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Abstract

RNA-binding proteins (RBPs) play essential
roles in post-transcriptional gene regulation via
recognizing specific RNA molecules as well as
modulating several key physiological processes
in cellulo, represented by alternative splicing
and RNA degradation. Despite extensive re-
search, most existing approaches still rely on
superficial sequence features or coarse struc-
tural representations, limiting their ability to
capture the intricate nature of RBP-RNA in-
teractions. The recent surge in large language
models (LLMs), combined with advances in
geometric deep learning for extracting three-
dimensional representations, enables the inte-
gration of multi-modal, multi-scale biological
data for precise modeling and biologically in-
formed de novo RNA design. In this work,
we curate and extend RPI15223 into a multi-
resolution, structure-level RBP-RNA dataset,
and introduce RBPtool, a multi-task, multi-
resolution framework that combines a geomet-
ric vector perception (GVP) module together
with a deep language model encoder to fuse
sequence and structural information. Our tool
achieves state-of-the-art performance on public
benchmarks and the RPI15223 dataset, while
also supporting fine-grained level predictions
and enabling de novo RNA design through a
generative module conditioned on protein, cell-
type, and specified species. RBPtool provides a
fast and versatile platform for both fundamental
RBP-RNA research and practical RNA drug de-
sign, delivering enhanced predictive accuracy
and fine-grained structural insights.

1 Introduction

In eukaryotic cells, RNA-binding proteins play piv-
otal roles in gene expression and the execution
of cellular functions by interacting with specific
RNA molecules (Gerstberger et al., 2014; Sakak-
ibara et al., 2002). Accurately characterizing the
binding patterns between RBPs and RNAs not only
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deepens our understanding of complex biological
processes but also provides new ideas for RNA
molecule design (Kim et al., 2013; Jiang et al.,
2025a). However, most existing methods focus on
shallow sequences or simple structural features and
face limitations in capturing the true interaction
patterns between RBPs and RNAs.

In recent years, the rapid rise of large language
models endows them with powerful capabilities to
encode extensive contextual information (Yu et al.,
2024; ESM Team, 2024; Devlin et al., 2018; Jiang
et al., 2025b; Wang et al., 2025); meanwhile, in
structural biology, three-dimensional feature ex-
traction techniques based on geometric deep learn-
ing continue to evolve (Jing et al., 2021; Huang
et al., 2024; Batzner et al., 2022), supporting the
integration of multi-modal and multi-scale biolog-
ical data. Additional related work is provided in
Appendix A.1. A major challenge remains in com-
bining the contextual understanding offered by lan-
guage models with three-dimensional structural
perception to enhance fine-grained RBP-RNA in-
teraction prediction and support RNA molecule
design informed by biological function constraints.

To address these limitations, in addition to exist-
ing sequence-level data (Xu et al., 2023; Ray et al.,
2009, 2017), we curate and expand a structural-
level RBP-RNA dataset, RP115223, and develop a
multi-task, multi-resolution prediction and gener-
ation tool called RBPtool. Building on these data,
we introduce a unified neural framework that inte-
grates a geometric vector perception module with
sequence encoders, forming a dual-channel archi-
tecture that jointly captures sequence and struc-
tural information. RBPtool achieves state-of-the-
art (SOTA) classification accuracy at the sequence
level on public benchmarks, while also support-
ing finer-grained level predictions, as demonstrated
on the RP115223 dataset. Furthermore, our gen-
erative module designs custom RNA molecules
under specific protein, cell-type, and organism con-
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Figure 1: Overview of the RBPtool’s architecture for Binding Prediction and RNA Design. The binding
prediction pipeline illustrated assumes that both RNA and protein sequences, along with their three-dimensional
structures, are available as input. While the diagram shows all modalities being provided, the model is designed to
flexibly omit any component except the RNA sequence, which is required.

ditions, providing functionally constrained RNA
sequences.

The main contributions of this work are as fol-
lows: (1) We develop RBPtool, a unified neural
framework powered by pretrained language models
for modeling RPB-RNA interactions, which inte-
grates sequence information with tertiary structural
representation, enabling multi-granularity predic-
tion. (2) We propose an RNA generation model that
designs functional RNA sequences under real bio-
logical constraints (e.g., protein targets, cell types,
and species). (3) We demonstrate through experi-
ments on multiple benchmark datasets (e.g., CLIP,
RNAcompete, RP115223) that RBPtool achieves
leading performance in both RBP-RNA binding
prediction and RNA molecule design. (4) RBP-
tool serves as an integrated framework for RBP
biology research and RNA-focused drug design,
offering extensibility and general applicability to
many biological and pharmaceutical contexts.

2 Proposed Method: RBPtool

We present RBPtool, a deep language model frame-
work to perform various RBP tasks: (1) predict-
ing RBP-RNA binding and (2) designing RNA se-

quences with specific RBP-binding properties. An
overview of the framework is shown in Figure 1.
For binding prediction, sections 2.1.1 and 2.1.2
describe how RNA and protein embeddings are ex-
tracted. Sections 2.1.4 and 2.1.5 introduce modules
for capturing global and local RNA patterns. Sec-
tion 2.1.6 details the prediction heads for binding
at multiple resolutions. The RNA sequence design
task is described in Section 2.2.

2.1 RBP-RNA Binding Prediction

2.1.1 Sequence Module

We employ the pre-trained language model RNA-
FM (Chen et al., 2022) to encode RNA sequences
into contextual embeddings Xgpu, € RIr*040,
where L, denotes the length of the RNA sequence.
To match the hidden dimension d.q used in down-
stream modules, these embeddings are projected

via a linear transformation and activation function:

Hi\, = LayerNorm (GeLU (Xgua W + b)),

ey
where W € R640%dea and b € R%«, The result-
ing representation Hyy,, € RE7*%< gerves as the
encoded RNA sequence embedding.

When protein sequences are available, we utilize
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the ESM-C model (ESM Team, 2024) to generate
contextual embeddings Xpd, € REr*2560 where
L, is the protein sequence length. These embed-
dings are projected into the unified space of dimen-

sion dyeq using an independent projection layer.

