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Abstract

While training large language models (LLMs)
from scratch can indeed lead to models with
distinct capabilities and strengths, it incurs
substantial costs and may lead to redundancy
in competencies. Knowledge fusion aims
to integrate existing LLMs of diverse archi-
tectures and capabilities into a more potent
LLM through lightweight continual training,
thereby reducing the need for costly LLM
development. In this work, we propose a
new framework for the knowledge fusion of
chat LLMs through two main stages, result-
ing in FUSECHAT. Firstly, we conduct pair-
wise knowledge fusion on source chat LLMs
of varying structures and scales to create mul-
tiple target LLMs with identical structure and
size via lightweight fine-tuning. During this
process, a statistics-based token alignment ap-
proach is introduced as the cornerstone for fus-
ing LLMs with different structures. Secondly,
we merge these target LLMs within the parame-
ter space, where we propose a novel method for
determining the merging coefficients based on
the magnitude of parameter updates before and
after fine-tuning. We implement and validate
FUSECHAT using six prominent chat LLMs
with diverse architectures and scales. Exper-
imental results on two instruction-following
benchmarks, AlpacaEval 2.0 and MT-Bench,
demonstrate the superiority of FUSECHAT-7B
over baselines of various sizes.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable success across a wide range of natu-
ral language processing (NLP) tasks. Currently,
it has become prevalent and imperative for indi-
viduals and corporations to build their own LLMs.
However, the computational resources and time
costs associated with LLM development remain
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Figure 1: Comparison between FUSECHAT-7B and
baselines on MT-Bench. We show that FUSECHAT-
7B achieves comparable performance to Mixtral-8x7B
and approaches GPT-3.5. The red dashed line is linearly
fitted from all baselines except FUSECHAT-7B.

prohibitively high. Furthermore, despite the struc-
tural and functional differences among LLMs, they
often exhibit similar abilities across various tasks.
Therefore, besides training from scratch, another
option is to combine the distinct advantages of ex-
isting LLMs into a potent LLM, which is termed
knowledge fusion of LLMs (Wan et al., 2024).

The endeavor to integrate the capabilities of
multiple models has been a long-standing pursuit.
For example, ensemble methods (Littlestone and
Warmuth, 1994; Jiang et al., 2023) directly aggre-
gate the outputs of multiple models to enhance
prediction performance and robustness. However,
this approach requires maintaining multiple trained
models during inference, which is inefficient for
LLMs due to their substantial memory and infer-
ence time requirements. Another approach is to
directly merge several neural networks into a sin-
gle network through arithmetic operations in the
parameter space (Gupta et al., 2020), whereas this
approach typically assumes uniform network archi-
tectures and requires manually-tuned (Wortsman
et al., 2022; Yadav et al., 2024) or automatically-
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learned (Matena and Raffel, 2022; Jin et al., 2023)
coefficients to merge the parameters of differ-
ent neural networks. In contrast, knowledge fu-
sion (Wan et al., 2024) seeks to integrate the capa-
bilities of multiple LLMs, irrespective of their ar-
chitectures, into a single LLM through lightweight
continual training. This process embodies a tra-
ditional multi-teacher knowledge distillation ap-
proach (You et al., 2017), but faces new chal-
lenges such as token alignment and fusion strate-
gies across different LLMs.

In this study, we introduce a fuse-and-merge
framework to extend the fusion of LLMs to
chat-based LLMs1 with diverse architectures and
scales through two stages, resulting in FUSECHAT.
Firstly, we conduct pairwise knowledge fusion for
source chat LLMs to generate multiple target LLMs
of identical structure and size. To achieve this, we
first select a pivot LLM and perform token align-
ment, followed by knowledge fusion between the
pivot and each of the remaining LLMs. These
target LLMs are expected to inherit the strengths
of source chat LLMs through knowledge transfer
during lightweight fine-tuning. Secondly, these tar-
get LLMs are merged within the parameter space,
where we introduce a novel method called SCE
(SELECT, CALCULATE & ERASE) to determine
the merging coefficients based on the magnitude
of parameter updates before and after fine-tuning.
Moreover, SCE allocates parameter matrix-level co-
efficients that enable the merging at a fine-grained
granularity without additional training efforts.

FUSECHAT offers superior potential compared
to FUSELLM (Wan et al., 2024). Firstly, while
FUSELLM limits its exploration to source LLMs
with the same size, FUSECHAT broadens the scope
by incorporating six source LLMs with varying
scales. This allows for greater adaptability to the fu-
sion of heterogeneous LLMs. Secondly, the frame-
work of FUSELLM does not seamlessly support
the inclusion of new source LLMs as it requires
the combination of distribution matrices from all
source LLMs during continual training. In con-
trast, integrating a new source LLM in FUSECHAT

is plug-and-play, requiring only obtaining a target
LLM from the new source LLM and merging it
with the existing FUSECHAT. Thirdly, compared
to many-to-one knowledge fusion, pairwise fusion
empirically mitigates the challenges of knowledge
distillation from heterogeneous source LLMs.

1We refer to “chat-based LLMs” simply as “chat LLMs”.

To verify the effectiveness of FUSECHAT, we
implemented FUSECHAT-7B using six prominent
open-source chat LLMs: OpenChat-3.5-7B (Wang
et al., 2024a), Starling-LM-7B-alpha (Zhu et al.,
2024), NH2-SOLAR-10.7B (Kim et al., 2023),
InternLM2-Chat-20B (Cai et al., 2024), Mixtral-
8x7B-Instruct (Jiang et al., 2024), and Qwen-1.5-
Chat-72B (Bai et al., 2023). Experimental results
on two representative instruction-following bench-
marks, AlpacaEval 2.0 (Dubois et al., 2024b) and
MT-Bench (Zheng et al., 2024), demonstrate the
superiority of FUSECHAT-7B across a broad spec-
trum of chat LLMs at 7B, 10B, and 20B scales.
Moreover, we validated the proposed token align-
ment method and the SCE merging method through
a series of analytical experiments.

2 FUSECHAT

2.1 Overview

Figure 2 presents an overview of our FUSECHAT

in comparison with FUSELLM (Wan et al., 2024).
The FUSECHAT framework consists of two main
stages: fuse and merge. In the fuse stage, pair-
wise knowledge fusion is conducted on source chat
LLMs to derive multiple target LLMs with identical
structure and size. This process begins by selecting
a pivot LLM, followed by performing knowledge
fusion between the pivot and each remaining LLM.
In the merge stage, these target LLMs are combined
within the parameter space, where we determine
the merging coefficients based on the magnitude of
parameter updates before and after fine-tuning.

Specifically, considering K source LLMs
{Ms

i}Ki=1 with varying architectures and scales,
FUSECHAT first specifies one of the source LLMs,
Ms

v, as the pivot and then applies pairwise knowl-
edge fusion to obtain (K − 1) target LLMs,
{Mt

j}K−1
j=1 , which share the same architecture as

the pivot LLM. The selection of the pivot depends
on the desired structure and scale for the target
LLMs, while also considering the capabilities and
performance of a candidate LLM.

To perform pairwise knowledge fusion,
FUSECHAT prompts these source LLMs using a
supervised fine-tuning dataset D = {Ii, Ri}Mi=1 to
showcase their inherent knowledge by responding
to each instruction in D. Token alignment (Fu et al.,
2023; Wan et al., 2024) between the source LLMs
and the pivot is then conducted to properly map
the resulting probabilistic distribution matrices.
These distribution matrices are subsequently used

21619



for pairwise knowledge fusion (Wan et al., 2024)
through lightweight fine-tuning to obtain (K − 1)
target LLMs. Following this, the target LLMs
are merged in the parameter space to yield the
final fused LLM Mf . To incorporate fine-grained
advantages of target LLMs, we introduce a new
merging method named SCE to obtain the merging
coefficients based on selection, calculation, and
erasure on the task vectors (Ilharco et al., 2023)
which represent variation of model weights before
and after fine-tuning. SCE enables the automatic
allocation of parameter matrix-level merging
coefficients, facilitating the merging of LLMs at a
finer granularity.

2.2 Preliminaries

Given an instruction Ii and the corresponding re-
sponse Ri of length N from the fine-tuning dataset
D, we use Ri,<t = (ri,1, ri,2, . . . , ri,t−1) to repre-
sent the sequence preceding the tth token in the
response. The supervised fine-tuning (SFT) objec-
tive for an LLM parameterized by θ is defined as
minimizing the following negative log-likelihood:

LSFT = −E(Ii,Ri)∼D


∑

t≤N

log pθ(ri,t|Ri,<t, Ii)


 ,

(1)
where pθ(ri,t|Ri,<t, Ii) is the model’s predicted

probability for the tth token ri,t in Ri given the
instruction and preceding tokens in the response.

2.3 Pairwise Knowledge Fusion

To facilitate the description of pairwise knowledge
fusion, we reframe the above token-level view into
a matrix format. Specifically, for each instruction
Ii, we transform the token-level predictions into
a probabilistic distribution matrix, Pθ

i ∈ RN×V ,
where V denotes the vocabulary size. The distri-
bution matrix is assumed to reflect certain inher-
ent knowledge of the language model in respond-
ing to the instruction (Wan et al., 2024). Con-
sequently, different probabilistic distribution ma-
trices obtained from different chat LLMs can be
used to represent the diverse knowledge embedded
within these models. Based on this assumption,
FUSECHAT performs pairwise knowledge fusion
by fine-tuning the target LLMs, initialized from the
pivot, using the probabilistic distribution matrices.
Model Fusion For each instruction Ii in D, we
first feed it into the K source chat LLMs to obtain
a set of probabilistic distribution matrices, denoted

as {Pθj
i }Kj=1, where θj represents the parameters of

the jth chat LLM. Since these LLMs may employ
different tokenizers, token alignment is necessary
to properly map their probabilistic distribution ma-
trices (Fu et al., 2023; Wan et al., 2024). Then,
pairwise knowledge fusion is conducted between
the pivot LLM and each of the remaining source
LLMs. To achieve this, we denote the probabilistic
distribution matrix generated by the pivot LLM as
Pθv

i and merge it with each P
θj
i |j ̸=v to obtain a set

{Pj
i}K−1

j=1 of fused matrices as follows:

Pj
i = Fusion(Pθv

i ,P
θj
i )|j ̸=v, (2)

where Fusion(·) represents the fusion function that
merges two matrices. The resulting matrix Pj

i is
seen as a representation of the collective knowl-
edge and distinctive strengths of the two source
LLMs. Among various fusion strategies, this work
employs minimum cross-entropy (MinCE) follow-
ing Wan et al. (2024) as the fusion function, which
empirically performs the best. Specifically, the
MinCE fusion function selects the distribution ma-
trix that exhibits the minimum cross-entropy score
with respect to the response Ri for instruction Ii.

