
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 21472–21487
November 4-9, 2025 ©2025 Association for Computational Linguistics

AMACE: Automatic Multi-Agent Chart Evolution for Iteratively Tailored
Chart Generation

Hyuk Namgoong1, Jeesu Jung1, Hyeonseok Kang1, Yohan Lee2 and Sangkeun Jung1*

1Computer Science and Engineering, Chungnam National University, Republic of Korea
2Electronics and Telecommunications Research Institute, Republic of Korea

{hyuk199, jisu.jung5, dnfldjaak11,}@gmail.com,
carep@etri.re.kr and hugmanskj@gmail.com

Abstract

Many statistical facts are conveyed through
charts. While various methods have emerged
for chart understanding, chart generation typi-
cally requires users to manually input code, in-
tent, and other parameters to obtain the desired
format on chart generation tools. Recently, the
advent of image-generating Large Language
Models has facilitated chart generation; how-
ever, even this process often requires users to
provide numerous constraints for accurate re-
sults. In this paper, we propose a loop-based
framework for automatically evolving charts in
a multi-agent environment. Within this frame-
work, three distinct agents—Chart Code Gen-
erator, Chart Replier, and Chart Quality Eval-
uator—collaborate for iterative, user-tailored
chart generation using large language models.
Our approach demonstrates an improvement of
up to 29.97% in performance compared to first
generation, while also reducing generation time
by up to 86.9% compared to manual prompt-
based methods, showcasing the effectiveness
of this multi-agent collaboration in enhancing
the quality and efficiency of chart generation.

1 Introduction

Charts are a key tool for visualizing data in both
everyday life and scientific research. They are of-
ten used in reports and academic papers to simplify
complex data and make it easier to understand. By
converting difficult-to-read tables into visual for-
mats, charts improve clarity and make information
more persuasive.

Traditionally, creating charts has required man-
ual coding with visualization libraries like mat-
plotlib and AutoViz (Seshadri, 2020) (Figure 1a).
This process is time-consuming and requires techni-
cal skills. Recently, large language models (LLMs),
such as GPT-4 Vision (Yang et al., 2023), have en-
abled new automated methods that generate charts

*Corresponding author

Chart Code

Chart Renderer

Skilled
Coder

Written
Code

Table

(a)
Programming
Based Chart
Approach

Table

Query

Generated

Code

Chart Renderer

Chart Code

Generator

Prompt in

(b) Prompt
Engineering
Based Chart
Approach

Table

Query

Chart Replier

Chart Quality

Evaluator
Generated

Code

Chart Renderer

Chart Code

Generator

(c) Our approach: Multi-Agent
Based Automatic Evolution

Chart Approach

Figure 1: Comparison of our approach with typical chart
generation methods. Manual tools require significant hu-
man intervention to convert tables into charts. Recent
research leverages LLMs to generate charts from table
data via code. Our approach utilizes multi-agents to iter-
atively refine and generate tailored charts automatically.

based on table data and user prompt (Figure 1b).
These methods make chart creation more accessible
by removing the need for programming knowledge.

However, current single LLM approaches have
limitations. These methods typically generate a sin-
gle chart based solely on the user input, making the
quality of the chart heavily dependent on precise
prompt-engineering. Ambiguous instructions often
result in ineffective charts, and these approaches
require iterative user feedback, which demands con-
tinuous interaction and reduces efficiency.

To address these issues, we propose a new frame-
work in which multiple LLM agents collaborate in
a loop-like, evolutionary process to automatically
generate and improve charts. Unlike traditional ap-
proaches, we take zero-human-prompt-engineering,
utilizing iterative interactions among specialized
agents to enable progressive chart quality improve-
ments and gradual optimization over time.

Our proposed approach introduces three key
LLM roles to achieve automated chart generation
and refinement: 1) Chart Code Generator gen-

21472

erates chart code, 2) Chart Replier has the LLM
answer questions about the generated chart in rela-
tion to the user’s objectives, and 3) Chart Quality
Evaluator assesses whether the chart is suitable
based on the table, user intent, and responses. This
process is repeated at each step, allowing for grad-
ual evolution.

To validate our framework, we first assessed
whether each LLM agent effectively fulfilled its as-
signed role. We found that chart generation with the
AMACE framework improved performance, with
Chart Replier providing responses up to 29.97%
better with additional steps compared to a single-
step. Human evaluations, which rated chart prefer-
ences on a 1–5 scale, also showed consistent im-
provement across steps. Compared to manual chart
generation using prompt engineering, AMACE
achieved up to an 86.9% reduction in generation
time. Additionally, by swapping models for each
role, we demonstrated that better models tended
to perform more effectively. The experiments il-
lustrate how our framework progressively refines
charts to better match user intent as the process
advances.

2 Related Works

Recent frameworks enhance LLM performance by
assigning roles to multiple models and leveraging
their interactions. ART (Shridhar et al., 2024) and
Self-Refine (Madaan et al., 2023) use feedback
for iterative improvement. (Park et al., 2023; Xi
et al., 2023), Eureka (Ma et al., 2024), and Guided-
Code (Almorsi et al., 2025) apply multi-agent or
loop-based strategies to simulate behavior or refine
code. These works highlight the effectiveness of
role-based collaboration in LLM systems.

LLMs are not limited to text-based input and
output. With the advancement of Vision Transform-
ers, multimodal LLMs that process both images
and text to understand their interrelationships are
gaining attention. Representative examples include
BLIP2 (Li et al., 2023b), LLaVA (Liu et al., 2023b),
and Gemini (Gemini, 2024). Frameworks that carry
out interactions through the relationship between
these models are being studied, such as (Wu et al.,
2023), which extracts features from vision and
generates images at each loop; (Li et al., 2023a),
which collects similar examples to the input image
through a loop structure and utilizes them for few-
shot learning; and SILMM (Qu et al., 2025), which
adopts a model-agnostic self-improvement loop

Evaluator

Producer

ConsumerReview

Assessment

Product

(a) Real-world Evaluation
Framework Cycle

Chart Replier

Chart Quality

Evaluator

Chart Code

Generator

Answer

Assessment

Chart

(b) Multi-Agent Evaluation
Framework Cycle

Figure 2: The real-world evaluation for product improve-
ment and multi-agent evaluation framework. Our frame-
work assigns the roles of the producer, consumer, and
evaluator roles to specialized agents as the Chart Code
Generator, Chart Replier, and Chart Quality Evaluator.

where LLMs iteratively refine text-image align-
ment via preference optimization.

Chart generation using LLMs is closely tied to
code generation, where textual and visual inputs
guide the synthesis of chart-rendering code (Masry
et al., 2023; Liu et al., 2023a). Text2Chart31 (Pe-
saran Zadeh et al., 2024) and Matplotbench (Yang
et al., 2024) translate text and numeric data into
executable chart code, while chart-specialized mul-
timodal LLMs (Han et al., 2023; Masry et al.,
2024) directly process chart images. ChartCitor
(Goswami et al., 2025) uses multiple agents to
extract tables from chart images and assign fine-
grained answer citations. METAL (Li et al., 2025)
introduces a multi-agent framework that refines ex-
isting charts, requiring a pre-existing chart as input
and focusing on automatic improvement rather than
generation from scratch.