2.1.2 Structure Module

We follow the GVP-GNN architecture (Jing et al.,
2021) to extract SE(3)-equivariant structure fea-
tures from the RNA backbone'. The RNA is repre-
sented as an undirected graph G = (V, £), where
each node v; € V corresponds to a nucleotide,
and edges (v;,v;) € £ connect its £k = 10 nearest
neighbors based on distance between C1° atoms.

Node and Edge Features. Each node feature
hq(f) = (s;, V;) includes scalar components
s; € R'9, composed of dihedral angle encodings
{sin, cos} o {¢;, 1, w;} and an one-hot encoding
of the nucleotide type”, and vector components
V, € R¥x3, including local directions and orienta-
tion vectors (e.g., C1’-C4’, C1’-N1/N9).

Each edge (i,j) carries a feature héj =)
(sij, Vij), where the scalar component s;; € R3?is
the concatenation of a Gaussian radial basis encod-
ing of the Euclidean distance ||C1’; — C1’j|| and a
sinusoidal positional encoding of the sequence dis-
tance |i — j| following Vaswani et al. (2017). The
vector component V;; € R'*3 is the unit direction
vector pointing from C1’; to C1’;.

Message Passing and Update. We apply three
layers of GVP-GNN to iteratively update node fea-
tures via message passing from neighboring nodes
N (i). At each layer, messages are propagated as
follows:

mU=9 .— g(hgj) I hgj%i))’

h{Y + LayerNorm(h{” + % Z mU =)
JEN ()

2)
where g denotes a sequence of three GVPs, || is con-
catenation operation, mU—% represents the passed
messages and k' = |[N(i)|. Each GVP-GNN layer
operates on hidden dimensions (192, 16) for nodes
and (32,1) for edges. We also update each node

feature hff) between message passing layers via a
pointwise feedforward module:

h{) + LayerNorm (hq(f) + Dropout (g’(hq(j))))
3)

"The backbone atoms of RNA are C1’, C4’, and N1/NO.
2, s, w; are the backbone dihedral angles of residue i.

where ¢’ denotes a sequence of two GVP layers,
and Dropout is applied for regularization. After
all layers, we extract the scalar component s; of
each node from the scalar channel of final GVP
output hgf) and collect them into the final structural
embedding H{% , € RL7*128 The final GVP uses
an output dimension of (128, 0). If protein back-
bone structures are also provided?, we construct an
analogous graph and apply the same GVP-GNN ar-
chitecture (with independent parameters) to obtain

the structure embedding H3" € RL»>x128,

2.1.3 Embeddings Integration

RNA input is required for all tasks. For each
molecule (RNA or protein), if both sequence and
structure are available, we concatenate their embed-
dings; otherwise, only the sequence embedding is
used. When protein input is provided, we apply an
8-head multi-head attention layer with RNA as the
query and protein as key and value to inject protein
context. The final RNA representation is denoted
as Hrna € R L~ > dhidden

2.1.4 Global Pattern Encoder Module

The embeddings from RNA-FM capture rich se-
quence features but are not optimized for RBP-
specific patterns. To extract high-level contextual
information aligned with RNA-protein interactions,
we apply a modified transformer encoder, called
the Global Pattern Encoder (GPE).

We enhance the transformer encoder with three
main modifications. We first use rotary positional
encoding (RoPE) (Su et al., 2024) to capture rel-
ative positional patterns better, since binding pat-
terns in RNA often depend on relative rather than
absolute positions. RoPE also generalizes well to
variable-length sequences, which is common in
transcriptome-wide settings. It encodes positions
via complex-valued rotations such that, for a query-
key pair at positions ¢ and j, their inner product
becomes:

(RoPE(g;), RoPE(k;)) = (gi, R 7k;)  (4)

where R~/ is a relative rotation matrix depend-
ing on the offset « — j. Second, we adopt a pre-
layer normalization scheme to stabilize training
and improve convergence speed. For activation, we
adopt Gated GeLU (GeGLU) (Shazeer and Stern,
2018), which enhances feedforward expressiveness
by introducing multiplicative interactions. Given

3The protein backbone includes atoms N, C,,, and C.

2172



an input token representation z € R?,

GeGLU(z) = GeLU(zW +b) © (V +¢) (5)
where W,V € R4 b, c € R? and ® denotes
element-wise multiplication. Stacking n such trans-
former layers yields the GPE module, which mod-

els global dependencies across the RNA sequence:

refined
HRNA

= GPE™ (Hgna) (6)
where Higlined ¢ RLrxdniszen and n is the number
of global pattern encoder layers.

2.1.5 Local Pattern Encoder Module

While the GPE module captures long-range depen-
dencies, its global attention may overlook discrimi-
native RNA motifs. To address this, we introduce
the Local Pattern Encoder (LPE) module.

Each LPE layer begins with two consecutive
1D convolutions with kernel size k, followed by a
squeeze-and-excitation (SE) block (Hu et al., 2018)
that reweights channel-wise features. Formally,
given input X € RBXIXC the output is:

LPE(X) = X + (SE(U) ® U) (7)
where U = Conv?(X), Conv?(-) denotes two
stacked 1D convolutions with kernel size 3, and
® is element-wise multiplication.The SE block
first applies global average pooling over the se-
quence length L to obtain Uy, € REXCXL

then uses two pointwise (1x1) convolutions with
LeakyReLU (Maas et al., 2013):

SE(U) = Sigmoid (Uavgwl o) Wg),

where W € RC*C/32 ' W, ¢ RC/32%C and ¢ (-)
denotes LeakyReLLU. We stack m such LPE layers
to obtain the final RNA embedding:

H, = LPE!™) (Hg) ®

where Hitdl ¢ RLr>diswen The LPE module re-
inforces compact, motif-like patterns within the
RNA sequence, complementing the global context
captured by GPE*.

“Since the GPE module outputs are in
(batch, sequence, hidden) format and the LPE expects
(batch, channel, sequence), we apply a transpose before LPE.

