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Abstract

As large language models (LLMs) see wider
real-world use, understanding and mitigating
their unsafe behaviors is critical. Interpreta-
tion techniques can reveal causes of unsafe out-
puts and guide safety, but such connections
with safety are often overlooked in prior sur-
veys. We present the first survey that bridges
this gap, introducing a unified framework that
connects safety-focused interpretation methods,
the safety enhancements they inform, and the
tools that operationalize them. Our novel taxon-
omy, organized by LLM workflow stages, sum-
marizes nearly 70 works at their intersections.
We conclude with open challenges and future
directions. This timely survey helps researchers
and practitioners navigate key advancements
for safer, more interpretable LLMs.

1 Introduction
Large language models (LLMs) have shown re-
markable capabilities across many domains (Yu
et al., 2022; Singhal et al., 2023; Sadybekov and
Katritch, 2023; Wang et al., 2024e), but their out-
puts can be unsafe, posing significant challenges
for real-world use (Tang and Li, 2025). In response,
researchers have developed interpretation methods
and tools to better understand the mechanisms be-
hind unsafe generation and to improve safety (Mc-
Grath and Jonker, 2024; Ajwani et al., 2024).

Bridging Interpretation and Safety. As interest
in both LLM interpretation and safety grows, a
unifying survey that bridges the two becomes es-
sential. Existing surveys largely focus on either
interpretation (Zhao et al., 2024b; Ferrando et al.,
2024; Zhao et al., 2024c; Calderon and Reichart,
2025) or safety (Huang et al., 2023b; Ayyamperu-
mal and Ge, 2024; Shi et al., 2024b; Chua et al.,
2024; Ma et al., 2025), without addressing how
interpretation can enhance safety or inform users
to operationalize such enhancements. Yet, both

safety and human understanding are core motiva-
tions for interpretation research (Ferrando et al.,
2024). Some works suggest safety as a downstream
application of interpretation (Wu et al., 2024b) or
explore only limited intersections between inter-
pretation and safety (Bereska and Gavves, 2024).
Moreover, emerging directions like self-reasoning
interpretation, where LLMs explain their own be-
haviors, remain underexplored (Zhao et al., 2024b;
Singh et al., 2024a; Calderon and Reichart, 2025).
Our survey fills these critical gaps by contributing:

• The first survey bridging LLM interpreta-
tion and safety (Fig. 1). Our timely survey in-
troduces a unified framework for summarizing
safety-focused interpretation methods (§3), the
safety enhancement strategies they inform (§4),
and the practical tools that operationalize such
enhancements (§5). Although improving safety
and human understanding is often cited as a mo-
tivation for interpretation research (Doshi-Velez
and Kim, 2017; Madsen et al., 2022; Zhao et al.,
2024b,c; Ferrando et al., 2024), this connection
has not been systematically surveyed until now.

• Novel taxonomy of LLM interpretation meth-
ods organized by LLM workflow focus (Fig. 1):
training process (§3.1), input prompts (§3.2), in-
ference (§3.3), and generation for self-reasoning
(§3.4). These taxonomy categories anchor con-
nections to six safety enhancement strategies (§4)
and four tool types (§5), summarizing nearly 70
works at their intersections (Table 1),1 including
emerging areas like self-reasoning for interpreta-
tion not covered in prior surveys.

• Distill open problems and challenges to guide
future NLP research and raise awareness of unre-
solved safety issues (§6). These include defend-
ing against interpretation-informed attacks, eval-

1Table 2 and Table 3 in the appendix extends Table 1 to in-
clude safety-oriented interpretation methods not yet leveraged
for safety enhancements or tool use.
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Figure 1: Visual overview our survey’s unified framework bridging LLM interpretation and safety, summarizing the
connections between safety-focused interpretation methods (§3), the safety enhancements they inform (§4), and
the tools that operationalize them (§5). We organize surveyed research using a novel taxonomy based on LLM
workflow: training, input tokens, inference, and generation.

uating interpretation, using training attribution
for safety, designing user-centered presentation
of interpretation, and refining safety dimensions.

2 Survey Methodology
We focus on interpretation methods addressing
safety issues in autoregressive Transformer-based
generative LLMs (Vaswani et al., 2017; Brown
et al., 2020), among the most widely used and stud-
ied architectures (Huang et al., 2023c; Veeramacha-
neni, 2025). We adopt the established definition of
interpretation as recognizing and explaining LLM
behaviors in human-understandable terms (Doshi-
Velez and Kim, 2017; Räuker et al., 2023; Hsieh
et al., 2024; Singh et al., 2024a). We exclude meth-
ods requiring major architectural changes, as they
hinder practical integration (Ludan et al., 2023; Tan
et al., 2024; Sun et al., 2025).

We focus on four major safety concerns com-
monly studied in interpretation research (Qian
et al., 2024):2 hallucination, jailbreaks and harm-
fulness3, bias, and privacy leakage. These safety
risks often share similar underlying causes, such as
risky training data and objectives that favor memo-
rization over generalization. Such design choices
can embed unintended correlations, reinforce bi-
ases, and leave models vulnerable to adversarial
prompts. As a result, hallucinations arise from
confident fabrication; jailbreaks exploit alignment
flaws; bias reflects systemic data skew; and pri-

2We focus on risks of direct harm or misuse, excluding
general performance issues like out-of-distribution robustness.

3We do not consider user intent (malicious or benign)
as interpretation methods reveal mechanisms behind unsafe
outputs regardless of intent.

vacy leakage stems from memorized content. De-
spite differing in expression, these risks all stem
from failures to generalize appropriately. Section 3
elaborates on how various mitigation approaches
address these intertwined unsafe behaviors.

We curated nearly 70 works from top venues
in machine learning, natural language process-
ing, human-computer interaction, and visualiza-
tion, with a focus on understanding, enhancing,
and communicating LLM safety through interpre-
tation (Table 1).