Our study aims to evolve chart generation perfor-
mance automatically by employing multiple LLMs
in iterative multi-agent environments. In contrast
to prior studies, our method adopts an iterative
structure that refines charts to better align with
user intent. We assign roles to different types of
LLMs to construct a collaborative environment for
generating charts that are tailored to specific user
objectives.

3 Automatic Multi-Agent Chart
Evolution(AMACE)

In this paper, we propose Automatic Multi-Agent
Chart Evolution (AMACE), a framework lever-
aging a cooperative multi-agent approach for chart
generation. Traditional single-agent approaches of-
ten produce ambiguous outputs due to task com-
plexity and cognitive load. Our framework ad-
dresses this by employing specialized LLM agents

21473

Chart Code Generator

Chart Replier

Chart Quality Evaluator Chart Renderer

841961. Lombardy is the region …

The student's solution is correct. The ...

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
...
df = pd.DataFrame(data)
...
plt.savefig(img_path, format='png')

Chart code

Feedback

Chart Code Generation Prompt

Table data (

Query (

How many cases did …?

Code conditions)

Please provide a code to visualize
the table dataset according to the

following conditions: …

Answer
Chart Generation code

Chart Answerer answer

CQ Reviewer feedback

Step 1.
Generate code
for chart

Chart Code Generation Prompt

,

Step 2.
Outputs chart

Step 3.
Response to generated chart

Step 4.
Feedback
the responses

Step 5.
Combine feedback and responses

Chart image

Early Stopping Checker

Keep loopsStop

Figure 3: Overall architecture of Automatic Multi-Agent Chart Evolution framework. In the initial step, the
description is input into the Chart Generation module. The Chart Replier (CR) receives the query from the
description, while the Chart Quality Evaluator (CQE) takes both the query and the table from the description as
input. After generating the chart, the outputs from the CR and the CQE are combined in an appropriate format
for the description, and this process is repeated at each step. Early Stopping Checker involves halting loops when
deemed appropriate based on feedback from the CQE.

with distinct roles that collaborate interactively.
This design ensures robust chart generation through
evolutionary optimization. AMACE agent prompts
are detailed in Appendix A

3.1 Evaluation Framework Cycle

We identified real-world evaluation cycles, such as
restaurants improving through delivery app reviews
or research papers evolving through reviews and
revisions, as shown in Figure 2a. Inspired by these
processes, we designed a multi-agent evaluation
framework cycle by assigning the roles of producer,
consumer, and evaluator to specialized agents, as
shown in Figure 2b. These agents collaborate to
perform tasks efficiently and systematically.

Our chart generation framework leverages a
multi-agent system as illustrated in Figure 3. The
system orchestrates three distinct LLMs, including
one with multimodal capabilities, each perform-
ing specialized tasks. The Chart Code Generator
(CCG) generates code for table-to-chart transfor-
mation, the Chart Replier (CR) generates responses
based on chart analysis, and the Chart Quality Eval-
uator (CQE) evaluates these responses. Through it-
erative refinement cycles, the system progressively
optimizes chart generation. To enhance computa-
tional efficiency, we implement an Early Stopping

Checker that terminates the iteration loops when
the CQE determines that the generated chart meets
the specified quality criteria.

3.2 Chart Code Generator (CCG)

The role of the CCG is to receive a series of text
and conditions for code generation relevant to the
input. in a text-to-code generation paradigm, where
both input and output maintain textual format.

The input prompt structure, as illustrated in Fig-
ure 10, incorporates four key elements: role specifi-
cation, table data, querys, and code conditions. The
system assigns a Python programmer role to the
LLM and provides text-formatted representations
of the table data, query specifications, and code
constraints. The query component encompasses vi-
sualization task objectives and, where applicable,
example questions. The code conditions specify
required libraries, table variable names, and out-
put code structure specifications, which facilitate
subsequent code execution post-processing.

The code regeneration process integrates feed-
back from multiple components, as depicted in Fig-
ure 11. This process incorporates outputs from the
CR and CQE, alongside the previous CCG results.
The system implements a conversational architec-
ture where inputs comprise the previous CCG’s

21474

input-output pairs, combined with CR and CQE
feedback. This feedback loop structure enables iter-
ative refinement, with new code generation instruc-
tions contextualized by prior process results.

3.3 Chart Renderer

The Chart Renderer module executes the code gen-
erated by the CCG to chart visualizations. It per-
forms validation checks for requirement compli-
ance and syntactic correctness, including table vari-
able names and structural alignment. If the code
fails, a call to the CCG for regenerate code.

Following successful validation, the system exe-
cutes the code through a Python runtime environ-
ment. The resultant chart visualization is persisted
to storage and transmitted to the CR. Additionally,
the validated code is preserved to facilitate iterative
refinement in subsequent processing stages.

3.4 Chart Replier (CR)

In the role of the CR, multimodal LLMs are uti-
lized to process visual chart input alongside tex-
tual prompts and generate corresponding responses.
This system architecture leverages the multimodal
capabilities of LLMs to handle visual and textual
input within a text-output framework.

As illustrated in Figure 12, the system processes
chart visualizations and queries through a struc-
tured input. The query component includes task-
specific objectives, with direct question input for
question-answering tasks. The system generates re-
sponses that align with the specified task objectives
through comprehensive chart analysis.

3.5 Chart Quality Evaluator (CQE)

The role of the CQE is to assess the quality of an-
swers provided by the CR regarding the generated
chart. It evaluates how effectively the chart conveys
information and identifies any missing details. This
evaluation is crucial in cases where ground truth is
unavailable, as often occurs in real-world applica-
tions. Additionally, to account for potential missing
information during the visualization process, the
CQE takes a table input.

The input prompt structure, as shown in Figure
13, includes the role, table, query, and the response
from the previous model. The system assigns the
role of evaluating the correctness of responses to
the LLM. The inputs consist of the table formatted
in text, the query, and the response of the previ-
ous model. The updated query reflects the previous

model’s query in problem form. The output indi-
cates whether the response is correct or incorrect,
along with an explanation.

3.6 Iterative Multi-Agent Interaction

Our methodology adopts an iterative approach to
chart generation:

1. The CCG generates charting code based on
the table and query, while the Chart Renderer
converts table data into charts using the gener-
ated code.

2. The CR processes questions relevant to the
chart and provides answers.

3. The CQE evaluates based on the table, ques-
tions, and answers from the CR.

4. The feedbacks and answers from the CR and
CQE are fed back to the CCG to generate new
code, creating an iterative cycle.

During the iterative process, the chart evolves
gradually through agent interactions. Each agent
contributes responses, and feedback guides the evo-
lution of the charting code, enabling continuous
improvement in this collaborative environment.

3.7 Early Stopping Checker

To save time and resources in generating tailored
charts, we introduce an Early Stopping mechanism,
called the Early Stopping Checker. It autonomously
halts loops once CQE feedback is confirmed as
correct, preventing unnecessary steps and reducing
both user waiting time and resource usage.

