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Abstract
Large language models (LLMs) often appear
to excel on public benchmarks, but these high
scores may mask an overreliance on dataset-
specific surface cues rather than true language
understanding. We introduce the Chameleon
Benchmark Overfit Detector (C-BOD), a
meta-evaluation framework designed to re-
veal such overfitting. C-BOD systematically
rephrases benchmark inputs via a parameter-
ized transformation that preserves semantic
content and labels, enabling the detection of
performance degradation indicative of superfi-
cial pattern reliance. We conduct extensive ex-
periments across two datasets, three rephrasing
models, and multiple distortion levels, evaluat-
ing 32 state-of-the-art LLMs. On the MMLU
benchmark, C-BOD reveals an average perfor-
mance drop of 2.75% under modest rephras-
ings, with over 80% of models exhibiting statis-
tically significant differences. Notably, higher-
performing models and larger LLMs tend to
show greater sensitivity, suggesting a deeper
dependence on benchmark-specific phrasing.
Due to its dataset and model-agnostic design,
C-BOD can be easily integrated into evaluation
pipelines and offers a promising foundation
for overfitting mitigation strategies. Our find-
ings challenge the community to look beyond
leaderboard scores and prioritize resilience
and generalization in LLM evaluation. Our
code and benchmark datasets are available at:
https://github.com/nuritci/cbod

1 Introduction

Large Language Models (LLMs) have achieved
impressive results on a wide range of NLP tasks
(Chang et al., 2024). Consequently, hundreds of
benchmarks have been established to track progress
and evaluate model capabilities (Lu et al., 2024;
Liang et al., 2022). However, the rapid prolif-
eration of LLMs and the frequent use of public
leaderboards raise concerns about the robustness of
these evaluation practices (Castillo-Bolado et al.,
2024). Specifically, as benchmark data becomes
more widely recognized, models may learn to
exploit surface patterns or spurious correlations,

rather than exhibit genuine language understand-
ing. This issue can lead to deceptively high scores
that do not reflect true progress. In this paper,
we examine whether LLMs rely excessively on
benchmark-specific cues potentially overfitting to
the patterns inherent in widely published evalua-
tion benchmarks and explore systematic methods
to detect and mitigate this behavior. In other words,
are LLMs prone to overfitting on popular bench-
marks, and what underlying factors contribute to
this phenomenon? To answer this question, we in-
troduce the Chameleon Benchmark Overfit Detec-
tor (C-BOD). This framework reveals how heavily
a model depends on the exact wording or struc-
ture of a test set. By introducing controlled tex-
tual distortions to benchmark prompts at varying
intensities (defined by a distortion parameter µ),
as demonstrated in Figure 1, our method exposes
whether strong performance derives from reliance
on superficial patterns. Notably, our framework
requires only the evaluation set, without accessing
the model’s training data or architecture. Unlike
conventional leaderboards that solely track perfor-
mance, our meta-evaluation framework acts as a
safeguard ensuring that high scores do not stem
from superficial memorization of benchmark cues.

Our Contributions:
1. A Robust Framework for Detecting Bench-

mark Overfitting. We present a framework that
computes the performance difference ∆µ be-
tween original and perturbed prompts and con-
firms its statistical significance, ensuring that
observed differences indeed indicate overfitting
rather than chance variations.

2. New Insights into LLM Behavior. Our anal-
ysis reveals that larger models and those with
higher baseline performance are often more sen-
sitive to perturbations, suggesting a deeper re-
liance on benchmark-specific phrasing.

3. Extensive Empirical Validation. We apply our
method to a diverse collection of 32 leading
LLMs from various families, architectures, and
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Figure 1: An example demonstrating the C-BOD
method. The original question (top) is perturbed (bot-
tom) while preserving the semantic meaning and cor-
rect answer options. The model correctly answers the
original question but fails on the perturbed version, sug-
gesting potential overfitting. Changes in the perturbed
question are highlighted in bold.

parameter sizes. Utilizing modest textual dis-
tortions generated by three different rephrasing
models for enhanced robustness, our analysis re-
veals statistically significant performance degra-
dation in over 80% of the evaluated models, pro-
viding strong empirical evidence of widespread
benchmark overfitting. Similar trends were ob-
served in our evaluation on the GPQA dataset,
in which we also show an ablation over different
distortion levels (µ).

4. Open Resources for the Community. To facil-
itate further research and promote robust evalua-
tion, we publicly release the rephrased versions
of the widely used MMLU and GPQA evalu-
ation sets, along with our reproducible code.
These resources enable the community to read-
ily adopt more robust, surface-invariant tests for
reliable LLM assessment and provide a foun-
dation for developing mechanisms to mitigate
benchmark overfitting.

2 Related Work

2.1 Benchmark Datasets and Evaluation
Suites

LLMs have achieved impressive results on many
benchmarks. This success has driven the develop-
ment of comprehensive evaluation suites such as
BIG-Bench (Srivastava et al., 2022) and HELM
(Liang et al., 2022). The MMLU benchmark set
(Hendrycks et al., 2020) evaluates question answer-
ing across 57 subjects, including STEM, humani-
ties, and social sciences, while (Zhang et al., 2024)
introduced 25 enterprise-focused datasets covering

domains like finance, legal, cybersecurity, and cli-
mate sustainability for tasks such as classification,
NER, and summarization. Another recent resource,
JUDGE-BENCH (Bavaresco et al., 2024), com-
prises 20 NLP datasets that assess models against
human judgments. GPQA benchmark (Rein et al.,
2024) is tasked with evaluating reasoning models.
We focus on MMLU and GPQA because of their
widespread adoption1 and comprehensive domain
coverage (Wang et al., 2024).