We then enforce alignment between the predic-
tion of each target LLM Mt

j and the corresponding

fused representation matrices Pj
i . We use Q

ϕj

i to
represent the output distribution matrix of target
LLM Mt

j for instruction Ii and define the fusion
objective for training each target LLM as follows:

LFusion = −E(Ii,Ri)∼D
[
H(Pj

i ||Q
ϕj

i )
]
, (3)

where H(·||·) represents the cross entropy between
two probabilistic distribution matrices.

The overall training objective for each pairwise
knowledge fusion consists of a weighted combina-
tion of the supervised fine-tuning objective LSFT
and the fusion objective LFusion:

L = λLSFT + (1− λ)LFusion. (4)

Token Alignment Token alignment aims to ad-
dress the mappings of probabilistic distribution ma-
trices {Pθj

i ∈ RN×V }Kj=1 generated by different
source LLMs for a given instruction Ii. Therefore,
the alignment involves two dimensions of the matri-
ces: sequence dimension for the tokenized response
and distribution dimension for the probabilistic dis-
tributions. In the sequence dimension, we follow
previous works (Fu et al., 2023; Wan et al., 2024)
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Figure 2: Overview of FUSECHAT in comparison with FUSELLM (Wan et al., 2024). Distinct animal icons
symbolize different LLMs, where each species and size indicates a unique architecture and scale, respectively.

and adopt a modified dynamic time wrapping al-
gorithm (Senin, 2008) to recursively minimize the
total cost of editing the tokens from a source LLM
to align them with the pivot LLM. This process
may result in 1-1, 1-n, and n-1 mappings, as shown
in Figure 5. In the distribution dimension, Fu et al.
(2023) focused on aligning distributions based on
the exact match (EM) between tokens in source and
target distributions, which restricts the alignment
to only 1-1 mappings and may result in too many
unmatched tokens. Wan et al. (2024) relaxed the
EM constraint by aligning the distributions based
on the minimum edit distance (MinED) between to-
kens in the vocabularies of source and target LLMs.
While this approach improves the mapping success
rate and expands to 1-n mappings, it ignores n-1
mappings and may introduce many misalignments.

In this work, we propose an enhanced token
alignment strategy that utilizes mapping statistics
(MS) from the sequence dimension as the criteria
for alignment in the distribution dimension. We
construct a global statistical matrix, where each
column represents the frequency of mappings from
a pivot token to all potential source tokens, derived
from sequence-dimensional token alignments. In
the case of 1-1 and 1-n mappings, we align the
distributions based on the maximum mapping fre-
quency in the respective columns of the statistical
matrix for each pivot token in the distribution. For
n-1 mappings, we first calculate a weighted aver-
age of the source tokens’ distributions according to
their mapping frequencies in the statistical matrix
to obtain a merged distribution. This merged distri-
bution is then aligned to the pivot distribution, sim-
ilar to the procedure employed for 1-1 mappings.
As shown in Figure 5, this strategy better reflects
the token mapping statistics in the dataset, thereby
preserving information in the aligned distribution
matrices while minimizing alignment errors.

2.4 Model Merging

Since the target LLMs {Mt
j}K−1

j=1 resulting from
pairwise knowledge fusion share identical architec-
ture and scale while possessing diverse advantages
and capabilities learned from the source LLMs, we
further merge them in the parameter space to obtain
the final fused LLM Mf . To ensure the adaptabil-
ity and scalability of FUSECHAT, it is essential
to maintain the simplicity of the merging strategy.
Primarily, the calculation of merging coefficients
should be automated, obviating the complex hyper-
parameter tuning. Secondly, the merging procedure
should not demand forward or backward propaga-
tion over additional data, which is computationally
inefficient and memory-intensive.

As described in Algorithm 1, we propose a novel
merging method named SCE (select, calculate, and
erase) for parameter matrix-level merging. Anal-
ogous to task vectors (Ilharco et al., 2023), we
first define fusion vectors {δj}K−1

j=1 (Eq. 5) as the
direction and magnitude of weight updates from
pivot LLM Ms

v to target LLMs {Mt
j}K−1

j=1 during
model fusion. For each parameter matrix unit in
target LLMs, we derive the merged weights using
fusion vectors through a three-step process.

(1) Select: During the pairwise knowledge fu-
sion, target LLMs dynamically evolve to incorpo-
rate the advantages of their corresponding source
LLMs. Fusion vectors for each parameter matrix
unit with substantial variations across different tar-
get LLMs are supposed to signify distinctive and
significant strengths. Therefore, we first select the
top τ% elements from each parameter matrix-level
fusion vector {δj,m}K−1

j=1 with high variance across
multiple target LLMs, resulting in {δ̂j,m}K−1

j=1 (Eq.
6). (2) Calculate: We then calculate the sum of
squares of elements in δ̂j,m and obtain a matrix-
level merging coefficient for each target LLM as
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Algorithm 1 SCE Procedure

Input: Target LLMs parameters {ϕj}K−1
j=1 , pivot

LLM parameters θv, threshold τ .
Output: Merged LLM parameters Φ
▷ Create fusion vectors

{δj}K−1
j=1 = {ϕj − θv}K−1

j=1 (5)

▷ Calculate matrix-level coefficients

for {δj,m}K−1
j=1 ∈ {δj}K−1

j=1 do
▷ Step 1: Select salient elements

{δ̂j,m}K−1
j=1 = Select({δj,m}K−1

j=1 , τ) (6)

▷ Step 2: Calculate coefficients

{ηj,m}K−1
j=1 = Calculate({δ̂2j,m}K−1

j=1 ) (7)

▷ Step 3: Erase minority elements

{δ′
j,m}K−1

j=1 = Erase({δ̂j,m}K−1
j=1 ) (8)

▷ Update merged LLM parameters

Φm = θv,m +
K−1∑

j=1

ηj,mδ
′
j,m (9)

end
return Φ

ηj,m =
∑

δ̂2j,m∑
j

∑
δ̂2j,m

. (3) Erase: Each parameter

may exhibit conflicting signs across fusion vec-
tors from different target LLMs, which could cause
interference during model merging (Yadav et al.,
2024). Thus, for each parameter we sum its values
in {δ̂j,m}K−1

j=1 across target LLMs and erase ele-
ments with minority directions (Eq. 8). Finally, the
filtered {δ′

j,m}K−1
j=1 are merged based on the calcu-

lated coefficients, and added to the pivot LLM’s
parameters (Eq. 9).

2.5 Discussions

Distinction from FUSELLM While FUSELLM
(Wan et al., 2024) emphasizes the fusion of mul-
tiple base LLMs through continual pre-training,
FUSECHAT focuses on integrating diverse chat
LLMs into a unified chat model via SFT. This dif-
ference in both training objectives and the type of
LLMs makes FUSECHAT essential in chat LLMs
fusion. Unlike FUSELLM, which directly applies
multi-teacher distillation, FUSECHAT employs a
novel two-stage fuse-then-merge approach. This
method is not only highly scalable and efficient (
Appendix 9), but also resolves knowledge conflicts
in parameter space while precisely integrating the
distinct strengths of each source LLM (Section 3.3).
By fusing six heterogeneous chat LLMs, we val-

idate FUSECHAT’s superiority over FUSELLM
(OpenChat-3.5-7B-Multi) as shown in Table 1.

Distinction from the TIES Merging TIES merg-
ing (Yadav et al., 2024) relies on manually tuned,
model-level coefficients for combining different
models. In contrast, our SCE merging automates
the merging process by leveraging weight updates
from a pivot LLM to automatically compute matrix-
level coefficients. This enables the fine-grained in-
corporation of diverse benefits across LLMs, which
is difficult to achieve with manual hyperparameter
tuning. In our specific context, where target LLMs
are trained on identical datasets with relatively sub-
tle parameter variations, SCE excels at capturing
and preserving the distinctive advantages of each
LLM through nuanced matrix-level parameter up-
dates. Experimental results in Table 2 demonstrate
that SCE outperforms merging baselines, including
TIES, thereby validating its efficacy and impact.

3 Experiments

In our experiments, we explore the fusion of
chat LLMs with diverse architectures and scales.
We use six representative chat LLMs as the
source LLMs, including OpenChat-3.5-7B (Wang
et al., 2024a), Starling-LM-7B-alpha (Zhu et al.,
2024), NH2-SOLAR-10.7B (Kim et al., 2023),
InternLM2-Chat-20B (Cai et al., 2024), Mixtral-
8x7B-Instruct (Jiang et al., 2024), and Qwen-1.5-
Chat-72B (Bai et al., 2023). As for the pivot LLM,
which serves as the starting point for the target
LLMs, we opt for OpenChat-3.5-7B due to its
balanced scale and performance. We first apply
pairwise knowledge fusion (Section 2.3) to create
five distinct target LLMs with the same structure.
These target LLMs are then merged using the SCE
method (Section 2.4), resulting in FUSECHAT-7B.