2.1.6 Binding Prediction Module

We predict binding at three levels-sequence,
residue, and atom-using a two-layer MLP classifier.
This classifier produces logits and is defined as:
f(X) = Wy - SiLU(VVmiclX + bmid) + bout, (9)
Where Wmld c Rdmidthidden’ Wout c Rd()uthmid’

bmia € R%id, and boy € R%«. We use dpia =
dhidden/2, and doy depends on the prediction level.

Sequence-Level Prediction. To obtain a fixed-
size RNA representation, we apply a gated attention

mechanism over the final embeddings H%‘\?L €
R L X dhidden -

o= Softmax(W o(HRNA W),

(10)
z = Z Q ngll\‘ll}x

where W), € Rhiddenxda W, < Rdax1l & js
LeakyReLU, and o € R, The aggregated vec-
tor z € R%iden s then passed through f(-) with
dout = 1 to produce the binding logit § € R.

Residue-Level Prediction. For each position 4,
the embedding Hi! ] € Réhiaen js fed indepen-
dently into f(-) with doy = 1 to yield the residue-
level binding logit g; € R.
Atom-Level Prediction. To predict atom-level
binding, we again input each Hi%! [4] into the MLP,
but set doyy = 3, producing a three-dimensional
logit vector y; € R3 corresponding to the backbone
atoms C1°, C4’, and N1/N9:
i = f(HRRAL])- (11)
For all three levels, the model is trained by mini-
mizing a weighted binary cross-entropy loss:

N
1
L = - — Wpos * Yi * IOg( (yl))
WeE Nz::[ ’ (12)
+

(1= i) -log(1 — o (8i))],

where o (-) is the sigmoid function, wpos is the posi-
tive class weight, and NV is the number of instances.
Some parameter settings vary based on the avail-
able input modalities; see the Appendix A.2 for
detailed configurations.
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2.2 RNA Sequence Design for Target RBP

The goal of this task is to generate RNA sequences
that specifically bind to a target RBP, conditioned
on contextual labels including the target RBP
(Plarger) and either the associated cell type (Ceerr)
or species (Sspecies)-

First, we convert the input conditional la-
bel Leona = (PtaTget> Ceett) Of Leopa =
(Prarget, Sspecies) into a numerical embedding.

This is a standard conditional text generation
task, and the model is optimized by negative log
likelihood loss:

N
L=— Z logp(yi’?ku Lcond)
1=1

13)

3 Experiments and Results

In this section, we comprehensively evaluate the
effectiveness of our proposed RBPtool across two
RBP tasks: (1) RBP-RNA Binding (Section 3.3),
which is examined at three levels of granularity,
sequence (Section 3.3.1), residue (Section 3.3.2),
and atom (Section 3.3.3); and (2) RBP-Specific
RNA Design (Section 3.4). A general overview of
the experimental setup is provided in Section 3.1,
while task-specific configurations and evaluation
protocols are detailed in their respective sections.

3.1 Experiment Setting

We train all models using a batch size of 32 for
up to 200 epochs, with early stopping based on
a patience of 20 epochs. Optimization is per-
formed using the Adam optimizer (Kingma and
Ba, 2014) with a maximum learning rate of le-4,
combined with a scheduler that applies 10% linear
warm-up followed by cosine annealing with restarts
(Loshchilov and Hutter, 2017). All experiments are
conducted on four NVIDIA RTX 3090 (24GB) for
binding tasks and eight A100 GPUs (80GB) for
design. Default hyperparameters are used unless
otherwise specified.

3.2 RPI15223 Dataset

We construct this dataset through the following
pipeline: (1) Retrieval: We query EMDB and
PDB using keywords related to RBP-RNA com-
plexes and collect all matching structures from the
Protein Data Bank (PDB). (2) Pair Identification:
An RNA-protein pair is considered binding if any
heavy atom in the RNA is within 3.5 A of any heavy
atom in the protein. (3) Filtering: We retain pairs

with structure resolution better than 4 A, where the
RNA is between 10 and 1,022 nucleotides long, and
the protein is between 10 and 2,046 residues long.
The resulting dataset consists of 15,223 unique
RNA-protein binding pairs with corresponding se-
quence and structural information.

3.3 RBP-RNA Binding

In this task, we evaluate RBPtool on a series of
RBP-RNA Binding tasks across three structural
levels: sequence, residue, and atom. Each level
captures different biological and structural aspects
of RNA-protein interactions, enabling a compre-
hensive evaluation of the model under varying in-
formation conditions.

3.3.1 Sequence Level

At the sequence level, the primary objective is to
predict whether a given RNA sequence can bind
to a specific RBP under a defined cellular context.
For each RBP, we train an independent binary clas-
sifier using RNA sequences as input. Additionally,
we also include a supplementary experiment us-
ing both RNA and protein sequences to predict
sequence-level binding, demonstrating the broad
applicability of RBPtool.

Datasets. We use three datasets: CLIP, RNA-
compete, and RPI15223. The CLIP dataset (Xu
et al., 2023) includes 171 RBPs, each with 15,000
RNA sequences (101 nt), split into 5,000 posi-
tives and 10,000 negatives. The RNAcompete
dataset (Ray et al., 2009, 2017) covers 162 RBPs
with 1,520-16,265 sequences per RBP (30—41 nt),
following a 1:2 positive-to-negative ratio. For
RPI15223, we first removed duplicates from all
RNA sequences to obtain the positive set and gen-
erated a negative set of twice the size by randomly
sampling RNA sequences of lengths between 12
and 1022 nucleotides to construct the whole dataset.
Dataset details and splits are in Section A.4.

