zFLoRA: Zero-Latency Fused Low-Rank Adapters

Dhananjaya Gowda*

Seoha Song*

Harshith Goka Junhyun Lee

Samsung Research
{d.gowda, seoha.song, h9399.goka, junhyun8.lee}@samsung.com

Abstract

Large language models (LLMs) are increas-
ingly deployed with task-specific adapters
catering to multiple downstream applications.
In such a scenario, the additional compute asso-
ciated with these apparently insignificant num-
ber of adapter parameters (typically less than
1% of the base model) turns out to be dispro-
portionately significant during inference time
(upto 2.5x times that of the base model). In this
paper, we propose a new zero-latency fused
low-rank adapter (zFLoRA) that introduces
zero or negligible latency overhead on top of
the base model. Experimental results on LLMs
of size 1B, 3B and 7B show that zFLoRA
compares favorably against the popular super-
vised fine-tuning benchmarks including low-
rank adapters (LoRA) as well as full fine-tuning
(FFT). Experiments are conducted on 18 dif-
ferent tasks across three different categories
namely commonsense reasoning, math reason-
ing and summary-dialogue. Latency measure-
ments made on NPU (Samsung Galaxy S25+)
as well as GPU (NVIDIA H100) platforms
show that the proposed zFLoRA adapters intro-
duce zero to negligible latency overhead.

1 Introduction

Large language models (LLMs) are increasingly be-
coming popular and are on their way to become an
indispensable part of our day to day life (Gemma-
Team et al., 2025; Grattafiori et al., 2024; OpenAl
et al., 2024; DeepSeek-Al et al., 2025). The most
powerful of these LLMs have several hundreds of
billions of parameters and are often deployed on
cloud computing services due to their high com-
putational load. However, the fast evolving tech-
niques on model compression, quantization and
other optimizations have made small to medium
sized LLMs to catch up with their huger counter-
parts on a large subset of tasks that the LLMs can

* Equal contributions.

[vlm-1B] First Token Latency (in % wrt Base) [vlim-1B] Per Token Latency (in % wrt Base)

mBase WLORA MzFLoRA

mBase HLoRA mzFLoRA | |
200 ‘ ‘

160 —

150 i i 120

o I N IMII\II}I
50 H 80

512 1024 2048 4096 8192 512 1024 2048 4096 8192

[vlim-38] First Token Latency (in % wrt Base)

300 150
mBase WLoRA mzFLoRA 140

130 |
120 |
110 |

[| _

L 11 ‘

I ol ol oke = HED DEN NND ORI
80 |

1024 2048 4096 8192 512 1024 2048 4096 8192

[vllm-38] Per Token Latency (in % wrt Base)
W Base LoRA zFLoRA

[vIlm-8B] First Token Latency (in % wrt Base)
200 140

mBase WLORA MzFLoRA
175 130

120
|
I
|
02:

[vllm-8B] Per Token Latency (in % wrt Base)
mBase mLloRA zFLoRA

110
1

B
|
|

100 |

thth il

80 i
02

4 2048 4096 8192 512 b

Figure 1: Inference latencies (first-token and per-token)
of LoRA and zFLoRA for different input prompt lengths
(512 to 2048) using vllm inference engine on NVIDIA
H100 GPU at FP16 precision, expressed as a percentage
of the base model (LLaMA 1B, 3B and 8B) latencies.

handle. It has been shown that a small to medium
sized LLM when fine-tuned using a small number
of adapter parameters and task specific data can per-
form as good as a huge LLM (DeepSeek-Al et al.,
2025; Liu et al., 2024; Allal et al., 2025; Grattafiori
et al., 2024). In light of these developments, cou-
pled with the concerns on data privacy and security,
small to medium sized LLMs are increasingly be-
ing deployed on end-user devices such as mobiles,
computers, robots, automobiles, etc., as well as
other edge platforms and devices (Xu et al., 2024).

With the ever growing need to accommodate a
large number of downstream tasks it has become
imperative to deploy an LLM with a large number
of task-specific adapters. Several adapters have
been proposed in the literature within the frame-
work of parameter efficient fine-tuning (PEFT)
(Houlsby et al., 2019a; Mangrulkar et al., 2022)
such as prefix or prompt tuning, serial adapters,
parallel adapters, low-rank adapters (LoRA) (Hu

21401

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 21401-21418
November 4-9, 2025 ©2025 Association for Computational Linguistics

et al., 2023). Out of these LoRA has been one of
the most widely used adapters for LLM fine-tuning.
These task-specific adapters often constitute a small
percentage (less than 1-2%) of the base model pa-
rameter count. However, these apparently insignif-
icant number of adapter computations introduce
a disproportionately significant latency overhead
during inference. Also, it is to be noted that these
task specific adapters cannot be merged into the
base model a priori, nor can they be merged and un-
merged on-the-fly dynamically without incurring
significant latency overheads.

In order to highlight the significance of this
problem, LLM inference latencies namely time-
to-first-token (TTFT) (or prefix-latency or first-
token latency) and time-per-output-token (TPOT)
(or decode-latency or per-token latency) for 3 differ-
ent model sizes (1B, 3B and 8B from the LLaMA
family) when using the popular LoRA adapters
are shown in Fig. 1, as a percentage of the base
model latencies. The latencies are measured using
the vLLM inference engine (Kwon et al., 2023) at
FP16 precision on an NVIDIA H100 GPU, when
adapters are attached to all linear projection lay-
ers of the base model. It can be seen that LoORA
adapters incur first-token prefill latencies as large
as 1.3-2.5x times that of the base model, and per-
token decode latencies from 1.3-1.6x times the base
model. More details of this latency measurement
experiment are discussed in Sec. 6.1. The actual la-
tency measurements (in ms) and the corresponding
plots for all models and context lengths are given
in Appendix A. In order to reduce this large latency
overheads it is a common practice to reduce the
number of adapter modules by optimizing the place-
ment of adapters such as attaching adapters only to
selected transformer layers and to selected linear
projection layers (only MHA, only FFN, only QV
projection layers, etc) within a transformer layer,
often at the expense of accuracies especially for
complex tasks. In view of this, we propose a new
zero-latency fused low-rank adapter (zFLoRA) that
introduces zero or negligible latency overhead as
can be seen in Fig. 1.

The main idea in ZFLoRA is to fuse the adapter
blocks with the base model projection layers and
render the multiplication with input hidden embed-
dings as a single matmul operation instead of two
separate matmuls. This utilizes the fact that the
GPU/NPU hardware is highly optimized for effi-
cient multiplication of large matrices, and shows
negligible increase in the cost of matmul when you

increase one of the dimensions of a large matrix by
a small amount. Simultaneous deployment of base
model and adapter matmuls also helps reduce any
separate memory ops that may be required to copy
the inputs and outputs back and forth from the high
bandwidth memory.

This can lead to what can be called as a fam-
ily of fused low-rank adapters (FLoRA). However,
most naive designs would need an expansion of
input or reduction of output dimensions for each
adapter layer after each fused matmul operation.
In view of this, the architecture of zFLoRA is
carefully designed so as to avoid any seemingly
trivial operations such as, reducing output dimen-
sion by adding/merging the adapter output to the
base model output, or expanding the input, which
can otherwise cause significant latency overheads.
More details on zZFLoRA will be presented in Sec-
tions 3 and 4.

2 Related Work

Parameter-efficient fine-tuning (PEFT) methods
are widely used to adapt or steer the performance
of an LLM towards higher accuracies for a spe-
cific task (Houlsby et al., 2019a; Mangrulkar et al.,
2022). PEFT involves learning a small set of aug-
mented parameters or embeddings using a task spe-
cific dataset while keeping the whole or a majority
of the base model parameters frozen.

Low-rank adapters (LoRA), currently the most
commonly used PEFT method, was first introduced
in Hu et al. (2022) based on the hypothesis that
weight updates during a downstream task fine-
tuning have a low "intrinsic rank." With the great
success of LoRA, many derivative works which
improve on various aspects of the LoRA have been
published. A comprehensive summary of LoRA
and its variants is provided in the survey paper,
Mao et al. (2024).