3.1 Experimental Setup

Training Dataset To leverage the strengths of
source LLMs during knowledge fusion while alle-
viating catastrophic forgetting, we curate a high-
quality dataset named FUSECHAT-MIXTURE from
two different sources. First, 50% of the training
instances are sampled from the dataset used by the
pivot LLM, OpenChat-3.5-7B. Second, we gather
the remaining instances, which have not been en-
countered by the pivot LLM, from open-source
communities. These two sources result in a corpus
comprising approximately 95,000 dialogues across
various domains. Please refer to Appendix B.3 for
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Model #Params
AlpacaEval 2.0 MT-Bench

(GPT-4-1106-Preview) (GPT-4-0125-Preview)

Win Rate LC Win Rate 1st Turn 2nd Turn Average Score

Proprietary LLMs

GPT-3.5-Turbo-1106 (Achiam et al., 2023) - 9.18 19.30 7.56 7.41 7.48
Claude-3-Opus (Anthropic, 2024) - 29.04 40.39 8.84 8.30 8.57
GPT-4-1106-Preview (Achiam et al., 2023) - 50.00 50.00 8.86 8.71 8.79

Source LLMs

OpenChat-3.5-7B (Wang et al., 2024a) 7B 10.20 14.90 7.14 6.55 6.84
Starling-LM-7B-alpha (Zhu et al., 2024) 7B 14.20 14.70 7.54 6.49 7.01
NH2-SOLAR-10.7B (Kim et al., 2023) 10.7B 12.22 18.13 7.11 6.36 6.74
InternLM2-Chat-20B (Cai et al., 2024) 20B 21.70 18.70 7.78 6.34 7.06
Mixtral-8x7B-Instruct (Jiang et al., 2024) 8x7B 18.30 23.70 7.76 7.00 7.38
Qwen1.5-Chat-72B (Bai et al., 2023) 72B 26.50 36.60 7.83 7.36 7.59

Ensemble LLMs

Top1-PPL (Mavromatis et al., 2024) 162B 25.11 27.97 7.79 6.95 7.37
Top1-LLM-Blender (Jiang et al., 2023) 162B 24.45 29.11 7.85 6.70 7.28
Top1-GPT4 (Achiam et al., 2023) 162B 42.82 43.87 8.79 8.01 8.40

Fused LLMs

OpenChat-3.5-7B SFT 7B 10.56 14.50 7.36 6.40 6.88
OpenChat-3.5-7B Multi 7B 10.19 (-3.5%) 13.43 (-7.4%) 7.69 (+4.5%) 6.26 (-2.2%) 6.99 (+1.6%)
OpenChat-3.5-7B Starling 7B 11.43 (+8.2%) 16.20 (+11.7%) 7.69 (+4.5%) 6.73 (+5.2%) 7.22 (+4.9%)
OpenChat-3.5-7B SOLAR 7B 11.12 (+5.3%) 16.51 (+13.9%) 7.58 (3.0%) 6.76 (+5.6%) 7.17 (+4.2%)
OpenChat-3.5-7B InternLM 7B 11.82 (+11.9%) 15.21 (+4.9%) 7.63 (+3.7%) 6.78 (+5.9%) 7.21 (+4.8%)
OpenChat-3.5-7B Mixtral 7B 11.74 (+11.2%) 16.52 (+13.9%) 7.58 (+3.0%) 6.90 (+7.8%) 7.24 (+5.2%)
OpenChat-3.5-7B Qwen 7B 10.93 (+3.5%) 14.98 (+3.3%) 7.69 (+4.5%) 6.78 (+5.9%) 7.23 (+5.1%)

FUSECHAT-7B 7B 11.52 (+9.1%) 17.16 (+18.3%) 7.70 (+4.6%) 7.05 (+10.2%) 7.38 (+7.3%)

Table 1: Results of FUSECHAT-7B and baselines on AlpacaEval 2.0 and MT-Bench. The bold font denotes the
best performance among fused LLMs, while the underscore indicates the second-best performance. Moreover, the
percentages represent the relative performance improvement compared to the OpenChat-3.5-7B SFT.

more details of FUSECHAT-MIXTURE.

Training Details In all experiments, we train the
target LLMs using a batch size of 128 and a maxi-
mum length of 2048 on a single node with 8x80GB
NVIDIA A800 GPUs for three epochs, which takes
approximately 9 hours. The models are optimized
using the AdamW (Loshchilov and Hutter, 2019)
optimizer with β1 = 0.9 and β2 = 0.999. We use
a weight decay of 0.0 and gradient clipping of 1.0.
A cosine learning rate schedule is employed, with a
maximum learning rate of 5e-6 and a warmup ratio
of 0.03. We empirically set the combination weight
λ in Eq. 4 to 0.9, and the rationale behind the value
of λ is detailed in Appendix D. Our training frame-
work is implemented based on the HuggingFace
Transformers (Wolf et al., 2020).

Evaluation We assess the performance of
FUSECHAT-7B on two representative benchmarks
to evaluate its ability to follow instructions and en-
gage in conversations effectively. The first bench-
mark, AlpacaEval 2.0 (Dubois et al., 2024b), com-
prises 805 instructions across five test subsets. It
compares the Win Rate and Length-Controlled Win
Rate (LC Win Rate) (Dubois et al., 2024a) of a

model against GPT-4. We employ the default set-
tings and utilize GPT-4 (GPT-4-1106-Preview) to
evaluate the quality of generated responses. The
second benchmark, MT-Bench (Zheng et al., 2024),
consists of 80 multi-turn dialogues spanning vari-
ous domains, including writing, roleplay, reason-
ing, math, coding, extraction, STEM, and human-
ities. Originally, GPT-4 (GPT-4-0613) was used
as the evaluator, providing a scalar score ranging
from 1 to 10 for each generated response. However,
due to inaccuracies in the reference responses, we
adopt an updated version, GPT-4-0125-Preview, as
per the latest work (Wang et al., 2024c), to correct
the errors and evaluate the generated responses.

Baselines In our experiments, we compare our
FUSECHAT-7B with four categories of baselines,
including (i) Proprietary LLMs, (ii) Source LLMs,
(iii) Ensemble LLMs, and (iv) Fused LLMs. The
details of baselines are shown in Appendix B.4.

3.2 Overall Results

In Table 1, we present the overall results of
FUSECHAT-7B in comparison with baselines of
various architectures and scales on AlpacaEval 2.0

21623



8.6

7.25
5.0

4.45

4.658.25

7.95

8.6

8.4

7.6

5.6

5.45

4.958.25

8.5

8.53

7.7

6.05

6.1

5.35

7.95

7.47

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities
8.6

7.25

4.45

4.658.25

8.6

8.1
7.65

6.15

5.55

5.3

8.05

7.8

8.75
8.5

7.5

5.35

5.85

4.06.85

8.3

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities
8.6

7.25

4.45

4.65

7.95

8.6
8.15

6.9
5.4

7.3

8.8

8.05

6.1

5.6

8.65

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities
8.6

7.25
5.0

4.45

4.658.25

7.95

8.6

8.45

7.6

6.1

6.05
5.05

8.25

8.75

8.2

8.15

6.1

5.25

5.8

8.45

8.5

8.6

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities
8.6

7.25
5.0

4.45

4.658.25

7.95

8.6

8.1
7.7

5.6

6.3

5.75

8.5

7.35

8.55

8.65

8.3

5.8

5.95

8.85

8.7

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

Pivot LLM Source LLM Target LLM

(a) OpenChat-3.5-7B Starling

7.35

8.65

(b) OpenChat-3.5-7B SOLAR

7.957.55 5.0

(c) OpenChat-3.5-7B InternLM

8.07.95

8.38.25

7.1 4.7 4.95 5.0

(d) OpenChat-3.5-7B Mixtral

7.65

(e) OpenChat-3.5-7B Qwen

8.25 6.25

Figure 3: The effect of pairwise knowledge fusion for source LLMs across various domains on MT-Bench. It
combines the strengths of each source LLM and the pivot (OpenChat-3.5-7B) into a more potent target LLM.
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Figure 4: Comparison of different aspects of LLM fusion. (Left) The effect of merging target LLMs into FUSECHAT-
7B to combine their strengths across domains on MT-Bench. (Middle) Results of FUSECHAT by merging varying
numbers of target LLMs. (Right) Results of OpenChat-3.5-7B InternLM with different token alignment strategies.

and MT-Bench. Key observations are as follows.
Firstly, OpenChat-3.5-7B SFT, fine-tuned on our
high-quality dataset, slightly outperforms the pivot
LLM OpenChat-3.5-7B. Secondly, in comparison
to OpenChat-3.5-7B Multi, which fuses multiple
source LLMs simultaneously as FUSELLM (Wan
et al., 2024), the target LLMs resulting from pair-
wise knowledge fusion exhibit superior perfor-
mance, demonstrating the effectiveness of pairwise
fusion in reducing the fusion difficulty. For in-
stance, through the integration of OpenChat-3.5-7B
and Mixtral-8x7B-Instruct, the fused target LLM
OpenChat-3.5-7B Mixtral achieves relative gains
of 13.9% LC Win Rate and 5.2% Average Score
over OpenChat-3.5-7B SFT, significantly surpass-
ing OpenChat-3.5-7B Multi. Furthermore, after
merging these target LLMs, FUSECHAT-7B shows
substantial performance enhancements of 18.3%
and 7.3% in the two metrics. This illustrates the
superiority of FUSECHAT-7B across source LLMs
of various scales, even comparable to 8x7B MoEs
and approaching GPT-3.5.

Moreover, in comparison to the ensemble LLMs
of 162B, which generate the 1st response from six
parallel deployed LLMs based on different ranking
criteria, FUSECHAT-7B outperforms most of them
except Top1-GPT4 on MT-Bench, while being 23x

smaller and independent of GPT-4.