Baselines. We compare our approach with three
representative baselines: PrismNet, iDeepS, and
HDRNet. We only use RNA sequence information
without other information as input across all mod-
els for a fair comparison. As required by HDRNet,
we generate sequence embeddings using its pre-
trained BERT model® described in its paper. All
baselines are trained for each RBP individually

5https: //figshare.com/articles/dataset/
24132423
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Models CLIP

RNAcompete

ACC AUPR

AUROC

ACC AUPR AUROC

PrismNet (Sun et al., 2021) 0.632 +0.166 0.674 = 0.111 0.801 £ 0.076 0.872 £ 0.072 0.883 £ 0.098 0.932 + 0.074

iDeepS (Pan et al., 2025)

0.709 £0.115 0.664 £0.113 0.768 £ 0.104 0.863 + 0.091 0.880 & 0.091 0.928 £ 0.079

HDRNet (Zhu et al., 2023) 0.654 £ 0.174 0.646 = 0.110 0.780 £ 0.075 0.748 £ 0.158 0.807 = 0.110 0.890 + 0.077

RBPtool

0.773 £ 0.067 0.720 £ 0.094 0.824 £ 0.065 0.878 £ 0.066 0.884 £ 0.096 0.931 &+ 0.073

Table 1: Mean =+ standard deviation of ACC, AUPR, and AUROC across all RBP-specific models on the CLIP and
RNAcompete datasets for the RBP binding task. Bold numbers indicate the highest average scores for each metric.

using their publicly available codes and default hy-
perparameter settings provided on GitHub.

Evaluation Metrics. We assess model perfor-
mance on this task using three standard metrics:
accuracy (ACC), area under the precision-recall
curve (AUPR), and area under the ROC curve
(AUROCQC). For each RBP, an independent binary
classifier is trained, yielding one set of evalua-
tion scores per RBP. We calculate the mean and
standard deviation of each metric across all RBP-
specific classifiers for each dataset separately, 171
classifiers for CLIP and 162 for RNAcompete, pro-
viding an aggregated view of model performance
on both datasets to evaluate the overall performance
and robustness of the methods.

Main Results. Table 1 reports the performance
of different models on the RBP binding task in two
datasets. RBPtool achieves the highest average
scores in all three metrics on both datasets, with
only a marginal drop in AUROC on the RNA-
compete dataset. The advantage becomes more
obvious on the CLIP dataset, where RBPTools out-
performs all baselines by a clear margin. This
dataset is more challenging due to its more diverse
RNA sequences, which introduce greater complex-
ity in learning binding patterns. These results high-
light the effectiveness of RBPtool in modeling com-
plex sequence contexts, due to the integration of
GPE and pre-trained language models.

Moreover, RBPtool yields the lowest standard
deviation across all metrics, suggesting that the
model remains robust despite its increased capac-
ity. The added architectural flexibility appears to
enhance generalization, enabling RBPtool to better
handle diverse RBP-RNA interactions.

Additionally, Table 13 shows that RBPtool per-
forms strongly on the external RP115223 dataset,
which involves predicting the binding potential
of arbitrary RNA to unknown RBPs. Our model
outperforms all baselines by a substantial margin

across all metrics, demonstrating its strong general-
ization capability and robustness to variable-length
RNA inputs on sequence level prediction. Baseline
models show noticeable limitations in this setting,
since iDeepS and HDRNet both need to set a maxi-
mum length. This may be partly attributed to the
Embedding Integration Module, which incorpo-
rates protein context through attention rather than
simple concatenation. More results on this task can
be found in Section A.6.

3.3.2 Residue Level

At the residue level, we focus on determining which
nucleotides in an RNA molecule participate in di-
rect interactions with an RBP.

Datasets. We constructed a refined benchmark
from the RPI15223 dataset for residue-level RBP-
RNA binding prediction. The final dataset contains
996 unique RNA sequences and 26,703 labeled nu-
cleotides. We formulate this task using RNA input
only here, since few existing baselines use both
RNA and protein at this resolution. Details of full
preprocessing steps are described in Appendix A.5.

Baselines. We evaluate two sequence-only mod-
els, FMbind and RNAPin, and three structure-
based models, ZHmol, RLbind, and RNABind, on
our dataset. FMbind is fine-tuned from the RNA
foundation model RNA-FM for this task. Mean-
while, RNABind incorporates RNA language mod-
els to generate node embeddings for its GNN en-
coder; we assess its several variants using differ-
ent pretrained models, including RNA-FM (Yu
et al., 2024), RNA-MSM (Zhang et al., 2024),
and ERNIE-RNA (Yin et al., 2024). FMbind and
RNAPiIn are only trained on sequence information
and all other methods are trained on both sequence
and coordinates. All baselines are retrained on our
dataset using their original codes and default hy-
perparameters under a unified evaluation pipeline.
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Sequence Type CLIP RNAcompete
Estimation Model RBPtool PrismNet iDeepS RBPtool PrismNet iDeepS

_ Natural Sequence 7340 7502 7430 8750 7502 87.36
Random 49.65 51.78 4591 11.27 25.03 10.27
Genetic algorithm (random) 51.03 52.67 47.02 12.34 26.13 11.03
RBPtool (design) 53.22 59.67 56.10 44.38 53.26 47.27

Table 2: Comparison of WSR (%, 1) for different types of RNA sequences evaluated using RBPtool, PrismNet and
iDeepS on the CLIP and RNAcompete datasets. The introduction of baselines is in Section A.7.

Sequence Type CLIP RNAcompete

MSE Pearson Spearman MSE Pearson Spearman
Random 0.052  0.247 0.211 0.297  0.043 0.004
RBPtool (design) 0.015  0.882 0.859 0.092  0.646 0.488

Table 3: Pearson correlation (1), Spearman correlation (1) and MSE (]) of AUPR between natural and synthetic

sequences evaluated by Prismnet.

Evaluation Metrics.

Similar to the task at the Models AUPR AUROC

sequence level, performance is evaluated using ZHmol (Zhuo et al.. 2024) 0576 0532
AUPR and AUROC, computed globally across FMbind (Yu et al., 2024) 0638 0621
all nucleotides in the test set. RNAPin (Panwar and Raghava, 2015)  0.608  0.548
. i RLbind (Wang et al., 2023a) 0.665 0.628
Main Results. As shown in Table 4, RBPtool RNABind_fm (Zhu et al., 2025) 0634  0.606
achieves the best overall performance on the RNABind_rnamsm 0683  0.661
RBP binding prediction task, obtaining the high- RNABind_rnaernie 0.668  0.619
est AUPR and AUROC scores among all base- RNABind_ernierna 0.680  0.663
lines. The next best-performing group consists of =~ RNABind_renalmo 0.665  0.642
RBPtool 0.726 0.706

five RNABind variants. This finding highlights the
significant impact of pre-trained RNA representa-
tions on RNA-related tasks. Furthermore, RBPtool
consistently outperforms all RNABind variants by
a notable margin of 4.3 to 9.2 points in AUPR. This
demonstrates that integrating GPE modules into
RBPtool enhances its ability to capture complex
sequence-structure patterns in RBP interactions,
while the local motif information retained by the
LPE may also contribute to this improvement.