2.2 Overfitting in LLMs
While these benchmarks have been critical for com-
paring new models’ versions, recent studies warn
that publicly released evaluation sets can become
less reliable over time due to overexposure and
memorization (Yu et al., 2024; Chang et al., 2024).
In some cases, LLMs learn superficial patterns spe-
cific to well-known datasets, boosting performance
without reflecting genuine semantic or conceptual
understanding. (Kiela et al., 2021) further empha-
sizes the need for continuously refreshing bench-
marks to ensure real progress in language under-
standing. For example, OpenAI’s GPT models
have shown steady improvement on MMLU: GPT-
3 achieved approximately 43% accuracy in 2020
(Brown et al., 2020), rising to nearly 70% with
GPT-3.5 in 2022, and reaching 86% with GPT-4 in
2023 (Koubaa, 2023).

Memorization in LLMs has been widely stud-
ied (Kiyomaru et al., 2024; Biderman et al., 2024),
with larger models especially prone to retaining
training data verbatim (Carlini et al., 2022). This
phenomenon can inflate performance metrics while
obscuring genuine model capabilities. Moreover,
several works highlight training-set contamina-
tion, where test samples appear exactly or as near-
duplicates in the training data, as another crucial
form of overfitting (Deng et al., 2023; Yao et al.,
2024), leading to overly optimistic performance es-
timates (Yang et al., 2023). Training Data Contami-
nation refers to the presence of test data, or near du-
plicates, within the training set (Deng et al., 2023;
Yao et al., 2024). Contamination renders evalua-
tion unreliable, as the model has effectively already
seen the "test" data, leading to overly optimistic
performance estimates (Yang et al., 2023). Bench-
mark/Prompt Structure Overfitting is a more subtle
form that arises when LLMs learn to exploit su-
perficial cues or patterns specific to a benchmark’s
format or the structure of evaluation prompts, even
without memorizing the exact content (Yu et al.,
2024). This can lead to overestimated general-
ization ability, as the model’s performance be-

1https://klu.ai/glossary/gpqa-eval
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comes dependent on the specific benchmark arti-
facts rather than true language understanding. This
type of overfitting is the focus of our work.

2.3 Addressing the Gap
Current methods largely overlook the crucial prob-
lem of overfitting to benchmark-specific artifacts,
which can significantly misrepresent an LLM’s true
capabilities and hinder the development of robust
and generalizable models. Our work addresses this
gap by introducing a novel method to quantify an
LLM’s reliance on benchmark prompt structure.
We systematically apply controlled distortions to
evaluation prompts, for example, by replacing syn-
onyms or altering word order and measure the re-
sulting performance degradation. This approach,
which does not require access to training data, pro-
vides a direct measure of vulnerability to prompt
structure and a robust means of diagnosing and
mitigating this critical form of overfitting.

3 Method

Let D denote a benchmark dataset with N sam-
ples, and E an LLM to be evaluated with respect
to a given performance functionM. Our goal is
to detect whether E exhibits overfitting to D. Fig-
ure 2 provides an overview of our proposed method,
Chameleon Benchmark Overfit Detector (C-BOD).
C-BOD employs a rephrasing transformation to
generate a perturbed dataset from D, evaluates on
both the original and perturbed datasets, and ap-
plies a statistical test to assess whether performance
discrepancies indicate overfitting. The following
subsections detail each component of C-BOD.

3.1 C-BOD rephrased dataset generation
To systematically introduce textual variations, C-
BOD utilizes a rephrasing tool, denoted as T ,
which uses as a distortion operator to generate a
perturbed dataset Dµ from D. This operator is
parameterized by µ, which controls the extent of
textual modification, ranging from low (e.g., 0.1
for minimal changes like synonym substitution)
to moderate (e.g., 0.5 for rewording and sentence
fragment reordering) and high (e.g., 1.5 for aggres-
sive modifications such as question reformulation).
Specifically, for an LLM, µ corresponds directly
to the temperature used during generation, influ-
encing the degree of variation in rephrased outputs.
We define:

Tµ : X → X ′

Given a prompt xi, the distortion operator pro-
duces a perturbed prompt x′i = Tµ(xi). The per-
turbed dataset is then constructed as:
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Figure 2: High-level pipeline of our parametric ap-
proach. The original dataset D is passed through the
distortion operator Tµ to form Dµ. Both sets are eval-
uated by an LLM, and differences in performance are
used to statistically quantify overfitting.

Dµ =
{ (

x′i, yi
) ∣∣ (xi, yi) ∈ D

}

Although each pair (x′i, yi) in the perutbed
dataset remains semantically equivalent to (xi, yi)
in the original dataset, the textual variations intro-
duced by Tµ can disrupt purely memorized map-
pings from surface patterns to correct labels. This
step presented in Lines 5-6 of Algorithm 1.

