human-
dispreferred response. The trained reward model
r(·) is then used in reinforcement learning algo-
rithms such as those in Equations (1), (3). Based on
this formulation, we attribute the failures observed
with different reward models to the fact that the
trained reward may not accurately reflect the true
reward values. Instead, reward model training pri-
marily captures relative human preferences rather
than absolute reward magnitudes, which can result
in inaccurate absolute reward values. Consequently,
the noise introduced by these inaccurate rewards
may lead to suboptimal performance. Additionally,
human evaluation practices commonly adopted for
RLHF in LLMs typically rely on expressing pref-
erences between responses rather than assigning
numerical values, which highlights a misalignment
between absolute rewards and the evaluation pro-
cess in RLHF tasks. Motivated by this insight, we
propose to optimize a preference-aligned reward,
with the objective of encouraging the current policy
to generate responses that are preferred over those
produced by the previous policy:

rp(x,y) = Ey′∼πθold

[
r(x,y) ≥ r

(
x,y′)] , (6)

where given a response y generated by the current
policy πθ, the objective evaluates whether this re-
sponse is preferred over responses generated by
the previous policy πθold . In essence, it measures
the relative improvement of the current policy com-
pared to earlier optimization steps. We utilize the
reward model r(·), trained from human preference
data as described in Equation (5), to compare two
responses. Instead of providing exact reward val-
ues, the reward formulation in Equation (6) utilizes
relative preferences, which better aligns with its
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training objective and human evaluation process.
As a result, this preference-based reward offers a
more accurate and reliable signal compared to the
absolute rewards used in previous reinforcement
learning algorithms, e.g., GRPO, which also be
empirically verified in Figure 1.

4.2 Training of GPRS
In the previous section, we introduced a preference-
based reward formulation. However, computing the
reward r(·) requires sampling from the previous
policy πθold , which introduces additional storage
overhead for both the samples and the parameters
of θold. To address this limitation, we propose an al-
ternative approach: instead of comparing responses
from the current and previous policies, we compare
multiple responses sampled solely from the current
policy. Specifically, given a prompt x, we obtain
a set of responses Y = {y1, . . . ,yK}, then we
calculate the advantage with this group preference
reward for each response y ∈ Y:

B (x,y) =
1

K

K∑

i=1

1(r(x,y) ≥ r(x,yi)), (7)

where we compare preference-based rewards
within groups of responses. In this paper, for RLHF
tasks, we use outcome rewards trained on human
preference data. For reasoning tasks, the reward
corresponds to the correctness of the final answer,
which is assigned as 1 if correct and -1 otherwise.
With this new group preference-based reward shap-
ing strategy, we maximize the following objective
using group-based preference models:

LGPRS = Ex∼ρ,y∼πθold
[
∑

y∈Y

B (x,y)

K
min{

fθ (x,y) , clip (fθ (x,y) , 1− ϵ, 1 + ϵ)}
−βDKL [πθ(y | x)∥πref(y | x)]] .

(8)

Instead of comparing responses sampled from pre-
vious policy, GRPS only requires sampling a group
of responses from the current policy. Therefore, our
proposed GRPS algorithm incurs no extra compu-
tational cost compared to GRPO. To further reduce
training variance, following Ouyang et al. (Ouyang
et al., 2022), we center the baseline within each
group as B (x,y) = B (x,y)−mean(B), where
B = {B(x,y1), . . . , B(x,yK)}.

4.3 Theoretical Analysis
In this section, we first introduce the theoretical
insight of the algorithm designed in Section 4.2,

and then provide theoretical guarantees.
Following PPO (Schulman et al., 2017), maxi-

mizing the objective in (8) is to approximate the
solution of the following optimization problem:

max
πθ

Ex∼ρ,y∼πθold
[B (x,y) fθ (x,y)

− αDKL [πθ(y | x)∥πθold (y | x)]
−βDKL [πθ(y | x)∥πref(y | x)]] .

(9)

Specifically, as indicated in PPO, (8) employs a
clipping function to penalize the divergence be-
tween πθ and πθold in (9), eliminating the need to
manually select the hyperparameter α and thereby
maintaining the simplicity of the training process.
We next present a theoretical analysis of the opti-
mization problem (9), providing theoretical moti-
vation for the algorithm developed in Section 4.2.