Here, we introduce an inexhaustive list of LoORA
variants. A set of works modify the training
scheme, for example, using different learning rates
for A and B matrices (Hayou et al., 2024), adding
residual connections during training and merge dur-
ing inference (Shi et al., 2024), or freezing the A
matrix and training only B matrix to reduce the
memory footprint of training (Zhang et al., 2023b).
There are another group of studies which concen-
trate on the low-rank value optimization, such as
dynamical rank allocation utilizing SVD of up-
dates (Zhang et al., 2023c), adaptive parameter

21402

addition (Zhang et al., 2023a), and using gating
techniques during training based on importance
and only keep the most important ranks in the
end (Ding et al., 2023). Meng et al. (2025) op-
timizes the initialization of LoRA matrices, using
principal components of the original weight matrix
to initialize A and B and use the residual weight
as the frozen weight.

While these works aim to optimize the LoRA’s
performance, they all preserve the basic structure
of LoRA. We instead investigate on modifying the
structure of LoRA itself. This is because our main
motivation is to suggest an efficient adapter which
can maximize the parallelization of GPUs.

Parallel adapters (He et al., 2022) are modules
connected to either or both the multi-head attention
(MHA) or feed-forawrd network (FFN) blocks. As
the name suggests, parallel adapters are linked in
parallel in the graph, that is, the input is shared with
the attention (FFN) block and the output is added
to that of the attention (FFN). Typically the adapter
consists of a feed-forward down projection, nonlin-
earity, and a feed-forward up projection. Hu et al.
(2023) thoroughly investigates the parallel adapter
and concludes that in optimal settings its perfor-
mance matches with LoRA of similar parameter
budget.

In this paper, we do no rely on a single type of
adapter. Rather, we build upon the parallel adapters’
expressive power and use it to complement LoRA.
First, we modify LoRA with the intension of effi-
cient inference and less latency, with the possibility
of performance drop. Then we minimally apply
the parallel adapter to counterbalance the loss in
performance. Details of the overall strategy will
follow in the next section.

PEFT includes other methods such as prefix or
prompt-tuning (Li and Liang, 2021; Lester et al.,
2021; Liu et al., 2022), where task-dependent learn-
able embeddings are appended at the beginning of
the context. Series adapters (Houlsby et al., 2019b;
Pfeiffer et al., 2020) serially insert additional train-
able modules to the ‘attention—FFN’ sequence in a
layer. Survey papers (Xu et al., 2023; Balne et al.,
2024) are available for comprehensive list of PEFT
methods.

3 Family of fused adapters

Conventional low-rank adapters (LoRA) use low-
rank approximation (LRA) in order to process and
capture information efficiently in a typically large

4.Y = WX + BAX

F-Adapter

Figure 2: Block schematic of LoRA, and the basic building
blocks of a fused adapter (F-Adapter and B-Adapter) for a
single projection layer.

hidden input dimension using a small number of
parameters. The block schematic of LoRA, and
the basic building blocks of a fused adapter namely
forward and backward-adapters are shown Fig. 2.
For instance, the output of a linear projection layer
with weights W € R%*% and LoRA adapters
A e R™% B e R%*" foraninput X € R“*L
is given by

Z=WX+ BAX €))

where d; and d,, are the input and output dimen-
sions, L is the input sequence length, and r(< d;
and d,,) is the rank of the LRA of the adapter weight
matrix AW = BA. The down and up projection
matrices A and B may also be referred to as for-
ward and backward adapters, respectively.

3.1 Partially-fused LoRA

In a naive implementation of LoRA, the above
computation of a single LoRA is performed as a
sequence of 4 different operations, namely, WX,
AX, B(AX),and WX + BAX. Itis often seen
that the overall latency incurred in executing these
sequences of operations separately is much larger
compared to the total FLOPs that need to be com-
puted. In order to reduce the overall latency of
this compute, and utilize the efficiency of GPUs in
parallelization of large size matrix multiplications,
the first two operations can be fused into one by

21403

Single Layer Adapter Latency @ FP32

1
W Fusedlayer

Base B w
Lora

pflora

Latency (ms)

=
o N & o ® O N
]

1024 2048 4096 8192
Hidden Size

Single Layer Adapter Latency @ BF16
7 W Fusedlayer
6
Base
5
4 Lora _
3 pflora .o -
2 - -
- an il
0
1024 2048 4096 8192
Hidden Size

Latency (ms)

Figure 3: Single layer adapter latency simulations for base
model layer, LoRA, pfLoRA and a fused layer.

concatenating the weight matrices W and A into
one. The resulting computations are given by

Y w WX
=[] e
where Y = WX and AY = AX. However, the
other two operations AZ = BAY and Z = Y +
AZ still need to be computed sequentially. We
refer this way of implementing LoRA as partially-
fused LoRA (pf-LoRA).

In order to illustrate the effect of fusing on la-
tency, a single layer simulation of the base layer
projection, vanilla LoRA, pf-LoRA, and a fused-
adapter layer without any input expansion or out-
put merge operation is conducted. A single layer
forward pass is simulated 100 times equivalent to
decoding 100 tokens, and this is iterated 100 times
equivalent to processing 100 requests. The 95 per-
centile mean latency of this single layer simulation
is shown in Fig. 3. It can be seen that both LoRA
and pf-LoRA have significant overhead compared
to the base layer latencies, while the fused-adapter
simulation shows almost negligible overhead. The
fused-adapter simulation is where the base model
layer is fused with either the up or down adapter
projection as shown in Fig. 2.

3.2 Fused forward adapters

One way of further reducing the overall latency
is to eliminate the LRA framework and remove
the backward projection, B. The saved parame-
ter count can be added to the forward projection
matrix A by increasing the low-rank dimension
from 7 to 2r. This may be referred to as fused for-
ward adapter (FFA). In this case, after calculating

Eq. 2 we would need one additional computation
Z =Y + Repeat(AY') in order to combine the
concatenated outputs obtained from base model
(Y) and adapter (AY). The specific operation used
to reduce the d 4 r output to d dimensions can be a
design choice, and one option is to repeat the AY
vector d/2r times to match the dimensions of the
two vectors and add them.

While FFA can reduce the overall latency, it still
has two limitations. One, without the LRA bottle-
neck the ability of the adapter module to effectively
capture the additional information may reduce sig-
nificantly during fine-tuning. The other issue is
that, the output of FFA is of dimension d + r and
needs to be reduced to d dimensions by merging
(repeat and add) the adapter component to the base
model component. This merging operation can in-
troduce non-trivial additional latencies similar to
pf-LoRA.

3.3 Fused backward adapters

Similar to FFA, we can also design a fused-
backward adapter (FBA), where only the backward
adapters (B) are attached or fused to any projection
layer of the base model. In this case, we do not
need the merge operations at the output as required
by FFA, but we need an expand operation at the
input to convert a d dimensional input to a d 4 r di-
mensional input. One option for this could be split
and merge where we divide the d dimensional input
into chunks of dimension 7, and then average these
chunks to generate an r dimensional extension for
the input. As in the case of FFA, FFB has similar
limitations namely the lack of a LRA bottleneck
and the input expansion introducing additional la-
tencies.

3.4 Fused forward-backward adapters

Several different combinations of forward and back-
ward adapters attached to different layers within the
transformer layer (attention block or the feedfor-
ward block) can be explored. For instance, forward
adapters attached to the QKV projection layers and
the backward adapter attached to the output projec-
tion within the attention block. The additional r
dimensional output from a forward-adapter layer
can be passed on to a subsequent backward-adapter
layer by appending to its input. However, the over-
head of reducing the output dimension of a forward
adapter layer still persists, without which the rotary
positional embedding (RoPE) will have to be ex-
panded to d + r dimensions, negatively affecting

21404

Figure 4: Block schematic of zFLoRA architecture within a
single transformer block or layer.

the information flow previously learned by the base
model. A fused forward-backward adapter (FFBA)
with both forward and backward adapters attached
to every base model layer can also be designed.
This can add more parameters to a single layer at
negligible compute cost and hence can potentially
perform better than FFA or FBA, but the latency
overheads will be even more severe as it would
need both an input expansion as well as an output
merge operation.