3 Interpretation Methods for LLM Safety
We categorize interpretation methods by where they
operate in the LLM workflow (Fig. 1): training
process (§3.1), input tokens (§3.2), model inter-
nals (§3.3), and underlying knowledge revealed by
LLMs’ self-explanatory capabilities (§3.4).

3.1 Attribute Safety to Training Process

Since LLMs are shaped by their training
data (Grosse et al., 2023), training data attribution
(TDA) assumes unsafe behaviors stem from prob-
lematic training data and evaluates the contribu-
tion of each training data point to model behavior.
Representation-based attribution does this by
comparing the similarity between the latent vectors
of each training example and the output (Yeh et al.,
2018; Tsai et al., 2023; Su et al., 2024b; He et al.,
2024b). While effective for identifying related data,
it does not establish causality (Cheng et al., 2025a).

To assess causal influence, gradient-based
methods estimate how sensitive a model’s param-
eters are to individual training examples. Many
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Table 1: Overview of representative works at the intersections of safety-focused interpretation (§3), safety enhance-
ments they inform (§4), and tools operationalizing them (§5). Each row is one work; each column corresponds to a
technique or tool. Safety issues, techniques, and tools addressed by a work are indicated by a colored cell.
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Lee et al. (2025a) AAAI
Hazra et al. (2024) EMNLP
Zhao et al. (2024e) ArXiv

Qian et al. (2024) ACL
Sarti et al. (2023) ACL

Mishra et al. (2025) TVCG
Vig (2019) ACL

Wang et al. (2025b) ArXiv
Dale et al. (2023) ACL

Chuang et al. (2024) EMNLP
Pan et al. (2025a) ArXiv

Li et al. (2023b) ArXiv
Tenney et al. (2020) EMNLP
Zhang et al. (2024b) ICLR

Zhu et al. (2024) ArXiv
Duan et al. (2024) ArXiv

Ball et al. (2024) ArXiv
Li et al. (2025c) COLING

Wang et al. (2024a) ArXiv
Yang et al. (2024a) ACL

Bhattacharjee et al. (2024) SafeGenAI
Chu et al. (2024) CCS

Rimsky et al. (2024) ACL
Singh et al. (2024b) ICML
Zhang et al. (2024c) ACL

Li et al. (2023a) NeurIPS
Turner et al. (2023) ArXiv

Gao et al. (2024) ArXiv
Shen et al. (2024) ICLR
Han et al. (2025) ArXiv

Hernandez et al. (2024a) COLM
Chen et al. (2024b) ArXiv
Wang et al. (2024c) ACL

Li et al. (2024e) ArXiv
Chen et al. (2025) AAAI

Zhao et al. (2024a) ArXiv
Burns et al. (2022) ArXiv

Li et al. (2024c) ArXiv
Deng et al. (2025) AAAI
Liu et al. (2024b) ICLR
Li et al. (2024a) ArXiv
Ma et al. (2023) EMNLP
Li et al. (2025b) ICLR

Zhao et al. (2024d) EMNLP
Hernandez et al. (2024b) ICLR

Lindsey et al. (2025) Anthropic
Ameisen et al. (2025) Anthropic

Zhou et al. (2025a) ICLR
Frikha et al. (2025) ArXiv

Hegde (2024) SciForDL
He et al. (2025) ArXiv

Abdaljalil et al. (2025) ArXiv
Bayat et al. (2025) ArXiv

Wu et al. (2025) ArXiv
O’Brien et al. (2024) ArXiv

Khoriaty et al. (2025) ArXiv
Geva et al. (2022b) EMNLP
Geva et al. (2022a) EMNLP

Yu et al. (2024b) EMNLP
Dhuliawala et al. (2024) ACL

Weng et al. (2023) EMNLP
Cheng et al. (2025b) ArXiv

Liu et al. (2025a) ArXiv
Jiang et al. (2025) ICASSP

Ji et al. (2024a) AAAI
Zhang et al. (2025) ArXiv

Kaneko et al. (2024) ArXiv
Prahallad and Mamidi (2024) ArXiv

Li et al. (2024d) ArXiv
Cao et al. (2024) NaNA
Rad et al. (2025) ArXiv

Moore et al. (2024) ArXiv
Sicilia and Alikhani (2024) NLP4PI

Mou et al. (2025) ArXiv
Liu et al. (2025a) ArXiv

Kwon and Mihindukulasooriya (2023) IUI

build on TracIn (Pruthi et al., 2020), which traces
influence by measuring the alignment between gra-
dients of losses computed for a model output and
each training data. Variants have improved its ac-
curacy (Han and Tsvetkov, 2021; Yeh et al., 2022;
Wu et al., 2022; Han and Tsvetkov, 2022; Lad-
hak et al., 2023) and adapted it for LLMs (Xia
et al., 2024; Pan et al., 2025b). However, these
methods fall short in estimating the effect of re-
moving a training point (Hammoudeh and Lowd,
2024; Cheng et al., 2025a). More theoretically
grounded work builds on influence function (Ham-
pel, 1974; Cook and Weisberg, 1980; Koh and

Liang, 2017), which estimates how downweight-
ing a training example affects model parameters
and predictions (Koh and Liang, 2017). Despite
scalability improvements (Han et al., 2020; Ren
et al., 2020; Barshan et al., 2020; Guo et al., 2021;
Schioppa et al., 2022; Park et al., 2023) and ex-
tension to LLMs (Grosse et al., 2023; Kwon et al.,
2024; Choe et al., 2024; Wu et al., 2024a; Chang
et al., 2025), their effectiveness is debated due to
strong assumptions like model convexity (Basu
et al., 2021; Akyurek et al., 2022; Li et al., 2024g),
which rarely hold for LLMs (Cheng et al., 2025a).