4 Experiments

This study explores the impact of the AMACE
framework through multi-agent experiments with
three main objectives:

• Quantify improvements in chart generation
using the AMACE framework and validate
them through human evaluation.

• Determine the influence of each LLM role on
performance.

• Compare performance with and without Early
Stopping to assess its potential as a replace-
ment and highlight its time-saving benefits.

Dataset For the analysis of experiments, we em-
ployed the ChartQA (Masry et al., 2022) and Chart-
to-Text (Kantharaj et al., 2022) datasets, which con-
tain both table and chart data, making them suitable
for multimodal evaluation.
AMACE-1

• CCG: GPT-3.5-turbo (Ye et al., 2023)

21475

• CR: Gemini 1.0 Pro Vision (Gemini, 2024)
• CQE: GPT-4-turbo (OpenAI, 2024)

AMACE-1o
• CCG: GPT-4o mini (OpenAI, 2024)
• CR: Gemini 1.5 Flash (Team, 2024)
• CQE: GPT-4o (OpenAI, 2024)
In our experiments, AMACE-1o utilized high-

performing LLMs, whereas AMACE-1 employed
earlier-generation models, yielding inferior per-
formance. Based on the ablation experiments, we
designed the CR and CQE roles in AMACE using
a more advanced model.

For the ablation experiments, we utilized GPT-
4o mini and Gemini 1.0 Pro Vision as the baseline,
while GPT-4o and Gemini 1.5 Flash served as the
advanced models. Each role was tested by replacing
its respective model. Dataset and all experiment
settings are shown in Appendix B.

4.1 Performance Improvement Across Steps

To assess whether the CR provides appropriate re-
sponses to the generated chart and user intent, we
evaluate the extent of performance improvement
across datasets as the steps progress.

The results in Figure 4a and 4b show
performance improvements with each step in
ChartQA. AMACE-1 saw a 29.79% accuracy in-
crease for ChartQA:augmented, while AMACE-
1o showed an 8.48% rise for ChartQA:human.
ChartQA:augmented surpassed ChartQA:human
due to LLM-generated questions.

Additionally, Figure 4c and 4d shows that the
changes in ROUGE-L and BERTScore for Chart-
to-Text across all steps are less pronounced com-
pared to ChartQA. However, both AMACE-1 and
AMACE-1o show an increase in these metrics.
ROUGE-L and BERTScore exhibit wider bounds
compared to Accuracy. These results indicate that
AMACE performs well across all datasets. Numer-
ical results are detailed in Table 4.

4.2 Human Evaluation of Chart Quality

To evaluate the quality of generated charts across
iterative steps, we conducted a human evaluation in
which five annotators rated charts generated from
150 data samples. For each sample, the AMACE
framework generated five versions of a chart across
five steps. Participants were asked to rate each chart
on a scale from 1 (least suitable) to 5 (most suitable)
based on how well the chart matched the intended
query and conveyed the relevant information.

0 1 2 3 4
Step

0.209

0.354

0.498

Ac
cu

ra
cy

AMACE-1

0 1 2 3 4
Step

0.274

0.386

0.498 AMACE-1o

(a) ChartQA:augmented

0 1 2 3 4
Step

0.296

0.330

0.364

Ac
cu

ra
cy

AMACE-1

0 1 2 3 4
Step

0.337

0.389

0.442 AMACE-1o

(b) ChartQA:human

0 1 2 3 4
Step

0.214

0.222

0.230

RO
UG

ES
co

re AMACE-1

0 1 2 3 4
Step

0.236

0.239

0.242 AMACE-1o

(c) Chart-to-Text:ROUGEScore

0 1 2 3 4
Step

0.628

0.631

0.634

BE
RT

Sc
or

e AMACE-1

0 1 2 3 4
Step

0.642

0.646

0.651 AMACE-1o

(d) Chart-to-Text:BERTScore
Figure 4: Performance graphs over five steps for each
dataset. In Chart-to-Text, ROUGEScore represents the
ROUGE-L F1 score. The x-axis shows step, with blue
for AMACE-1 and red for AMACE-1o. Bounds denote
the minimum and maximum values.

As shown in Figure 5, human ratings consistently
improve as the chart generation progresses from
Step 1 to Step 5, indicating that our framework
gradually refines both the content and presentation
of the charts. This trend is consistent across all
datasets and models, demonstrating the effective-
ness of our step-wise refinement strategy.

Further qualitative improvements are illustrated
in Figure 6, which shows example charts generated
by AMACE-1o at each step. As the steps progress,
the charts include more informative elements, such
as numeric labels on lines or modified bar layouts
for better visual clarity. This highlights improve-
ments in both informativeness and visual design.

Figure 14 in Appendix further shows how the
underlying chart code evolves across steps. In par-
ticular, we observe that initial code generated by
the CCG is updated in subsequent steps to reflect

21476

ChartQA:augmented ChartQA:human Chart-to-Text
A

M
A

C
E

-1

1 2 3 4 5
1
2
3
4
5

Hu
m

an
 R

at
e

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

Fr
eq

ue
nc

y

A
M

A
C

E
-1

o

1 2 3 4 5
Chart Step

1
2
3
4
5

Hu
m

an
 R

at
e

1 2 3 4 5
Chart Step

1
2
3
4
5

1 2 3 4 5
Chart Step

1
2
3
4
5

Fr
eq

ue
nc

y

Figure 5: Human evaluation results for charts generated by AMACE-1 and AMACE-1o over five iterative step. Each
chart was rated on a 5-point scale (1 = least preferred, 5 = most preferred) based on visual quality and relevance to
the intent. The evaluations were conducted by five human judges across 150 chart instances from three datasets.
Circle size and color represent the frequency of ratings.

feedback from the CQE, resulting in refined vi-
sual output. Additional chart types and refinement
details can also be found in Appendix D.

4.3 Ablation Analysis of LLM Role Effects
To evaluate the impact of each role on performance,
experiments were conducted by replacing the base-
line model combinations with higher-performing
models for each role. The performance was vali-
dated using ground truth from each dataset.

The results in Figure 7 show that while utilizing
better models does not always guarantee improve-
ment, the overall trend indicates a performance
boost. In ChartQA, replacing the CQE yielded the
best performance compared to other model replace-
ments. In Chart-to-Text, replacing the CR further
improved performance. These findings highlight
the importance of generating sentences effectively
and understanding context for accurate evaluation.
Based on these insights, we developed the AMACE
settings. Numerical results are provided in Table 5.

4.4 Impact of Early Stopping
We evaluate the impact of CQE-based Early Stop-
ping on iterative chart generation, comparing it
with generation without this mechanism.

Figure 8 shows the percentage of Early Stopping
at each step for each dataset. In the first step, up to
63.9% of the processes stop, indicating that more
than half of the datasets stop at the first step.