To further illustrate that our performance im-
provements stem from the integration of distinct
knowledge from multiple LLMs, we evaluate the
source LLMs, target LLMs, and FUSECHAT across
various domains on MT-Bench. The results in Fig-
ure 3 reveal that the target LLMs demonstrate no-
ticeable performance enhancements in most do-
mains after pairwise knowledge fusion. Typically,
the performance of each target LLM falls between
that of the pivot LLM and the respective source
LLM. This phenomenon can be attributed to the
fusion function we employed to select the opti-
mal target distributions with minimal cross-entropy,
which promotes the incorporation of unique advan-
tages from the pivot LLM and source LLMs into
more potent target LLMs. Notably, in math and
coding domains, the performance of certain target
LLMs surpasses that of either the pivot or source
LLMs. This enhancement can be explained by the
strong performance of the source LLMs in these
domains, coupled with the relatively high propor-
tion of math and coding samples in our dataset. It
is also consistent with findings from knowledge dis-
tillation (Wu et al., 2023), where the student model
occasionally outperforms the teacher in specific
tasks. The effect of further merging these target
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Model AlpacaEval 2.0 MT-Bench

FUSECHAT-7B Linear 17.12 7.03
FUSECHAT-7B TA 15.74 7.08
FUSECHAT-7B TIES 16.55 7.33
FUSECHAT-7B DARE 16.57 7.15

FUSECHAT-7B SCE 17.16 7.38

Table 2: Comparison of different merging methods on
AlpacaEval 2.0 and MT-Bench.

LLMs into FUSECHAT-7B is shown in Figure 4(a).
By integrating the capabilities of the target LLMs,
FUSECHAT achieves a balanced and robust perfor-
mance across diverse domains.

3.3 Analysis of Model Merging

To investigate the effectiveness of the proposed
SCE approach, we incorporate the target LLMs
using different merging methods, including Lin-
ear (Wortsman et al., 2022), TA (Ilharco et al.,
2023), TIES (Yadav et al., 2024), and DARE (Yu
et al., 2024a). We evaluate the performance of these
merged LLMs on AlpacaEval 2.0 and MT-Bench.
As depicted in Table 2, FUSECHAT-7B SCE outper-
forms all baseline methods on the two benchmarks.
We attribute this superior performance to SCE’s
ability to actively reduce knowledge conflicts by
selectively integrating beneficial updates while re-
moving conflicting ones. For more details of model
merging, please refer to Appendix B.2.

In Figure 4(b), we further illustrate the perfor-
mance of FUSECHAT-7B SCE by incorporating
varying numbers of target LLMs on MT-Bench.
The findings demonstrate a progressive enhance-
ment in Average Score, which increases from 7.24
to 7.38 as the number of integrated target LLMs
rises from 1 to 5. Moreover, we observe that after
the integration of OpenChat-3.5-7B SOLAR, the
performance of the merged LLM remains stable.
This stabilization might be attributed to the compar-
atively sub-optimal performance of OpenChat-3.5-
7B SOLAR and its corresponding NH2-SOLAR-
10.7B compared to other target or source LLMs.
Therefore, we suggest that both the diversity and
quality of integrated source LLMs are critical fac-
tors for optimal knowledge fusion.

3.4 Ablation Studies for SCE

In this section, we conduct experiments to examine
the effectiveness of the select, calculate, and erase
operations in SCE. The results in Table 3 demon-
strate that, without the select step, FUSECHAT-7B

Model AlpacaEval 2.0 MT-Bench

FUSECHAT-7B SCE 17.16 7.38
FUSECHAT-7B CE 15.69 (-8.57%) 7.29 (-1.22%)
FUSECHAT-7B C 16.62 (-3.15%) 7.11 (-3.66%)

Table 3: Comparison of different merging methods on
AlpacaEval 2.0 and MT-Bench. “CE” and “C” mean
only calculate&erase and calculate operations are used.

Model AlpacaEval 2.0 MT-Bench

Starling-LM-7B-alpha 14.70 7.01
Starling-LM-7B-alpha SFT 13.20 (-10.20%) 6.89 (-1.71%)

FUSECHAT-Starling-7B 17.29 (+17.62%) 7.16 (+2.14%)

Table 4: Starling-LM-7B-alpha as pivot LLM results on
AlpacaEval 2.0 and MT-Bench.

CE suffers substantial performance degradation.
This underscores the benefits of selecting salient
elements from fusion vectors with high variance
among target LLMs to signify their distinctive and
significant strengths. Moreover, removing both the
select and erase operations leads to FUSECHAT-
7B C with decreased performance, highlighting the
importance of resolving parameter interference in
fusion vectors from different target LLMs.

3.5 Analysis of Token Alignment
Finally, we delve into exploring the impact of
various token alignment strategies. Specifically,
we apply EM (Fu et al., 2023) and MinED (Wan
et al., 2024), and our MS methods to align distribu-
tions generated by InterLM2-Chat-20B with those
of OpenChat-3.5-7B. Then, we conduct pairwise
knowledge fusion to derive OpenChat-3.5-7B In-
ternLM. As depicted in Figure 4(c), our proposed
MS method, rooted in mapping statistics, consis-
tently outperforms EM and MinED, which rely
on exact matching and minimal edit distance, re-
spectively. We propose that this performance en-
hancement arises from MS’s effective utilization
of token mapping statistics within the data, which
greatly improves the effect of token alignment in
the distribution dimension.

3.6 Different Pivot LLM
We conduct experiments using Starling-LM-7B-
alpha to replace OpenChat-3.5-7B as a more robust
pivot LLM, which achieved an LC Win Rate of
14.70 on AlpacaEval 2.0 and an Average Score
of 7.01 on MT-Bench. The evaluation results pre-
sented in Table 4 show that FUSECHAT-Starling-
7B outperforms Starling-LM-7B-alpha, with rela-
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Dataset Scale
MT-Bench

1st Turn 2nd Turn Average Score

10,000 7.34 6.86 7.10
25,000 7.58 6.85 7.21
95,000 7.70 7.05 7.38

Table 5: Comparison results of different dataset scales
on MT-Bench.

tive performance improvements of 17.62% on Al-
pacaEval 2.0 and 2.14% on MT-Bench. Notably,
although Starling-LM-7B-alpha SFT does not re-
sult in performance gains, the pairwise knowledge
fusion and model merging processes lead to signifi-
cant enhancements using the same training data.

3.7 Dataset Scaling

We perform experiments across different dataset
scales for pairwise knowledge fusion, followed by
merging the resulting target LLMs in the parameter
space to obtain the final fused LLM. The results
in Table 5 indicate that the performance of the fi-
nal fused LLM consistently improves as the train-
ing data scales up from 10k to 95k on MT-Bench,
demonstrating the potential effectiveness of scaling
up the dataset for our method.

3.8 Additional Analysis

We further conduct experiments to explore the gen-
eralizability and scalability of FUSECHAT, includ-
ing an evaluation on additional benchmarks in Ap-
pendix B.4 and a cost analysis in Appendix E.
Moreover, to explore the effectiveness of pairwise
fusion, we compare it with single-model distilla-
tion in Appendix F. Finally, we provide statistical
evidence in Appendix G to support the significance
of FUSECHAT-7B’s performance improvements.

4 Conclusion

In this work, we propose a fuse-and-merge frame-
work for knowledge fusion of structurally and
scale-varied chat LLMs to integrate their collec-
tive knowledge and individual strengths into a
more potent chat LLM, resulting in FUSECHAT.
FUSECHAT first undertakes pairwise knowledge fu-
sion for source chat LLMs to derive multiple target
LLMs of identical structure and size via lightweight
fine-tuning. Then, these target LLMs are merged
within the parameter space using a novel method
SCE to calculate the merging coefficients based
on the magnitude of parameter updates before and

after fine-tuning. Experimental results on two rep-
resentative benchmarks demonstrate the superior-
ity of FUSECHAT-7B over various baselines, even
comparable to Mixtral-8x7B-Instruct and approach-
ing GPT-3.5-Turbo-1106 on MT-Bench.

Limitations

Our work relies on constructing a knowledge fu-
sion dataset that spans diverse domains and lever-
ages the strengths of source LLMs. This process
demands substantial data engineering efforts, lim-
iting the scalability of our methodology. Future
research should focus on developing more efficient
data synthesis techniques to expand the scope of
the knowledge fusion dataset. Additionally, while
our study shows improvements in chat model ca-
pabilities, it does not address other critical aspects
of LLMs, such as knowledge comprehension and
the mitigation of hallucinations. Further investiga-
tion is necessary to evaluate the applicability and
effectiveness of our approach in these areas.
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A Related Work

Model Fusion Combining the capabilities of di-
verse models has been a long-standing objective.
Existing approaches to model fusion mainly fall
into three categories. Firstly, traditional model en-
semble techniques combine the outputs of multi-
ple models by weighted averaging (Littlestone and
Warmuth, 1994) or majority voting (Monteith et al.,
2011) to enhance overall system performance. Re-
cently, Jiang et al. (2023) introduced a sequence-
level ensemble framework for LLMs, which first
conducts pairwise comparisons to rank the outputs
of LLMs and then employs another LLM to consol-
idate the top-ranked candidates into an improved
output. In addition to the sequence-level ensemble,
Ding et al. (2024) blended multiple LLMs using
a token-level gating mechanism on the output log-
its. To avoid additional training during ensemble,
Mavromatis et al. (2024) leveraged the perplexity
of different LLMs over input prompts to determine
the importance of each model.

Secondly, model merging facilitates the fusion
of models of identical structure and scale within
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the parameter space. Wortsman et al. (2022) com-
bined multiple models, obtained by fine-tuning a
model on the same dataset but with distinct strate-
gies, through linear averaging. Matena and Raffel
(2022) enhanced simple weighted average by incor-
porating Fisher Information Matrix (Fisher, 1922)
to determine the significance of individual model
parameter. Jin et al. (2023) performed merging
by addressing an optimization problem that mini-
mizes the L2 distance between merged and individ-
ual models, and conducting a closed-form solution.
Although these methods can automatically com-
pute merging coefficients, they necessitate either
forward or backward propagation using additional
data, making model merging compute-inefficient
and memory-intensive. Ilharco et al. (2023) and
Zhang et al. (2023) conducted simple arithmetic
operations on the task vectors or LoRA (Hu et al.,
2022) modules of different models, thereby en-
hancing multi-task ability and domain generaliza-
tion. To mitigate parameter interference, Yu et al.
(2024a) and Yadav et al. (2024) introduced sparsifi-
cation techniques that trim redundant values from
task vectors before merging. Kim et al. (2023) and
Akiba et al. (2024) advanced the field by merging
LLMs across both parameter and data flow spaces,
yielding a merged LLM with up-scaled depth.