3.2 Evaluating the Impact of Distortion
To assess the impact of distortion, we evaluate E us-
ing a performance function,M. This function eval-
uates E based on a given ground truth yi, consider-
ing two versions of an input: the original xi ∈ D
and the perturbed version x′i ∈ Dµ, where i denotes
the index of a sample in the dataset. Specifically,
M is a boolean function that takes as input the
model E and two data pairs, (xi, yi) and (x′i, yi),
and returns whether the model performs better on
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the original input than on the perturbed one. The
function is formulated as follows:

M(E , (xi, yi), (x′i, yi)) =





1, if P (E , xi, yi)
> P (E , x′i, yi),

0, otherwise.

where P (E , x, y) represents the performance
score of model E on input x with reference to
ground truth y. This formulation is designed to
be generalizable across different evaluation metrics
and natural language understanding (NLU) tasks.
The performance difference between the original
set and the perturbed set is then calculated as:

∆µ = b =
N∑

i=0

M(E , (xi, yi), (x′i, yi)) (1)

The performance difference between the perturbed
set and the original set is then calculated as:

c =
N∑

i=0

M(E , (x′i, yi), (xi, yi)) (2)

A large positive ∆µ indicates a significant per-
formance decline due to textual perturbations, sug-
gesting that E may be overly reliant on surface-
level patterns rather than exhibiting robust gener-
alization. Notably, this approach remains metric-
agnostic, making it applicable to a wide range of
evaluation measures. This step presented in Lines
7-8 of Algorithm 1.

3.3 Statistical Validation
To assess the statistical significance of performance
differences, we employ McNemar’s test (McNe-
mar, 1947), which is specifically designed for
paired data. This test evaluates whether the dis-
crepancies between two related sets of classifica-
tion outcomes, correct and incorrect predictions,
are significant. In our context, McNemar’s test
is well-suited for comparing each pair of samples
(xi, yi) ∈ D and (x′i, yi) ∈ Dµ, we record whether
E classifies them correctly and aggregate into b
(original is better) and c (perturbed is better) as pre-
sented in Equation 1, Equation 2. The McNemar
statistic is then calculated as:

χ2 =
(b− c)2

b+ c
(3)

We derive a p-value from the chi-squared dis-
tribution (with df=1, i.e., one degree of freedom),
rejecting the null hypothesis if p < α. A significant
result with b > c indicates a genuine performance
difference due to the transformation, suggesting ev-

idence of overfitting. This step presented in Lines
10-19 of Algorithm 1.

Algorithm 1 Chameleon Benchmark Overfit De-
tector
Require:
D: Original benchmark dataset of size N ,
E : LLM,
µ: Distortion parameter,
Tµ: Transformation operator,
M: Performance function (returns 1 if the first
input is better, 0 otherwise),
α: Significance level.

1: C-BOD Computation:
2: b, c← 0
3: Dµ ← {}
4: for each xi ∈ D do
5: x′i ← Tµ(xi)
6: Dµ ← Dµ ∪ x′i
7: b← b+M(E , (xi, yi), (x′i, yi))
8: c← c+M(E , (x′i, yi), (xi, yi))
9: end for

10: χ2 ← (b− c)2

b+ c
11: p← p-value(χ2, df = 1)
12: if p < α then
13: if b > c then
14: Overfit_Flag ← True
15: else
16: Overfit_Flag ← False
17: end if
18: else
19: Overfit_Flag ← False
20: end if
21: return Overfit_Flag

4 Experimental Setting

In this section, we describe the experimental setup
used to evaluate our overfitting detection frame-
work. We detail the benchmark dataset, the pro-
cedure for generating perturbed inputs, the LLMs
under evaluation, implementation specifics, and the
evaluation metrics.

4.1 Dataset and Rephrasing Process
Our experiments used two leading benchmark
datasets: (1) MMLU (Hendrycks et al., 2020):
This benchmark spans 57 subjects, comprising
14,079 test samples and 1,540 validation samples.
Its broad coverage makes it a standard choice for
evaluating general knowledge and assessing over-
fitting to canonical prompt formats. It is distributed
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under the MIT License, allowing free use and mod-
ification. (2) GPQA (Rein et al., 2024): Introduced
in 2024, this smaller yet challenging benchmark in-
cludes 546 multi-step reasoning samples designed
to test logical inference. Its complex, less common
question structures help reduce the risk of training
data contamination, making it a valuable comple-
ment to MMLU for overfitting analysis. Detailed
results and analysis on GPQA are provided in Ap-
pendix C.

We generate a perturbed version of the original
dataset to probe overfitting, following the method-
ology described in Section 3. We used DeepSeek 3
to create the transformed version of each ques-
tion and generate the perturbed dataset D1.0 us-
ing µ = 1.0 (the default temperature parameter
for DeepSeek), and Claude 3.5 Haiku to gen-
erate the perturbed dataset D0.5 using µ = 0.5
(the default temperature parameter for Claude).
For the GPQA we used GPT-4o-mini to gener-
ate the perturbed datasets D0.5, D1.0, D1.5, using
µ ∈ {0.5, 1.0, 1.5}.

These perturbations include synonym substitu-
tions, sentence reordering, and the insertion of
distractor phrases, while preserving the original
semantic meaning and correct answers. The per-
turbed datasets, denoted by Dµ, is released along-
side our code for reproducibility.

4.1.1 Evaluation of Rephrasing Quality
To ensure the quality of rephrasing in the C-BOD
framework, we implemented a multi-step evalua-
tion approach to maintain the semantic integrity of
the original prompts and avoid confounding overfit-
ting assessments. This process included three main
validation steps: (1) Cosine Similarity Analysis,
(2) Semantic Equivalence Verification, and (3) It-
erative Human Audits. In what follows, we briefly
describe these steps.

Cosine Similarity Analysis We measured se-
mantic alignment using Sentence-BERT (Reimers
and Gurevych, 2019), confirming high alignment
across perturbations:

• MMLU0.5;Claude

Mean = 0.829, Median = 0.864.