Figure 9 compares the final performance with
and without Early Stopping. Overall, Early Stop-

Model Dataset
w/o Early
Stopping
Checker

w/ Early
Stopping
Checker

AMACE
-1

ChartQA:augmented 36.52s 24.27s (↓ 33.5%)
ChartQA:human 77.47s 45.73s (↓ 41.0%)

Chart-to-Text 80.04s 39.49s (↓ 50.7%)

AMACE
-1o

ChartQA:augmented 31.09s 22.45s (↓ 27.8%)
ChartQA:human 36.10s 23.83s (↓ 34.0%)

Chart-to-Text 42.91s 15.74s (↓ 63.3%)

Table 1: Comparison of time (in seconds) taken per sam-
ple with and without the Early Stopping Checker. Each
experiment was conducted on 100 samples per dataset.
The values in parentheses indicate the percentage of
time saved using Early Stopping.

ping achieves comparable or higher performance,
with AMACE-1 showing a notable 17.3% improve-
ment in ChartQA. These results confirm the ef-
fectiveness of Early Stopping in enhancing perfor-
mance. Numerical results are shown in Table 4.

Table 1 demonstrates the time efficiency gained
by applying Early Stopping to terminate the itera-
tive generation process. The results show that Early
Stopping improves both the efficiency and over-
all effectiveness of chart generation. Notably, the
chart-to-text setting with AMACE-1o achieved a
63.31% reduction in processing time, indicating
substantial gains across datasets. In addition, Ta-
ble 7 shows that Early Stopping reduced generation
cost by up to 59.6%, along with improvements in
token efficiency. For full results, see Appendix E.

21477

AMACE-Generated: 1 Step AMACE-Generated: 2 Step AMACE-Generated: 3 Step

AMACE-Generated: 5 Step AMACE-Generated: 4 StepC
ha

rt
Q

A

Human-Created

AMACE-Generated: 1 Step AMACE-Generated: 2 Step AMACE-Generated: 3 Step

AMACE-Generated: 5 Step AMACE-Generated: 4 Step

C
ha

rt
-t

o
-T

ex
t

Human-Created

Figure 6: Step-by-step chart images generated by AMACE-1o across five refinement steps, shown alongside
the original human-created charts for reference. Each row represents a dataset, and illustrates how AMACE-1o
progressively improves the generated charts in terms of informativeness, visual clarity, and alignment with the
underlying data.

4.5 Comparison with Prompt Engineering
Based Chart Approach

We compare AMACE with a Prompt Engineering
Based Chart Approach, illustrated in Figure 1b,
where human participants manually revise prompts
to iteratively generate charts (denoted as Human
Process). The human process was evaluated on
50 samples, and the time required to generate each
chart was measured. In this setting, humans stopped
the process once they were satisfied with the gener-
ated chart, similar in principle to Early Stopping in
AMACE. Participant details in Appendix B.

Table 2 compares the time taken for AMACE
with Early Stopping Checker with Human Process.
For Human Process charts, the process is stopped
when the user is satisfied, and the next data point
is processed. This is compared with the AMACE
approach that uses Early Stopping Checker.

Dataset Model Time (sec)

ChartQA:
augmented

Human Process 111.43s
AMACE-1 24.27s (↓ 78.2%)
AMACE-1o 22.45s (↓ 79.9%)

ChartQA:
human

Human Process 144.66s
AMACE-1 45.73s (↓ 68.4%)
AMACE-1o 23.83s (↓ 83.6%)

Chart-to-Text
Human Process 120.24s

AMACE-1 39.49s (↓ 67.2%)
AMACE-1o 15.74s (↓ 86.9%)

Table 2: Compares the time per sample between
AMACE with Early Stopping and the Prompt
Engineering-based Human Process, based on 100 sam-
ples per dataset. Times are in seconds; Parentheses show
time saved over the Human Process.

While the Human Process allows for fine-
grained control through manual review and prompt

21478

Chart Replier

Chart Quality
Evaluator

Chart Code
Generator

A
cc

u
ra

cy

○

○

○

○

○

○

○

○

○

Chart-to-Text:ROUGEScoreChartQA:augmented ChartQA:human

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

A
cc

u
ra

cy

R
O

U
G

ES
co

re

●

●

●

●

●

●

●

●

●
↓0.129

↓0.034

↓0.052

↓0.006

↑0.028

↑0.024

↑0.004

↑0.002

↑0.002

Figure 7: Influence of each role on performance, tested with 200 samples per dataset. # denotes the baseline
model, while represents the advanced model for each role. The blue line indicates baseline performance, the
number below shows the difference from the baseline, and the black line within the boxplot represents the mean
performance. The rounded square around indicates the best-performing model, highlighting the most critical role.

ChartQA:augmented ChartQA:human Chart-to-Text

A
M

A
C

E
-1

E
ar

ly
S

to
pp

in
g

Pe
rc

en
ta

ge

1 2 3 4 50.0

0.5

1 2 3 4 50.0

0.5

1 2 3 4 50.0

0.5

A
M

A
C

E
-1

o
E

ar
ly

S
to

pp
in

g
Pe

rc
en

ta
ge

1 2 3 4 5
Step

0.0

0.5

1 2 3 4 5
Step

0.0

0.5

1 2 3 4 5
Step

0.0

0.5

Figure 8: The Early Stopping percentage at each step. The datasets are listed at the top, and the models are indicated
on the left. The vertical axis of the graph represents the Early Stopping percentage, ranging from 0 to 0.67.

w/
o

Ea
rly

 S
to

pp
in

g
w/

 E
ar

ly
 S

to
pp

in
g

AMACE-1 AMACE-1+
Models

0.0

0.2

0.4

Ac
cu

ra
cy

(a) ChartQA:augmented

AMACE-1 AMACE-1+
Models

0.0

0.2

0.4

Ac
cu

ra
cy

(b) ChartQA:human

AMACE-1 AMACE-1+
Models

0.0

0.1

0.2

RO
UG

ES
co

re

AMACE-1 AMACE-1+
Models

0.0

0.2

0.4

0.6

BE
RT

Sc
or

e

(c) Chart-to-Text: ROUGEScore & BERTScore
Figure 9: This figure illustrates the performance with and without Early Stopping. For Early Stopping, the final
performance is shown, while without Early Stopping, the performance after 5 steps is presented.

adjustments, it requires domain expertise and
significantly more time. As shown in Table 2,
AMACE-1o achieved up to 86.9% time reduction
compared to the Human Process on the Chart-to-
Text dataset. This overhead arises from the need for
individualized judgment and iterative modifications
for each data point when humans are involved.

Figure 15 shows that both approaches produce
charts of comparable quality. Although manual re-
finement may yield slight improvements in specific
visual elements, the results show that AMACE au-
tomates chart generation effectively while offering
substantial time savings.

5 Conclusion

We introduced AMACE, a multi-agent LLM frame-
work for automated chart generation that leverages
a loop-based refinement process to align outputs
with user intent. Through both quantitative metrics
and human evaluations, we demonstrated that the
generated charts progressively improve in quality
and better reflect user goals. Compared to manual
prompt engineering, AMACE achieves significant
time savings while maintaining comparable output
quality. We further analyzed the contributions of
each LLM agent, confirming the effectiveness of
role specialization and the impact of loop termina-

21479

tion conditions on performance and cost efficiency.
As future work, we plan to enhance chart genera-

tion and leverage model distillation to transfer these
capabilities into lightweight models for practical
deployment. We also aim to replace the CQE mod-
ule with a fine-tuned, chart-specific multimodal
model to improve evaluation accuracy, while ex-
ploring efficient inference techniques and hierar-
chical agent architectures to ensure scalability and
robust coordination.