Thirdly, mixture of experts (MoEs) combines
specialized expert modules with a sparsely acti-
vated mechanism (Fedus et al., 2022), presenting
another venue for model fusion. Komatsuzaki
et al. (2023) first proposed initializing a sparse
MoEs module using multiple copies from a dense
checkpoint. To integrate multiple domain experts,
Sukhbaatar et al. (2024) trained multiple domain-
specific LLMs from a seed LLM separately and
then used feed-forward networks on top of these
dense experts to instantiate a sparse MoEs module,
followed by further fine-tuning to learn token-level
routing. Similarly, Feng et al. (2024) trained multi-
ple domain-specific LoRA (Hu et al., 2022) mod-
ules as experts and combined these domain experts
using an explicit sequence-level routing strategy.

Lastly, FUSELLM (Wan et al., 2024) introduces
another paradigm for the fusion of LLMs with
structural differences. This approach builds upon
knowledge distillation and leverages the probabilis-
tic distribution matrices generated by source LLMs
to transfer collective knowledge into a target LLM.
Unlike model ensembles and MoEs, knowledge
fusion does not require the parallel deployment of
multiple models (experts). Compared to model

merging, which only applies to models with identi-
cal architectures, FUSELLM allows for the fusion
of LLMs with different architectures.

Knowledge Distillation Knowledge fusion es-
sentially performs knowledge distillation to trans-
fer knowledge from source LLMs to a target LLM.
Knowledge distillation (Hinton et al., 2015) aims to
train a student model guided by one or more larger
teacher models. Previous studies primarily focus
on training a student model to mimic the teacher’s
behavior in text classification tasks, by replicating
the teacher’s output logits (Sanh et al., 2019; Turc
et al., 2019), as well as hidden states (Sun et al.,
2019; Jiao et al., 2020) and relations (Wang et al.,
2020). In the realm of generative models, prevail-
ing approaches maximize the log-likelihood of the
student on the distributions (Khanuja et al., 2021;
Gu et al., 2024; Agarwal et al., 2024) or sequences
(Kim and Rush, 2016; Peng et al., 2023) generated
by the teacher model. This paradigm can be ex-
tended to accommodate multiple teachers by either
averaging the distributions (You et al., 2017) or
blending the sequences (Wang et al., 2024a).

Compared to vanilla knowledge distillation,
knowledge fusion of LLMs faces new challenges.
Firstly, due to the differences in tokenization
among various LLMs, token alignment is essential
for transferring knowledge from source to target
LLMs. Secondly, when dealing with distributions
generated from multiple source LLMs, the fusion
function becomes crucial for optimally integrating
their distributions. Thirdly, to leverage the unique
advantages of different LLMs, it is necessary and
challenging to create a compact knowledge fusion
dataset that is diverse in capabilities and domains.

B Implementation Details

B.1 Details of Token Alignment
In Figure 5, we present the token pair mappings
employed in three distinct token alignment strate-
gies, including EM (Fu et al., 2023), MinED (Wan
et al., 2024), and our MS. For clarity, these map-
ping strategies are depicted in a matrix format,
where each column represents the probability of
a source token being aligned with a correspond-
ing pivot token. The values within these matri-
ces derive from the respective alignment strategies
employed. For instance, the matrix WEM relies
on exact matches between source and pivot token
pairs, while WMinED inversely relates to the edit
distance between these pairs. WMS is based on the
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Figure 5: Illustration of EM, MinED, and our MS token alignment strategies in 1-1, 1-n, and n-1 mappings.

statistical mapping frequency between the source
and pivot tokens.

In scenarios involving 1-1 or 1-n mappings,
the EM and MinED methods utilize WEM or
WMinED respectively, which may lead to inac-
curate mappings. For example, in EM, the to-
ken “flow_” might be incorrectly aligned with
“<unk>”, and in MinED, “flow_” could map to
“flown”, or “belo_” to “below”. In contrast, our MS
method achieves more accurate alignments such as
mapping “flow_” to “flowers” and “belo_” to “be-
longs”, using WMS from sequence-dimensional
token alignments. For n-1 mapping, where only
MS is applicable, multiple source distributions are
combined using a weighted average determined by

WMS. This unified distribution is then processed
similarly to the 1-1 mappings.

B.2 Details of Model Merging

The hyperparameters for various merging methods
are detailed as follows. For the Linear method
(Wortsman et al., 2022), merging parameters are
calculated as the mean of all target LLMs. In the
TA method (Ilharco et al., 2023), we adhere to the
original paper, exploring scaling coefficients within
the range of [0.3, 0.4, 0.5]. The optimal setting of
0.3 is selected based on performance. For the TIES
(Yadav et al., 2024) and DARE (Yu et al., 2024a)
approaches, we search for the trim/drop rate within
the range of [0.1, 0.2, · · · , 0.9]. The optimal trim/-
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Statistics Math Extraction Roleplay Writing STEM Reasoning Humanities Coding Total

Num. Sample 15079 20329 8137 7627 983 7948 1403 27119 88625
Percentage (%) 17.01 22.94 9.18 8.61 1.11 8.97 1.58 30.60 100

Table 6: The domain distribution of samples in the training dataset.

drop rate is 0.4, which results in the elimination
of the bottom/random 40% of delta parameters by
resetting them to zero. Merging coefficients are
computed as the average of all target LLMs. For
SCE, we search for the salient element selection
thresholds τ within the range of [10, 20, · · · , 90],
and the optimal threshold is 10%. Merging co-
efficients are automatically derived based on the
magnitude of delta parameters.

B.3 Details of Training Dataset

We curated a comprehensive training dataset,
FUSECHAT-MIXTURE, from various sources. This
dataset covers different styles and capabilities, fea-
turing both human-written and model-generated,
and spanning general instruction-following and spe-
cific skills. These sources include:

Orca-Best2: We sampled 20,000 examples from
Orca-Best, which is filtered from the GPT-4 (1M)
partition of Orca (Mukherjee et al., 2023) based on
maximum length and clustering of instructions.

Capybara3: We incorporated all the 16,000 ex-
amples of Capybara, which is a high-quality collec-
tion of multi-turn synthetic conversations.

No-Robots4: We included all the 9,500 exam-
ples of No-Robots, which is a dataset created
by skilled human annotators for supervised fine-
tuning.

ShareGPT-GPT45: We utilized all 6,200 exam-
ples from ShareGPT-GPT4, which exclusively uses
dialogues generated by GPT-4 in ShareGPT.

Oasst-Top16: We selected 5,000 examples
from Oasst-Top1, which is a refined version of
Oasst1 (Köpf et al., 2024), a human-annotated
assistant-style conversation dataset.

MetaMathQA 7: We sampled 10,000 examples

2https://huggingface.co/datasets/shahules786/
orca-best

3https://huggingface.co/datasets/LDJnr/
Capybara

4https://huggingface.co/datasets/
HuggingFaceH4/no_robots

5https://huggingface.co/datasets/shibing624/
sharegpt_gpt4

6https://huggingface.co/datasets/
OpenAssistant/oasst_top1_2023-08-25

7https://huggingface.co/datasets/meta-math/

from MetaMathQA (Yu et al., 2024b), which is
augmented from the GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) datasets for
mathematics problem-solving.

OSS-Instruct 8: We chose 10,000 examples
from OSS-Instruct (Wei et al., 2023), which con-
tains code instruction data synthesized from open-
source code snippets.

Evol-Alpaca 9: We sampled 10,000 examples
from Evol-Alpaca, which is a code instruction
dataset generated by GPT-4 with evol-instruct pro-
posed by WizardCoder (Luo et al., 2024).

Python-Code 10: We selected 10,000 examples
from Python-Code, which comprises instructions
and responses generated by GPT-3.5 and GPT-4 for
Python code generation.

We followed the data processing code in
FastChat (Zheng et al., 2024) to clean instances
containing non-English or special characters. Then,
we split long conversations into blocks with a max-
imum length of 2048 tokens, resulting in the final
FUSECHAT-MIXTURE with 95,000 samples. We
also explored the domain distribution of the sam-
ples in the training data. Specifically, we used the
approach provided by Magpie (Xu et al., 2024), uti-
lizing the Llama-3-8B-Instruct model (Dubey et al.,
2024) to classify our 95,000 training examples into
eight distinct domains as defined by MT-Bench.
After removing 7,000 samples due to anomalous
classification errors, the final domain distribution
is presented in Table 6, which demonstrates sub-
stantial diversity, which aligns with our primary
objective to assess the model’s general capabilities
rather than domain-specific performance.

B.4 Details of Baselines

In this section, we present the details of the baseline
models compared in our experiments.

Proprietary LLMs: GPT-3.5-Turbo-

MetaMathQA
8https://huggingface.co/datasets/ise-uiuc/

Magicoder-OSS-Instruct-75K
9https://huggingface.co/datasets/

theblackcat102/evol-codealpaca-v1
10https://huggingface.co/datasets/ajibawa-2023/

Python-Code-23k-ShareGPT
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Model MMLU-Pro PIQA BoolQ GPQA GSM8K IFEval Average

OpenChat-3.5-7B 31.63 82.86 73.91 31.30 76.88 35.73 55.38
OpenChat-3.5-7B SFT 31.32 82.75 73.91 30.30 76.04 35.34 54.94
OpenChat-3.5-7B Multi 31.39 82.43 73.73 32.30 74.75 36.25 55.14

FUSECHAT-7B 31.65(+0.06%) 82.97(+0.13%) 75.50(+2.15%) 37.40(+19.49%) 77.10(+0.29%) 37.49(+4.93%) 57.02(+2.96%)

Table 7: Comparison results on general evaluation benchmarks.

