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Abstract

This paper addresses the important yet under-
explored task of multi-class sentiment anal-
ysis (MCSA), which remains challenging due
to the subtle semantic differences between ad-
jacent sentiment categories and the scarcity
of high-quality annotated data. To tackle
these challenges, we propose RD-MCSA
(Rationales and Demonstrations-based Multi-
Class Sentiment Analysis), an In-Context
Learning (ICL) framework designed to en-
hance MCSA performance under limited su-
pervision by integrating classification ratio-
nales with adaptively selected demonstrations.
First, semantically grounded classification ra-
tionales are generated from a representative,
class-balanced subset of annotated samples se-
lected using a tailored balanced coreset algo-
rithm. These rationales are then paired with
demonstrations chosen through a similarity-
based mechanism powered by a multi-kernel
Gaussian process (MK-GP), enabling large
language models (LLMs) to more effectively
capture fine-grained sentiment distinctions. Ex-
periments on five benchmark datasets demon-
strate that RD-MCSA consistently outperforms
both supervised baselines and standard ICL
methods across various evaluation metrics.

1 Introduction

Multi-class sentiment analysis (MCSA) goes be-
yond basic sentiment polarity classification (e.g.,
positive or negative) by distinguishing varying lev-
els of emotional intensity (e.g., very positive Vs.
generally positive). By capturing finer sentiment
distinctions, MCSA provides deeper insights into
sentiment expression, making it essential for appli-
cations that require fine-grained sentiment analy-
sis (Wang et al., 2023). For example, in opinion
dynamics research, a key step involves categoriz-
ing users’ natural language expressions into five or
more sentiment categories (Chuang et al., 2024).

“Equal contribution.

Despite its importance, MCSA remains challeng-
ing due to subtle semantic differences between
adjacent sentiment levels, which are often diffi-
cult to distinguish accurately (Mamta and Ekbal,
2023). Moreover, sentiment categorization criteria
can vary considerably across domains and applica-
tions (Rosenthal et al., 2019), further complicating
the modeling process. Addressing a new MCSA
task typically requires a substantial amount of high-
quality, task-specific annotated data (Krosuri and
Aravapalli, 2023), which is often scarce in low-
resource settings.

Large language models (LLMs) have demon-
strated strong performance in sentiment analysis,
making them a promising tool for MCSA. How-
ever, although LLMs perform well in basic sen-
timent classification, they often struggle with nu-
anced distinctions between adjacent sentiment cat-
egories (Zhang et al., 2024). In-context learning
(ICL), which enhances LLM capabilities through
a few task-specific demonstrations, has achieved
state-of-the-art performance across various NLP
tasks. Nevertheless, its application to classification
settings involving multiple sentiment categories
remains underexplored (Randl et al., 2024). More-
over, our experimental results show that conven-
tional ICL approaches are insufficient for effec-
tively addressing the complexity of MCSA.

To address these limitations, this paper proposes
RD-MCSA, a novel framework aimed at improv-
ing ICL performance for MCSA. RD-MCSA re-
fines the two core components of ICL—prompt
design and demonstration selection—Dby incorpo-
rating classification rationales and an adaptive ex-
ample selection mechanism. This design enables
LLMs to better capture fine-grained sentiment dis-
tinctions and improve classification accuracy.

The main contributions of this paper are summa-
rized as follows:

1. Rationale-Augmented ICL: An ICL frame-
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work that integrates classification rationales
and demonstration examples is proposed, en-
abling LLMs to more effectively capture fine-
grained sentiment distinctions in MCSA.

2. Classification Rationale Generation via Tai-
lored Balanced Coreset: A rationale genera-
tion strategy is designed that guides LLMs to
produce linguistically and semantically rich
classification rationales, based on represen-
tative and class-balanced samples selected
through a tailored balanced Coreset algorithm.

3. Adaptive Demonstration Selection via MK-
GP: A novel demonstration selection method
based on a multi-kernel Gaussian process
(MK-GP) is proposed, enabling adaptive sim-
ilarity modeling beyond fixed metrics such
as cosine similarity, marking the first use of
kernel-based selection in the ICL setting.

A series of comprehensive experiments con-
ducted on five diverse and representative datasets
validate the effectiveness of RD-MCSA, highlight-
ing its advantages and identifying key challenges
in MCSA tasks.

2 Related Work
2.1 Multi-Class Sentiment Analysis

Multi-class sentiment analysis (MCSA), also re-
ferred to as fine-grained or graded sentiment analy-
sis (Sharma et al., 2024), extends traditional senti-
ment classification by mapping texts into multiple
sentiment categories rather than a simple polarity
distinction. Unlike binary sentiment analysis (e.g.,
positive vs. negative), MCSA captures variations
in sentiment intensity by introducing subcategories
such as very positive or slightly positive, or by em-
ploying rating scales (e.g., 1-5) (AlQahtani, 2021).
This finer granularity enables a more nuanced un-
derstanding of sentiment and serves as a fundamen-
tal task in diverse applications, including business
intelligence, public opinion monitoring, and disas-
ter assessment (Sharma et al., 2024).