Another direction explores Data Shapley, which
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estimates the contribution of individual or groups
of data points by approximating the effect of their
removal or addition (Ghorbani and Zou, 2019; Jia
et al., 2019; Feldman and Zhang, 2020). While
promising, these methods are computationally ex-
pensive and have so far been limited to smaller
models (Wang et al., 2024b, 2025a). Furthermore,
the inaccessibility of LLMs’ proprietary training
data poses challenges for application of TDA over-
all (Bommasani et al., 2021; Achiam et al., 2023).

Beyond training data, researchers attempted to
understand LLM training dynamics of learning
new concepts and capabilities. Some studies use
synthetic tasks with well-defined concepts, exam-
ining how models acquire them over training (Park
et al., 2024a; Prakash et al., 2024a). Others com-
pare models pre- and post-fine-tuning (Zhao et al.,
2024e; Chen et al., 2024a; Hazra et al., 2024),
simulate training (Ilyas et al., 2022; Guu et al.,
2023; Engstrom et al., 2024), or analyze model in-
ternals (§3.3) across training checkpoints (Davies
et al., 2023; Nanda et al., 2023a; Xu et al., 2024b;
Prakash et al., 2024a; Ma et al., 2024; Inaba et al.,
2025). These studies have revealed how safety ca-
pabilities like toxic content refusal emerge during
training (Qian et al., 2024; Lee et al., 2024).

3.2 Identify Safety-Critical Input Tokens

A major branch of AI interpretation research
attributes model outputs to specific input fea-
tures, hypothesizing that unsafe outputs stem from
over-attending or misinterpreting specific input to-
kens (Simonyan et al., 2014; Bach et al., 2015;
Ribeiro et al., 2016; Selvaraju et al., 2017; Shriku-
mar et al., 2017; Sundararajan et al., 2017; Lund-
berg and Lee, 2017). For Transformer-based mod-
els, early methods examined attention weights,
based on the intuition that higher weights singal
greater importance (Wiegreffe and Pinter, 2019;
Abnar and Zuidema, 2020; Kobayashi et al., 2020).
While attention weights offer insights into model
behavior (Halawi et al., 2024; Yuksekgonul et al.,
2024), monitoring all heads in LLMs can be over-
whelming. Aggregation strategies, from simple
heuristics (e.g., mean, max) (Tu et al., 2021; Sarti
et al., 2024) to more principled attention roll-
out (Abnar and Zuidema, 2020), help reduce com-
plexity.

To improve the faithfulness by accounting for
other model components like residuals and layer
norms (Kobayashi et al., 2021), vector-based
methods decompose latent vectors into vectors

attributable to input tokens (Kobayashi et al.,
2021; Modarressi et al., 2022; Ferrando et al.,
2022b, 2023; Modarressi et al., 2023; Yang et al.,
2023a; Achtibat et al., 2024; Song et al., 2024;
Kobayashi et al., 2024). These are applied to mod-
ern LLMs (Arras et al., 2025) and used to ana-
lyze hallucinations (Ferrando et al., 2022a; Dale
et al., 2023; Chuang et al., 2024). However, these
methods require model-specific designs, limiting
adaptability (Abbasi et al., 2024).

Perturbation-based methods offer a model-
agnostic approach by modifying input tokens and
observing output changes (Ribeiro et al., 2016).
Perturbations include altering latent vectors (Deis-
eroth et al., 2023; Madani et al., 2025), mask-
ing or zeroing token embeddings (Jacovi et al.,
2021; Yin and Neubig, 2022; Mohebbi et al., 2023;
Cohen-Wang et al., 2024), replacing tokens (Fin-
layson et al., 2021; Liu et al., 2023; Mohebbi et al.,
2023; Sadr et al., 2025), or prompting counter-
factuals (Bhattacharjee et al., 2023b; Yona et al.,
2023; Gat et al., 2024). Some extend Shapley
value, which has been largely explored for classi-
cal models (Lundberg and Lee, 2017; Covert et al.,
2021), to estimate the influence of specific input
tokens (Horovicz and Goldshmidt, 2024; Moham-
madi, 2024; Enouen et al., 2024). These methods
have identified tokens triggering prompt poison-
ing (Cohen-Wang et al., 2024) and biases (Mo-
hammadi, 2024). However, they can be costly and
create unnatural, out-of-distribution inputs, caus-
ing unfaithful interpretations (Abbasi et al., 2024;
Achtibat et al., 2024).

To address these pitfalls, gradient-based meth-
ods compute the gradient of the model output
with respect to input embeddings, quantifying how
changes to each token affect output (Simonyan
et al., 2014; Bach et al., 2015; Selvaraju et al., 2017;
Shrikumar et al., 2017; Sundararajan et al., 2017).
Initially designed for smaller models (Enguehard,
2023; Achtibat et al., 2024; Wang et al., 2024f;
Song et al., 2024), they have since been refined
with contrastive explanations (Jacovi et al., 2021;
Yin and Neubig, 2022; Eberle et al., 2023; Sarti
et al., 2024) and extended to LLMs (Barkan et al.,
2024a; Rezaei Jafari et al., 2024; Qi et al., 2024;
Pan et al., 2025a).

Other approaches include similarity-based
methods that compare the final output represen-
tation to input token embeddings, assuming higher
similarity indicates greater token importance (Fer-
rando et al., 2022b; Abbasi et al., 2024). In par-
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allel, researchers have proposed prompt-based
approaches (Bhattacharjee et al., 2023a; Huang
et al., 2023a), which instruct LLMs to identify in-
fluential tokens for behaviors like jailbreaks (Wang
et al., 2025b), and optimization-based techniques,
which search for token attributions that maximize
certain interpretability metrics (Zhou and Shah,
2023; Barkan et al., 2024c,b).

3.3 Interpret Safety via Inference-Time
Model Internals

Multiple works have shown that unsafe behav-
iors are associated with certain regions in latent
space (Zou et al., 2023) or specific model compo-
nents (Geva et al., 2023) or neurons (Geva et al.,
2021), which can be interpreted in three ways: (1)
identifying latent regions tied to safety (§3.3.1); (2)
perturbing components to assess impact (§3.3.2);
and (3) deciphering latent vectors with human-
understandable terms (§3.3.3).