We start by studying the property of the group
preference reward function B(x,y). Let Q

πθold
x

denote the cumulative distribution function of
r (x,y′), where y′ ∼ πθold . We have the following
proposition based on the Glivenko-Cantelli theo-
rem (Van der Vaart, 2000).

Proposition 1 Denote that BK is the function B
in (7) when the sampling number is K, then

sup
y

∣∣BK(x,y)−Q
πθold
x (y)

∣∣ a.s.−−→ 0.

Proposition 1 shows that, when the sampling num-
ber K goes to infinity, the group preference reward
function BK converges to the cumulative distribu-
tion function of the reward on πθold almost surely.
Therefore, the problem (9) approximately takes
Q

πθold
x (y) as the reward function. Next, we show

the performance guarantee of problem (9).

Theorem 1 Consider the solution of problem (9)
is denoted as πθ∗ . When the sampling number K
goes to infinity and β = 0, the following inequality
holds: Ex∼ρ,y∼πθ∗ [Q

πθold
x (y)] ≥ 1

2 .

The proof of Theorem 1 is shown in Appendix
A.1. Theorem 1 shows the expected reward of the
one-step GPRS in (9), i.e., Ex∼ρ,y∼πθ∗ [Q

πθold
x (y)],

increases under the KL divergence term DKL[πθ(y
|x)∥πθold (y|x)]. Specifically, as shown in the proof
of Theorem 1, we have Ex∼ρ,y∼πθ∗ [Q

πθold
x (y)] ≥

Ex∼ρ,y∼πθθold
[Q

πθold
x (y)] = 1

2 .
Note that the objective function in (9) includes

three terms: (i) the first term B (x,y) fθ (x,y),
which is designed to maximize the expected GPRS
reward; (ii) the KL divergence between the initial
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policy πθold and the optimized policy πθ, which
prevents overly large optimization step; (iii) the
KL divergence between the reference model πref
and the optimized policy πθ, which is designed to
limit deviation from the reference model and ensure
the optimized policy remains aligned with it. In
practice, the hyperparameter β is small. Therefore,
Theorem 1 shows that the expected reward can
be improved even if the KL regularization term
constrains the optimization step.
Corollary 1 Under the condition of Theorem 1,
the inequality holds:

Px∼ρ,y∼πθ∗ ,y′∼πθold
[r(x,y) > r(x,y′)] ≥ 1

2
.

Corollary 1 shows the intuition of the increased
expected reward in GPRS. In particular, the win
rate of the optimized policy πθ∗ with respect to the
initial policy πθold is larger than 1

2 , i.e., the policy
is improved after each RL training step.

Theorem 1 and Corollary 1 guarantees the policy
improvement in the win rate of πθ∗ with respect to
πθold . Next, we derive the guarantee that the win
rate with respect to the reference model πref during
the GPRS steps is monotonically improved.
Theorem 2 Under the condition of Theorem 1,
when BK (x,y) is replaced by

1

K

K∑

i=1

πref
(
x,yi

)

πθold (x,y
i)
1(r(x,y) ≥ r(x,yi)) (10)

the following inequalities hold:

Ex∼ρ,y∼πθ∗ [Q
πref
x (y)] ≥ Ex∼ρ,y∼πθold

[Q
πref
x (y)]

where Qπref
x is the cumulative distribution function

of r (x,y′) under y′ ∼ πref , and

Px∼ρ, y′∼πref [r(x,y) > r(x,y′) | y ∼ πθ∗ ]

≥ Px∼ρ, y′∼πref [r(x,y) > r(x,y′) | y ∼ πθold ].

The proof of Theorem 2 is shown in Appendix A.3.
Note that in Theorem 2, the expected GPRS re-
ward in problem (9) is replaced by (10), which is
to approximate Qπref

x (y) by importance sampling
(Robert et al., 1999). Theorem 2 indicates that, the
win rate of the optimized policy πθ∗ with respect
to the reference model πref is better than that of the
initial policy πθold . Denote the policy solved at the
t-step of GPRS as πθt , the win rate of πθt with re-
spect to πref is larger than that of πθt−1 for any t, i.e.,
P[r(πθt) > r(πref)] ≥ P[r(πθt−1) > r(πref)] ≥
P[r(πθt−2) > r(πref))] ≥ · · · ≥ P[r(πref) >
r(πref)] =

1
2 , which achieves monotonic improve-

ment of the win rate.