3.3.3 Atom Level

At the atomic level, we further refine the task to pre-
dicting whether individual RNA backbone atoms
bind to an RBP.

Datasets. We adopt the same binding-site defini-
tion as in Section 3.3.2 to label the binding back-
bone atoms in the RPI15223 dataset and remove
redundant pairs. The resulting set of non-redundant
RNA-protein pairs, with atom-level annotations, is
divided into training and test subsets using an 80/20
split, while ensuring that no RNA sequences over-
lap between sets to prevent data leakage.

Table 4: AUPR and AUROC across all models on RBP
binding sites prediction. Among all the baselines, RBP-
tool achieves the highest AUPR and AUROC.

Baselines. There are no existing baselines specif-
ically for atom-level RBP-RNA interaction predic-
tion. Therefore, we compare the performance of
RBPtool at both residue and atom levels to assess
whether the increased resolution leads to perfor-
mance improvements or trade-offs in accuracy.

Evaluation Metrics. Due to a strong class im-
balance between binding and non-binding atoms,
we evaluate using metrics that are more robust in
imbalanced settings: F1 score, Matthews Corre-
lation Coefficient (MCC) and AUPR. The clas-
sification threshold is chosen to maximize the F1
score on the training set.

Main Results. As shown in Table 14, RBPtool
achieves comparable performance on atom-level
binding prediction, with only a moderate de-

2176



Models CLIP RNAcompete
ACC AUPR AUROC ACC AUPR AUROC
RBPtool  0.773 £ 0.067 0.720 + 0.094  0.824 £ 0.065 0.878 - 0.066 0.884 + 0.096 0.931 £ 0.073
-w/ofm  0.694 £0.103 0.636 +0.122  0.759 £ 0.090 0.844 +0.124 0.857 £0.126  0.914 £ 0.098
-w/o gpe 0.708 £0.101 0.653 £ 0.118 0.784 + 0.081 0.854 +0.094 0.839 £ 0.106  0.909 £ 0.080
-w/olpe  0.728 £0.097 0.681 £ 0.115 0.798 £ 0.083 0.859 £ 0.121 0.868 £ 0.124 0917 £0.111
Table 5: Ablation study of RBP binding task on CLIP and RNAcompete datasets.
Models AUPR AUROC compared to randomly generated sequences on
RBPtool 0726 0706 poth datasets. Th1§ result indicates that RBPt091
-w/o fm 0.704 0.687 is capable of designing RNA sequences that specif-
-wlo gpe 0.695 0.678 ically bind to the target RBP. The complete results
-w/o gvp 0.624 0.647 of Metric Similarity are provided in Appendix A.9.

Table 6: Ablation study of RBP binding sites task.

crease relative to the residue level. This suggests
that our model maintains reasonably good accu-
racy even at the atomic resolution, supporting the
feasibility of fine-grained RBP-RINA interaction
modeling.

3.4 RBP Target RNA Design

This task aims to design RNA sequences that bind
to a target RBP with high affinity.

Datasets. We reuse the CLIP and RNAcompete
datasets from the RBP binding task. Each instance
is augmented with the target RBP’s protein se-
quence, the corresponding cell population, and
species annotation (Section A.5).

Evaluation Metrics. We assess generation qual-
ity using two custom metrics: Weighted Success
Rate (WSR) and Metric Similarity. WSR measures
the predicted binding success rate of generated se-
quences, while Metric Similarity quantifies how
closely models behave on synthetic versus natu-
ral data, using correlation and mean squared error
(MSE) as indicators. Higher WSR and correlation,
and lower MSE, reflect better design quality. De-
tailed definitions are provided in Appendix A.7.

Baselines. With no established baselines for this
task, we compare against two alternatives: Ran-
dom and Genetic Algorithm, built using different
generation strategies described in Appendix A.7.

Main Results. Table 2 and Table 3 shows that
the RNA sequences designed by RBPtool achieve
significantly higher WSR and Metric Similarity

High WSRs calculated on natural sequences by all
three models illustrate that our metrics can effec-
tively estimate the success rate.

3.5 Ablation Study

Both the RNA-FM and GPE significantly enhance
RBP binding, while LPE and GVP-GNN further
improve the language module. We ablated four
variants: (1) RBPtool-w/o-fm: one-hot instead of
RNA-FM. (2) RBPtool-w/o-gpe: no GPE module.
(3) RBPtool-w/o-Ipe: no LPE in sequence-level.
(4) RBPtool-w/o-gvp: no GVP in residue-level.

Results (Tables 5 and 6) show that removing
FM or GPE severely weakens both sequence- and
residue-level performance, while excluding GVP
significantly affects residue-level accuracy. LPE’s
impact is minor, likely because RNA-FM and GPE
already cover both local and distant relationships.
Though structural data is beneficial, it can be hard
to obtain, underscoring the importance of RNA-
FM and GPE for sequence-based learning. More
analysis can be found in Section A.10.

4 Conclusion and Outlook

RBPtool introduces a unified framework that in-
tegrates deep language models with structural in-
formation for multi-resolution RBP-RNA binding
prediction and functional RNA molecule design. It
achieves state-of-the-art performance, particularly
on our curated RP115223 dataset, demonstrating
its strong potential to advance both fundamental
research in RBP biology and the development of
RNA-based therapeutics.

In the future, incorporating richer biological data
and generative algorithms could further boost cross-
species and pathological predictions
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Limitations

This paper introduces an RNA sequence generation
module tailored for specific RBPs, and employs
model scoring to evaluate the design outcomes.
However, model scoring cannot fully substitute for
wet-lab experimental validation. Even sequences
that score highly may not achieve their expected
functions in vitro or in vivo, necessitating addi-
tional experimental methods to confirm the actual
binding efficiency and biological functions of the
designed RNA.