Traditional MCSA models rely on supervised
machine learning (Wang et al., 2023) and are com-
monly applied to texts such as tweets, movie re-
views, and product reviews. In many cases, sen-
timent analysis also focuses on specific targets
or aspects. Widely used MCSA datasets include
SemEval-2017 Task 4 (Rosenthal et al., 2019),
SST-5 (Socher et al., 2013), and Amazon Re-
views (AlQahtani, 2021).

Another research direction treats sentiment inten-
sity assessment as a regression problem, where sen-
timent is predicted on a continuous scale. Notable
tasks and datasets include SemEval-2017 Task
5 (Cortis et al., 2017), FiQA 2018 (de Franca Costa
and da Silva, 2018), and recent dimABSA tasks at
SIGHAN-2024 (Lee et al., 2024).

Despite ongoing advances, MCSA still faces key
challenges, such as limited accuracy and the high
cost of large-scale annotation, especially as senti-
ment granularity increases (Krosuri and Aravapalli,
2023). Fine-grained sentiment analysis for specific
entities often requires distinct annotated datasets,
making large-scale deployment impractical.

To address these challenges, this study aims to
enhance MCSA performance under limited labeled
data conditions, while maintaining broad applica-
bility across diverse MCSA scenarios.

2.2 Text Analysis Using LLMs

LLMs have demonstrated strong few-shot learning
capabilities through in-context learning, which pro-
vides a promising direction for achieving efficient
MCSA (Wu et al., 2025).

Recent research on LLM-based text analysis
has focused on ICL, where carefully selected
demonstration examples guide model predictions.
Common strategies for selecting examples in-
clude similarity-based selection (Liu et al., 2022),
diversity-based selection (Zhang et al., 2022),
information-theoretic criteria (Wu et al., 2023),
task-level selection (Li and Qiu, 2023) and LLM
feedback (Liu et al., 2024a). For MCSA, a recent
study (Chuang et al., 2024) employs similarity-
based demonstration selection within ICL to ana-
lyze opinion dynamics.

Despite their potential, LLMs still face chal-
lenges across many NLP tasks. They often struggle
with fine-grained sentiment analysis (Zhang et al.,
2024). Moreover, few-shot ICL requires further
study on optimal prompt design (Liu et al., 2022),
and, to our knowledge, no prior work has examined
few-shot prompting for multi-class prediction with
a large number of categories (Randl et al., 2024).
In addition, long prompts may overload LLMs (Liu
et al., 2024b), while limited context windows can
restrict the effective representation of all classes.

This study focuses on two key components of
ICL, prompt construction and demonstration selec-
tion, addressing how to effectively provide classi-
fication information to LL.LMs and how to adapt
both components to better serve MCSA tasks.
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Figure 1: The framework of RD-MCSA: The lower half of the figure (below the long dashed line) corresponds
to Section 3.1, while the upper half (above the long dashed line) corresponds to Section 3.2. The training of the
MK-GP (described in Subsection 3.2.2) is omitted in the figure.

3 The Methodology of RD-MCSA

The RD-MCSA framework, illustrated in Fig. 1,
consists of the following key components. Given
an annotated MCSA dataset D: 1) a balanced Core-
set B3 is constructed to generate classification ratio-
nales R (Section 3.1); 2) a multi-kernel Gaussian
process G is trained (Subsection 3.2.2) to model
adaptive similarity; 3) for MCSA on a new input,
ICL is performed using a prompt that incorporates
both R and a set of demonstrations selected from
D via G (Subsection 3.2.3).

3.1 Classification Rationale Generation via
Balanced Coreset Selection

The classification rationales R are generated by
an LLM through reasoning over the semantic and
linguistic features of a representative subset of D.
To ensure that this subset (denoted as 1) preserves
the semantic diversity and key distinguishing char-
acteristics of each sentiment class—while also mit-
igating class imbalance—a balanced Coreset se-
lection algorithm is proposed.

3.1.1 The Balanced Coreset Algorithm

The proposed algorithm extends the classical Core-
set formulation (Sener and Savarese, 2017) by in-
corporating importance-weighted sampling and
class-aware stratification, ensuring that the se-

lected subset B maintains both intra-class diversity
and inter-class balance, thereby facilitating higher-
quality rationale generation.

To enforce class balance, the number of selected
A
w |
u denotes the number of unique sentiment classes
in D, and Ap is a hyperparameter specifying the
total Coreset size.

samples per class is capped by ) where

1) Importance-Weighted Sampling Probability.
To prioritize semantically informative and poten-
tially ambiguous instances, each sample is assigned
a score based on its distance from the centroid of
its respective class (Cohen-Addad et al., 2021).