4 Zero-latency fused low-rank adapters

In view of the issues associated with naively de-
signed fused adapters outlined above, we propose
a carefully designed fused-adapter architecture
which retains the forward and backward low-rank
approximation, while at the same time eliminates
the need for expanding the inputs of a backward
adapter layer or reducing the output dimensions of
a forward adapter layer. The block schematic of the
proposed zero-latency low-rank adapter (zFLoRA)
within a single transformer block or layer is shown
in Fig. 4.

In a naive design of fused forward-backward
adapters, one is inclined to attach the forward
adapters to the earlier layers such as the QKV pro-

jection layers, and the corresponding backward
adapter to the output projection layer. Similarly,
forward adapters would be attached to the down
and gate projection layers while the backward
adapter is attached to the up projection. As dis-
cussed in the previous section, this would need
an expansion of input to the QKV projections and
merging of output of these forward adapter layers,
especially in the attention block, so as to not affect
the RoPE embeddings computations.

In order to avoid these seemingly trivial opera-
tions that can cause significant latency overheads,
we propose to attach the backward adapters first
and the forward adapters later within the attention
block or the feed-forward block. This avoids the
need for expanding the inputs to QKV projection
layers, as the expanded hidden representation from
the previous transformer layer (more specifically
down-projection of the previous FFN block) is car-
ried forward through layer-norm after the addition
of residual component. Also, since the backward
adapter layers yield an automatically merged out-
put there is no need for an additional merge oper-
ation for the QKV projections. However, in this
zFLoRA design, the input dimensions need to ex-
panded once before the first transformer layer and
needs to be merged back into d dimensions after the
last transformer layer before the LM head. This is a
great saving in compute time unlike doing these ex-
pand and merge operations for every adapter layer.

In zZFLoRA, the pairing of the forward and back-
ward adapters are now spanning across MHA and
FFN blocks unlike a naive design which may try to
keep them within the MHA or FEN block. This can
also be viewed as a variant of the parallel adapters
where the forward and backward adapters are fused
with the base projections, the forward-backward
pairing is not confined to within a sub-block such
as MHA or FEN blocks, without any non-linearity
at the LRA bottleneck, and the order of forward
and backward adapters apparently inverted within
the MHA or FFN block.

S Experiments and results

The performance of the proposed zero-latency
fused low-rank adapters is evaluated on 18 differ-
ent tasks spanning 3 different category of tasks,
namely, commonsense reasoning, math reasoning
and summary-dialogue generation. Details of the
experimental setup, datasets used, and the results
are presented in this section.

21405

Commonsense Reasoning Tasks (Acc %) Math Reasoning Tasks (Acc %)
Adapter |arcc arce boolq hella obqa piqa siga wino | Avg Adapter | addsub aqua arith gsm8k singeq svamp | Avg
Llama3.2-1B-Inst Llama3.2-1B-Inst
Base 510 73.0 640 440 745 725 50.0 450592 Base 68.10 22.83 62.17 4549 8091 53.20 [55.45
FFT 64.5 78.7 84.1 763 872 71.8 724 69.6|76.3 FFT 85.32 22.83 96.17 48.52 90.94 66.70 | 68.41
LoRA 639 78.6 823 760 864 775 755 69.1 |76.1 LoRA 82.78 28.35 92.67 48.14 87.99 67.00 |67.82
zFLoRA | 62.8 784 82.6 769 874 77.3 73.1 70.1]76.1 ZFLORA | 87.85 24.80 96.00 43.37 91.93 59.40 | 67.22
Llama3.2-3B-Inst Llama3.2-3B-Inst
Base 79.0 83.0 830 68.0 83.0 72.5 685 54.0]73.8 Base 91.14 2480 93.17 7688 9390 87.60 [77.91
EE{A ;g-g gg-g 23‘2 Si-;‘ gz-g 2‘5‘1 gg-g Sig ggf FFT 89.62 28.74 99.00 71.87 93.70 82.00 |77.48
- : : SOECS . : : : LoRA | 93.16 27.17 96.67 67.10 9587 82.50 |77.07
ZFLoRA | 78.2 88.2 88.1 80.1 94.0 827 80.7 83.6 [852 gy oRA| 9038 29.53 97.17 7074 93.70 81.90 |77.23

Table 1: Performance of zFLORA on commonsense
reasoning tasks.

5.1 Datasets

For commonsense and math reasoning tasks, we
use the Commonsensel70K and Math10K training
datasets used in (Hu et al., 2023). For summary-
dialogue tasks we use a combination of training sets
from 4 different tasks, namely, CNN-DailyMail,
Xsum (Nallapati et al., 2016), DailyDialogue (Li
et al., 2017), and MultiWoz (Budzianowski et al.,
2018).

5.2 Experimental setup

All experiments in this paper are conducted us-
ing the publicly available LLaMA family of LLM
models (Grattafiori et al., 2024; Meta-Al, 2024).
The instruction fine-tuned variants of the models,
namely, Llama3.2-1B-Inst and Llama3.2-3B-Inst
are used for smaller and latest models. Adapters
were fine-tuned separately for each of the 3 cate-
gory of tasks on a single node of 8§ H100 GPUs with
a global batch size of 1M tokens. All adapters were
fine-tuned for 5 epochs for commonsense tasks, 10
epochs for math reasoning tasks, and 3 epochs for
the summary and dialogue tasks. Different learn-
ing rates (LR) in the range 1le — 6 to 1le — 3 were
explored using a coarse search followed by a fine
search for each of the adapters. A constant LR
scheduling with an initial warmup was used for all
experiments. The adapter checkpoints are saved
at the end of each epoch and the best performing
checkpoint on a heldout validation set is used for
final evaluation. All fine-tuning experiments and
evaluations were conducted using our custom im-
plementation of adapters on top of HuggingFace
transformers.

5.3 Results on 1B and 3B models

The performance of the proposed zFLoRA on 3 im-
portant category of downstream tasks is presented
in this section. The zFLoRA has a strong similar-

Table 2: Performance of zFLoRA on math reasoning
tasks.

ity with LoRA and parallel adapters, and it was
shown in (Hu et al., 2023) that these two adapters
performed best as compared to serial adapter and
prefix tuning methods. In view of this, we provide
a comparison of zZFLoRA against the base model,
full fine-tuning (FFT) and the widely used LoRA.
The primary objective of these experiments is to
demonstrate that the proposed zFLoRA performs
as close to FFT as possible, and at least as good
as LoRA (or parallel adapters) without the latency
overheads.

Commonsense reasoning is one of the easi-
est and widely used multiple-choice question-and-
answering (Q&A) tasks used to evaluate the per-
formance of LLMs. The performance of different
adapters for the Llama3.2-1B-Inst and Llama3.2-
3B-Inst models on the popular commonsense
reasoning tasks when fine-tuned using different
adapters is given in Table 1. As can be seen from
the results, full fine-tuning (FFT) of the models
perform the best as compared to fine-tuning using
adapters. Barring some minor fluctuations within
each task, the proposed zFLoRA performs almost
similar to full fine-tuning as well as LoRA.

Math reasoning tasks are considered a bit more
complicated compared to commonsense tasks, and
the LLM is often required to generate multiple
tokens giving a numerical answer, and in some
cases (gsm8k) a chain of thought reasoning used
to arrive at the answer. The performance of the
adapters for the two Llama3.2 models on math
reasoning tasks is given in Table 2. A similar trend
as was seen in the case of commonsense reasoning
evaluations can be seen. The proposed zFLoRA
performs similar to LoRA and both the adapter
methods perform inferior but closer to FFT.