• MMLU1.0;DeepSeek

Mean = 0.883, Median = 0.922.

• GPQA0.5;GPT

Mean = 0.954, Median = 0.969.

• GPQA1.0;GPT

Mean = 0.947, Median = 0.967.

• GPQA1.5;GPT

Mean = 0.942, Median = 0.961.

Semantic Equivalence Verification In addition
to cosine similarity, we employed a reasoning
model GPT-o3 to independently verify the reten-
tion of original intent. Approximately 1-2% of
the rephrasings exhibited semantic errors or insuffi-
cient similarity, requiring further manual correction
and refinement before inclusion in the final evalu-
ation set. This additional verification reduced the
risk of subtle semantic drift, ensuring a high-quality
perturbation set.

Iterative Human Audits To ensure the accuracy
and semantic consistency of the perturbed datasets,
we conducted a comprehensive manual audit as the
final validation step. This process specifically tar-
geted prompts with a cosine similarity score below
0.7 or those that received a negative judgment from
the automated evaluation. These prompts were iter-
atively refined through API adjustments until they
met the desired fidelity thresholds. Overall, this
approach manually covered approximately 20% of
the MMLU dataset and 50% of the GPQA dataset,
supplementing the earlier automated checks that
covered 100% of both datasets. This multi-step
approach significantly enhances the reliability of
our overfitting assessments by ensuring precise,
controlled textual variations.

4.2 Models Under Evaluation

Table 4 in Appendix B provides an overview of
the LLMs evaluated in our experiments. Our study
covers a diverse set of architectures and parameter
scales ranging from 1B to 27B parameters. This
broad selection enables an in-depth analysis of how
both architectural choices and model scale affect
robustness to prompt perturbations.

4.3 Implementation Details

All experiments were executed under standardized
conditions to ensure reproducibility and fair com-
parisons:
(1) Inference Environment: All open-weight

models were accessed via the HuggingFace
transformers library using RTX 6000 GPU.

(2) Dataset Rephrasing Prompt: We instruct
the rephrasing tool using the prompt detailed
in Appendix A.1.

(3) Query Prompt: For every query, we con-
struct a standardized input by prompting a
fixed instruction to the original benchmark
dataset question. Importantly, the multiple-
choice options remain identical between the
original and the rephrased forms. The fixed
instruction is:
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“Select the best answer from the given
options. Respond with only the let-
ter corresponding to the correct choice.
Question: {question}”

4.4 Evaluation Metrics

We assess model performance by comparing the
original dataset, D, with its perturbed counterpart,
D0.5, D1.0, using the following metrics:

Correct Predictions and Accuracy: For each
dataset, we report the number of correct answers
and the corresponding accuracy, defined as

Accuracy =
#Correct Predictions

#Total Samples
.

Absolute and Percentage Performance Differ-
ence: The absolute difference in the number of
correct answers between D and D0.5 is denoted by
∆0.5; we also report the relative difference. Statis-
tical Significance: McNemar’s test is applied on
the paired predictions to determine whether the per-
formance gap is statistically significant (p < 0.05).

5 Results

5.1 Open Weight Models - Overall
Performance

As shown in Table 1, the majority of models (22
out of 27 for D0.5 and 20 out of 27 for D1.0) exhibit
a noticeable drop in performance on the rephrased
test set compared to the original, supporting our
hypothesis that many LLMs are sensitive to prompt
structure. Notably, smaller models like Llama 1B
and Llama 3B maintained relatively stable accu-
racy, suggesting they are less prone to overfitting,
potentially due to their more limited capacity for
memorizing superficial patterns.

We also observed that models with lower base-
line accuracy tend to show statistically insignificant
differences, likely because their initial performance
leaves less room for detectable degradation. Im-
portantly, McNemar’s test confirmed that the ob-
served performance drops in most models were
statistically significant (p < 0.05), reinforcing the
reliability of our method.

Across all evaluated models, the average drop in
accuracy for D0.5 was 2.15%, which increased to
2.75% when considering only models with statisti-
cally significant differences. For D1.0, the average
drops were 1.87% overall and 2.78% for models
with significant performance changes, underscor-
ing the broader impact of stronger perturbations.

5.2 Relationship Between Model Size and
Overfit Detection

Figures 3, 4 illustrate the scatter plot of the per-
centage performance difference versus the number
of parameters, with a red dashed line representing
the logarithmic fit. The significant log-linear rela-
tionship indicates that the performance difference
increases with model size in a logarithmic fash-
ion, suggesting diminishing returns as the number
of parameters grows. The data reveals a positive
trend: larger models tend to exhibit greater per-
formance degradation under textual perturbations.
For example, models in the Gemma family show a
progressive increase in ∆1.0 with higher parameter
counts. The dotted trend line further highlights this
relationship.

Figure 3: Scatter plot of the performance difference
(∆0.5) versus the number of model parameters. A loga-
rithmic trendline is shown:
∆0.5 = 0.6090 · ln

(
# Params

)
+ 1.303.

Figure 4: Scatter plot of the performance difference
(∆1.0) versus the number of model parameters. A loga-
rithmic trendline is shown:
∆1.0 = 0.7433 · ln

(
# Params

)
+ 0.6406.