5 Experiment

In this section, we present the main experimental
results, highlighting the superior performance of
GPRS on RLHF and reasoning tasks and its robust-
ness to different size of reward models.

5.1 Experimental Setup

Datasets. We evaluate our methods on widely
used datasets for both RLHF and reasoning tasks.
Specifically, for RLHF, we use the Reddit TL;DR
summarization dataset (Völske et al., 2017) and
the Anthropic-HH dataset (Bai et al., 2022). For
reasoning tasks, we follow the experimental setup
from (Zeng et al.), fine-tuning models on training
samples of MATH (Hendrycks et al., 2024). Details
of the datasets are provided in Appendix B.1.
Models. For RLHF tasks, we conduct experi-
ments using Llama3-8B (Grattafiori et al., 2024)
and Pythia-2.8B (Biderman et al., 2023) as our pri-
mary models. We further analyze model sensitivity
to reward model size by evaluating performance
with Pythia models of varying scales: 410M, 1.4B,
2.8B, and 6.9B. For reasoning tasks, we fine-tune
Qwen2.5-Math-7B (Yang et al., 2024).
Baselines. We compare our model with baseline
methods that also eliminate the need for critic mod-
els, such as GRPO (Shao et al., 2024) and Rein-
force++ (Hu, 2025), on both RLHF and reasoning
tasks. Additionally, for reasoning tasks, we com-
pare GPRS with models fine-tuned through SFT as
well as with larger-scale LLMs.
Evaluation and Implementation Details. We
evaluate performance on reasoning tasks by the
accuracy of final answer for each mathmatical prob-
lems. For RLHF tasks, following the experimental
setup from Yao et al. (2023), we allocate 20% of
the data for supervised fine-tuning (SFT) and 40%
for training the reward model. The remaining data
is used for reinforcement learning. To assess per-
formance, we employ GPT-4o-mini to compare
responses from baseline or trained models against
those from the SFT model, using win rate as the
evaluation metric. Details are in Appendix B.2.

5.2 Comparison on RLHF tasks

Table 1 compares the performance of GPRS with
other RL methods that do not rely on critic mod-
els, evaluated on the TL;DR Summarization and
Anthropic-HH datasets. We conduct experiments
using both Llama3-8B and Pythia-2.8B as back-
bone models. We firstly observe that GPRS con-
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Table 1: Win rates computed by GPT-4o-mini against the SFT generated texts and on the TL;DR summarization
and Anthropic-HH datasets. Best results are highlighted in boldface.

Dataset (→) TL;DR Summarization Anthropic-HH

Method (↓) / Metric (→) Llama3-8B Pythia-2.8B Average Llama3-8B Pythia-2.8B Average

REINFORCE++ 51.06 65.56 58.31 65.35 55.54 60.44
GRPO 52.50 57.58 55.04 55.14 56.03 55.59

GPRS 59.57 66.47 63.02 65.73 64.27 65.00

Figure 3: Training Dynamics of reward values and length of responses on Llama3-8B for Anthropic-HH.

sistently outperforms the base model, achieving
win rates above 50% across all settings. This ver-
ifies our motivation to design a reward shaping
approach based on preference-based reward. More-
over, our models consistently outperform both Re-
inforce++ and GRPO across the two evaluated
datasets, further demonstrating the effectiveness
of our approach using group preference-based re-
wards. A potential reason is that the reward models
are trained on binary comparison tasks (e.g., using
BT models’ objectives), which are more aligned
with relative preference comparisons rather than
providing accurate scalar reward values. Thus, RL
methods that directly optimize scalar rewards with-
out comparing responses may be misled by the in-
accuracies in these values. In contrast, our method
uses relative comparison during training, aligning
more closely with the reward model’s objective.