It can be seen that the Llama3.2-3B-Inst base
model performance for some math reasoning tasks
such as gsm8k and svamp are already the best and

21406

Summary/Dialogue Tasks (Rr,sum)
Adapter |cnndm dd WOz Xsum Avg
Llama3.2-1B-Inst
Base 25.28 13.03 13.81 19.49 17.90
FFT 28.37 16.58 30.45 32.67 |27.01
LoRA 2676 20.12 3134 3223 |27.61
zFLoRA |27.25 18.31 31.82 3098 |[27.09
Llama3.2-3B-Inst
Base 25.10 1445 16.68 20.54 19.19
FFT 2923 2585 29.66 37.63 |30.59
Lora 2892 1837 31.15 3645 |[28.72
zFLoRA | 28.83 19.44 30.76 36.18 |28.80

Table 3: Performance of zZFLoRA on summary/dialogue
tasks.

none of the adapters including full-finetuning can
improve upon the base model. One possibility is
that the instruction fine-tuned model is likely to
be trained with several math reasoning instruction
data, and the Math10K fine-tuning training set used
in this paper is not adding any additional diversity
or information. However, the smaller 1B model
shows improvement on all tasks. Using a more
complex math reasoning dataset or using LLM
model checkpoints that are saved just after pre-
training and without any instruction-finetuning can
show better improvement as can be seen in the later
scaling-up experiments with LLaMA 7B model.

Summary and dialogue generation is an im-
portant and more complex downstream application
of LLMs. The performance of various adapters on
this category of tasks is shown in Table 3. It can
be seen from the results that the proposed zFLoRA
performs simialr to LoRA, while FFT performs the
best.

Performance vs rank: Experimental results on
the performance of zFLoRA as against LoRA for
1B and 3B models for varying adapter ranks is
given in Appendix C.

Performance of FFA and FFBA adapters
which belong to the family of fused adapters or
fused low-rank adapters (FLoRA) as compared to
the zFLoRA is discussed in Appendix D.

5.4 Scaling up and comparison experiments

In order to verify that the proposed zFLoRA
adapter scales up to larger LLMs, and to com-
pare its performance against other popular PEFT
adapters we conduct experiments using the LLaMA
7B model (Touvron et al., 2023) with exactly same
code and experimental setup as outlined in (Hu
et al., 2023). Performance of zZFLoRA on the 7B
model as compared to other PEFT adaptation meth-

Commonsense Reasoning Tasks (Acc %)
Adapter |boolq piqa siqa hella wino arce arcc obqa| Avg

Base™ 76.5 79.8 489 76.1 70.1 72.8 47.6 57.2|66.1
Prefixt | 64.3 76.8 73.9 42.1 72.1 729 540 60.6|64.6
Series™ | 63.0 79.2 763 679 757 745 57.1 724|708
Parallel | 67.9 764 78.8 69.8 789 73.7 573 752723
LoRAT | 68.9 80.7 77.4 78.1 788 77.8 613 74.8|74.7

LoRA 68.4 80.8 79.1 825 80.0 76.9 62.0 78.2|76.0
zFLoRA | 69.8 78.0 79.2 79.8 81.7 78.7 62.2 78.0 |75.9

Table 4: Performance of zFLoRA on commonsense
reasoning tasks for LLaMA-7B model. * (Touvron et al.,
2023), * (Hu et al., 2023).

Math Reasoning Tasks (Acc %)
Adapter |arith gsm8k addsub aqua singeq svamp | Avg
Base” - 11.0 - - - - -
Prefix™ |63.2 244 570 142 553 381 |42.0
Series™ [92.8 333 80.0 150 835 523 |595
Parallelt | 94.5 353 866 18.1 86.0 49.6 |61.7
LoRA™T |950 375 833 189 844 521 |619
LoRA 962 397 81.0 169 841 473 |60.9
zFLoRA | 943 38.0 858 193 874 47.7 |62.1

Table 5: Performance of zFLoRA on math reasoning
tasks for LLaMA-7B model. * (Touvron et al., 2023),
* (Hu et al., 2023).

ods is shown in Tables 4 and 5. The results marked
T are directly reported from (Hu et al., 2023), while
the bottom two rows are experiments repeated for
LoRA and zFLoRA using the same code and the
exact experimental setup (3 epochs and LR 3e-4)
used by the authors. The Base* results are reported
as is from the original LLaMA paper (Touvron
et al., 2023). It can be seen that the repeat LoORA
results closely match the results reported in (Hu
et al., 2023), and our proposed zFLoRA matches
the performance of LoRA and parallel adapters
quite closely.

6 Latency measurements

A comparison and discussion on the inference time
latencies of the proposed zFLoRA as compared to
the base model and the popular LoRA adapters is
provided in this section. The latency measurements
are performed on two different platforms namely,
an NVIDIA H100 GPU and a Samsung Galaxy
S25+ mobile NPU.

6.1 Latencies on H100 GPU

The inference latencies were measured using the
vLLM inference engine popularly used to deploy
small to medium sized commercial LLMs on dif-
ferent GPU and edge platforms (Kwon et al.,
2023). The time-to-first-token (TTFT) and time-
per-output-token (TPOT) latencies are measured
for models of different size (1B, 3B and 8B) from

21407

[S25+1B-WA4A16] Per Token Latency (in %)

[525+1B-WA4A16] First Token Latency (in %)
=Base = Lor: used 160 MBase Mlora mzFloralnput

a mzFlora-Input = zFlora-F
1

350 .

zFlora-Fused
LB 140 I L

120

150 100 P—
Clalille «fl: «HEN. 7 NEEE W

512 1024 2048 512 1024 2048

[525+1B] First Token Latency (in %) [525+1B] Per Token Latency (in %)

500 — wBase Wlora WzFlora-Input i zFlora-Fused 250 mBase wlora mzFlora-input zFlora-Fused

400 I 200
-
300 il a = I L 1
150 I L

200
100 - - - 100 * -
. i i w |

32 64 128 32 64 128

Figure 5: On-device prefill and decode latencies of LoRA
and zFLoRA for varying prompt lengths (top row) and adapter
ranks (bottom row), as compared to the base model (1B) on
Samsung Galaxy S25+ mobile handset.

the LLaMA-3.x family. The latencies are measured
on an NVIDIA H100 GPU with 80GB memory
using vLLM’s online serving mode. Latencies are
measured by passing 100 random input prompts
of fixed length to the inference engine to gener-
ate 128 output tokens, with a maximum concur-
rency of 1 (batch size 1). Experiments were re-
peated for different input lengths ranging from 512
to 8192. Latencies were measured for the base
models without any adapters, and with adapters
LoRA and zFLoRA separately. An adapter rank
of 32 was used and the adapters were applied to
all linear layers within a transformer block. The
resulting number of parameters for LORA/zFLoRA
were 22.5M/15M (2.25%/1.5%), 48.6M/29.4M
(1.6%/0.98%), 83.9M/54.5M (1.04%/0.68%) for
the 1B, 3B and 8B models, respectively. The mea-
sured latencies are shown in Fig. 1 relative to the
base model latencies as a percentage. It can be
clearly seen that zZFLoRA has almost zero to negli-
gible latency overhead and decodes almost at the
same speed as the base model, while LoRA intro-
duces significant overheads as discussed in Sec-
tion 1. The actual latencies measured (in ms) and
the corresponding plots are shown in Appendix A.