Limitations

AMACE requires substantial computational re-
sources due to its multi-agent design involving
multiple LLMs, which may hinder scalability. This
could be addressed by incorporating smaller, task-
specific models specialized for chart generation.

In addition, our evaluation focuses on user-intent-
driven chart generation, excluding datasets like
Matplotbench and Text2Chart31, which prioritize
chart structure over creation intent. Consequently,
our experiments are limited to a narrow range of
chart types.

Although our study centers on bar and line charts,
this reflects the fact that these chart types dominate
real-world usage, and LLMs naturally capture such
tendencies during training. Importantly, this lim-
itation can be alleviated by explicitly specifying
alternative chart types or requesting diverse chart
varieties through user instructions.

Acknowledgements

This work was supported by the National Re-
search Foundation of Korea(NRF) grant funded
by the Korea government(MSIT)(No. RS-2025-
0055621731482092640101), Institute of Informa-
tion & Communications Technology Planning &
Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (2019-0-00004, Development of semi-
supervised learning language intelligence technol-
ogy and Korean tutoring service for foreigners) and
research fund of Chungnam National University.

References
Amr Almorsi, Mohanned Ahmed, and Walid Gomaa.

2025. Guided code generation with llms: A multi-
agent framework for complex code tasks. Preprint,
arXiv:2501.06625.

Gemini. 2024. Gemini: A family of highly capable
multimodal models. Preprint, arXiv:2312.11805.

Kanika Goswami, Puneet Mathur, Ryan Rossi, and
Franck Dernoncourt. 2025. Chartcitor: Multi-agent
framework for fine-grained chart visual attribution.
Preprint, arXiv:2502.00989.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin
Wang, Gang Yu, Bin Fu, and Hanwang Zhang. 2023.
Chartllama: A multimodal llm for chart understand-
ing and generation. Preprint, arXiv:2311.16483.

Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin,
Ahmed Masry, Megh Thakkar, Enamul Hoque, and
Shafiq Joty. 2022. Chart-to-text: A large-scale bench-
mark for chart summarization. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
4005–4023, Dublin, Ireland. Association for Compu-
tational Linguistics.

Bingxuan Li, Yiwei Wang, Jiuxiang Gu, Kai-Wei Chang,
and Nanyun Peng. 2025. Metal: A multi-agent
framework for chart generation with test-time scaling.
Preprint, arXiv:2502.17651.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Fanyi Pu, Jingkang Yang, Chunyuan Li, and Ziwei
Liu. 2023a. Mimic-it: Multi-modal in-context in-
struction tuning. Preprint, arXiv:2306.05425.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023b. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. Preprint, arXiv:2301.12597.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Fangyu Liu, Francesco Piccinno, Syrine Krichene,
Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin
Altun, Nigel Collier, and Julian Eisenschlos. 2023a.
MatCha: Enhancing visual language pretraining with
math reasoning and chart derendering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12756–12770, Toronto, Canada. Association
for Computational Linguistics.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning. Preprint,
arXiv:2304.08485.

AI @ Meta Llama Team. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. 2024. Eu-
reka: Human-level reward design via coding large
language models. Preprint, arXiv:2310.12931.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,

21480

https://arxiv.org/abs/2501.06625
https://arxiv.org/abs/2501.06625
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2502.00989
https://arxiv.org/abs/2502.00989
https://arxiv.org/abs/2311.16483
https://arxiv.org/abs/2311.16483
https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.18653/v1/2022.acl-long.277
https://arxiv.org/abs/2502.17651
https://arxiv.org/abs/2502.17651
https://arxiv.org/abs/2306.05425
https://arxiv.org/abs/2306.05425
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2023.acl-long.714
https://doi.org/10.18653/v1/2023.acl-long.714
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.12931
https://arxiv.org/abs/2310.12931
https://arxiv.org/abs/2310.12931

Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: It-
erative refinement with self-feedback. Preprint,
arXiv:2303.17651.

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022. ChartQA: A benchmark
for question answering about charts with visual and
logical reasoning. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 2263–
2279, Dublin, Ireland. Association for Computational
Linguistics.

Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Ena-
mul Hoque, and Shafiq Joty. 2023. UniChart: A
universal vision-language pretrained model for chart
comprehension and reasoning. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 14662–14684, Singa-
pore. Association for Computational Linguistics.

Ahmed Masry, Megh Thakkar, Aayush Bajaj, Aaryaman
Kartha, Enamul Hoque, and Shafiq Joty. 2024. Chart-
gemma: Visual instruction-tuning for chart reasoning
in the wild. Preprint, arXiv:2407.04172.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai,
Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. 2023. Generative agents: Interactive sim-
ulacra of human behavior. In In the 36th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’23), UIST ’23, New York, NY,
USA. Association for Computing Machinery.

Fatemeh Pesaran Zadeh, Juyeon Kim, Jin-Hwa Kim,
and Gunhee Kim. 2024. Text2Chart31: Instruction
tuning for chart generation with automatic feedback.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
11459–11480, Miami, Florida, USA. Association for
Computational Linguistics.

Leigang Qu, Haochuan Li, Wenjie Wang, Xiang Liu,
Juncheng Li, Liqiang Nie, and Tat-Seng Chua. 2025.
Silmm: Self-improving large multimodal models for
compositional text-to-image generation. Preprint,
arXiv:2412.05818.

Ram Seshadri. 2020. Github - autoviml/autoviz: Auto-
matically visualize any dataset, any size with a sin-
gle line of code. https://github.com/AutoViML/
AutoViz. Source code repository.

Kumar Shridhar, Koustuv Sinha, Andrew Cohen, Tianlu
Wang, Ping Yu, Ramakanth Pasunuru, Mrinmaya
Sachan, Jason Weston, and Asli Celikyilmaz. 2024.
The ART of LLM refinement: Ask, refine, and trust.
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 5872–5883, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Gemini Team. 2024. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of
context. Preprint, arXiv:2403.05530.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong
Wang, Zecheng Tang, and Nan Duan. 2023. Visual
chatgpt: Talking, drawing and editing with visual
foundation models. Preprint, arXiv:2303.04671.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Sen-
jie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao
Wang, Limao Xiong, Yuhao Zhou, Weiran Wang,
Changhao Jiang, Yicheng Zou, Xiangyang Liu, and
10 others. 2023. The rise and potential of large
language model based agents: A survey. Preprint,
arXiv:2309.07864.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang,
Chung-Ching Lin, Zicheng Liu, and Lijuan Wang.
2023. The dawn of lmms: Preliminary explorations
with gpt-4v(ision). Preprint, arXiv:2309.17421.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong,
Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan,
Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi,
and Maosong Sun. 2024. MatPlotAgent: Method and
evaluation for LLM-based agentic scientific data visu-
alization. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 11789–11804,
Bangkok, Thailand. Association for Computational
Linguistics.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai
Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao
Gong, Yang Shen, Jie Zhou, Siming Chen, Tao Gui,
Qi Zhang, and Xuanjing Huang. 2023. A comprehen-
sive capability analysis of gpt-3 and gpt-3.5 series
models. Preprint, arXiv:2303.10420.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

A Prompt Configurations for AMACE

This appendix presents the detailed prompt settings
used in each module of the AMACE framework.
The AMACE consists of three agents: the CCG,
CR, and CQE. The prompt examples below illus-
trate how each agent is designed to interact with
inputs and generate corresponding outputs in the
overall chart generation process.