5.3 Relationship Between Model Accuracy
and Overfit Detection

Figures 5, 6 examine the relationship between base-
line accuracy on the original prompts and the cor-
responding percentage difference in performance
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Table 1: Comparison of LLM performance on the original and perturbed MMLU datasets. Models are sorted by
parameter count (ascending).

Model
Name

Par
(B)

D
Accuracy Claude (0.5) DeepSeek (1.0)

D0.5

Accuracy
#

∆0.5

%
∆0.5

Better
0.5

D1.0

Accuracy
#

∆1.0

%
∆1.0

Better
1.0

Gemma-2B 2 47.28 46.47 124 1.86 Original 46.54 104 1.56 Original
Gemma-4B 4 66.73 54.78 222 2.80 Original 65.07 234 2.49 Original
Gemma-7B 7 58.05 55.18 127 1.61 Original 57.18 123 1.50 Original
Gemma-12B 12 68.71 68.77 320 3.20 Original 66.38 328 3.39 Original
Gemma-27B 27 73.16 70.80 356 3.45 Original 70.34 397 3.85 Original
Llama-1B 1 28.11 28.09 3 0.08 Not Sig 27.00 -3 -0.08 Not Sig
Llama-3B 3 56.12 55.49 89 1.13 Not Sig 56.74 -49 -0.62 Not Sig
Llama-8B 8 45.93 45.21 102 1.58 Original 44.68 121 1.92 Original
Mistral-7B 7 57.48 56.33 163 2.01 Original 56.31 128 1.59 Original
Mistral-8B 8 68.05 65.94 298 3.10 Original 66.01 262 2.95 Original
Phi-3.8B 3.8 56.42 56.01 57 0.72 Not Sig 56.31 -44 -0.56 Not Sig
Phi-14.7B 14.7 76.77 74.69 294 2.72 Original 74.79 246 2.28 Original
Phi-14.7B-Reasn 14.7 73.94 72.05 303 2.90 Original 72.93 142 1.36 Original
Qwen-0.6B 0.6 39.29 39.20 12 0.22 Not Sig 39.48 -33 -0.60 Not Sig
Qwen-1.5B 1.5 38.23 36.46 249 4.63 Original 35.41 151 2.94 Original
Qwen-1.7B 1.7 52.98 51.94 147 1.97 Original 52.20 91 1.22 Not Sig
Qwen-3B 3 41.49 41.46 5 0.09 Not Sig 40.76 97 1.66 Not Sig
Qwen-4B 4 66.97 64.27 381 4.04 Original 65.07 234 2.49 Original
Qwen2.5-7B 7.0 58.72 56.92 253 3.06 Original 48.37 180 2.58 Original
Qwen3-8B 8.0 69.73 67.83 267 2.72 Original 67.82 251 2.56 Original
Qwen3-14B 14.0 66.86 65.87 139 1.48 Original 66.11 17 0.18 Not Sig
Yi-6B 6 63.19 60.63 361 4.06 Original 60.55 374 4.20 Original
Yi-9B 9 66.38 65.17 170 1.82 Original 65.20 165 1.77 Original
Apollo-7B 7 67.81 65.42 337 3.53 Original 64.96 401 4.20 Original
GLM-9B 9 68.71 66.06 296 3.06 Original 66.38 328 3.39 Original
Starling-7B 7 59.41 58.15 177 2.12 Original 58.09 185 2.21 Original
Zephyr-7B 7 56.25 54.92 194 2.45 Original 55.05 169 2.13 Original

when evaluated on rephrased inputs. The plot
clearly indicates that models with higher original
accuracy tend to experience larger declines when
exposed to prompt perturbations. For example,
models achieving over 60% accuracy on the origi-
nal set present the largest ∆0.5, ∆1.0 values, while
models with lower baseline accuracy exhibit only
minor, often statistically insignificant, differences.

This observation highlights a paradox in current
LLM evaluation: models that perform exception-
ally well on standard benchmarks may be capital-
izing on dataset-specific cues rather than demon-
strating robust language understanding. The posi-
tive correlation between original accuracy and ∆µ

underscores the need to carefully interpret high
benchmark scores, as they might mask underlying
vulnerabilities to prompt variations.

These findings underscore the importance of
evaluating LLMs under varied prompt formula-
tions to ensure that improvements in benchmark
performance reflect genuine advances in language
understanding rather than overfitting.

Figure 5: Scatter plot showing ∆0.5 for µ = 0.5 against
the original accuracy of the model. Models within the
same family are marked with the same color.

5.4 Closed-Source Models: Accuracy vs.
Robustness Trends

We analyze the performance of proprietary GPT
models (GPT-4o2, GPT-4.13, GPT-54) under the

2https://openai.com/index/gpt-4o-system-
card/?utm_source=chatgpt.com

3https://openai.com/index/gpt-4-
1/?utm_source=chatgpt.com

4https://openai.com/index/gpt-5-system-
card/?utm_source=chatgpt.com
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Table 2: Examples of how rephrasing affects LLM performance, illustrating potential overfitting to specific phrasing
in the original MMLU dataset. The table shows original and rephrased questions, along with an explanation of why
the model’s prediction changed. The examples are from Qwen3 (14B parameters).

Subject Original Question Rephrased Question Why the Model Was Wrong?
Professional
Law

“If the defendant is prosecuted
for the man’s murder, he will most
likely be found...”

“If the defendant is charged with
the man’s murder, what is the
most probable outcome?”

In legal contexts, terms like “prosecuted” and “found guilty/not
guilty” are tied to specific legal standards. The rephrased question
is more open-ended, leading the model to discuss outcomes like
plea bargaining instead of focusing on the legal verdict.