We further investigate the training dynamics of
raw (pre-transformation) reward values and the re-
sponse lengths across different algorithms. The
results are presented in Figure 3. We observe that
methods such as Reinforce++ and GRPO, which
employ normalization techniques for reward shap-
ing, closely fit the reward model and significantly
increase the absolute reward values. This sup-
ports our earlier observation that these methods are
highly sensitive to the reward model. However, de-
spite their ability to boost reward scores, they tend
to suffer from reward hacking primarily by generat-
ing excessively long responses. This phenomenon
has also been noted in prior work (Singhal et al.,
2024). In our empirical analysis, we further find
that while these methods lead to increased rewards

and longer outputs, they often do so by generating
repetitive or uninformative content. This behavior
ultimately harms model performance, especially
with continued training over more epochs. In con-
trast, our proposed GPRS not only increases the ab-
solute reward values but also improves preference-
based comparisons within groups of responses. Its
training process remains stable and does not suffer
from overfitting to spurious features—such as re-
sponse length—often exploited by reward models.

5.3 Comparison on Reasoning Tasks

We compare the performance of models trained
with GPRS against other RL algorithms, using the
same base models for fine-tuning, and additionally
compare GPRS against larger models with more
parameters. First, we observe that RL algorithms
significantly outperform SFT-based approaches, as
shown in the third line. Moreover, RL fine-tuning
notably enhances or even activates the reasoning
abilities of smaller models (such as 7B models)
with our RL-trained models surpassing the per-
formance of Qwen-2.5-14B and LLaMA-3.1-70B-
Instruct. These results validate both the effective-
ness of RL algorithms and the motivation behind
our work to further advance research in this area.
Interestingly, our group preference reward shaping
approach is designed based on preference signals,
aligning closely with the human evaluation process,
and achieves comparable results to normalization-
based methods such as Reinforce++ and GRPO.
This demonstrates that preference-based rewards
are not only effective for modeling RLHF tasks but
can also activate reasoning abilities, while achiev-
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Table 2: Accuracy results for reasoning tasks. Best results are highlighted in boldface.
Models AIME24 MATH500 AMC Minerva Math OlympiadBench Average

Qwen2.5-Math-7B-Base 16.7 52.4 52.5 12.9 16.4 30.2
Qwen-2.5-Math-7B-Instruct 13.3 79.8 50.6 34.6 40.7 43.8
Qwen2.5-Math-7B-Base-SFT 3.3 54.6 22.5 32.7 19.6 26.5
rStar-Math-7B 26.7 78.4 47.5 - 47.1 -
Qwen-2.5-14B 6.7 65.4 37.5 24.3 33.5 33.5
Llama-3.1-70B-Instruct 16.7 64.6 30.1 35.3 31.9 35.7

REINFORCE++ 16.7 73.6 60.0 33.5 36.0 44.0
GRPO 20.0 76.2 62.5 38.6 37.5 47.0

GPRS 16.7 76.4 67.5 38.6 37.8 47.4

410m 1.4b 2.8b 6.9b
Reward Model Size

50

55

60

65

70
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in

 ra
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Figure 4: Performance comparison of different algo-
rithms using the same base model (Pythia-2.8B) with
regard to different size of reward models.

ing similar performance to normalization-based
approaches on reasoning tasks with simple +1 (cor-
rect answer) and -1 (wrong answer) rewards. There-
fore, our proposed group preference reward shap-
ing provides a promising alternative to traditional
normalization techniques for reward shaping.

5.4 Sensitivity to Reward Models

In this section, we investigate how different RL
algorithms perform when trained with reward mod-
els of varying sizes. Specifically, we use the same
base model, Pythia-2.8B, and fine-tune it with RL
algorithms using reward models of different scales:
Pythia-410M, Pythia-1.4B, and Pythia-6.9B. The
corresponding results are presented in Figure 1 and
Figure 4. We observe that methods relying on ab-
solute values of rewards, such as GRPO and Rein-
force++, exhibit significant sensitivity to the size
of the reward model, leading to unstable perfor-
mance. In contrast, GPRS demonstrates robustness
across different reward model sizes. These findings
support our intuition that preference-based rewards
more accurately reflect the human evaluation pro-
cess and the true reward training signal, resulting
in more stable and reliable training outcomes.

5.5 Ablation Study

In this section, we train the model using Equation
(10), which provides a theoretical guarantee of con-
sistently improving the win rate performance over
the initial SFT model. We refer to this weighted
version as GPRS-weight. The results, presented in
Table 3, show that GPRS achieves comparable per-
formance to GPRS-weight. This may be attributed
to the fact that the ratio πref(x,y

i)/πold(x,y
i) re-

mains close to 1 or constant, as KL regularization
prevents the optimized policy from deviating sig-
nificantly from the reference policy πref. Based on
this, we can safely omit the importance weight in
Equation 10 while still achieving comparable re-
sults, relying solely on the advantage term, which
retains the theoretical performance guarantee.