A.1 Chart Code Generator (CCG) Prompting
The CCG is responsible for generating chart code
from textual data. Figure 10 illustrates the initial
prompt where CCG receives text-formatted table
data and returns chart code using a language model.

21481

https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2023.emnlp-main.906
https://doi.org/10.18653/v1/2023.emnlp-main.906
https://doi.org/10.18653/v1/2023.emnlp-main.906
https://arxiv.org/abs/2407.04172
https://arxiv.org/abs/2407.04172
https://arxiv.org/abs/2407.04172
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2024.emnlp-main.640
https://doi.org/10.18653/v1/2024.emnlp-main.640
https://arxiv.org/abs/2412.05818
https://arxiv.org/abs/2412.05818
https://github.com/AutoViML/AutoViz
https://github.com/AutoViML/AutoViz
https://doi.org/10.18653/v1/2024.naacl-long.327
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2303.04671
https://arxiv.org/abs/2303.04671
https://arxiv.org/abs/2303.04671
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.17421
https://arxiv.org/abs/2309.17421
https://doi.org/10.18653/v1/2024.findings-acl.701
https://doi.org/10.18653/v1/2024.findings-acl.701
https://doi.org/10.18653/v1/2024.findings-acl.701
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

You are python programmer.

Table:< Table data >

Please provide a code to visualize the table dataset

according to the following conditions:

1. Create a Python code with pandas,

numpy and matplotlib.

2. Visualized table will utilize for < Query >.

3. Name the variable for the table as df.

4. Provide only code. End with

'plt.savefig(img_path, format='png’)’

Code:

Chart Code Generator Prompt

Figure 10: Chart Code Generator(CCG) prompt tem-
plate: CCG receives text-formatted table data as input,
processed by a language model.

You are python programmer.

Table:< Table data >

Please provide a code to visualize the table dataset

according to the following conditions:

1. Create a Python code with pandas,

numpy and matplotlib.

2. Visualized table will utilize for < Query >.

3. Name the variable for the table as df.

4. Provide only code. End with

'plt.savefig(img_path, format='png’)’

Code:

< Previous code >

The resulting in

< Chart Replier answer > and

< Chart Quality Evaluator feedback >.

Recreate a Python code.

Chart Code Regenerate Prompt

Figure 11: Chart Code Generator(CCG) prompt tem-
plate for regenerating the code. In the prompt, both the
answers from the Chart Replier and the Chart Quality
Evaluator, as well as the output from the previous CCG
step, are included as inputs.

Figure 11 shows the regenerated code prompt,
which includes previous CCG outputs along with
responses from the CR and CQE modules to im-
prove the result through iteration.

A.2 Chart Replier (CR) Prompting

The CR interprets the generated chart and provides
textual responses. As shown in Figure 12, CR pro-
cesses multimodal inputs—specifically, the gener-

Please answer < Query > the chart image.

< Chart image >

Chart Replier Prompt

Figure 12: Chart Replier(CR) prompt template: CR
takes inputs in a multimodal format, incorporating both
text and images simultaneously.

Determine if the student's solution is correct or not .

Problem Statement:< Table data >

Please answer < Query > the table.

Student's Solution:

< Chart Replier answer >

Chart Quality Evaluator Prompt

Figure 13: Chart Quality Evaluator(CQE) prompt tem-
plate: CQE evaluates the Chart Replier as if it were a
student, conducting assessments accordingly.

ated chart image along with a corresponding ques-
tion—allowing the language model to provide a
human-like answer.

A.3 Chart Quality Evaluator (CQE)
Prompting

The CQE evaluates the quality of CR outputs. As
depicted in Figure 13, CQE is prompted to behave
like a grader, assessing whether the CR’s response
is accurate and informative based on the question
and image input.

B Experiments Setting

Dataset Table 3 contains information about the
datasets used in the experiments, including the
types and quantities of data, as well as the dataset
creation process. ChartQA:human represents ques-
tions and answers created by humans based on
charts, while ChartQA:augmented refers to AI-
generated questions and answers.
Performance Setting ChartQA involves answering
questions based on charts, allowing us to evaluate
the accuracy of multimodal responses by determin-
ing if there are match answers. Meanwhile, Chart-
to-Text is evaluated using widely adopted metrics

21482

Dataset
of

Table type
of

Table data
of

Query
ChartQA:augmented 2 987 1,250

ChartQA:human 2 625 1,250
Chart-to-Text 2 1,222 1,222

Table 3: Information about the test datasets used in
the experiments. There are two types of tables: multi-
column and single-column. In the description task,
Chart-to-Text, the number of queries matches the num-
ber of table data entries. In the case of ChartQA, there
may be more than one query per table data entry, re-
sulting in an unequal count. ChartQA:human refers to
queries written by humans, while ChartQA:augmented
indicates augmented queries generated by the LLM.

such as ROUGE-L (Lin, 2004) and BERTScore
(Zhang et al., 2020), which assess the performance
of multimodal Language Models in generating de-
scriptions for charts. ROUGEScore refers to the
F1 score of ROUGE-L. The performance of the
CQE in distinguishing between correct and incor-
rect feedback is termed as Feedback Accuracy.
Loop setting In our experiment, we evaluate each
component of the system. Primarily, we assess the
performance of the Chart Generation module, fol-
lowed by evaluations of the CR and the CQE. We
also validate the Early Stopping Checker, which
serves as the condition for terminating the loop. To
account for potential errors in LLM output, each
agent is allowed up to three retries, and the loop is
set to stop after five steps.
Experiments Setting We utilized the AMACE-
1 and AMACE-1o models as foundation models
via API, while the other open LLMs were run on
Nvidia V100 GPUs. Performance for AMACE-1
and AMACE-1o was obtained through five experi-
mental runs, whereas the open LLM experiments
were conducted only once due to resource and time
constraints in the local environment.
Human Evaluation Five participants, all with uni-
versity degrees in computer science, were recruited
solely to evaluate chart quality and generation time.

C Experiments Performance

In the appendix, the tables provide numerical per-
formance results for various experiments.

Table 4 provides the data for the experiments
conducted on CR and CQE, as shown in Figure 4,
as well as the performance with and without Early
Stopping, depicted in Figure 9. Table 5 provides
the performance results from the ablation study,
where the Chart Replier model was replaced based

on AMACE-1o, as shown in Figure 7.