Moral Dis-
putes

“Of the following social problems
that could result from a genetic
supermarket, which does Singer
think is the least serious?”

“Which of the following social is-
sues arising from a genetic super-
market does Singer consider to be
the least concerning?”

The word “problems” was changed to “issues,” altering the model’s
interpretation. “Issues” can broaden the context of "problems",
causing the model to incorrectly interpret which concerns are least
serious.

College
Chemistry

“Which of the following state-
ments is not a reason why tetram-
ethylsilane is used as a 1H chemi-
cal shift reference?”

“Which of the following state-
ments does not explain why
tetramethylsilane is used as a ref-
erence for 1H chemical shifts?”

The model may have overfit to the structure of the original ques-
tion, particularly the phrase “is not a reason why,” as it directly
signals the correct retrieval path. The rephrased version, with
slight syntactic adjustments disrupts this memorization, leading to
incorrect retrieval.

World Reli-
gions

“When did the first Jaina temples
appear?.”

“At what point in time were
the initial Jaina temples estab-
lished?”

The rephrased question shifts key terms (“When” to “At what point
in time”), obscuring historical framing. The LLM fails to map this
modified phrasing to the original temporal context.

High-School
Biology

“Which of the following is NOT
a characteristic of bacteria?”

“Which of the listed options fails
to represent a defining trait of
bacterial organisms?”

The explicit cue word “NOT” is replaced by the longer clause
“fails to represent.” LLM appears to rely on a pattern like “Which
. . . is not . . . ” to flip polarity; when the negator is hidden inside
a relative clause, the learnt template does not fire, so the model
picks a true trait instead of the exception.

High-School
Mathematics

“Positive integers x, y satisfy
xy = 56, x < y, and 7 divided
by the reciprocal of the larger in-
teger equals 4. What is x?”

“x, y are positive integers with
product 56 and x < y. If seven
divided by the larger integer re-
sults in 4, determine x.”

The word “reciprocal” pins a template: 7 × 1
y = 4 ⇒ y = 7

4 .
Replacing it with a looser “seven divided by the larger integer
results in 4” flips the parse—The LLM treats “results in” like a
remainder cue (7 div y = 4), producing y = 1 and thus the
wrong x.

Figure 6: Scatter plot showing ∆1.0 for µ = 1.0 against
the original accuracy of the model. Models within the
same family are marked with the same color.

C-BOD rephrasing evaluation. While these mod-
els achieve high accuracy on unperturbed MMLU
prompts, they still show significant degradation un-
der semantically equivalent prompt modifications
(µ = 0.5), as shown in Table 3.

Closed-source models are sensitive to rephras-
ing. Despite their high original accuracy, all
closed-source GPT models demonstrate significant
performance degradation under prompt rephrasing.
The observed drops range from 2.44% (GPT-5-
mini) to 3.46% (GPT-4o-mini). This reinforces the
hypothesis that these models exploit benchmark-
specific surface patterns.

Newer models perform better. A clear up-
ward trend is observed across model generations:
GPT-5-mini achieves the highest original accuracy

Model Accuracy #∆0.5 %∆0.5 Better

D D0.5

GPT-4o 83.88% 81.46% 339 2.88 Original*
GPT-4o-mini 74.96% 72.37% 364 3.46 Original*
GPT-4.1-nano 69.68% 67.53% 302 3.09 Original*
GPT-5-nano 86.63% 84.30% 326 2.68 Original*
GPT-5-mini 90.56% 88.35% 310 2.44 Original*

Table 3: Performance of closed-source GPT models
on MMLU under prompt perturbation (µ = 0.5). All
results are statistically significant (marked with *) ac-
cording to McNemar’s test (p < 0.05).

(90.56%) and also shows relatively lower sensitiv-
ity (2.44% drop) compared to older GPT-4o models
(drops of 2.88–3.46%). This suggests that newer
training pipelines or architectures improve general-
ization.

Larger models generalize better. Within each
family, the larger variants ("mini") outperform their
smaller counterparts ("nano") both in raw accu-
racy and robustness. For instance, GPT-5-mini
achieves +3.93% higher accuracy than GPT-5-nano
(90.56% vs. 86.63%) while maintaining a simi-
lar drop (2.44% vs. 2.68%), indicating effective
scaling without sacrificing generalization. Like-
wise, GPT-4o-mini outperforms GPT-4.1-nano by
+5.28% accuracy while showing only a slightly
higher sensitivity to rephrasing.
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Figure 7: Accuracy vs. Drop for GPT models. Each
point shows original accuracy and percentage drop after
rephrasing.

6 Discussion

Why Do LLMs Overfit? Table 2 highlights
cases where LLMs answer the original questions
correctly but fail on the rephrased versions. The
failures suggest potential overfitting, where mod-
els overly rely on surface-level cues, memorized
patterns, or specific terminologies. Overfitting in
this context occurs because the model tends to asso-
ciate certain question formats or keywords directly
with answers instead of generalizing underlying
concepts. Common root causes include shifts in
terminology, subtle changes in phrasing that alter
the semantic scope, and dependence on memorized
patterns from training data.