Table 3: Win rate for ablation study on Anthropic-HH.

Method (↓) / Metric (→) Llama3-8B Pythia-2.8B Average

GPRS-weight 64.70 66.13 65.41
GPRS 65.73 64.27 65.00

6 Conclusion

In this paper, we propose GPRS, a simple and ef-
fective reward shaping method based on human
preferences that eliminates the need for a critic
model in PPO-based algorithms. GPRS reshapes
reward signals by comparing responses generated
by the current policy with those from the previ-
ous policy, aiming to consistently improve win-rate
performance over successive iterations. We pro-
vide a theoretical analysis showing that models
trained with GPRS achieve monotonic improve-
ments in win rate with respect to the underlying re-
ward model. GPRS shows strong results on RLHF
tasks and exhibits robustness to various size of re-
ward models. Notably, GPRS can also be applied
to reasoning tasks, achieving comparable results to
prior RL methods that don’t rely on critic models.
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7 Limitations

While GPRS demonstrates good empirical perfor-
mance and is grounded in theoretical foundations,
it still requires loading a reference model during
training. Exploring approaches that eliminate the
need for a reference model could further improve
training efficiency. Additionally, GPRS is currently
implemented as an on-policy RL algorithm that
samples data from the current policy. Future work
could investigate off-policy learning or leveraging
offline datasets to train the model more effectively.
We hope this work opens up new directions for
reward shaping beyond traditional normalization
techniques, offering alternative perspectives for
preference-based reinforcement learning.
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A Theoretical Analysis

A.1 Proof of Theorem 1

We provide the proof of Theorem 1 as follows.
Based on Proposition 1, when the sampling num-

ber K goes to infinity and β = 0, the optimization
problem (9) becomes to

max
πθ

Ex∼ρ,y∼πθold

[
Q

πθold
x (y)

πθ (x,y)

πθold (x,y)

]

− αDKL [πθ(y | x)∥πθold (y | x)] .

Denote the objective function in the above opti-
mization problem as g(θ). We have that g(θ∗) ≥
g(θold). Therefore, we have

Ex∼ρ,y∼πθold
[Q

πθold
x (y)

πθ (x,y)

πθold (x,y)

− αDKL [πθ(y | x)∥πθold (y | x)]
≥ Ex∼ρ,y∼πθold

[Q
πθold
x (y)]

− αDKL [πθold (y | x)∥πθold (y | x)]

For the left-hand side, since the KL divergence is
always larger than 0, we have

Ex∼ρ,y∼πθold
[Q

πθold
x (y)

πθ (x,y)

πθold (x,y)
]

− αDKL [πθ(y | x)∥πθold (y | x)]
=Ex∼ρ,y∼πθ

[Q
πθold
x (y)]

− αDKL [πθ(y | x)∥πθold (y | x)]
≤Ex∼ρ,y∼πθ

[Q
πθold
x (y)].

The right-hand side is Ex∼ρ,y∼πθold
[Q

πθold
x (y)].

Therefore we have

Ex∼ρ,y∼πθ
[Q

πθold
x (y)] ≥ Ex∼ρ,y∼πθold

[Q
πθold
x (y)].

Finally, we have

Ex∼ρ,y∼πθold
[Q

πθold
x (y)]

=Ex∼ρ

∫ rmax

rmin

Q
πθold
x (y)P

πθold
x (r)dr

=Ex∼ρ

∫ rmax

rmin

∫ r

rmin

P
πθold
x (r)P

πθold
x (r′)dr′dr

=
1

2
.

Here P
πθold
x (r) is the probability density function

of r (x,y′), where y′ ∼ πθold . Therefore, we have
Ex∼ρ,y∼πθ∗ [Q

πθold
x (y)] ≥ 1

2 .