6.2 Latencies on Samsung Galaxy S25+ NPU

The inference graphs for the base model, as well
as LoRA and zFLoRA adapters are frozen with a
4-bit quantization for the base model weights and
an activation quantization of 16-bits. The S25+
(Qualcomm Snapdragon 8 Elite NPU) latencies of
adapters for varying context lengths (512 to 2048)
and ranks (32 to 128) as compared to the base
model is shown in Fig. 5. The frozen graph is used
to decode 10 random prompts with varying context
lengths and generating 10 tokens per prompt. A
fixed context-length of 1024 is used for latency
measurements with varying adapter ranks. Owing

to the current limitations of the Qualcomm APIs
which do not support efficient and dynamic loading
or swapping of weights, adapter weights are passed
as 16-bit inputs to the graph along with the prompt
embeddings. In view of this, it can be seen that both
LoRA and zFLoRA-Input show significant latency
overheads compared to the base model. Latest
Qualcomm APIs support a new feature for dynamic
(or partial) loading of only the adapter weights in
a frozen graph, however, this feature is still not
fully optimized. We hope this feature to be more
optimized in the future and/or Qualcomm provides
options for partial replacement of frozen weights or
dynamic concatenation of weights at runtime, that
will enable realizing the zero-latency potential of
zFLoRA-Fused as shown in the figure. Latencies
for zFLoRA-Fused are measured by quantizing
both the model and adapter weights to 4-bits and
the activation to 16-bits. Detailed measurements of
the latencies (in ms) for both 1B and 3B models is
given in Appendix B.

7 Conclusions

In this paper, we proposed a novel zero-latency
fused low-rank adapter (zFLoRa) for fine-tuning
LLMs to downstream tasks. The proposed zFLoRA
adapters can be viewed as a combination of ideas
from fused matmul operations, low-rank approx-
imation, block-level parallel adapters, layer-level
LoRA style adapters, and also involves careful de-
sign or placement of forward and backward adapter
components so as to eliminate any merge or expand
operations on the input or output embeddings. Ex-
perimental results and latency measurements (on
GPU as well as NPU) using models from 1B to
7B show that zFLoRA matches the performance of
the widely used LoRA, while having zero-latency
overhead at inference time. Several variants of the
proposed zFLoRA can be explored to further re-
duce the overall adapter parameter count. Some
obvious choices are using adapters only on MHA
blocks, and on only selected layers (first, last, mid
or alternative). The proposed zFLoRA solution can
be deployed as it is on GPU or edge platforms for
zero-latency overhead, however on-device deploy-
ment on NPU platforms would need additional sup-
port from NPU developers for partial replacement
of weights in a frozen graph or dynamic loading
and concatenation of adapter weights to the base
model weights.

21408

8 Limitations

We recognize the following limitations of our work.
The experiments and down-stream applications
considered in this paper are restricted to one lan-
guage (English), one modality (text) and can be
extended to other languages and modalities. The
zFLoRA method may be more relevant to small
or moderately sized LLMs (1B to 7B parameters)
that could be candidates for on-device deployment
and with single prompt/task decoding (batch size
1). ZFLoRA can be applied for batch decoding
over a homogeneous set of tasks using the same
adapter modules, however it cannot be applied to a
heterogeneous set of tasks. Experiments with huge
cloud based LLMs and larger batch size (serving
the same task) is possible, but the significance of la-
tency overheads and need for optimization has to be
investigated carefully, which is out of scope of this
paper. In this paper, we compare vanilla-zFLoRA
with vanilla-LoRA for performance. However,
more recent studies such as LoRA-Pro (Wang et al.,
2025) claim to bridge the gap between vanilla-
LoRA and FFT, albeit with older generation models
such as LLaMA-2. A more detailed comparison of
zFLoRA with LoRA-Pro using latest models and
datasets, and the possibility of extending LoRA-
Pro and similar refinements to zFLoRA are part of
future study. The multi-adapter zFLoRA solution
can be readily deployed on GPU/CPU based edge
solutions, but has some limitations on NPU plat-
forms. See Sec. 6.2 for more details. We do hope
the potential latency benefits will motivate the NPU
hardware/compiler developers to support dynamic
fusing of base and adapter weights in their future
releases.

References

Loubna Ben Allal, Anton Lozhkov, Elie Bak-
ouch, Gabriel Martin Blazquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlicek,
Agustin Piqueres Lajarin, Vaibhav Srivastav, Joshua
Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clé-
mentine Fourrier, Ben Burtenshaw, Hugo Larcher,
Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin
Raffel, Leandro von Werra, and Thomas Wolf.
2025. Smollm2: When smol goes big — data-
centric training of a small language model. Preprint,
arXiv:2502.02737.

Charith Chandra Sai Balne, Sreyoshi Bhaduri, Ta-
moghna Roy, Vinija Jain, and Aman Chadha. 2024.
Parameter efficient fine tuning: A comprehen-

sive analysis across applications. arXiv preprint
arXiv:2404.13506.

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Ifiigo Casanueva, Ultes Stefan, Ramadan Os-
man, and Milica Gasi¢. 2018. Multiwoz - a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, ..., and Zizheng Pan.
2025. Deepseek-v3 technical report. Preprint,
arXiv:2412.19437.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023.
Sparse low-rank adaptation of pre-trained language
models. arXiv preprint arXiv:2311.11696.

and et al.
Preprint,

Gemma-Team, Aishwarya Kamath,
2025. Gemma 3 technical report.
arXiv:2503.19786.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 400+ other authors. 2024. The llama
3 herd of models. https://arxiv.org/abs/2407.21783.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.
Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019a. Parameter-efficient transfer learning for nlp.
Preprint, arXiv:1902.00751.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019b. Parameter-efficient transfer learning for nlp.
In International conference on machine learning,
pages 2790-2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria,

21409

https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/1902.00751
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

and Roy Lee. 2023. LLM-adapters: An adapter fam-
ily for parameter-efficient fine-tuning of large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 52545276, Singapore. Association
for Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Zigiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manually
labelled multi-turn dialogue dataset. In Proceedings
of The 8th International Joint Conference on Natural
Language Processing (IJCNLP 2017).

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61-68.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen
Lai, Yuandong Tian, Igor Fedorov, Yunyang Xiong,
Ernie Chang, Yangyang Shi, Raghuraman Krish-
namoorthi, Liangzhen Lai, and Vikas Chandra. 2024.
Mobilellm: Optimizing sub-billion parameter lan-
guage models for on-device use cases. Preprint,
arXiv:2402.14905.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, Sayak Paul, and B Bossan. 2022.
Peft: State-of-the-art parameter-efficient fine-tuning
methods. URL: https://github. com/huggingface/peft.

Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi,
Zhonghao Hu, and Yunjun Gao. 2024. A survey on
lora of large language models. Frontiers of Computer
Science, 19(7).

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2025.
Pissa: Principal singular values and singular vectors
adaptation of large language models. Advances in
Neural Information Processing Systems, 37:121038-
121072.

Meta-Al. 2024. Llama 3.2: Revolutionizing edge
Al and vision with open, customizable models
— ai.meta.com. https://ai.meta.com/blog/llama-3-
2-connect-2024-vision-edge-mobile-devices/. [Ac-
cessed 16-02-2025].

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280-290, Berlin, Germany.
Association for Computational Linguistics.

OpenAl, Josh Achiam, and et al. 2024. Gpt-4 technical
report. Preprint, arXiv:2303.08774.

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Se-
bastian Ruder. 2020. Mad-x: An adapter-based
framework for multi-task cross-lingual transfer. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654-7673.

Shuhua Shi, Shaohan Huang, Minghui Song, Zhoujun
Li, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei
Deng, Feng Sun, and Qi Zhang. 2024. Reslora: Iden-
tity residual mapping in low-rank adaption. arXiv
preprint arXiv:2402.18039.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and
Tieniu Tan. 2025. Lora-pro: Are low-rank adapters
properly optimized? Preprint, arXiv:2407.18242.

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin
Gao, Qi Cai, and Ziyuan Ling. 2024. On-device lan-
guage models: A comprehensive review. Preprint,
arXiv:2409.00088.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language models:
A critical review and assessment. arXiv preprint
arXiv:2312.12148.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhougiang
Jiang, Bowen Wang, and Yiming Qian. 2023a. In-
crelora: Incremental parameter allocation method
for parameter-efficient fine-tuning. arXiv preprint
arXiv:2308.12043.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023b. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-
tuning. arXiv preprint arXiv:2308.03303.