In addition, the experiments primarily focus on
typical RNA-binding proteins, common species,
and cell types, and have not yet been validated in
the context of less common or structurally complex
RBPs, viral RNAs, or rare species. The generaliz-
ability and robustness of the model in these extreme
scenarios still require further testing and tuning.

In this paper, we merely use Al tools to refine
the language of the paper.
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A Appendix

A.1 Related Work

A.1.1 RBP Binding at Sequence Level

Sequence-level models classify whether an RNA
binds a target RBP, often using: (i) RNA-only
models relying solely on RNA features, and (ii)
RNA -protein joint models using both RNA and
protein.

RNA-only models. Early approaches like RBP-
Pred (Zhang and Liu, 2017) and RCK (Oren-
stein et al., 2016) employed classic ML on se-
quence/structure features. DeepBind (Alipanahi
et al., 2015) and iDeepS (Pan et al., 2020) then
introduced CNN/RNN modules, exploiting residue
dependencies. More recent work leverages LLM-
based embeddings for contextual patterns (Yamada
and Hamada, 2022; Zhu et al., 2023), and PrismNet
(Xu et al., 2023) further improves performance by
incorporating cellular context into a ResNet.

RNA -protein joint models. These methods fuse
RNA and protein information using diverse archi-
tectures. RPITER (Peng et al., 2019) stacks autoen-
coders and CNNs, while RPI-CapsuleGAN (Wang
et al., 2023b) explores GAN-based designs. Graph
neural networks and pretrained LMs have also been
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applied, such as RPI-GGCN (Wang et al., 2024)
and ZHMolGraph (Liu et al., 2025).

A.1.2 RBP Binding at Residue Level

Residue-level models pinpoint specific nucleotides
binding to protein residues. RNAPin (Panwar and
Raghava, 2015) and ZHmol (Zhuo et al., 2024) ap-
plied ML to biological features, while recent deep
learning methods better capture context and struc-
ture. RLBIND (Wang et al., 2023a) uses CNNs, and
RNABIND (Zhu et al., 2025) integrates language
model embeddings with GNNs. Nonetheless, joint
RNA-—protein information and atom-level binding
remain underexplored.

A.1.3 RNA Design

Molecular design seeks sequences that fold into
specific structures or perform designated functions
(Warner et al., 2018; Churkin et al., 2018; Li et al.,
2025). Early RNA design tools like RNAinverse
and MODENA (Hofacker et al., 1994; Taneda,
2010) used heuristic searches for secondary struc-
ture. Newer approaches employ GNNs for 3D-
informed design (Joshi et al., 2024; Huang et al.,
2024; Tan et al., 2024), or transformers to capture
global dependencies (Zhao et al., 2024; Wong et al.,
2024). However, most focus on structural fidelity,
overlooking functional constraints such as RNA—
protein interactions. Our work merges RBP-RNA
prediction with function-aware RNA design for
broader biological utility.

A.2 Model Configuration Details

There are four cases of Input Modalities: (A) RNA
sequence only; (B) RNA sequence and structure;
(C) Sequence of both RNA & protein; (D) Se-
quence and structure of both RNA & protein.

Config Case A CaseB CaseC CaseD
dseq 384 256 768 384
dstrut - 128 - 128
#MP - 1 - 1
#GPE 1 3 2 3
#Heads (GPE) 6 6 8 8
#LPE 3 2 2 3

Table 7: Model configurations under different input
modality settings. MP, GPE, and LPE refer to the Mes-
sage Passing, Global, and Local Pattern Encoder mod-
ules, respectively. If structure is not provided, dg,; and
#MP are omitted.

The following is the selection of architectural
parameters, for the sequence-level task (which only

takes RNA sequences as input), we have conducted
extensive experiments on the CLIP-seq datasets to
evaluate the impact of varying the number of layers
in the Global Pattern Encoder (GPE) and Local
Pattern Encoder (LPE), as well as the projection
dimension dsq. The results are summarized in
Table 8, and it can be found that the configuration
(#GPE=1, #LPE=3, ds.q = 384) achieves the best
overall performance across metrics.

Model #GPE #LPE dseq ACC AUPR AUROC

Variant 0 1 3 384 0.7727 0.7202 0.8242
Variant 1 1 3 768 0.7355 0.6978 0.8061
Variant 2 1 2 384 0.7587 0.6999 0.8130
Variant 3 2 2 384 0.7598 0.7000 0.8144
Variant 4 2 3 384 0.7472 0.6906 0.8087
Variant 5 3 2 384 0.7355 0.6978 0.8061

Table 8: Performance of sequence-level model under
different architectural parameters.

Additionally, here is a comprehensive set of ex-
periments on the residue-level model by varying
the number of Global Pattern Encoder (GPE) layers
and Message Passing (MP) layers. The results are
summarized in Table 9. As shown, the configura-
tion with 3 GPE layers and 1 MP layer (Variant 4)
achieves the best performance in both AUPR and
AUROC.

Model #GPE #MP AUPR AUROC
Variant 0 3 3 0.7263  0.7064
Variant 1 1 1 0.7267  0.7048
Variant 2 1 3 0.7049  0.7010
Variant 3 2 3 0.7214  0.7035
Variant 4 3 1 0.7282  0.7157
Variant 5 3 2 0.7134  0.7036

Table 9: Performance of residue-level model under dif-
ferent architectural parameters.