3.3.1 Probe Safety Regions in Latent Space
Recent work investigates whether and how safety-
related concepts are encoded in LLMs’ latent vec-
tors (Zou et al., 2023). This work builds on the
linear representation hypothesis, which posits that
high-level concepts like factuality or harmfulness
are embedded as linear directions in the model’s la-
tent space (Mikolov et al., 2013; Elhage et al., 2022;
Park et al., 2024b). Under this view, researchers
analyze latent vectors from individual layers—or
concatenated across multiple layers—to identify
which latent vectors encode safety behaviors.

A simple yet powerful approaches compute
mean latent vectors for the data points with and
without a particular concept (e.g., hallucinated vs.
factual). These reveal directions associated with
hallucinations (Liu et al., 2024a; Chen et al., 2025)
and jailbreaks (Arditi et al., 2024; Zhao et al.,
2024a; Zhu et al., 2024; Lin et al., 2024). Dimen-
sionality reduction using PCA or SVD further un-
cover axes responsible for unsafe behaviors (Duan
et al., 2024; Ball et al., 2024; Pan et al., 2025a).

Another widely used technique is probing clas-
sifiers, where a model is trained to predict whether
a latent vector encodes a safety-related prop-
erty (Alain and Bengio, 2016; Tenney et al., 2019;
Dalvi et al., 2019; Kadavath et al., 2022; Gurnee
et al., 2023; Liu et al., 2024a; Ju et al., 2024). Prob-
ing successfully detects hallucinations (Burns et al.,
2022; Slobodkin et al., 2023; Orgad et al., 2024;
Ashok and May, 2025), jailbreaks (Zhou et al.,

2024; Xu et al., 2024c; Abdelnabi et al., 2024;
Ashok and May, 2025), and bias (Orgad et al.,
2024). However, these properties are not always
linearly separable (Hildebrandt et al., 2025), intro-
ducing non-linear classifiers (Azaria and Mitchell,
2023; Ji et al., 2024b; Zhang et al., 2024a; Su et al.,
2024a; Bürger et al., 2024; He et al., 2024c; Li et al.,
2025a; Tan et al., 2025) or contrastive learning (He
et al., 2024a; Beigi et al., 2024) to better capture
complex boundaries of unsafe model behaviors. A
known challenge of the probing methods is poor
generalization across tasks and datasets (Belinkov,
2022; CH-Wang et al., 2024; Levinstein and Her-
rmann, 2024), which has been partially resolved
by incorporating distributional differences into the
loss function (Bürger et al., 2024) or training prob-
ing models on diverse datasets (Liu et al., 2024a).

3.3.2 Perturb to Assess Safety Impact
A common way to understand how specific com-
ponents affect model behavior is to perturb them
and observe changes. One approach uses gradient-
based analysis, computing output gradients with
respect to model parameters to evaluate each param-
eter’s influence. While useful for explaining mech-
anisms behind knowledge conflicts in RAG (Jin
et al., 2024) and biased generations (Liu et al.,
2024b), such methods may not sufficiently capture
causal relations (Chattopadhyay et al., 2019).

A more direct approach is component knockout,
which ablates layers, attention heads, or parame-
ters to identify their influence (Olsson et al., 2022;
Geva et al., 2023). This has localized components
responsible for hallucinations (Jin et al., 2024; Li
et al., 2024a), jailbreaks (Zhao et al., 2024d; Wei
et al., 2024), and biases (Yang et al., 2023b; Ma
et al., 2023). Instead of full ablation, parameter
scaling adjusts component influence (Luick, 2024),
pinpointing safety-critical layers (Li et al., 2025b)
and heads (Zhou et al., 2025b), while parameter
perturbation modifies model weights and evalu-
ates how safety properties respond to the structural
changes (Peng et al., 2024; Huang et al., 2024;
Leong et al., 2024), offering a broader perspective
on the stability and robustness of safety alignment
across the model’s parameter landscape.

Activation patching, inspired by causal media-
tion analysis (Pearl, 2001; Vig et al., 2020), re-
places intermediate activations (e.g., latent vec-
tors, attention weights) from one input with those
from another input, measuring how such interven-
tion affects the model output. It localizes model
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components associated with hallucinations (Monea
et al., 2024; Deng et al., 2025) and biases (Vig
et al., 2020), as well as general model capabili-
ties (Geiger et al., 2021; Stolfo et al., 2023; Davies
et al., 2023; Cabannes et al., 2024) and factual
knowledge (Meng et al., 2022; Nanda et al., 2023b;
Ghandeharioun et al., 2024).

To uncover how components interact, re-
searchers extract computational circuits, graphs
with important components as nodes and informa-
tion flow as edges (Geiger et al., 2021; Elhage et al.,
2021). Path patching, an extension of activation
patching, modifies outputs along specific compu-
tational paths while freezing the rest of the net-
work4 (Wang et al., 2023; Goldowsky-Dill et al.,
2023; Prakash et al., 2024b; Hanna et al., 2023).
Due to the high reliance on human inspection,
several efforts automate circuit discovery (Conmy
et al., 2023; Ferrando and Voita, 2024; Bhaskar
et al., 2024), while attribution patching approxi-
mates causal effect for scalability (Nanda, 2024;
Syed et al., 2024; Kramár et al., 2024; Hanna et al.,
2024). However, as LLM circuit analysis is still
in its early stages, most focus on simple grammat-
ical or arithmetic tasks, with very few addressing
real-world safety problems (Hanna et al., 2024).

3.3.3 Decipher Latent Vectors with Language
One approach to understand latent vectors through
language is to analyze how their individual neurons
respond to input data. By identifying inputs that
highly activate a neuron and their shared patterns,
researchers have inferred concepts encoded by each
neuron (Geva et al., 2021; Foote et al., 2023). How-
ever, many neurons in LLMs are polysemantic, en-
coding multiple unrelated concepts, making inter-
pretation challenging (Arora et al., 2018; Bricken
et al., 2023; Templeton et al., 2024).