21410

https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://arxiv.org/abs/2402.14905
https://arxiv.org/abs/2402.14905
https://doi.org/10.1007/s11704-024-40663-9
https://doi.org/10.1007/s11704-024-40663-9
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2407.18242
https://arxiv.org/abs/2407.18242
https://arxiv.org/abs/2409.00088
https://arxiv.org/abs/2409.00088

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. 2023c. Adalora: Adap-
tive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512.

A VvLLM inference latencies on H100
GPU (in ms)

The detailed results of the latencies measured on
an H100 GPU using vLLM inference engine in ms
is given in Table 6 and Fig. 6. The median and P99
(99" percentile) latencies have a similar trend and
are not tabulated here.

B Detailed on-device latency
measurements in ms

The actual on-device latencies (in ms) measured on
a Samsung Galaxy S25+ mobile handset with Qual-
comm Snapdragon 8 Elite NPU chipset is given
in Table 7 for different context lengths (with rank
32) and adapter ranks (with context length 1024).
For 3B model, latencies were measured only for
varying ranks and corresponding plots are shown
in Fig 7.

C Performance of LoRA and zFLoRA for
different ranks

Detailed performance of the LLaMA 1B-Inst and
3B-Inst models with LoRA and zFLoRA adapters
for varying ranks is shown in Tables 8 and 9.
Experiments for all 3 category of tasks were car-
ried out for zFLoRA for both 1B and 3B model
size. Some math reasoning and summary-dialogue
experiments were left out for the LoRA-3B combi-
nation, and may be conducted only if required. The
best LR obtained by coarse-and-fine LR sweeping
for rank 32 was used for all other ranks.

D Performance of different fused-adapter
variants

The performance of FFA and FFBA adapters as
compared to LoRA and zFLoRA adapters is given
in Tables 10 and 11. As hypothesized earlier, it
can be seen that the performance of FFA is inferior
to other adapters which utilize LRA. The FFBA
(QG-Add) is a variant of the FFBA where forward
adapters are attached only to query and gate pro-
jections, with the matching backward projections
attached to MHA-output and FFN-down projection
layers. This eliminates the need for multiple merge
operations on key, value and up projection layers.

It can be seen that FFBA (QG-Add) performs much
better than FFA and closer to zFLoRA. The FP32
latencies measured on an H100 GPU (averaged
over 200 cnndm test utterances) show that FFA and
FFBA adapters indeed reduce the latency overhead
compared to LoRA but the additional merge or add
operations introduce significant overheads as com-
pared to zFLoRA. zZFLoRA (minimal) denotes the
variant proposed in this paper as shown in Fig. 4,
which uses minimal forward and backward adapter
blocks. zFLoRA (uniform) denotes another variant
of zZFLoRA that can also provide zero to negligi-
ble latencies, with both a forward and backward
adapter attached to each layer in the transformer
layer. This leads to a uniform hidden dimension
of d + r throughout all layers of the model with
an initial expansion and a final merging. How-
ever, this increase in dimension leads to modifying
the RoPE embeddings which is detrimental to the
information learned by the pretrained LLM. This
leads to the poor convergence or performance of
this zZFLoRA (uniform) as can be seen the figure.
The modified architecture of zFLoRA (uniform)
may need a few steps of uptraining (or continual
pretraining) in order to address this issue, but is not
investigated in this paper.

E Ablation experiment to reduce the
adapter blocks

In the previous sections, the ablation experiments
focused on studying the effect of rank size and
the importance of forward and backward adapter
blocks. In both the cases, adapter blocks were at-
tached to both the MHA and FFN blocks. In this
section, we study the possibility of reducing the
overall adapter footprint by attaching the adapter
blocks only to the MHA block. In the case of
zFLoRA, the backward adapters attached to the
QKYV layers as well as the forward adapter attached
to the FFN down-projection layer are retained. The
experimental results are shown in Table 12. It
can be seen that performance of both LoRA and
zFLoRA degrade when adapters are attached only
to the MHA block as compared to attaching them
to both MHA and FFN blocks. The degradation is
less in the case of commonsense reasoning tasks
which predict a single token. However, in the case
of math reasoning the degradation appears to be
a bit more severe owing to the longer reasoning
required. zFLoRA appears to recover some lost
performance as your increase the parameter count

21411

Mean TTFT (ms) Mean TPOT (ms)

Input len 512 1024 2048 4096 8192 | 512 1024 2048 4096 8192
Base 8.69 11.51 18.01 3456 64.75 | 244 246 249 252 2.63

1B| LoRA |22.47 2533 3092 58.99 111.06| 3.87 3.79 3.82 3.85 391
zFLoRA | 8.8 12.06 18.58 35.07 63.79 | 245 246 247 253 2.62
Base |13.18 19.58 32.86 61.54 136.00| 4.53 457 4.62 476 496

3B| LoRA |34.55 36.63 50.59 95.06 201.61| 647 647 653 6.65 6.85
zFLoRA | 13.96 19.36 31.36 60.33 130.28 | 456 456 4.63 473 49
Base |22.78 35.18 62.32 12349 26746 | 7.52 754 7.6 7.773 7.93

8B | LoRA |37.42 50.06 87.82 170.89 353.89|10.06 10.1 10.19 10.27 10.5
zFLoRA | 23.03 35.75 61.3 116.16 24893 | 76 7.62 7.69 17.78 7.97

Table 6: Latency measurements (in ms) made using vVLLM inference engine on an NVIDIA H100 80GB GPU.

3.!

n

w

2

wn

2

[vlim-1B] First Token Latency (ms)

mBase MLoRA ®zFLoRA

100
II “ .
III III III I 0

512 1024 2048

[vlim-1B] Per Token Laten

4096

cy (ms)

HBase MLoRA mzFLoRA

6.5
6
5.5
5
Mt M -
4

512 1024 2048

4096

200

150

8192

8192

[vlim-3B] First Token Latency (ms)

HBase HLoRA HzFLoRA

-I-
512

[vlim-3B] Per Token Latency (ms)

I|I
512

1024

all= lll III I‘I
048

2 4096

HBase HLoRA MzFLoRA

1024

2048 4096

8192

8192

400

[vlim-8B] First Token Latency (ms)

W Base MLoRA mzFLORA

300

200

100

o millm
512

=
5}

o N ® ©

512

1024

== Hln
048

2

4096 8192

[vlim-8B] Per Token Latency (ms)

W Base HLoRA MzFLoRA

1024

2048

4096 8192

Figure 6: Inference latencies (first-token and per-token) in ms of base models (LLaMA3.x 1B, 3B and 8B) without
and with adapters LoRA and zFLoRA for different input prompt lengths (512 to 2048) using vllm inference engine
on NVIDIA H100 GPU at FP16 precision.

1600
1400
200
1000

800

2
8

400

N
s 8

[525+38] First Token Latency (in ms)

ora mzFlora-input = zFlora-Fused

mBase mL
| II II II
2 64 128

[525+38] First Token Latency (in %)

ut = zFlora-Fused

mBase mlora M zFlora-Inpy
2 64 128

31
29
27
2

23
21
19

17
15

170
160
140
130

110
100

80

[525+38] Per Token Latency (in ms)

ut = zFlora-Fused

mBase mlora mzFlora-Inpt
:
I
ill: AN 1§
32 64 128

[525+38] Per Token Latency (in %)

mBase mlora mzFlora-loput = zFlora-Fused
150
120
3, 1
I
%
2 64 128

Figure 7: Inference latencies measured on Samsung
Galaxy S25+ mobile handset for a 3B model.

by increasing the adapter rank, a bit more grace-
fully compared to LoRA. One possible reason for
this behavior could be the cross-layer or across-the-
block flow of information between the forward and
backward adapters. Nevertheless, when it comes to
reducing the overall adapter footprint it may be bet-
ter to attach adapters to both MHA and FEN blocks
and reduce the rank as against attaching adapters

21412

only to the MHA block. The other ablations of us-
ing the adapters only with the FFN blocks or with
only a few selected transformer layers (top, bottom,
mid, interleaved) can also be investigated, but not
presented in this paper.