A.3 Training Details

There are four cases of Input Modalities: (A) RNA
sequence only; (B) RNA sequence and structure;
(C) Sequence of both RNA & protein; (D) Se-
quence and structure of both RNA & protein. The
following table summarizes the training details
for each input modality and prediction level. For
the CLIP dataset, 171 RBP-specific models are
trained, one for each RBP. Similarly, RNAcom-
pete requires 162 separate models. For all other
cases, a single unified model is trained per setting.
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Case Level Dataset #Params Time
Case A Seq CLIP 7,196,838 36h (5-7s)
Case A Seq RNAcompete 7,196,838 12h (3-4s)
Case B Res Refined RP1 14,299,345 7min
Case C Seq RPI15223 31,279,410 15h

Case D Res RPI15223 16,091,113 8h
CaseD  Atom RPI15223 17,349,768  5h

Table 10: Training details under different input types
and prediction levels. Seq: sequence-level; Res: residue-
level; Atom: atom-level. The time in parentheses is the
average training time of RBPtool for one RBP per epoch
in CLIPs and RNAcompete datasets.

Case Level Dataset #Params  Time
Design  Seq CLIP 110 million 28
Design Seq RNAcompete 110 million 14

Table 11: Training details of the Design model in CLIPs
and RNAcompete datasets.

A.4 Datasets Information of Sequence-Level
Binding Site Prediction

We use three datasets: CLIP, RNAcompete, and
RPI15223.

The CLIP dataset, curated by Xu et al. (2023),
includes 171 RBPs. For each RBP, 15,000 fixed-
length RNA sequences (101 nucleotides) are pro-
vided, consisting of 5,000 positive and 10,000 neg-
ative samples. Each RBP is annotated with the spe-
cific cell type in which the CLIP experiment was
performed, and includes the full protein sequence.

The RNAcompete dataset, derived from the in
vitro RNAcompete assay (Ray et al., 2009, 2017),
contains 162 RBPs. RNA sequences range from 30
to 41 nucleotides in length, with 1,520 to 16,265
sequences per RBP, and maintain a 1:2 positive-
to-negative ratio consistent with the CLIP dataset.
Each RBP includes its full protein sequence and is
annotated with its species of origin.

The RPI15223 dataset is derived from PDB
(Berman et al., 2000), which contains 15,223 non-
redundant RNA-protein binding pairs. We also gen-
erate 26,682 negative samples by randomly pairing
RNA and protein from different complexes.

In total, we construct 333 RBP-specific datasets,
each randomly divided into 80% training and 20%
testing sets for the main experiment. Similarly, the
external dataset RPI15223 is split with the same
ratio for the supplementary experiment, ensuring
no overlap of RNA sequences between training and
test sets to prevent data leakage. Additional dataset
details are provided in Appendix A.5.

A.5 Supplementary Information on Datasets

1. CLIP. Positive samples are RNA sequences
with experimentally verified binding sites cen-
tered within the sequence. Negative samples
are randomly selected from non-binding re-
gions of the transcriptome.

2. RNAcompete. We label sequences with high
binding scores as positive and randomly sam-
ple twice as many negatives from the remain-
ing pool.

3. RPI15223. We construct this dataset through
the following pipeline:

* Retrieval: We query EMDB and PDB
using keywords related to RBP-RNA
complexes and collect all matching struc-
tures from the Protein Data Bank (PDB).

* Pair Identification: An RNA-protein
pair is considered binding if any heavy
atom in the RNA is within 3.5 A of any
heavy atom in the protein.

* Filtering: We retain pairs with struc-
ture resolution better than 4 A, where the
RNA is between 6 and 1,021 nucleotides
long, and the protein is between 6 and
2,045 residues long.

The resulting dataset consists of 15,223
unique RNA-protein binding pairs with corre-
sponding sequence and structural information.

4. Refined RPI15223. We further process
RPI15223 to support residue-level binding
prediction:

* Filtering: We retain RNA chains with a
length between 12 and 512 nucleotides,
resulting in 1,181 RNA structures after
removing redundancy.

* Binding-site labeling: A nucleotide is
labeled as binding if any of its heavy
atoms is within 3.5 A of a heavy atom
from another chain or ligand within the
biological assembly. Labels are merged
across PDB entries when the same RNA
appears in multiple assemblies.

* Clustering and alignment: RNA se-
quences are clustered at 95% identity
using CD-HIT, aligned with MAFFT,
and binding labels are propagated across
aligned positions.
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The final dataset contains 996 non-redundant
RNA sequences with 26,703 labeled nu-
cleotides.

A.6 External Binding Task Results

Table 12 is the one-sided t-test between the ac-
curacy of RBPtool and baseline models in the
sequence-level RBP binding task on RNAcompete.

Baseline t-statistic p-value (one-sided)
PrismNet 1.7183 4.3830e-02
iDeepS 2.5230 6.2993e-03
HDRNet  23.4472 0e-04

Table 12: Statistical comparison against baselines.

Table 13 is the performance of the sequence-
level RBP binding task on RPI15223.

Models ACC AUPR AUROC
PrismNet 0.7648 0.7109  0.7782
iDeepS 0.7475 0.7193  0.7910
HDRNet 0.7451 0.7475  0.8319
RBPtool  0.8510 0.8551 0.8941

Table 13: Performance in sequence-level RBP binding
task on RPI15223.

Table 14 is the performance of RBPtool on
the residue- and atom-level RBP binding task on
RPI15223.

Level F1 MCC AUPR
Residue 0.667 0.655 0.697
Atom 0.651 0.636  0.687

Table 14: Comparison of RBPtool performance on RBP
Binding task at residue and atom levels on RP115223.

A.7 RBP Target RNA Design

Evaluation Metrics. We use two metrics to
evaluate the quality of the generated sequences:
Weighted Success Rate (WSR) and Metric Similar-
ity. They are defined as follows:

* Weighted Success Rate: Weighted Success
Rate (WSR) estimates an overall rate that
the synthetic RNA sequences are true binders
of the target RBP. For each RBP, we gener-
ate a set of candidate sequences and use the
pre-trained, RBP-specific classifier in Section
3.3.1 to estimate the proportion of sequences

predicted as positive. For both the CLIP and
RNAcompete datasets, we calculate the WSR
independently by taking the weighted average
of the positive rates estimated across all RBPs
in each dataset. The weight assigned to each
RBP is its classifier’s AUPR on the test set,
reflecting the classifier’s reliability. A higher
WSR indicates a higher binding likelihood of
the generated sequences. The formula for this
metric is provided in Appendix A.8.