AMACE Open Experiments We conducted exper-
iments with open LLMs using the following con-
figuration: AMACE Open employed Llama-3.1-8B
(Llama Team, 2024) as both the CCG and CQE,
while ChartLlama (Han et al., 2023) served as the
CR. Table 4 presents the results of three experi-
ments conducted on the same datasets as the orig-
inal AMACE. These results, which show lower
performance compared to the other AMACE, were
not included in the main paper.

Original Performance In table 4, the original per-
formance refers to the performance on charts cre-
ated by humans, which are included in the original
dataset. These charts were manually generated, and
the dataset questions and answers were based on
them. For example, when asked about the value of
a specific-colored bar, AMACE sometimes failed
to generate an appropriate chart due to a lack of
prior knowledge. As a result, the original perfor-
mance was higher than others. Considering this, the
performance gap between Human and non-Human
results is evaluated as small.

D Chart Generation Examples

Figure 14 presents example of the charts generated
at each step using the Chart Generation module for
the data "the car sales comparison for various man-
ufacturers between July 2014 and January 2017."
Additionally, we present an example of the outputs
from LLM agents during step 1 and Chart Code
Generator output on step 2.

Figure 15 shows that AMACE and Human Pro-
cess generate nearly identical charts. In Human
Process, Step 2 introduces legends and numerical
values, while Step 3 and 4 adjust font styles and
text positions. In contrast, AMACE-1o modifies
numerical values in Step 2 and adjusts titles and
overall layout in Step 3. These refinements reflect
the detailed adjustments made by humans.

Table 6 presents the type classification of charts
generated by AMACE and the original charts.
Chart types include bar, line, scatter, box, pie, and
radar, classified using a multimodal LLM and veri-
fied through manual review. AMACE generated a
distribution similar to the original charts, predom-
inantly producing bar and line charts while also
exploring other styles.

21483

Model Dataset Performance Step 1 Step 2 Step 3 Step 4 Step 5 Original

AMACE-1

ChartQA:
augmented

Accuracy 0.2032 0.3435 0.4177 0.4676 0.5011
0.6335

Accuracy w/ Early Stopping 0.3098 0.4346 0.4967 0.5314 0.5513
Feedback Accuracy 0.3151 0.4396 0.5115 0.5422 0.5875 -

ChartQA:
human

Accuracy 0.3054 0.3348 0.3479 0.3544 0.3525
0.5559

Accuracy w/ Early Stopping 0.3611 0.4463 0.4862 0.5106 0.5255
Feedback Accuracy 0.3757 0.4215 0.4295 0.4485 0.4400 -

Chart-to-Text

ROUGE-L 0.2174 0.2198 0.2204 0.2227 0.2224
0.3081

ROUGE-L w/ Early Stopping 0.1295 0.1778 0.2022 0.2146 0.2249
BERTScore 0.6282 0.6291 0.6295 0.6297 0.6314

0.7099
BERTScore w/ Early Stopping 0.3580 0.4942 0.5645 0.6007 0.6308
Feedback Accuracy 0.3994 0.4156 0.4267 0.4203 0.4449 -

AMACE-1o

ChartQA:
augmented

Accuracy 0.2632 0.4392 0.4749 0.4819 0.4772
0.5883

Accuracy w/ Early Stopping 0.2711 0.4218 0.4529 0.4650 0.4714
Feedback Accuracy 0.4835 0.7158 0.7640 0.7879 0.8052 -

ChartQA:
human

Accuracy 0.3486 0.4092 0.4228 0.4334 0.4261
0.6127

Accuracy w/ Early Stopping 0.3460 0.4509 0.4867 0.5105 0.5238
Feedback Accuracy 0.4023 0.4780 0.4798 0.5002 0.5025 -

Chart-to-Text

ROUGE-L 0.2366 0.2379 0.2391 0.2396 0.2409
0.2965

ROUGE-L w/ Early Stopping 0.1379 0.1910 0.2181 0.2339 0.2426
BERTScore 0.6425 0.6457 0.6467 0.6482 0.6496

0.7087
BERTScore w/ Early Stopping 0.3638 0.5070 0.5801 0.6240 0.6476
Feedback Accuracy 0.4464 0.4767 0.4940 0.5184 0.5271 -

AMACE
Open

ChartQA:
augmented

Accuracy 0.0242 0.0261 0.0276 0.0272 0.0288
0.0243

Accuracy w/ Early Stopping 0.0340 0.0298 0.0362 0.0085 0.0196
Feedback Accuracy 0.5142 0.5179 0.5172 0.5182 0.5061 -

ChartQA:
human

Accuracy 0.0509 0.0579 0.0597 0.0649 0.0619
0.0528

Accuracy w/ Early Stopping 0.0556 0.0505 0.0500 0.0828 0.0654
Feedback Accuracy 0.4458 0.4385 0.4364 0.4285 0.4632 -

Chart-to-Text

ROUGE-L 0.0647 0.0650 0.0647 0.0633 0.0645
0.0641

ROUGE-L w/ Early Stopping 0.0555 0.0546 0.0547 0.0565 0.0542
BERTScore 0.3751 0.3784 0.3783 0.3729 0.3786

0.3765
BERTScore w/ Early Stopping 0.3579 0.3573 0.3664 0.3667 0.3393
Feedback Accuracy 0.4657 0.4882 0.4579 0.4779 0.4462 -

Table 4: The detailed performance metrics of the Chart Replier and Chart Quality Evaluator experiments, as
illustrated in Figure 4 and performance comparison with and without Early Stopping, depicted in Figure 9. The
Original performance was evaluated based on chart images included in the dataset created by humans, with three
iterations conducted.

Chart Code Generator Chart Replier Chart Quality Evaluator ChartQA:augmented ChartQA:human ROUGEScore BERTScore
GPT-4o mini Gemini 1.0 Pro GPT-4o mini 0.629 0.366 0.233 0.640

GPT-4o Gemini 1.0 Pro GPT-4o mini 0.577 0.390 0.235 0.642
GPT-4o mini Gemini 1.5 Flash GPT-4o mini 0.500 0.360 0.237 0.649
GPT-4o mini Gemini 1.0 Pro GPT-4o 0.595 0.394 0.235 0.642

Table 5: The detailed performance metrics of the three roles on performance, as illustrated in Figure 7. Performance
results are shown in Figure 7. In ChartQA, performance represents the accuracy of each dataset. In Chart-to-Text,
ROUGEScore refers to the ROUGE-L F1 score. Experiments were conducted on 200 data samples for each dataset.

E Cost and Token Efficiency Analysis of
Early Stopping

We compare the cost and token efficiency of ap-
plying the Early Stopping Checker in the AMACE
frameworks across three datasets: ChartQA (aug-
mented), ChartQA (human), and Chart-to-Text. It
should be noted that the data is based on GPT mod-
els due to the unavailability of token-level cost data
from Gemini.