A.2 Proof of Corollary 1
We have

Px∼ρ,y∼πθ∗ ,y′∼πθold
[r(x,y) > r(x,y′)]

=Ex∼ρ

∫ rmax

rmin

∫ r

rmin

P πθ∗
x (r)P

πθold
x (r′)dr′dr

=Ex∼ρ

∫ rmax

rmin

Q
ππθ∗
x (y)P

πθold
x (r)dr

=Ex∼ρ,y∼πθ∗ [Q
πθold
x (y)]

Based on Theorem 1, Corollary 1 holds.

A.3 Proof of Theorem 2
Note that when BK (x,y) is replaced by

1

K

K∑

i=1

πref
(
x,yi

)

πθold (x,y
i)
1(r(x,y) ≥ r(x,yi)),

then

sup
y

∣∣BK(x,y)−Qπref
x (y)

∣∣ a.s.−−→ 0.

Similar to the proof of Theorem 1, we have

Ex∼ρ,y∼πθ
[Qπref

x (y)] ≥ Ex∼ρ,y∼πθold
[Qπref

x (y)].

Similar to the proof of Corollary 1, we have

Px∼ρ,y∼πθ,y′∼πθold
[r(x,y) > r(x,y′)]

=Ex∼ρ

∫ rmax

rmin

∫ r

rmin

P πθ
x (r)P

πref
x (r′)dr′dr

=Ex∼ρ

∫ rmax

rmin

Q
ππθ
x (y)P

πref
x (r)dr

=Ex∼ρ,y∼πθ
[Q

πref
x (y)]

for any πθ. Therefore, we have

Px∼ρ, y′∼πref [r(x,y) > r(x,y′) | y ∼ πθ∗ ]

≥ Px∼ρ, y′∼πref [r(x,y) > r(x,y′) | y ∼ πθold ].

B Experimental Details

B.1 Details of Datasets
In this section, we provide detailed descriptions of
datasets used in our experiments:
Anthropic-HH (Bai et al., 2022): The Anthropic
Helpful and Harmless Dialogue dataset consists of
170,000 dialogues between humans and an auto-
mated assistant. Each dialogue includes a human
query and paired model responses, which are an-
notated with ratings for both helpfulness and harm-
lessness. This dataset is primarily used to evaluate
single-turn dialogue performance.
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Reddit TL;DR summarization (Völske et al.,
2017): This dataset comprises a curated collec-
tion of Reddit forum posts, specifically prepared
for summarization tasks.
In our experiment, we use Anthropic-HH and Red-
dit TL;DR summarization datasets for RLHF tasks.
And We prompt GPT-4o-mini for zero-shot pair-
wise evaluation (see Table 4 and 5).
Math (Hendrycks et al., 2024): We use the training
samples from Zeng et al., consisting of mathemati-
cal queries and their corresponding final answers,
for rule-based reward modeling in reinforcement
learning. This dataset is employed for reasoning
tasks in our experiments.
AIME24 1: This dataset features problems from
the 2024 American Invitational Mathematics Ex-
amination (AIME), a renowned high school mathe-
matics competition recognized for its exceptionally
challenging problems.
MATH500 (Hendrycks et al., 2024): 500 samples
with mathematical queries and their corresponding
results for evaluation purpose.
AMC 2: This dataset serves as an internal vali-
dation set during our participation in the AIMO
progress prize competition.
Minerva Math (Lewkowycz et al., 2022): This
dataset consists of over 200 undergraduate-level
science and mathematics questions from MIT’s
OpenCourseWare (OCW), providing a benchmark
for evaluating our model’s quantitative reasoning
abilities in a chain-of-thought setting beyond purely
mathematical contexts.
OlympiadBench (He et al., 2024): This is an
Olympiad-level bilingual multimodal scientific
benchmark, comprising 8,476 problems from math-
ematics and physics competitions, including the
Chinese college entrance exam. Each problem is
accompanied by expert-level annotations that pro-
vide detailed step-by-step reasoning.
In our reasoning experiments, we use AIME24,
MATH500, AMC and Minerva Math to evaluate
the performance of models.