Prefill/First-token Decode/Per-token
1B model
Context 512 1024 2048 | 512 1024 2048
Base 655 1634 7722 17.7 164 179
Lora 218.2 517.7 15824 225 253 27.1
zFlora-1 | 251.2 547.7 1565.5| 214 223 25.7
zFlora-F 72.1 1767 656.1| 17.0 16.7 184
Rank 32 64 128 32 64 128
Base |163.45 163.45 163.45|16.42 1642 16.42
Lora |517.79 537.37 554.17|25.34 30.14 34.95
zFlora-1 | 547.75 594.43 640.64 | 22.38 28.19 30.12
zFlora-F | 176.7 185.7 184.02|16.75 18.93 18.39

3B model
Prefill/First-token Decode/Per-token
Rank 32 64 128 32 64 128

Base 438.5 4385 4385 17.7 164 179
Lora |1188.7 11339 1280.1| 225 253 27.1
zFlora-1 | 1172.5 1197.6 13333 | 214 223 257
zFlora-F | 512.8 4869 4822| 170 167 184

Table 7: S25+ on-device latencies (in ms) for a 1B/3B model for different context length and adapter ranks at
W4A16 precision. ZFLoRA-I and zFLoRA-F refer to zFLoRA-Input (input to graph) and zZFLoRA-Fused (fused to
the base model weights).

21413

1B-Inst

Common Sense Reasoning (acc)

Rank | #Param arcc | arce | boolq | hella | obga | piqa | siga | wino Avg
Base 0 1B |51.00173.00164.00144.00174.50172.50150.00145.00 | 59.25
FFT 0 0 64.50178.70184.10176.30187.20177.80172.40 1 69.60 | 76.32
4 2.8M |61.80177.10176.50173.10180.40175.10172.00 1 65.60 | 72.70
8 5.6M |62.00178.20181.70176.30186.20178.80171.80169.90 | 75.61
LoRA 16 | 11.2M | 64.50180.00182.50175.90185.40177.40173.10169.70 | 76.06
(LR 5e-4)| 32 | 22.5M | 63.90178.60182.30176.00186.40177.50175.50169.10 | 76.16
64 45M | 61.70176.00183.90175.50184.40177.30172.60170.80 | 75.27
4 1.9M | 64.00176.70178.90176.20182.00 | 74.30172.40168.40 | 74.11
8 3.8M |62.20177.50178.60175.10185.00177.00171.80168.90 | 74.51
zFLoRA | 16 | 7.6M |62.10177.60181.80176.10185.00177.10172.40168.30 | 75.05
(LR 2e-4)| 32 | 15.2M | 62.80178.40182.60176.90187.40177.30173.10170.10 | 76.07
64 | 30.4M |62.60177.60180.40176.70186.40178.10174.20170.30 | 75.78
1B-Inst Math Reasoning (acc)
Rank | #Param addsub | aqua | multi | gsm8k | singeq | svamp Avg
Base 0 1B 68.10122.83162.17145.49180.91153.20 55.45
FFT 0 0 85.32122.83196.17148.52190.94 1 66.70 68.41
4 2.8M 68.10125.59182.67 143.37179.72160.70 60.02
8 5.6M 80.51120.08 188.67146.40 1 88.58 1 65.60 64.97
LoRA 16 | 11.2M 77.47122.05184.33144.58186.02164.20 63.1
(LR le-4)| 32 | 22.5M 82.78128.35192.67148.14187.99 1 67.00 67.82
64 45M 75.19124.41186.67145.19182.09159.70 62.2
4 1.9M 79.75127.95186.50143.82186.22 162.50 64.45
8 3.8M 78.23122.83181.33141.70186.42166.30 62.8
zFLoRA | 16 | 7.6M 80.51124.41187.83143.29187.01165.70 64.79
(LR 5e-4)| 32 | 15.2M 87.85124.80196.00143.37191.93159.40 67.22
64 | 30.4M 89.62123.62195.83139.80191.14161.50 66.91
1B-Inst Summary-Dialogue (RLsum)
Rank | #Param cnndm | dd | woz | xsum Avg
Base 0 1B 25.28113.03113.81119.49 17.90
FFT 0 0 28.37116.58130.45 132.67 27.01
4 2.8M 26.45117.50130.24129.06 25.81
8 5.6M 26.65118.00130.09 129.68 26.10
LoRA 16 | 11.2M 25.95117.00128.39128.40 24.93
(LR 3e-4)| 32 | 22.5M 26.76120.12131.34132.23 27.61
64 45M 27.24117.67129.95131.75 26.65
4 1.9M 27.11116.18129.81129.46 25.64
8 3.8M 27.32116.31130.41128.94 25.74
zFLoRA | 16 | 7.6M 26.81118.23130.71128.89 26.16
(LR 2e-4)| 32 | 15.2M 27.25118.31131.82130.98 27.09
64 | 30.4M 27.37119.73132.54131.32 27.74

Table 8: Performance of LLaMA 1B-Inst model with LoRA and zFLoRA adapters for varying ranks.

21414

Common Sense Reasoning (acc)

3B-Tnst Rank | #Param arcc | arce | boolq | hella | obqga | piga | siga | wino Avg
Base 0 3B |79.00183.00183.00168.00183.00172.50168.50154.00 | 73.87
FFT 0 0 79.00186.40189.30185.40193.20184.70180.40183.20 | 85.2
r= 6.1IM | 77.00187.30188.00184.10191.80184.70181.60 1 82.90 | 84.67
r=8 | 12.2M |77.80186.80189.80184.80192.00185.30180.60 | 82.40 | 84.93
LoRA | r=16 | 24.3M | 77.10186.60190.00 1 86.00 193.20 1 85.40 1 80.10 1 83.70 | 85.26
(LR 5e-4) | r=32 | 48.6M | 77.60186.00189.20184.90193.00185.40180.80184.50 | 85.17
r=64 | 97.2M | 76.90186.30189.70 1 86.00193.80185.70 1 80.20 1 84.30 | 85.36
r=128 | 194.4M | 78.10187.10 1 88.70 1 86.30 192.00 | 84.70 1 80.90 | 84.50 | 85.28
r=4 | 3.6M |77.00186.70187.10183.70190.40182.30179.50179.90 | 83.32
r=8 | 7.2M |[77.60185.90187.80184.40190.60183.00179.50182.30 | 83.88
zFLoRA | r=16 | 14.4M | 76.40186.40188.10185.20192.40183.30179.80182.80 | 84.3
(LR le-4)| r=32 | 29M |78.20188.20188.10186.10194.00182.70180.70183.60 | 85.2
r=64 | 59M |76.90187.90189.40184.40192.80185.30179.90184.50 | 85.13
r=128 | 117M |75.80185.70189.90187.80192.80183.40179.10183.00 | 84.68
3B-Inst Math Reasoning (acc)
Rank | #Param addsub | aqua | multi | gsm8k | singeq | svamp Avg
Base 0 3B 91.14124.80193.17176.88193.90 | 87.60 7791
FFT 0 0 89.62128.74199.00 1 71.87193.70 1 82.00 77.48
r=4 | 6.IM - -
r=8 | 12.2M - -
LoRA | r=16 | 24.3M - -
(LR 3e-4) | r=32 | 48.6M 93.16127.17196.67167.10195.87 1 82.50 77.07
r=64 | 97.2M - -
r=128 | 194.4M - -
r= 3.6M 91.14129.53198.17167.78 194.69 1 77.40 76.45
=8 | 7.2M 88.86125.98197.00168.39192.13180.00 75.39
zFLoRA | r=16 | 14.4M 90.13133.86197.67167.55195.08 1 72.50 76.13
(LR 3e-4)| r=32 | 29M 90.38129.53197.17170.74193.70 1 81.90 77.23
=64 | 59M 89.62126.38195.67170.89195.28 1 81.50 76.55
r=128 | 117M 93.16124.02197.00167.63195.08 1 80.70 76.26
Summary-Dialogue (RLsum)
3B-Inst Rank | #Param cnndm | dd | woz | xsum Avg
Base 0 3B 91.14124.80193.17176.88 193.90 | 87.60 77.91
FFT 0 0 89.62128.74199.00171.87193.70 1 82.00 77.48
r= 6.1M - -
r=8 | 12.2M - -
LoRA | r=16 | 24.3M - -
(LR 3e-5) | r=32 | 48.6M 28.92118.37131.15136.45 28.72
r=64 | 97.2M - -
r=128 | 194.4M -
r=4 | 3.6M 28.13116.81128.78 132.21 26.48
r=8 | 7.2M 27.41117.19131.97133.26 27.45
zFLoRA | r=16 | 14.4M 27.61119.25131.47134.63 28.24
(LR 5e-5)| r=32 | 29M 28.83119.44130.76 136.18 28.80
r=64 | 59M 27.38119.20131.76 1 36.38 28.68
r=128 | 117M 27.66119.85131.35135.39 28.56

Table 9: Performance of LLaMA 3B-Inst model with LoRA and zFLoRA adapters for varying ranks.