Forget What You Know About LLMs Evalu-
ation Ideally, LLMs should exhibit resilience
when faced with variations in prompt language
and structure. In other words, robust LLMs are
expected to maintain their performance regardless
of how a question is phrased, thereby reflecting
true language understanding. However, our ex-
periments reveal a contrary trend: models that
score highly on standard benchmarks often display
heightened sensitivity to even minor alterations
in prompt formulation. This behavior suggests
that such models have implicitly overfitted to the
specific linguistic patterns and structures of these
benchmarks. As a result, when these surface-level
cues are modified, performance declines, a phe-
nomenon that underscores the paradox between
high benchmark accuracy and genuine generaliza-
tion.

Agnosticism to Benchmark Set. Although we
used MMLU and GPQA as a demonstration, our
approach is inherently dataset-agnostic. It can be
applied to any benchmark by simply adapting the
performance metric used to compare the original
samples with their rephrased counterparts.

7 Conclusion

In this paper, we introduced a novel approach for
detecting overfit to benchmarks datasets in LLMs
by applying parametric transformations to these
datasets. Our method revealed that many mod-
els rely heavily on surface features of public test
sets, leading to significant performance drops when
these features are altered. This finding underscores
a critical insight: what appears to be robust perfor-
mance may, in fact, be largely driven by memoriza-
tion rather than true generalization.

We demonstrated the effectiveness of our ap-
proach across multiple LLM families. Notably,
larger models tend to exhibit more pronounced per-
formance declines under perturbation, while cer-
tain models (such as Llama) show greater stability.
These observations suggest that training strategies
and architectural choices play a significant role
in mitigating overfitting, prompting a necessary re-
thinking of how we evaluate and benchmark LLMs.

By offering a practical, dataset-agnostic frame-
work, this work equips the community with a robust
tool to identify overfitting and foster the develop-
ment of benchmarks that more effectively assess
genuine generalization. Integrating these paramet-
ric transformations into the evaluation process re-
veals hidden vulnerabilities in existing LLMs and
paves the way for designing more resilient models
capable of adapting to the ever-evolving challenges
of language tasks.

8 Limitations

While C-BOD serves as a promising framework
for detecting overfitting in LLMs and has success-
fully identified overfitting in most evaluated mod-
els, it remains subject to several limitations. First,
our approach primarily targets textual rephrasings
that preserve semantic content. Consequently, it
may overlook deeper forms of overfitting, such
as factual inaccuracies or logical inconsistencies,
which may require more specialized probing tech-
niques. Moreover, incorporating µ-based transfor-
mations into the training or fine-tuning loop can
significantly increase computational cost. Itera-
tively rephrasing large datasets and retraining with
multiple µ values imposes a heavy resource burden,
which may not be feasible for LLMs or under re-
stricted computational budgets. Future work should
investigate more lightweight or partial-integration
strategies. In summary, while C-BOD provides
an effective means of detecting surface-level over-
fitting, further advancements are necessary to en-
hance its efficiency, scalability, and ability to cap-
ture more nuanced forms of model overfitting.
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Appendices

A Prompts Used in CBOD Framework

A.1 Distortion Prompt

The rephrasing prompt was developed using a meta-
prompting approach, which involves iteratively re-
fining the prompt based on systematic error analy-
sis. This process aimed to progressively improve
the quality of the generated perturbations, ensuring
high semantic fidelity and consistency. For exam-
ple, early evaluations revealed approximately 25
cases where prompts involving sensitive content
(e.g., sexual topics) led to inaccurate or off-target
rephrasings. In response, we refined the prompt to
explicitly exclude such cases, effectively address-
ing this error class and improving overall perfor-
mance. This iterative tuning, incorporating both
automated and human feedback, ultimately resulted
in 100% accuracy as measured by the reasoning
model judge. The prompt:

system: "You are a rephrasing assistant
tasked with preserving the original struc-
ture, type, and intent of technical questions
or statements. Your goal is to rephrase while
maintaining meaning, purpose, structure,
and context. keep the same level of clar-
ity, do NOT try to simplify. keep question
a question / statement a statement. do NOT
try to answer the question"
user: "Rephrase the following question in
different wording, ensuring the meaning re-
mains exactly the same. Match the read-
ability level. Do NOT change the type of
sentence: if it is a definition, keep it a defini-
tion; if it is a multiple-choice question, keep
it as such; if it is a procedure or description,
keep it in that form. Do NOT infer, guess, or
introduce new information, assumptions, or
constraints. Do NOT reword a description
into a question, or vice versa. Keep all sci-
entific and technical terms, units, variables,
equations, and formatting intact. Your out-
put should differ in phrasing only, not in
meaning. Do NOT improve clarity or read-
ability. Do NOT try to answer the ques-
tion. Sexual or harmful content rephrasing
is allowed for academic purpose. Return
ONLY the rephrased version with no ex-
tra text or commentary. TEXT to rephrase:
{question}"