110611 (Achiam et al., 2023), Claude-3-
Opus12 (Anthropic, 2024), and GPT-4-1106-
Preview13 (Achiam et al., 2023).

Source LLMs: OpenChat-3.5-7B14 (Wang
et al., 2024a), Starling-LM-7B-alpha15 (Zhu et al.,
2024), NH2-SOLAR-10.7B16 (Kim et al., 2023),
InternLM2-Chat-20B17 (Cai et al., 2024), Mixtral-
8x7B-Instruct18 (Jiang et al., 2024), and Qwen-1.5-
Chat-72B19 (Bai et al., 2023).

Ensemble LLMs: Top1-PPL (Mavromatis et al.,
2024), which selects the 1st ranked response from
source LLMs based on the perplexity of the in-
struction; Top1-LLM-Blender (Jiang et al., 2023),
which ranks and combines the output text from
source LLMs with ranker and fuser models. Due
to the fuser model’s constraints on maximum se-
quence length, only the ranker model is utilized
to determine and produce the 1st-ranked response;
Top1-GPT4 (Achiam et al., 2023), which leverages
GPT-4 judgment as ranking criteria and yields the
1st-ranked response. Since our evaluations also
rely on GPT-4, this approach represents an upper
bound for comparison.

Fused LLMs: OpenChat-3.5-7B SFT, a spe-
cial scenario of knowledge fusion with a single
source LLM, serves as the supervised fine-tuning
baseline using our training dataset; OpenChat-
3.5-7B Multi is the knowledge fusion of mul-
tiple source chat LLMs simultaneously like
FUSELLM (Wan et al., 2024); OpenChat-3.5-7B
Starling, OpenChat-3.5-7B SOLAR, OpenChat-

11https://platform.openai.com/docs/models/
gpt-3-5-turbo

12https://www.anthropic.com/news/
claude-3-family

13https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

14https://huggingface.co/openchat/openchat_3.5
15https://huggingface.co/berkeley-nest/

Starling-LM-7B-alpha
16https://huggingface.co/NousResearch/

Nous-Hermes-2-SOLAR-10.7B
17https://huggingface.co/internlm/

internlm2-chat-20b
18https://huggingface.co/mistralai/

Mixtral-8x7B-Instruct-v0.1
19https://huggingface.co/Qwen/Qwen1.5-72B-Chat

3.5-7B InternLM, OpenChat-3.5-7B Mixtral, and
OpenChat-3.5-7B Qwen are target LLMs resulting
from pairwise knowledge fusion of the pivot LLM
OpenChat-3.5-7B and the rest source LLMs.

C Evaluation of Additional Benchmarks

The primary objective of FUSECHAT is to integrate
multiple chat LLMs into a more powerful model.
Consequently, our experiments primarily focus on
alignment training data, such as ShareGPT, and
chat model evaluation benchmarks like AlpacaEval
2.0 and MT-Bench. In addition to the chat model
benchmarks, we also conducted experiments on six
general evaluation benchmarks, including MMLU-
Pro (Wang et al., 2024b), PIQA (Bisk et al., 2020),
BoolQ (Clark et al., 2019), GPQA (Rein et al.,
2023), GSM8K (Cobbe et al., 2021), and IFEval
(Zhou et al., 2023), which assess knowledge un-
derstanding, question-answering, common-sense
reasoning, and instruction-following. The results
are presented in Table 7. It is important to note that
the training data for FUSECHAT-7B is primarily fo-
cused on alignment rather than general knowledge.
Therefore, performance improvements on these
general benchmarks are less significant compared
to those on AlpacaEval 2.0 and MT-Bench. This ob-
servation is consistent with recent studies on align-
ment (Meng et al., 2024; Wu et al., 2024), which
highlight the critical role of alignment dataset con-
struction in determining downstream performance.

D Rationale Behind the Value of λ

Loss Type Loss Value

SFT 0.5077
Fusion 1.3081

Table 8: Loss values for SFT and
fusion during training with Qwen-
1.5-Chat-72B as the source LLM.

In Eq. 4, λ is
set to 0.9 to bal-
ance the contri-
butions of the
SFT loss and
the fusion loss.
This value is
carefully cho-
sen due to the substantial difference in magnitude
between these two losses. To illustrate this, we con-
ducted an experiment using Qwen-1.5-Chat-72B
as the source LLM and randomly selected 128 in-
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Task FUSECHAT FUSELLM

Token Alignment (CPU) 4h 4Nh
Distribution Fusion (CPU) 5h 5Nh
Training (GPU) 9h 9h
Merging (CPU, FuseChat only) 0.1h 0

Total CPU Time 9.1h 9Nh
Total GPU Time 9h 9h
Storage Overhead 2 × 2.66GB (N + 1) × 2.66GB

Table 9: Computational costs and storage overhead of
FUSECHAT and FUSELLM when scaling the number
of source LLMs from N to N + 1.

stances from the training dataset. The observed
loss values are presented in Table 8. The results
indicate that the fusion loss is approximately three
times larger than the SFT loss in this setting. This
disparity necessitates assigning a proportionally
smaller weight to the fusion loss to prevent it from
dominating the optimization process. Without this
adjustment, an overly high fusion loss weight could
distort the training dynamics, leading to suboptimal
learning. Therefore, the 0.9/0.1 weight distribution
is a carefully calibrated choice designed to ensure
balanced optimization and effective learning within
the framework of Eq. 4.

E Cost Analysis

Time Complexity of Token Alignment The to-
ken alignment complexity in our approach remains
independent of model size, primarily depending on
vocabulary size, dataset size, and sequence length,
ensuring scalability to larger models. Our token
alignment framework is optimized for efficiency.
Our experiments were conducted on a hardware
setup comprising 8 × 80GB A800 GPUs and 2
× Intel Xeon Gold 6348 CPUs. To assess the
computational cost of token alignment, we aligned
Qwen-1.5-72B (vocabulary size: 152,064) with
OpenChat-3.5-7B (vocabulary size: 32,002) using
approximately 95,000 data samples. The alignment
process took approximately 6 CPU hours with 32-
thread parallelization. To optimize efficiency, we
employed sparse matrix operations, which substan-
tially decreased both computational and storage
requirements. The resulting token mapping matrix
has a compact storage footprint of approximately
10MB when saved as a .npz file.

Scalability of FUSECHAT and FUSELLM
We detailed the full cost comparison between
FUSECHAT and FUSELLM when scaling the num-
ber of source LLMs from N to N + 1 in Table 9.

Model AlpacaEval 2.0 MT-Bench

OpenChat-3.5-7B Qwen (D/P) 5.98/14.98 6.79/7.23
OpenChat-3.5-7B Mixtral (D/P) 16.10/16.52 7.03/7.24
OpenChat-3.5-7B InternLM (D/P) 6.54/15.21 6.88/7.21
OpenChat-3.5-7B SOLAR (D/P) 12.21/16.51 7.09/7.17
OpenChat-3.5-7B Starling (D/P) 14.89/16.20 7.15/7.22

FUSECHAT-7B (D/P) 14.68/17.16 6.91/7.38

Table 10: Comparison of pairwise fusion (P) and single-
model distillation (D) across five source LLMs, and
the final FUSECHAT-7B models merged using the SCE
method on AlpacaEval-2.0 and MT-Bench.

The estimated storage overhead for storing the top-
10 logits per token for 95K samples with an average
length of 500 tokens is approximately 2.66GB per
model. Our FuseChat framework demonstrates ef-
ficient scalability when incorporating additional
source models, all while maintaining reasonable
storage and computational demands. While the
GPU training time remains comparable to other
methods, FuseChat significantly reduces CPU time
and storage overhead as the number of source
LLMs (N) increases. These results further demon-
strate that FUSECHAT can integrate a new source
model in a plug-and-play manner.

F Comparison of Pairwise Fusion and
Single-model Distillation

The key distinction between pairwise fusion and
single-model distillation lies in their learning
paradigms. In pairwise fusion, the model selec-
tively acquires knowledge based on the quality of
outputs from the source LLM or pivot LLM, guided
by lower cross-entropy (CE) values. This approach
ensures that the model consistently learns from the
stronger performer for each sample. In contrast,
single-model distillation relies exclusively on the
source LLM, implicitly assuming that the source
consistently provides superior outputs.

To rigorously assess the differences between
pairwise fusion and single-model distillation, we
conducted additional experiments. Specifically,
the pairwise fusion strategy in FUSECHAT was re-
placed with direct distillation from a single source
model, omitting the merging phase. The results,
summarized in Table 10, demonstrate that pairwise
fusion consistently outperforms single-model dis-
tillation across five source LLMs. For clarity, the
notation D/P indicates the performance of direct
distillation and pairwise fusion, respectively. The
metrics reported include the Average Score on MT-
Bench and the Length-Controlled Win Rate on Al-
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Model Comparison t-statistic p-value

FUSECHAT-7B vs. Pairwise Fusion 2.95874 0.00318
FUSECHAT-7B vs. OpenChat-3.5-7B Multi 3.32756 0.00108

Table 11: T-test results comparing FUSECHAT-7B with
Pairwise Fusion and OpenChat-3.5-7B Multi on MT-
Bench, highlighting the statistical significance of perfor-
mance improvements.

pacaEval 2.0. Furthermore, the SCE method was
applied to fuse the models obtained through single-
model distillation. As shown in Table 10, the re-
sults reveal that merging the models derived from
pairwise fusion produces a superior fused model
compared to merging models from single-model
distillation. These results highlight the effective-
ness of pairwise fusion, not only in standalone per-
formance but also in enhancing the quality of the
final fused model.

G Statistical Significance of Performance
Improvements

We conduct detailed statistical analyses using t-
tests to evaluate the performance of our proposed
FUSECHAT-7B model on MT-Bench compared to
two key baselines: Pairwise Fusion and OpenChat-
3.5-7B Multi, which fuses multiple source LLMs
simultaneously. The results, summarized in Ta-
ble 11, highlight the strong statistical significance
of the performance improvements achieved by
FUSECHAT-7B over these baselines. Notably, the
p-values are well below the 0.05 threshold, con-
firming the significance of the observed differences.
These findings provide evidence to support the su-
periority of FUSECHAT-7B compared to both Pair-
wise Fusion and OpenChat-3.5-7B Multi.