Metrics Similarity: This metric quantifies
how closely the generated sequences resem-
ble natural RBP target RNA by evaluating
the similarity between model performance on
generated sequences and on true positive ex-
amples. High similarity implies that the syn-
thetic sequences effectively capture the under-
lying characteristics of real RBP binding sites.
For each RBP, we generate synthetic positive
sequences to replace the real positive exam-
ples in the test set. We then re-evaluate the
trained classifier on this modified test set to
obtain new performance metrics (e.g., ACC,
AUPR, AUROC). For each metric, we com-
pute the Pearson correlation, Spearman cor-
relation, and mean squared error (MSE) be-
tween the scores obtained on the natural and
synthetic sets. Higher Pearson or Spearman
correlation, or lower MSE—indicating greater
metric similarity—suggests that the generated
sequences more faithfully capture the proper-
ties of true positive examples. To avoid po-
tential bias, we evaluate the performance of
PrismNet on generated sequences instead of
RBPtool.

Baselines. Since there are no existing methods
specifically tailored for RBP-targeted RNA se-
quence design, we construct two competitive base-
lines for comparison: Random and Genetic Algo-
rithm (Random).

* Random. For each RBP, we generate RNA
sequences of the same length as our designed
sequences. Each nucleotide is sampled in-
dependently and uniformly from the set {A,
C, G, U}. This baseline reflects the perfor-
mance of completely unstructured generation
and serves as a lower bound for design quality.

* Genetic Algorithm (Random). To make
the baseline more competitive, we introduce
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a selection mechanism inspired by the ge-
netic algorithm paradigm. For each RBP,
we generate five independent sets of ran-
dom sequences using the same random sam-
pling strategy described above. We then es-
timate the WSR of each set using three high-
performing classifiers—RBPtool, PrismNet,
and iDeepS—identified in Section 3.3.1. The
set with the highest average predicted bind-
ing probability is retained as the final base-
line for that RBP. This procedure ensures a
stronger and more competitive stochastic base-
line against which to evaluate our designed
sequences.

We compare the evaluation metrics across four
groups of sequences: natural RNA, sequences de-
signed by RBPtool, randomly generated sequences,
and those selected through the Genetic Algorithm
(Random) baseline.

A.8 Formula of Weighted Positive Rate
(WSR)

For each RBP ¢ in either the CLIP or RNAcompete
dataset, let:

o r; = ﬁ > wec, Wi(x) = 1), where G; is
the set of generated RNA sequences for RBP 4,
and g;(x) € {0, 1} is the predicted label given
by the corresponding RBP-specific classifier.

* w; = AUPR,, the area under the precision-
recall curve (AUPR) of the classifier for RBP
1 evaluated on the natural test set.

Then, the **Weighted Success Rate (WSR)** for
a given dataset is computed as:

SN wier
N
Dim1 Wi

where N denotes the number of RBPs in that
dataset (CLIP or RNAcompete).

WS Rdataset =

A.9 Detailed Metric Similarity

To further evaluate the quality of the generated
RNA sequences, we report the detailed results of
Metrics Similarity (measured by MSE, Pearson cor-
relation, and Spearman correlation) between pre-
dicted and actual evaluation scores (ACC, AUROC)
on the CLIP and RNAcompete datasets. We com-
pare results for sequences generated by random
sampling and our designed method.

Sequence Type MSE  Pearson Spearman
Random 0.034  0.073 0.169
RBPtool (design)  0.026  0.386 0.505

Table 15: ACC evaluation on CLIP. Lower MSE and
higher correlation indicate better similarity to natural
sequences.

Sequence Type MSE  Pearson Spearman
Random 0.092  0.234 0.152
RBPtool (design) 0.048  0.408 0.434

Table 16: ACC evaluation on RNAcompete. Lower
MSE and higher correlation indicate better similarity to
natural sequences.

Sequence Type MSE  Pearson Spearman
Random 0.009 0.849 0.849
RBPtool (design)  0.028 0.355 0.303

Table 17: AUROC evaluation on CLIP. Lower MSE and
higher correlation indicate better similarity to natural
sequences.

Sequence Type MSE  Pearson Spearman
Random 0.052 0.558 0.403
RBPtool (design)  0.181 0.018 -0.059

Table 18: AUROC evaluation on RNAcompete. Lower
MSE and higher correlation indicate better similarity to
natural sequences.

A.10 Ablation Study: How Does Each
Component Work?

Both the RNA Foundation Model (FM) and the
GPE facilitate RBP binding tasks. In addition,
LPE and GVP-GNN can respectively further
expand the assistance brought by the language
module. We conduct ablation studies on both the
RBP Binding tasks at the sequence level and the
residue level to understand the influence of dif-
ferent components in each task. The models we
compare are listed as follows: (1) RBPtool-w/o-
fm replaces the RNA-FM with one-hot encoding
to extract RNA representations; (2) RBPtool-w/o-
gpe removes the BERT block in both tasks. (3)
RBPtool-w/o-Ipe removes the ResNet module only
in the sequence level task. (4) RBPtool-w/o-gvp
removes the GVP module merely in the residue
level task.
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The result in Table 5 and 6 indicates that replac-
ing the RNA-FM with one-hot encoding and the
removal of GPE Component both lead to a sig-
nificant decline in performance of Binding Task
at both the sequence level and the residue level.
Meanwhile, the absence of the GVP module de-
creases the performance at residuel level the most,
and removing the LPE module slightly decreases
the performance. These results indicate that RNA-
FM and transformer-based GPE modules, as the
basis of language models, play a crucial role in
learning the information in the RBP binding task.
Meanwhile, structural information can also be fur-
ther and significantly enhanced through the GVP
module for the learning of information. However,
the LEP module is relatively less helpful for the
task. We believe that this is because the GPE and
FM modules have simultaneously obtained the in-
formation of both the distant and near distances in
the RNA sequence, which weakens the help that
the LPE module brings to the model by learning the
motif information to some extent. It is worth not-
ing that although structural information can bring
significant help to the RBP task, since such data
is relatively more difficult to obtain, the role of
RNA-FM and GPE modules for sequences is more
meaningful.
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