A.2 Judge Prompt

You will be given two versions of a
question: an ‘original_question‘ and a
‘rephrased_question‘. Your task is to eval-
uate if they have the exact same meaning.
"Semantically equivalent" means that a per-
son with the required domain knowledge
would provide the exact same answer to
both questions.
Respond with a single JSON object contain-
ing two keys: 1. ‘"judgment"‘: Your verdict,
which must be either "EQUIVALENT" or
"NOT_EQUIVALENT". 2. ‘"reasoning"‘:
A brief, one-sentence explanation for your
judgment.
Judgment Criteria:
A rephrased question is
NOT_EQUIVALENT if it meets any
of the following conditions:
A. Logical Alteration * Reverses Logic:
The rephrase swaps the subject and object
or reverses the direction of an implication. *
Changes Logical Operator**: The rephrase
changes a one-way implication (if/then) to
a two-way bi-conditional (if and only if).
B. Change in Scope or Precision * Loss
of Specificity: The rephrase replaces a pre-
cise technical term with a vague or overly
general one. * Incorrect Substitution: The
rephrase swaps a key term with another,
related but incorrect, term (e.g., "mass"
for "weight"). * Incorrect Expansion of
Acronym: The rephrase incorrectly defines
an acronym for the given context.
C. Structural Failure * Answers the Ques-
tion: The rephrase provides the definition
or answer to the original question, espe-
cially in fill-in-the-blank scenarios. * Fails
to Rephrase: The output is an error message,
a refusal, or otherwise not a good-faith at-
tempt at rephrasing.
A rephrased question is EQUIVALENT
only if it avoids all the errors above. Stylis-
tic changes, synonym swaps, and sentence
restructuring are acceptable as long as the
core meaning remains identical.

B Models Tested

Table 4 presents all the LLMs we tested with their
versions.
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Table 4: Overview of the evaluated open-weight LLMs.
Models are grouped by family, model version, and the
number of parameters (in billions).

Family Version Params

Qwen Qwen2.5 1.5B (Yang et al., 2024) 1.5
Qwen2.5 3B 3
Qwen2.5 7B 7
Qwen3 0.6B 0.6
Qwen3 1.7B 1.7
Qwen3 4B 4
Qwen3 8B 8
Qwen3 14B 14

Llama 3 Llama 3.2 1B (Dubey et al., 2024) 1
Llama 3.2 3B 3
Llama 3.1 8B 8

Gemma Gemma 2 2B (Team et al., 2024) 2
Gemma 4B 4
Gemma 7B 7
Gemma 12B 12
Gemma 27B 27

Phi Phi 4 4B (Abdin et al., 2024) 4
Phi 4 15B 15
Phi 4-reasoning 15B 15

Mistral Mistral 7B (Jiang et al., 2023) 7
Mistral 8B 8

Yi Yi 6B (Young et al., 2024) 6
Yi 9B 9

Others Apollo2 7B (Zhu et al., 2024b) 7
Starling 7B (Zhu et al., 2024a) 7
GLM 4 9B (GLM et al., 2024) 9
Zephyr 7B (Tunstall et al., 2023) 7

C Additional benchmark - GPQA results

To assess the robustness and generalizability of the
proposed C-BOD method, we conducted an abla-
tion study on the GPQA benchmark using vary-
ing levels of textual distortion (µ). Table 5 re-
ports the performance of leading LLMs on both
the original and rephrased GPQA datasets, where
rephrasings were generated by GPT-4o with µ ∈
{0.5, 1.0, 1.5}.

The results on GPQA are mostly consistent with
those observed on MMLU. Across multiple LLM
families and distortion levels, we observe a sys-
tematic performance drop on the rephrased inputs,
suggesting a sensitivity to surface-level prompt
variations. While the degree of statistical signif-
icance varies by model and µ, the overall trend
of declining accuracy under rephrasing reinforces
the hypothesis that many models rely heavily on
benchmark-specific prompt formulations.

At the same time, several characteristics of
GPQA help explain why the results differ from
those obtained on MMLU and why it is more diffi-
cult to show consistent effects across all models at
this stage. First, GPQA is a very new benchmark,

specifically designed for reasoning, and thus has
not yet been exposed widely enough to influence
model training. Second, most models achieve very
low absolute accuracy on GPQA, often failing to
surpass 20%. At such a low baseline, small fluctua-
tions in predictions can obscure clear differences
and make it harder to observe statistically signif-
icant effects. Third, GPQA is a relatively small
dataset, which further limits the statistical power
of tests such as McNemar’s and reduces our ability
to detect significance robustly.

Overall, whenever some of the models keep the
expected trend, some models suffer from very low
accuracy. This, combined with the novelty of the
benchmark, its reasoning-oriented design, and its
small size, explains why it is currently more diffi-
cult to show across-the-board results. Importantly,
the uniformly low accuracy also suggests that over-
fitting is not yet strongly affecting GPQA, as mod-
els have not learned enough benchmark-specific
artifacts to inflate their scores in the first place. In-
stead, their failures likely stem from the underlying
reasoning challenges posed by the dataset, making
GPQA a valuable complement to more saturated
benchmarks like MMLU.

21676



Table 5: Comparison of LLM performance on the original and perturbed GPQA datasets. Models are sorted by
parameter count (ascending). We report different levels of µ.

Model
Name

Par
(B)

D
Accuracy

D0.5

Accuracy
%

∆0.5

Better
0.5

D1.0

Accuracy
%

∆1.0

Better
1.0

D1.5

Accuracy
%

∆1.5

Better
1.5

Gemma 2B 2 34.25 29.12 14.93 Original 30.95 9.60 Original 29.30 14.46 Original
Gemma 7B 7 46.52 41.58 10.62 Original 41.94 9.83 Original 38.64 16.91 Original
Llama-3B 3 36.45 33.15 9.05 Original 33.88 7.04 Not Sig 32.23 11.56 Original
Llama-3B-Instruct 3 21.06 21.43 1.76 Not Sig 17.58 16.51 Original 20.15 4.32 Not Sig
Phi-4-reasoning-plus 14.7 16.85 15.02 10.86 Original 15.30 9.07 Original 15.02 10.86 Original
Qwen 4B 4 56.04 53.84 3.92 Not Sig 52.56 6.20 Original 53.29 4.90 Not Sig
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