H Case Studies

We present case studies to demonstrate the indi-
vidual strengths of target LLMs (OpenChat-3.5-
7B Starling, OpenChat-3.5-7B SOLAR, OpenChat-
3.5-7B InternLM, OpenChat-3.5-7B Mixtral, and
OpenChat-3.5-7B Qwen) obtained from pairwise
knowledge fusion of source LLMs, and show the
collective knowledge and strengths of FUSECHAT

(FUSECHAT-7B) obtained by further merging tar-
get LLMs. OpenChat-3.5-7B SFT is used as the
baseline for comparison.
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OpenChat-3.5-7B SFT; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color
were measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both
colors. If we randomly pick a student from the school, what’s the probability that they would like
neither blue nor green?
Turn 1 Answer: Let’s use the principle of inclusion-exclusion to solve this problem. The total
percentage of students who like either blue or green is the sum of the individual percentages minus
the percentage who like both:

58%(blue) + 45%(green)− 22%(both) = 75%

This means that 100% - 75% = 25% of students like neither blue nor green. So, the probability that
a randomly picked student would not like neither blue nor green is 25% . The answer is: 25
Turn 1 Judgment: The assistant’s answer contains a mathematical error in calculating the total
percentage of students who like either blue or green. The correct calculation, as shown in the
reference answer, should be:

58% + 45%− 22% = 81%

This means that 81% of students like at least one of the colors, not 75% as the assistant stated.
Consequently, the correct percentage of students who like neither color is:

100%− 81% = 19%

Therefore, the correct probability that a randomly picked student would like neither blue nor
green is 19%, not 25% as the assistant incorrectly concluded. The assistant’s mistake significantly
affects the correctness of the response. However, the assistant did correctly apply the principle
of inclusion-exclusion, which indicates an understanding of the correct approach to solving the
problem. The error seems to be purely in the arithmetic calculation. Given the importance of
accuracy in mathematical problems and the impact of this error on the final answer, the response’s
helpfulness is diminished. However, the attempt to apply the correct principle shows some level of
understanding. Rating: [[3]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would
dislike both colors?
Turn 2 Answer: Since 22% of students like both colors, this means that 78% of students do not
like both colors. Out of these, 45% prefer green. Therefore, the probability that a student who likes
green would dislike the other color is 45%× 78% = 35.7%. So, the probability that a student who
likes green would dislike the other color is 35.7% . The answer is: 35.7
Turn 2 Judgment: The assistant’s response to the second question contains a fundamental misun-
derstanding of the question posed. The question asks for the probability that a student who likes
green would dislike both colors, which is a contradiction. If a student likes green, they cannot
simultaneously dislike green, making it impossible for them to dislike both green and another
color (in this case, blue). The correct answer, as provided in the reference answer, is 0%. This is
because the premise of selecting a student who likes green excludes the possibility of that student
disliking both colors. The assistant’s calculation of 35.7% is incorrect because it misinterprets the
question as asking for the probability that a student who likes green would dislike the other color
(blue), which was not the question asked. Therefore, the assistant’s response is incorrect due to a
misunderstanding of the question’s premise, leading to an erroneous calculation that does not apply
to the scenario described. Rating: [[1]]

Table 12: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B SFT.
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OpenChat-3.5-7B Starling; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color
were measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both
colors. If we randomly pick a student from the school, what’s the probability that they would like
neither blue nor green?
Turn 1 Answer: We can solve this problem using the principle of inclusion-exclusion. The total
number of students who like either blue or green is the sum of those who like blue, those who like
green, minus those who like both (to avoid double-counting). So, the number of students who like
either color is:

58%(blue) + 45%(green)− 22%(both) = 75%

This means that 25% of students like neither color. Therefore, the probability that a randomly
picked student likes neither color is 25% . The answer is: 25
Turn 1 Judgment: The assistant’s answer contains a mathematical error in calculating the percent-
age of students who like either blue or green. The correct calculation, as shown in the reference
answer, should be:

At least one of the colors = 58% + 45%− 22% = 103%− 22% = 81%

This means that 81% of students like at least one of the colors, not 75% as the assistant stated.
Consequently, the percentage of students who like neither color is not 25% but rather:

Neither color = 100%− 81% = 19%

Therefore, the correct probability that a randomly picked student likes neither color is 19%, not
25%. The assistant’s mistake significantly affects the correctness of the response. The correct
approach and calculation were provided in the reference answer, which the assistant failed to
replicate accurately. This error directly impacts the helpfulness of the response, as it provides the
user with incorrect information. Given the importance of accuracy in mathematical problems and
the potential confusion caused by incorrect percentages, the assistant’s response is rated lower due
to the critical error in calculation. Rating: [[3]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would
dislike both colors?
Turn 2 Answer: Since the student dislikes both colors, they must dislike green. Therefore, the
probability that a student who likes green would dislike both colors is 0%.
Turn 2 Judgment: The assistant’s response to the second question is correct and aligns with
the reference answer. It correctly states that if a student likes green, the probability that they
would dislike both colors (blue and green) is 0%. This is because the premise of the question
already establishes that the student likes green, making it impossible for them to dislike both colors
simultaneously. The explanation is clear, concise, and logically sound, directly addressing the
user’s question without unnecessary complexity. The assistant’s answer to the second question does
not contain any mistakes and is both correct and helpful. It provides a straightforward explanation
that directly answers the user’s query, making it easy for the user to understand the concept being
discussed. Rating: [[10]]

Table 13: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B Starling.
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OpenChat-3.5-7B SOLAR; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color
were measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both
colors. If we randomly pick a student from the school, what’s the probability that they would like
neither blue nor green?
Turn 1 Answer: We can solve this problem using the principle of inclusion-exclusion. The total
number of students who like either blue or green is the sum of those who like blue and those who
like green, minus the number who like both. That is:

Total = Blue + Green − Both

We are given that 58% of students like blue, 45% like green, and 22% like both. So, we can
calculate the percentage of students who like neither as follows:

Neither = Total − Blue − Green + Both

Substituting the given percentages:

Neither = 100%− (58% + 45%− 22%)

Simplifying:

Neither = 100%− 75%

Therefore, the probability that a randomly picked student would like neither blue nor green is 25%.
Turn 1 Judgment: The assistant’s answer contains a critical error in the calculation process. The
mistake lies in the incorrect application of the principle of inclusion-exclusion and the subsequent
calculation of the percentage of students who like neither color. The correct application of the
principle of inclusion-exclusion for calculating the percentage of students who like at least one of
the colors (blue or green) is as follows:

At least one of the colors = (Blue) + (Green)− (Both)

At least one of the colors = 58% + 45%− 22% = 103%− 22% = 81%

This means 81% of students like at least one of the colors, blue or green. To find the percentage of
students who like neither color, we subtract this percentage from 100%:

Neither color = 100%− At least one of the colors

Neither color = 100%− 81% = 19%

Therefore, the correct probability that a randomly picked student would like neither blue nor green
is 19%, not 25% as the assistant incorrectly calculated. The assistant’s mistake was in the formula
used for calculating the percentage of students who like neither color. The assistant incorrectly
attempted to subtract the sum of individual preferences minus the overlap from 100%, which does
not align with the principle of inclusion-exclusion correctly applied in this context. Given the
significant error in the calculation that led to an incorrect final answer, the response’s correctness
is compromised. However, the assistant did correctly identify the need to use the principle of
inclusion-exclusion, which shows an understanding of the correct approach, albeit misapplied.
Rating: [[3]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would
dislike both colors?
Turn 2 Answer: If a student is selected who likes green, the probability that he or she would dislike
both colors is 1 - the probability that they like both colors. We know that 22% of students like both
colors. So, the probability that a student who likes green dislikes both colors is:

1− 22% = 78%

Therefore, the probability that a student who likes green would dislike both colors is 78%.
Turn 2 Judgment: The assistant’s response to the second question contains a fundamental misun-
derstanding of the scenario presented. According to the reference answer, if a student likes green,
the probability that they would dislike both colors is 0%. This is logically consistent because liking
green precludes the possibility of disliking both green and blue simultaneously. The assistant’s
answer, suggesting a 78% probability that a student who likes green would dislike both colors, is
incorrect. The correct answer should acknowledge that once a student is known to like green, they
cannot be in the category of disliking both colors, making the probability 0%. Rating: [[1]]

Table 14: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B SOLAR.
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OpenChat-3.5-7B InternLM; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color
were measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both
colors. If we randomly pick a student from the school, what’s the probability that they would like
neither blue nor green?
Turn 1 Answer: To find the probability that a student likes neither blue nor green, we need to
subtract the probability that they like at least one of the colors from 1. Let A be the event that a
student likes blue, and B be the event that a student likes green. We are given that P (A) = 0.58,
P (B) = 0.45, and P (A ∩B) = 0.22. First, we need to find the probability that a student likes at
least one of the colors. We can use the formula for the probability of the union of two events:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (A ∪B) = 0.58 + 0.45− 0.22 = 0.75

Now, to find the probability that a student likes neither blue nor green, we subtract the probability
that they like at least one of the colors from 1:

P (neither) = 1− P (atleastonecolor)

P (neither) = 1− 0.75 = 0.25

So, the probability that a randomly picked student would like neither blue nor green is 0.25 or 25%.
Turn 1 Judgment: The assistant’s answer contains a mathematical error in calculating the probabil-
ity that a student likes at least one of the colors. The assistant incorrectly calculates the probability
of a student liking at least one of the colors (blue or green) as 0.75 (or 75%), which leads to an
incorrect final answer for the probability of a student liking neither color as 0.25 (or 25%). The
correct calculation, as shown in the reference answer, should be as follows:
- The probability of liking blue (P(Blue)) = 58% or 0.58
- The probability of preferring green (P(Green)) = 45% or 0.45
- The probability of liking both colors (P(Both)) = 22% or 0.22
Using the principle of inclusion-exclusion:

At least one of the colors = P (Blue) + P (Green)− P (Both) = 0.58 + 0.45− 0.22 = 0.81

This means 81% of students like at least one of the colors, and thus:

Neither color = 1− At least one of the colors = 1− 0.81 = 0.19

Therefore, the correct probability that a randomly picked student would like neither blue nor green
is 0.19 or 19%, not 25% as the assistant’s answer suggests. The assistant’s mistake lies in the
incorrect calculation of the union of the two events, which led to an inaccurate conclusion. This
error significantly impacts the correctness of the response. Given the importance of accuracy in
probability calculations and the impact of this error on the final answer, the assistant’s response is
rated lower for its correctness. However, the assistant did correctly apply the principle of inclusion-
exclusion and provided a clear explanation of the steps, which is helpful for understanding the
process. Rating: [[4]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would
dislike both colors?
Turn 2 Answer: The question seems to be asking for the probability that a student who likes green
would dislike both colors, which is not possible because the student already likes green. The student
cannot dislike both colors while also liking one of them.
Turn 2 Judgment: The assistant’s response to the second question is correct and aligns with the
reference answer. It correctly identifies the logical inconsistency in the question: if a student likes
green, they cannot simultaneously dislike both green and another color. The assistant succinctly
explains why the probability that a student who likes green would dislike both colors is 0%, which
is the same conclusion reached in the reference answer. This explanation is clear, logically sound,
and directly addresses the user’s question, demonstrating an understanding of basic probability
principles and the specific scenario presented. Rating: [[10]]

Table 15: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B InternLM.
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OpenChat-3.5-7B Mixtral; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color
were measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both
colors. If we randomly pick a student from the school, what’s the probability that they would like
neither blue nor green?
Turn 1 Answer: The probability that a student likes blue is 58%, and the probability that they like
green is 45%. Since 22% of students like both colors, we can subtract this from the total percentage
to find the percentage of students who like either blue or green but not both.

58% + 45%− 22% = 71%

So, 71% of students like either blue or green, which means 100% - 71% = 29% of students like
neither color. Therefore, the probability that a randomly picked student would like neither blue nor
green is 29% . The answer is: 29
Turn 1 Judgment: The assistant’s answer contains a critical mathematical error in calculating
the probability of students liking neither blue nor green. The correct approach, as outlined in the
reference answer, involves using the principle of inclusion-exclusion to accurately account for the
overlap between students who like both colors. Correct Calculation:
- The correct calculation to find the percentage of students who like at least one of the colors (blue
or green) is to add the percentages of students who like each color and then subtract the percentage
of students who like both (to correct for double counting), which is 58% + 45%− 22% = 81%.
- Therefore, to find the percentage of students who like neither color, we subtract the percentage of
students who like at least one of the colors from 100%, resulting in 100%− 81% = 19%.
The assistant incorrectly calculated the percentage of students who like either blue or green but
not both as 71%, leading to the incorrect conclusion that 29% of students like neither color. The
correct probability that a randomly picked student would like neither blue nor green is 19%, not
29%. Given the significant mathematical error and the resulting incorrect conclusion, the assistant’s
answer is not helpful for someone trying to understand how to correctly apply the principle of
inclusion-exclusion in probability. Rating: [[2]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would
dislike both colors?
Turn 2 Answer: If a student is selected who likes green, the probability that they dislike both
colors is equal to the percentage of students who like both colors. In this case, 22% of students like
both colors, so the probability that a student who likes green would dislike both colors is 22% .The
answer is: 22
Turn 2 Judgment: The assistant’s response to the second question contains a significant error.
The correct answer, as outlined in the reference answer, is that the probability of a student who
likes green disliking both colors is 0%. This is because the premise of the question already
establishes that the student likes green, making it impossible for them to dislike both green and blue
simultaneously. The assistant’s answer incorrectly states that the probability is 22%, which seems
to be a misunderstanding of the question’s premise. The correct approach should have recognized
the logical contradiction in the question: a student who likes green cannot at the same time dislike
both green and another color. Therefore, the probability of a student who likes green also disliking
both colors is 0%. Given this significant mistake and misunderstanding of the question’s premise,
the response is incorrect and misleading. Rating: [[1]]

Table 16: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B Mixtral.
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OpenChat-3.5-7B Qwen; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color
were measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both
colors. If we randomly pick a student from the school, what’s the probability that they would like
neither blue nor green?
Turn 1 Answer: To find the probability that a student likes neither blue nor green, we can use the
formula for the probability of the union of two events:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

In this case, A represents the event that a student likes blue, and B represents the event that a student
likes green. We are given that P (A) = 0.58, P (B) = 0.45, and P (A ∩B) = 0.22. First, we need
to find the probability of the event that a student likes either blue or green, which is represented by
P (A ∪B):

P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.58 + 0.45− 0.22 = 0.75

Now, we need to find the probability of the event that a student likes neither blue nor green, which
is represented by P (A′ ∩B′):

P (A′ ∩B′) = 1− P (A ∪B) = 1− 0.75 = 0.25

Therefore, the probability that a randomly picked student would like neither blue nor green is 0.25
or 25%.
Turn 1 Judgment: The assistant’s answer contains a mathematical error in calculating the proba-
bility of a student liking either blue or green. The assistant incorrectly calculates the sum of the
probabilities as 0.75 (or 75%) instead of correctly calculating it as 81%, as shown in the reference
answer. This error leads to an incorrect final answer for the probability of a student liking neither
blue nor green. Correct Calculation based on the reference answer:
- The correct calculation for the probability of a student liking at least one of the colors (blue or
green) is 58% + 45% - 22% = 81%.
- Therefore, the correct probability of a student liking neither color is 100% - 81% = 19%.
The assistant’s answer incorrectly concludes that the probability is 25%, whereas the correct
probability, as per the reference answer and the correct calculation, is 19%. Despite the assistant’s
method being fundamentally sound and the explanation clear, the mathematical mistake significantly
impacts the correctness of the final answer. The assistant’s approach correctly applies the principle
of inclusion-exclusion but fails in the execution of basic arithmetic. Given the importance of
accuracy in mathematical problems and the impact of this error on the final answer, the assistant’s
response must be rated lower. However, the explanation and approach were correctly aligned with
the principle of inclusion-exclusion, which is a positive aspect of the response. Rating: [[4]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would
dislike both colors?
Turn 2 Answer: If a student is selected who likes green, we want to find the probability that they
dislike both colors. Since the student likes green, they cannot dislike both colors. Therefore, the
probability that a student who likes green would dislike both colors is 0.
Turn 2 Judgment: The assistant’s response to the second question is correct and aligns with
the reference answer. It accurately explains that if a student is already known to like green, it
is impossible for them to dislike both green and blue simultaneously. Therefore, the probability
that a student who likes green would dislike both colors is indeed 0%. This explanation is clear,
concise, and directly addresses the user’s question without unnecessary complexity. The assistant’s
answer is helpful in clarifying the logical impossibility of the scenario proposed by the user, thus
preventing any confusion about the nature of probability in this context. Rating: [[10]]

Table 17: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B Qwen.
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FUSECHAT-7B; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color
were measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both
colors. If we randomly pick a student from the school, what’s the probability that they would like
neither blue nor green?
Turn 1 Answer: To find the probability that a student likes neither blue nor green, we can use the
formula:

P (neither) = 1− P (blue)− P (green) + P (both)

where P(blue) is the probability that a student likes blue, P(green) is the probability that a student
likes green, and P(both) is the probability that a student likes both colors. We are given that
P (blue) = 58%, P (green) = 45%, and P (both) = 22%. Plugging these values into the formula,
we get:

P (neither) = 1− 0.58− 0.45 + 0.22

P (neither) = 1− 0.85 + 0.22

P (neither) = 0.15

So, the probability that a randomly picked student would like neither blue nor green is 15%.
Turn 1 Judgment: The assistant’s answer uses the principle of inclusion-exclusion correctly but
makes a calculation error in the final step. According to the assistant’s formula:

P (neither) = 1− P (blue)− P (green) + P (both)

The values given are: - P (blue) = 58% = 0.58 - P (green) = 45% = 0.45 - P (both) = 22% =
0.22
Plugging these into the formula, the assistant calculates:

P (neither) = 1− 0.58− 0.45 + 0.22

However, the assistant incorrectly calculates the final result as 0.15 (or 15%). The correct calculation
should be:

P (neither) = 1− 0.58− 0.45 + 0.22 = 1− 1.03 + 0.22 = 1− 0.81 = 0.19

Therefore, the correct probability that a randomly picked student would like neither blue nor green
is 19%, not 15%. The reference answer correctly calculates this probability as 19% using the
principle of inclusion-exclusion and correctly accounts for the overlap between students who like
both colors. The assistant’s approach is fundamentally correct but falters at the arithmetic stage,
leading to an incorrect final answer. Given the mistake in calculation, the assistant’s answer is not
entirely correct, but since the method used was appropriate, it shows a good understanding of the
principle involved. Therefore, the assistant’s response, while flawed in execution, is still somewhat
helpful for understanding how to approach the problem. Rating: [[6]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would
dislike both colors?
Turn 2 Answer: If a student is selected who likes green, we want to find the probability that they
dislike both colors. Since the student likes green, they cannot dislike both colors. Therefore, the
probability that a student who likes green would dislike both colors is 0%.
Turn 2 Judgment: The assistant’s answer to the second question is correct and aligns with the
reference answer. It accurately explains that if a student likes green, the probability of them disliking
both colors (blue and green) is 0%. This is because the premise of the question already establishes
that the student likes green, making it impossible for them to dislike both colors simultaneously.
The explanation is clear, concise, and logically sound, effectively addressing the user’s query
without any errors or unnecessary complexity. Rating: [[10]]

Table 18: Case studies on MT-Bench. The answers are generated by FUSECHAT-7B.
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