To address this, researchers have developed
techniques to disentangle concepts superposed
in the latent vectors (Elhage et al., 2022). A
prominent method is using Sparse dictionary learn-
ing (Mairal et al., 2008; Makhzani and Frey, 2013;
Elhage et al., 2021) to train sparse autoencoders
(SAEs) (Sharkey et al., 2022; Bricken et al., 2023;
Huben et al., 2024; Lieberum et al., 2024). An SAE
consist of an encoder and a decoder; the encoder
maps a latent vector into a sparse, high-dimensional

4Path patching differs from activation patching in that it se-
lectively modifies only the information flowing along specific
paths, whereas activation patching replaces entire activations
at specific components.

concept vector, where each dimension — SAE neu-
ron — represents a distinct, interpretable concept,
characterized by the inputs that strongly activate
it (Paulo et al., 2024); the decoder reconstructs the
original latent vector from the concept vector.

Since training separate SAEs for each (sub)layer
in LLMs can be computationally intensive and re-
dundant, later research enhances scalability and
expressiveness through new architectures (Raja-
manoharan et al., 2024a; Templeton et al., 2024;
Dunefsky et al., 2024a; Mudide et al., 2025), activa-
tion functions (Rajamanoharan et al., 2024b), and
training strategies (Kissane et al., 2024; Ghilardi
et al., 2024; Braun et al., 2024; Shi et al., 2025;
Farnik et al., 2025). These advances have discov-
ered more diverse concepts (O’Neill et al., 2024;
Templeton et al., 2024; He et al., 2024e), offering
insights into LLMs’ hallucinations (Ferrando et al.,
2025; Theodorus et al., 2025), jailbreaks (Härle
et al., 2024; Muhamed et al., 2025; Gallifant et al.,
2025), biases (Hegde, 2024; Zhou et al., 2025a),
and privacy leakage (Frikha et al., 2025).

Beyond individual neurons, SAE circuits are
extracted to reveal how interpretable concepts in-
teract to produce specific outputs (He et al., 2024d;
Dunefsky et al., 2024c; Marks et al., 2025; Bala-
gansky et al., 2025). SAE variants, such as Cross-
coder (Lindsey et al., 2024) and Transcoder (Dunef-
sky et al., 2024a,b; Ameisen et al., 2025), enhance
circuit interpretability and reduce redundancy, mak-
ing it easier to isolate mechanisms behind unsafe
behaviors (Lindsey et al., 2025).

In parallel, logit lens projects intermediate latent
vectors onto the model’s vocabulary space using the
final projection matrix, viewing latent vectors on
the vocabulary level (nostalgebraist, 2020; Elhage
et al., 2021; Geva et al., 2022b; Dar et al., 2023).
Further research enhances its robustness (Belrose
et al., 2023; Din et al., 2023) and extends it to an-
alyze training dynamics (Katz et al., 2024). The
logit lens has been leveraged to investigate LLMs’
knowledge store and recall mechanisms (Haviv
et al., 2023; Yu et al., 2023) and safety issues, such
as hallucinations (Yu et al., 2024b; Jiang et al.,
2024a; Halawi et al., 2024; Jin et al., 2024) and jail-
breaks and harmfulness (Zhao et al., 2024d; Feng
et al., 2024; Lee et al., 2024).

3.4 Self-explain with Reason Generation
The rapid advances in LLMs’ self-explanatory and
reasoning capabilities has prompted a surge of re-
cent work aiming to explore how LLMs can in-
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terpret their own outputs by expressing the rea-
soning behind them in natural language (Huang
and Chang, 2023; Zhao et al., 2024b; Yu et al.,
2024a). A common approach is in-generation rea-
soning, where LLMs are prompted or trained to
generate responses along with rationales (Camburu
et al., 2018; Rajani et al., 2019; Marasovic et al.,
2022) or uncertainty estimates (Kadavath et al.,
2022; Chaudhry et al., 2024; Amayuelas et al.,
2024; Xu et al., 2024a). Chain-of-thought (CoT)
prompting is a notable example, where LLMs gen-
erate intermediate reasoning steps to reach anan-
swer (Wei et al., 2022; Zhao et al., 2023a; Chu
et al., 2025; Cahlik et al., 2025). Many CoT vari-
ants support more complex reasoning (Yao et al.,
2023; Besta et al., 2024) and improve explana-
tion faithfulness (Qu et al., 2022; Lyu et al., 2023;
Tafjord et al., 2022; Creswell and Shanahan, 2022;
Creswell et al., 2023). However, such explanations
can be unreliable (Gao et al., 2023; Ye and Durrett,
2022; Araya, 2025), necessitating further verifica-
tion (Ye and Durrett, 2022; Turpin et al., 2023;
Weng et al., 2023; Miao et al., 2024).

Alternatively, post-hoc explanation methods as-
sess and explain a response after generation (Jiang
et al., 2024b; Binder et al., 2025). These methods
prompt LLMs to evaluate the correctness or safety
of their outputs and provide rationales (Li et al.,
2024b; Liu et al., 2025a; Betley et al., 2025). To
explain hallucinations, a response may be split into
factual claims or questions, which the model is then
asked to verify against its knowledge (Dhuliawala
et al., 2024; Akbar et al., 2024; Lee et al., 2025b).

4 Enhance Safety using Interpretation

Recent advances in LLM interpretation (§3) have
inspired techniques to enhance model safety. This
section reviews methods that leverage interpreta-
tion to mitigate unsafe behaviors, following the
stages of the LLM workflow discussed in §3.

4.1 Attend to Relevant Input Tokens (§3.2)

Some methods prompt LLMs to attend to rele-
vant input tokens to reduce hallucinations (Liu
et al., 2025b) and improve factuality (Krishna
et al., 2023). Others remove jailbreak-triggering
tokens (Pan et al., 2025a) or manipulate attention to
user-specified relevant tokens (Zhang et al., 2024b).