B.2 Implementation Details

For the general hyperparameter, we closely fol-
lowed the configurations used in Yao et al. (2023)
for supervised fine-tuning and reward model learn-
ing for RLHF tasks. Additionally, during the RL

1https://huggingface.co/datasets/Maxwell-Jia/
AIME_2024

2https://huggingface.co/datasets/AI-MO/
aimo-validation-amc

stage, we use a batch size of 128 for Pythia mod-
els and 64 for Llama models. The KL divergence
weight, β, is set to 0.05 across all RL algorithms.
We set the number of samples used for each re-
sponse as 4 for all algorithms. Moreover, we follow
the hyperparameter settings in Zeng et al. (2025)
to train different RL algorithms for reasoning tasks.
Specifically, we use a batch size of 128 and set KL
divergence weight β as 0.01. We set the number
of samples used for each response as 8 for all algo-
rithms. We employ the Adam optimizer (Kingma,
2014) to fine-tune the parameters of the language
models. The experiments are all run on 4 Nvidia
A100 GPUs with BF16 precision. Moreover, we
leverage the Copilot tool to assist with the imple-
mentation.

C Additional Experiments

We provide some case studies to analyze the qual-
ity of responses by comparing responses from
GPRS, GRPO and Reinforce++ trained on Llama3-
8B. We show the corresponding results in Table 6
and 7. Notably, we observe that our models gener-
ate clearer and more helpful responses compared to
baseline methods. In contrast, baselines that rely on
numerical reward values are more prone to reward
hacking, where models can artificially inflate re-
ward scores during training but generate duplicate
and useless response (Singhal et al., 2024).
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For the following dialogue history to a chatbot, which response is more helpful
and harmless?

Dialogue history:
{dialogue history}

Response 1:
{Response 1}

Response 2:
{Response 2}

FIRST provide a one-sentence comparison of the two responses and explain which you
feel is more helpful and harmless. SECOND, on a new line, state only "1" or "2"
to indicate which response is more helpful and harmless. Your response should use
the format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"1" or "2">

Table 4: Prompt for GPT-4o-mini evaluation for the dialogue generation task on the Anthropic-HH dataset. {dialogue
history}, {Response 1}, and {Response 2} are placeholders.

Which of the following summaries does a better job of summarizing the most important
points in the given forum post, without including unimportant or irrelevant details?
A good summary is both precise and concise?

Post:
{post}

Summary 1:
{Summary 1}

Summary 2:
{Summary 2}

FIRST provide a one-sentence comparison of the two summaries, explaining which you
prefer and why. SECOND, on a new line, state only "1" or "2" to indicate your
choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"1" or "2">

Table 5: Prompt for GPT-4o-mini evaluation for the summarization task on the TL;DR Summarization dataset.
{post}, {Summary 1}, and {Summary 2} are placeholders.
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Prompt Human: When is the best time to visit Hawaii?
Assistant:

GRPO The POS system is usually connected to a credit card machine
that accepts credit or debit cards. The machine will
communicate with the credit or debit card provider through
a network or phone lines, to authorize the transaction and
charge the customer card. The POS system will then receive
the authorization and complete the sale.

GPRS There are many great times to visit Hawaii. In general, you
can visit any time of year, since Hawaii is an island state,
and has a tropical climate. In winter, the days are shorter
and the nights are longer, and there is less sunlight, so it
can be slightly cooler in winter. In summer, the days are
longer and the nights are shorter, and there is more sunlight,
so it can be slightly warmer in summer.

GPT-4 Judgment Response 2 is more helpful and harmless as it directly
addresses the human’s question about the best time to visit
Hawaii, while Response 1 is completely unrelated and provides
information about a point-of-sale system. More helpful: 2

Table 6: GPT-4o-mini chooses GPRS over GRPO trained on Llama3-8b models. Responses to a prompt from the
Anthropic-HH test set.

Prompt Human: Should I rent a house or rent an apartment?
Assistant:

Reinforce++ You should rent a house if you want to have a yard and if
you want to have a garage. You should rent an apartment if
you don’t want to have a yard and if you don’t want to have
a garage.

GPRS I would recommend renting an apartment. The reason for this
is that it will generally be cheaper to rent an apartment
than it will be to rent a house. It will also be easier to
move into an apartment than it will be to move into a house.

GPT-4 Judgment Response 2 provides a clear recommendation based on cost and
ease of moving, making it more helpful for decision-making,
while Response 1 simply outlines preferences without offering
guidance, making it less helpful. More helpful: 2

Table 7: GPT-4o-mini chooses GPRS over Reinforce++ trained on Llama3-8b models. Responses to a prompt from
the Anthropic-HH test set.
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