21415

LLaMA 1B-Inst

Common Sense Reasoning (acc)

Adapter arcc | arce | boolq | hella | obga | piga | siga | wino Avg

Base 51.00173.00164.00144.00174.50172.50150.00 | 45.00 | 59.25

FFT 64.50178.70184.10176.30187.20177.80172.40169.60 | 76.32

Lora 63.90178.60182.30176.00186.40177.50175.50169.10 | 76.16

FFA 52.50171.00181.50169.50185.00169.50169.50169.50 | 71.00

FFBA (QG-Add) |62.10176.00179.90173.40184.60177.70171.70 1 68.90 | 74.28
zFLoRA (uniform) (Poor performance due to RoPE modification) -

zFLoRA (minimal) | 62.80178.40182.60 1 76.90187.40177.30173.10170.10 | 76.07

Math Reasoning (acc)

Adapter addsub | aqua | multi | gsm8k | singeq | svamp Avg

Base 68.10122.83162.17145.49180.91153.20 55.45

FFT 85.32122.83196.17148.52190.94 1 66.70 68.41

Lora 82.78128.35192.67148.14187.99 1 67.00 67.82

FFA 81.77120.08 185.17136.24 1 84.84 1 58.60 61.11

FFBA (QG-Add) 84.30123.62193.83145.87189.76 1 65.40 67.13

zFLoRA (uniform) 01.01100.00104.17102.65 1 01.38 104.50 2.28

zFLoRA (minimal) 87.85124.80196.00143.37191.93159.40 67.22

Latency Summary-Dialogue (RLsum)

Adapter Params | TTFT | TPOT cnndm | dd | woz | xsum Avg

Base 1B 119 | 6.6 25.28113.03113.81119.49 17.9

FFT - - - 28.37116.58130.45132.67 |27.01

Lora 225M | 155 | 89 26.76120.12131.34132.23 |27.61

FFA 2IM | 151 | 79 25.05114.93124.53124.38 [22.22

FFBA (QG-Add) | 21M | 147 | 8.2 26.24119.67129.65129.38 | 26.23

zFLoRA (uniform) | 22.5M | 14 6.7 15.15109.70122.25114.25 |15.33

zFLoRA (minimal) | 152M | 13.2 | 6.5 27.25118.31131.82130.98 |27.09

Table 10: Performance of LLaMA 1B-Inst model for different fused adapter variants.

21416

LLaMA 3B-Inst

Common Sense Reasoning (acc)

Adapter arcc | arce | boolq | hella | obga | piga | siga | wino Avg

Base 79.00183.00183.00168.00183.00172.50168.50154.00 | 73.87

FFT 79.00186.40189.30185.40193.20184.70180.40 1 83.20 | 85.2

Lora 77.60186.00189.20184.90193.00 1 85.40180.80 | 84.50 | 85.17

FFA 76.00 184.50185.00178.00188.50176.00178.50177.50 | 80.5

FFBA (QG-Add) | 77.60186.60188.00185.40192.20183.70178.70 1 83.10 | 84.41
zFLoRA (uniform) (Poor performance due to RoPE modification) -

zFLoRA (minimal) | 78.20 1 88.20 1 88.10 1 86.10 194.00 1 82.70 1 80.70 1 83.60 | 85.2

Math Reasoning (acc)

Adapter addsub | aqua | multi | gsm8k | singeq | svamp Avg

Base 91.14124.80193.17176.88 193.90 | 87.60 7791

FFT 89.62128.74199.00171.87193.70 1 82.00 77.48

Lora 93.16127.17196.67 167.10195.87 1 82.50 77.07

FFA 87.59121.26196.00166.87192.13 1 80.30 74.02

FFBA (QG-Add) 90.13133.86197.33169.45194.88 1 80.00 77.6
zFLoRA (uniform) (Poor performance due to RoPE modification) -

zFLoRA (minimal) 90.38129.53197.17170.74193.70 1 81.90 77.23

Latency Summary-Dialogue (RLsum)

Adapter Params | TTFT | TPOT cnndm | dd | woz | xsum Avg

Base 3B 255 | 11.7 25.10114.45116.68120.54 | 19.19

FFT - - - 29.23125.85129.66137.63 | 30.59

Lora 48.6M | 319 | 152 28.92118.37131.15136.45 |28.72

FFA 55M | 30.6 | 13.2 26.04118.45128.67131.85 |26.25

FFBA (QG-Add) | 55M | 30.5 | 13.5 28.71120.39130.87135.72 |28.92

zFLoRA (uniform) | 55M | 309 | 11.6 13.69104.54119.00115.03 | 13.06

zFLoRA (minimal) | 29.3M | 28 10.9 28.83119.44130.76136.18 28.8

Table 11: Performance of LLaMA 3B-Inst model for different fused adapter variants.

21417

1B-Inst

Common Sense Reasoning (acc)

Rank | #Param arcc | arce | boolq | hella | obqa | piqa | siga | wino Avg
Base 0 IB |51.00173.00164.00144.00174.50172.50150.00 [45.00 | 59.25
FFT 0 0 64.50178.70184.10176.30187.20177.80172.40169.60 | 76.32
LoRA-MHA 4 0.8M |58.60174.80174.80169.70177.00171.80168.20160.30 | 69.40
(LR 5e-4) 32 | 6.8M |61.90176.90181.80174.60186.20174.00171.90169.10 | 74.55
64 | 13.6M | 62.10175.40181.60175.00186.00176.50171.30169.90 | 74.72
zFLoRA-MHA | 4 0.7M |59.20175.00177.30171.70180.20 1 74.60 1 69.20 1 62.20 | 71.17
(LR 2e-4) 32 | 5.7M |58.50176.50176.40171.40180.80175.00170.40162.60 | 71.45
64 | 11.5M | 62.50175.40181.00175.10185.40176.90172.50168.70 | 74.68

1B-Inst Math Reasoning (acc)
Rank | #Param addsub | aqua | multi | gsm8k | singeq | svamp Avg
Base 0 1B 68.10122.83162.17145.49180.91153.20 55.45
FFT 0 0 85.32122.83196.17148.52190.94 1 66.70 68.41
LoRA-MHA 4 0.8M 67.85125.20169.50141.70176.77157.70 56.45
(LR le-4) 32 | 6.8M 65.82122.44175.00143.06175.98155.70 56.33
64 | 13.6M 58.73124.02179.83142.15174.41153.30 55.40
zFLoRA-MHA | 4 0.7M 63.04123.23179.17142.46172.24156.30 56.07
(LR 5e-4) 32 | 5M 69.11123.23181.00141.70178.15163.50 59.44
64 | 11.5M 85.57127.17194.17144.66 1 88.78 | 67.60 67.99

Table 12: Performance of LLaMA 1B-Inst model when adapters are attached only to the MHA block.

21418