4.2 Modify Model Internals for Safety (§3.3)
4.2.1 Steer Latent Vectors To Safe Directions
Representation engineering guides LLMs’ latent
vectors toward safe regions by adding safety vec-
tors identified by probing (Zou et al., 2023) or train-
ing transformations that map unsafe vectors into
safe regions (Hernandez et al., 2024a) (§3.3.1).
These methods mitigate a range of safety con-
cerns (Qian et al., 2024; Rimsky et al., 2024; Singh
et al., 2024b; Chu et al., 2024), such as hallucina-
tions (Li et al., 2023a; Yang et al., 2024a; Zhang
et al., 2024c; Duan et al., 2024), jailbreaks and
harmfulness (Turner et al., 2023; Bhattacharjee
et al., 2024; Zhu et al., 2024; Ball et al., 2024; Gao
et al., 2024; Shen et al., 2024; Li et al., 2025c; Han
et al., 2025), and bias (Hernandez et al., 2024a).

4.2.2 Modulate (Un)Safe Neurons’ Activations
Suppressing risky neurons or amplifying safer ones
guides LLMs away from unsafe behaviors. SAEs
help locate and control (un)safe SAE neuron ac-
tivations (Soo et al., 2025) (§3.3.3), addressing
risks (He et al., 2025) like hallucinations (Abdal-
jalil et al., 2025; Bayat et al., 2025), jailbreaks
and harmfulness (O’Brien et al., 2024; Härle et al.,
2024; Khoriaty et al., 2025; Wu et al., 2025), bi-
ases (Liu et al., 2024b; Hegde, 2024; Marks et al.,
2025; Zhou et al., 2025a), and privacy leaks (Frikha
et al., 2025). Alternatives remove dependency on
SAEs by using logit lens (§3.3.3) to find and up-
scale safe MLP sublayers (Geva et al., 2022b; Wang
et al., 2024a) or amplify safety-critical attention
weights (§3.3.1, §3.3.2) on user-specified reliable
tokens (Zhang et al., 2024b; Deng et al., 2025).

4.2.3 Edit Harmful Model Components
Safety can be improved by pruning or downscaling
components (e.g., attention heads or (sub)layers)
linked to hallucinations (Li et al., 2024a; Yu et al.,
2024b), jailbreaks (Zhao et al., 2024d; Wang et al.,
2024c; Li et al., 2024e, 2025b; Wang et al., 2025b),
and biases (Ma et al., 2023). Other techniques
identify safety directions in parameter space by
comparing aligned and unaligned model weights,
then steer critical parameters accordingly (Hazra
et al., 2024; Wang et al., 2024a; Zhao et al., 2024e).

4.3 Verify Safety before Outputs (§3.3, §3.4)
Some approaches generate multiple candidate re-
sponses, evaluate their safety (§3.3, §3.4), and se-
lect only safe ones to construct final output (Burns
et al., 2022; Zhao et al., 2023b; Weng et al., 2023;
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Dale et al., 2023; Miao et al., 2024; Chuang et al.,
2024; Dhuliawala et al., 2024; Chen et al., 2025).
Others intervene during generation, resamping to-
kens when an unsafe sequence is detected (Li et al.,
2024c; Cheng et al., 2025b) or producing refusal
messages (Zhao et al., 2024a; Mou et al., 2025).

4.4 Output with Self-Reasoning (§3.4).
Building on CoT reasoning’s success for perfor-
mance and interpretation (Ji et al., 2024a), sev-
eral approaches fine-tune or prompt LLMs to gen-
erate intermediate reasoning steps to reinforce
safety constraints during generation (Kaneko et al.,
2024; Prahallad and Mamidi, 2024; Li et al.,
2024d; Cao et al., 2024; Sicilia and Alikhani, 2024;
Moore et al., 2024; Rad et al., 2025; Zhang et al.,
2025; Mou et al., 2025). For instance, GuardRea-
soner (Liu et al., 2025a) prompts models to explain
why a response may be harmful, enabling safer
behavior through self-reflection.

5 Tools Operationalizing Safety-Focused
Interpretation

To apply interpretation methods (§3) and safety
enhancement strategies (§4), practitioners need
tools that support actionability (Kaur et al., 2020;
Lakkaraju et al., 2022; Sharkey et al., 2025). Some
efforts focus on developing libraries to ease im-
plementation of interpretation and safety tech-
niques (Choe et al., 2024; Kokhlikyan et al., 2020;
Sarti et al., 2023; Hao et al., 2024), while others
introduce interactive visual tools, inspired by their
effectiveness in enhancing human understanding of
classical AI models (Hohman et al., 2019; Beauxis-
Aussalet et al., 2021; La Rosa et al., 2023; Liao
and Wortman Vaughan, 2024; Wang et al., 2025c).

5.1 Training Data Attribution (TDA) Visual-
ization (§3.1) shows how training examples shape
model behavior. A prominent tool is LLM Attrib-
utor (Lee et al., 2025a), which traces outputs to
training data, identifying hallucination sources.

5.2 Input Token Visualizations (§3.2) reveal in-
dividual tokens’ importance and attention patterns,
showing how tokens influence one another across
heads. These are incorporated into LLM analy-
sis tools (Park et al., 2019; Tenney et al., 2020;
Wang et al., 2021; Li et al., 2023b; Coscia et al.,
2024; Yeh et al., 2024), and reveal spurious token
associations indicative of bias (Vig, 2019). Many
tools also support interactive perturbation, allow-
ing users to edit tokens or attention weights and ob-

serve the effects (Strobelt et al., 2019; Tenney et al.,
2020; Coscia et al., 2024; Mishra et al., 2025).