As shown in Table 7, applying the Early Stop-
ping Checker significantly reduces the monetary
cost per data sample across all settings. For in-
stance, in AMACE-1, the cost drops from 0.0483 $
to 0.0195 $ on the Chart-to-Text dataset, achieving
a reduction of up to 59.6%. Similar reductions are
observed in both human-authored and augmented
ChartQA datasets. Even the lighter AMACE-1o
model demonstrates consistent savings, with cost

21484

Step 1

Step 2

Step 3

Step 4

Step 5

Evaluate answers

���������	
�������

�������	���
 ���	�

�������������������
���� ������

�������

�����
�����������
����

����������������	��������������	
���������� ��!���"#��$��

���������������%��������������	��

������������������	�����������

����
�������&��������������%��
��

������������������	�'(�

������ �	
��������)�����

���� ��
�������
��

������ *�+��
�����

�

Chart Code Generator Output

�

�,��*�	 ��-���
�,�.�	���
�/#"0�-�1
�,�.��
�/#"'�-

������ ������ ��!���"/��$��

��������
�,�������	����������-��
�,�.��
�/#"'�-��2�
�*�#�'��

�������.��
�/#"'��

��������
�,�������	����������-��
�,�.�	���
�/#"0�-��2�
�*�#�'��

�������.�	���
�/#"0��

���������������%��������������	��.��
�/#"'�3��.�	���
�/#"0���

������������������	�����������

����
�������&��������������%��
4�

������������������	�'(�

������ �	
��������)���4�

���� ��
�������
��

������ *�+��
�����

�������3�� �	��	��������
�,��*�	 ��-�5

����������������
������,���"-��
������,���/-����6783��967��

*�����	������3�����������

�

Chart Code Generator Output

The student's solution correctly summarizes the main point of the table, which

compares car sales for various manufacturers in …

However, the student made an error in listing Mini as an example of a manufacturer

with higher sales in January 2017; according to the table, Mini had sales of 142 in July

2014 and 143 in January 2017, which does show a slight increase, but it's negligible.

They should have included Hyundai (149 in 2014 to 158 in 2017), Jeep (64 in 2014 to

96 in 2017), and Volvo (106 in 2014 to 121 in 2017), among those with increased sales.

Thus, while the overall conclusion by the student is correct, the specific examples used

to illustrate the point need correction and expansion to accurately reflect the data

Chart Quality Evaluator Output

The chart shows the comparison between car sales in July 2014 and January 2017. The

car sales in July 2014 were higher than in January 2017 for most of the car

manufacturers. Only a few car manufacturers, such as Hyundai and Mini, had higher

sales in January 2017 compared to July 2014. Overall, the car sales were higher in July

2014 compared to January 2017.

Chart Replier Output

Convert to Step 1 Chart

Input chart

Convert to Step 2 Chart

Reflect the error in the differences between the two time points from

the feedback in the code

…

The changed code part,

add the differences to a "Change"

column and reflect it in the chart

The part of the code that

changes in the next step

Figure 14: Charts generated by the Chart Generation module and the process from Step 1 to Step 2. Each step
visualizes the July 2014 and January 2017 Car Sales Comparison, displaying sales per manufacturer. The red text
indicates the modified code from the previous step, while the underlined text highlights the identified feedback. The
red text in the Chart Code Generator Output of Step 1 reflects the feedback from the Chart Replier and Chart Quality
Evaluator, which identified the error in the differences between the two time points, resulting in the updated red
text in the Chart Code Generator Output of Step 2.

reductions up to 54.8%.

Table 8 presents a marked decrease in the num-
ber of input tokens per data point when Early Stop-

ping is enabled. Notably, AMACE-1 on the Chart-
to-Text dataset shows a reduction from 52.33 to
15.77 tokens (69.9% decrease). Across the board,

21485

Figure 15: Step-by-step charts generated by AMACE-1o (left) and human-generated charts using prompt engineering,
denoted as Human Process (right) using prompt engineering. Each chart is generated based on the same data.

the Early Stopping mechanism reduces unneces-
sary prompt inflation, improving processing effi-
ciency.

Table 9 further highlights that the use of the
Early Stopping Checker also reduces the output
length, contributing to lower latency and cost. For

example, the output token count in AMACE-1 on
Chart-to-Text decreases by 62.3%, from 25.53 to
9.63 tokens. These improvements suggest that the
Early Stopping Checker encourages more focused
and concise responses without negatively affecting
performance.

21486

Dataset Models Bar Line Scatter Box Pie Radar

Chart-to-Text
Original 44.70 55.30 0 0 0 0

AMACE-1 42.80 56.38 0.29 0 0.51 0.02
AMACE-1o 47.58 52.25 0 0 0.17 0

ChartQA Original 80.73 14.09 0 0 5.18 0

ChartQA:
augmented

AMACE-1 71.13 28.33 0.13 0 0.41 0
AMACE-1o 63.00 36.73 0.02 0 0.24 0

ChartQA:
human

AMACE-1 75.40 21.66 0.59 0 2.30 0.05
AMACE-1o 77.73 20.08 0.51 0 1.68 0

Table 6: The type classification of charts generated by
AMACE models compared to original charts in the
dataset. Chart types are categorized as bar, line, scatter,
box, pie, and radar.

Model Dataset
w/o Early
Stopping
Checker

w/ Early
Stopping
Checker

AMACE
-1

ChartQA:augmented 0.0238 $ 0.0117 $ (↓ 51.0%)
ChartQA:human 0.0391 $ 0.0206 $ (↓ 47.3%)

Chart-to-Text 0.0483 $ 0.0195 $ (↓ 59.6%)

AMACE
-1o

ChartQA:augmented 0.0047 $ 0.0021 $ (↓ 54.8%)
ChartQA:human 0.0053 $ 0.0039 $ (↓ 26.5%)

Chart-to-Text 0.0094 $ 0.0069 $ (↓ 26.2%)

Table 7: Cost per data sample with and without Early
Stopping Checker.

Model Dataset
w/o Early
Stopping
Checker

w/ Early
Stopping
Checker

AMACE
-1

ChartQA:augmented 35.45 15.27 (↓ 56.9%)
ChartQA:human 41.89 18.84 (↓ 55.0%)

Chart-to-Text 52.33 15.77 (↓ 69.9%)

AMACE
-1o

ChartQA:augmented 35.00 16.54 (↓ 52.7%)
ChartQA:human 34.22 23.60 (↓ 31.0%)

Chart-to-Text 47.36 32.60 (↓ 31.2%)

Table 8: Input token usage per data sample.

Model Dataset
w/o Early
Stopping
Checker

w/ Early
Stopping
Checker

AMACE
-1

ChartQA:augmented 16.11 7.88 (↓ 51.1%)
ChartQA:human 21.60 11.26 (↓ 47.9%)

Chart-to-Text 25.53 9.63 (↓ 62.3%)

AMACE
-1o

ChartQA:augmented 17.33 9.03 (↓ 47.9%)
ChartQA:human 19.52 14.16 (↓ 27.5%)

Chart-to-Text 20.92 14.79 (↓ 29.3%)

Table 9: Output token usage per data sample.

These results collectively demonstrate that incor-
porating Early Stopping into the inference process
offers substantial efficiency gains in terms of cost
and token usage, which are critical for scalable and
economical deployment of LLM-based systems.

21487