5.3 Latent vector visualizations (§3.3) show
how concepts are encoded and propagated during
model inference. Some tools project latent vectors
into 2D space (Tenney et al., 2020; Li et al., 2023b;
Kwon and Mihindukulasooriya, 2023). Others vi-
sualize semantics of latent vectors revealed by logit
lens (Katz and Belinkov, 2023; Pal et al., 2023; Her-
nandez et al., 2024b) (§3.3.3), while some enable
users to steer latent vectors for safer outputs (Geva
et al., 2022a; Chen et al., 2024b) (§4).

5.4 Neuron visualizations (§3.3) display data
points that highly activate each neuron during in-
ference, revealing interpretable concepts (Nanda,
2022; Garde et al., 2023; Bills et al., 2023).
(§3.3.3). Similar approaches are applied to SAE
neurons (Lin, 2023), helping concept identification
and SAE circuit discovery (Chalnev et al., 2024)
for multiple unsafe behaviors (Lindsey et al., 2025;
Ameisen et al., 2025).

6 Research Directions and Conclusion
Our survey identifies five key open problems at the
intersection of interpretation and safety research.
As interpretation tools enter high-stake use, a press-
ing concern is their potential misuse, particularly
when adversaries exploit interpretation methods to
attack LLMs (§6.1). Mitigating this risk requires
interpretations that are both faithful to model behav-
ior and understandable to users (§6.2). With such
reliability, interpretations can be leveraged proac-
tively during training to promote safer model be-
haviors (§6.3). Their impact also depends on how
effectively they are presented, underscoring the
need for more user-aligned communication strate-
gies (§6.4). Finally, we advocate for expanding
interpretation research to address a broader range
of safety risks beyond those currently emphasized
(§6.5).

6.1 Defense against Interpretation-based
Attack

Interpretation-driven attacks pose a unique threat,
distinct from traditional adversarial attacks, as they
exploit insights gained from interpretation meth-
ods (Lin et al., 2024; Li et al., 2024f; Arditi et al.,
2024; Su, 2024; Winninger et al., 2025). For ex-
ample, interpretation techniques can reveal why
certain input tokens trigger risky outputs, enabling
malicious users to craft diverse prompt suffixes that
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elicit unsafe behavior. Similarly, adversaries can
use interpretation to identify and manipulate model
components associated with harmful outputs. Be-
cause these threats arise unexpectedly from tools
intended to enhance transparency and safety, de-
fending against them is particularly challenging.
This underscores the need to design interpretation
methods with potential misuse in mind, along with
implementing stronger defenses—such as proac-
tively removing risky content (Wu et al., 2025).

6.2 Reliable Evaluation of Interpretation

The field currently lacks a clear consensus on the
definitions of faithfulness and interpretability, as
well as standardized methods for assessing inter-
pretability (Shi et al., 2024a). Interdisciplinary
collaboration—spanning machine learning, human-
computer interaction, psychology, and cognitive
science—is essential for developing both formal
definitions and practical evaluation frameworks.
Moreover, even in human-centered evaluations, in-
terpretability scores are often influenced by how
interpretation results are presented to users (Liao
and Wortman Vaughan, 2024). This highlights the
need for standardized evaluation protocols that con-
sider both the presentation format and user char-
acteristics, such as domain expertise and task rele-
vance (Alangari et al., 2023).

6.3 Training Attribution for Safety
Enhancement

TDA shows promise for tracing unsafe behavior
to training examples (§3.1), but its use in safety
enhancement is limited. Prior work on retraining
after removing problematic data (Kong et al., 2022;
Mozes et al., 2023) focuses on non-safety issues on
small non-generative models and cannot be scaled
to LLMs. Developing safety enhancement methods
based on training attribution could open new paths
for risk mitigation.

6.4 User-centered Presentation of Safety
Interpretations

How to present interpretation results to assist
safety-critical decisions remains underexplored
(§5). In particular, presentation of long, com-
plex textual explanations from LLMs should be
further investigated (§3.4); conversational interac-
tion helps human understanding (Slack et al., 2023;
Wang et al., 2024d), yet no tools apply this to safety-
oriented interpretation. Future work should explore
interaction and design strategies tailored to diverse

stakeholders.

6.5 Refining Safety Dimensions
Interpretation research has largely focused on hallu-
cinations, jailbreaks, harmfulness, bias, and privacy
leakage, while other risks—like out-of-distribution
robustness, code security, and over-refusal—are un-
derstudied (Siska and Sankaran, 2025; Yang et al.,
2024b; Xiong et al., 2024; Abdaljalil et al., 2025).
Incorporating user intent and social impact into
safety definitions may enable more nuanced and
targeted interpretations (Sarker, 2024).

7 Conclusion
By bridging the gap between interpretation and
safety research, our survey systematically exam-
ines interpretation methods across the LLM work-
flow, safety enhancement strategies, and practical
tools, while highlighting open problems and future
directions.
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8 Limitations
This survey provides an overview and categoriza-
tion of interpretation techniques, with an empha-
sis on their role in improving the safety of LLMs.
Given the fast-evolving and extensive nature of
the field, some latest advancements may not be
included. We focus on autoregressive Transformer-
based generative LLMs, as they are among the most
widely used an studied models for interpretation;
therefore, the interpretation and safety enhance-
ment techniques we discuss may not generalize
to other model architectures. Our paper selection
aims to capture the breadth and diversity of exist-
ing approaches, though full technical details are
omitted due to space constraints. We also high-
light tools that facilitate understanding and use of
interpretation results, recognizing that notions of
practicality can vary across stakeholders and that
actionability of interpretation remains an actively
researched open question. Despite its limitations,
this survey introduces a taxonomy that can help
newcomers quickly understand the landscape of
interpretation for safety and guide future research
exploring its application to other model architec-
tures and emerging techniques.

9 Potential Risks
Our paper focuses on four major safety concerns
addressed by interpretation research (hallucination,
jailbreaks and harmfulness, bias, and privacy leak-
age), but this view may be too narrow, risking over-
looking other safety issues such as code security
and over-refusal (§6). While our survey covers
a wide range of interpretation techniques, it does
not include quantitative comparisons. As a result,
readers may overly rely on certain techniques or
mistakenly assume that interpretation guarantees
safety.
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Appendix
Table 2 and Table 3 provide an overview of
interpretation-informed safety enhancement tech-
niques (§4) and tools that facilitate understanding
and application of interpretation (§5). This table
extends Table 1 in the main text to include safety-
oriented interpretation methods not yet leveraged
for safety enhancements or tool use. Each row
is one work; each column corresponds to a tech-
nique or tool. Safety issues, techniques, and tools
addressed by a work are indicated by a colored cell.
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Table 2: Overview of representative works at the intersections of safety-focused interpretation (§3), safety enhance-
ments they inform (§4), and tools operationalizing them (§5), extending Table 1. Continued in Table 3.

SAFETY TYPE §3 INTERPRET FOR SAFETY §4 ENHANCE SAFETY §5 PRACTICAL TOOLS VENUE

Work Ha
llu

cin
at

io
n

Ja
ilb

re
ak

&
Ha

rm

Bi
as

Pr
iva

cy
Le

ak
ag

e

3.
1

Tr
ai

ni
ng

At
tri

b.

3.
2

In
pu

tT
ok

en

3.
3.

1
Pr

ob
e

La
te

nt

3.
3.

2
Pe

rtu
rb

Co
m

p

3.
3.

3
De

cip
he

rL
at

en
t

3.
4

Se
lf-

Re
as

on

4.
1

At
tn

.t
o

Re
l.

To
ke

n

4.
2.

1
St

ee
rL

at
en

tV
ec

4.
2.

2
M

od
ul

at
e

Ne
ur

on

4.
2.

3
Ed

it
M

od
el

4.
3

Ve
rif

y
&

O
ut

pu
t

4.
4

O
ut

pu
tw

.R
ea

so
n

Ea
se

Im
pl

.

5.
1

TD
A

Vi
s

5.
2

To
ke

n
Vi

s

5.
3

La
te

nt
Ve

c
Vi

s

5.
4

Ne
ur

on
Vi

s

Pu
bli

ca
tio

n

Su et al. (2024b) BlackboxNLP
He et al. (2024b) COLM

Pan et al. (2025b) ArXiv
Wu et al. (2024a) EMNLP

Chen et al. (2024a) ArXiv
Hazra et al. (2024) EMNLP
Zhao et al. (2024e) ArXiv

Lee et al. (2025a) AAAI
Qian et al. (2024) ACL
Lee et al. (2024) ICML

Ferrando et al. (2022a) EMNLP
Yuksekgonul et al. (2024) ICLR

Mohammadi (2024) SSRN
Cohen-Wang et al. (2024) NeurIPS

Yona et al. (2023) ArXiv
Eberle et al. (2023) EMNLP

Vig (2019) ACL
Sarti et al. (2023) ACL

Mishra et al. (2025) TVCG
Wang et al. (2025b) ArXiv

Dale et al. (2023) ACL
Chuang et al. (2024) EMNLP

Pan et al. (2025a) ArXiv
Zhang et al. (2024b) ICLR

Li et al. (2023b) ArXiv
Tenney et al. (2020) EMNLP

Feng et al. (2024) ICLR
Halawi et al. (2024) ICLR

Liu et al. (2024a) EMNLP
Arditi et al. (2024) ArXiv

Lin et al. (2024) EMNLP
Abdelnabi et al. (2024) ArXiv
Slobodkin et al. (2023) EMNLP
Ashok and May (2025) ArXiv

Orgad et al. (2024) ICLR
Li et al. (2025a) ICASSP

Zhang et al. (2024a) ArXiv
Su et al. (2024a) ACL

Azaria and Mitchell (2023) EMNLP
Ji et al. (2024b) BlackboxNLP

Bürger et al. (2024) NeurIPS
Zhou et al. (2024) EMNLP

Xu et al. (2024c) NeurIPS
He et al. (2024c) ArXiv
Tan et al. (2025) ArXiv
He et al. (2024a) ACL

Beigi et al. (2024) EMNLP
CH-Wang et al. (2024) ACL
Winninger et al. (2025) ArXiv

Arditi et al. (2024) ArXiv
Li et al. (2024f) ArXiv

Zhu et al. (2024) ArXiv
Li et al. (2025c) COLING

Duan et al. (2024) ArXiv
Yang et al. (2024a) ACL

Ball et al. (2024) ArXiv
Wang et al. (2024a) ArXiv

Bhattacharjee et al. (2024) SafeGenAI
Chu et al. (2024) CCS

Rimsky et al. (2024) ACL
Singh et al. (2024b) ICML
Zhang et al. (2024c) ACL

Li et al. (2023a) NeurIPS
Turner et al. (2023) ArXiv

Gao et al. (2024) ArXiv
Shen et al. (2024) ICLR
Han et al. (2025) ArXiv

Hernandez et al. (2024a) COLM
Chen et al. (2024b) ArXiv
Wang et al. (2024c) ACL

Li et al. (2024e) ArXiv
Chen et al. (2025) AAAI

Zhao et al. (2024a) ArXiv
Burns et al. (2022) ArXiv

Li et al. (2024c) ArXiv
Monea et al. (2024) ACL

Vig et al. (2020) NeurIPS
Wei et al. (2024) ICML

Yang et al. (2023b) ArXiv
Zhou et al. (2025b) ICLR
Deng et al. (2025) AAAI
Liu et al. (2024b) ICLR
Li et al. (2024a) ArXiv
Ma et al. (2023) EMNLP
Li et al. (2025b) ICLR
Jin et al. (2024) ACL

Zhao et al. (2024d) EMNLP

21533



Table 3: Overview of representative works at the intersections of safety-focused interpretation (§3), safety enhance-
ments they inform (§4), and tools operationalizing them (§5), extending Table 1 and continuing Table 2.
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