For a given text sample (¢;,v;) € D, let x(t;) €
R% denote the embedding1 of t;, where y; = cis
its class label. The centroid g, of class c is com-
puted as p, = IDilcl Zj:yj:cw(tj), where D, C D
denotes the set of samples belonging to class c.
The importance weight is defined as the squared
Euclidean distance w(t;, y;) = ||x(t;) — chg.

Within each class, importance weights are nor-
malized to form a probability distribution. The
sampling probability of ¢;, denoted as P.(t;), is

'This paper employs Sentence-BERT (Reimers and
Gurevych, 2019) to generate text embeddings.
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defined as:

Zj:yj:c w(tj’ y])

Pe(ti) = (1

2) Stratified Weighted Random Sampling.

Sample selection is performed independently for
each class 1 < ¢ < u, based on the corresponding
sampling probabilities:

 If |D.| < N3, all instances from class ¢ are
included in B.

* If|D.| > Ny, asubset of \j; samples is drawn
from D, via weighted sampling with P.(t;),
forming the subset 5.:

B. C D,

|B.| =\, B~ P..

The final balanced Coreset B is obtained by ag-
gregating all class-specific subsets B..

3.1.2 Classification Rationale Generation via
LLM Reasoning

To extract class-discriminative knowledge from the
coreset B, classification rationales R are gener-
ated using an LLM guided by a carefully designed
prompt, as illustrated in Figure 2. Leveraging
the advanced reasoning abilities of LLMs (Wang,
2025), this approach provides a scalable and seman-
tically informed alternative to manual annotation.
Furthermore, because LLMs are subsequently
employed for ICL in downstream MCSA tasks, gen-
erating classification rationales with models from
the same family promotes better alignment between
rationale formulation and model interpretation.

Based on the representative examples provided
below, generate detailed descriptions for each
sentiment label.

Examples: {Balanced Coreset B}
Sentiment Labels: {str(label_list)}

For each sentiment label, provide a compre-
hensive description covering:

* Lexical Patterns

¢ Semantic-Pragmatic Features

* Domain-Attribute Associations

Figure 2: Prompt template for generating classification
rationales using the balanced coreset 5.

The prompt instructs the LLM to identify key lin-
guistic and semantic features that distinguish senti-
ment classes, with a focus on: 1) Lexical Patterns:
characteristic sentiment-bearing words, phrases,
and affective expressions; 2) Semantic-Pragmatic
Features: contextual meaning shifts and pragmatic
implications across classes; 3) Domain-Attribute
Associations: domain-specific entities and proper-
ties linked to sentiment expression.

The LLM is further guided to ground its analy-
sis in representative examples from B, referencing
specific lexical or syntactic patterns. This ensures
that the resulting rationales are both interpretable
and empirically supported.

3.2 Demonstration Selection via Multi-Kernel
Gaussian Process Similarity Evaluation

RD-MCSA leverages a multi-kernel Gaussian
process for text similarity evaluation to select
ICL demonstrations. This method benefits from
Multiple Kernel Learning’s ability to model and
adapt to complex data distributions (Ghasempour
and Martinez-Ramén, 2023).

3.2.1 Gaussian Process

Gaussian Process (GP) (Liu et al., 2021) can be
applied to model categorical data with v categories
by introducing a set of latent functions { f.(x)}*_,
one for each class. Each latent function is modeled
as an independent Gaussian Process (Wang, 2023):

fe(x) ~ GP(ec(x), ke(z, 2")), (2)

where e.(x) denotes the mean function, and
k.(x, 2’) represents the covariance function (also
referred to as the kernel) for the c-th class.

Following prior work such as (Bonilla et al.,
2007), this study adopts a shared kernel k(x;, x;)
and a shared mean function across all categories.
This design choice not only reduces computa-
tional complexity but also capitalizes on structural
similarities commonly observed among different
classes within the same dataset. In this framework,
the mean function is modeled as a learnable con-
stant, and the kernel is defined as a multi-kernel
function, as described in Section 3.2.2.

3.2.2 Multi-Kernel Gaussian Process

The Multi-Kernel Gaussian Process (MK-GP) ex-
tends the standard Gaussian Process framework by
incorporating Multiple Kernel Learning, and has
demonstrated effectiveness in sentiment and emo-
tion analysis on text (S et al., 2017b,a; Angel Debo-
rah et al., 2021). In this work, we adopt a weighted
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combination of the Matérn kernel (Borovitskiy
et al., 2021) and the polynomial kernel (Song
et al., 2021), enabling the model to capture both
stationary and non-stationary patterns in the
data (Lawler, 2018). The resulting composite ker-
nel is formally defined as follows:

N
k(wia w_’]) = Z ankMatémm(a’ia w])+
= 3)

M
Z /BmkPoly,m(xi, l‘j)v

m=1

where AkMaiem,n (€4, ;) denotes the n-th Matérn
kernel, and Kpoly,m (€4, ;) denotes the m-th poly-
nomial kernel. The coefficients «,, and j3,,, are
learnable weights constrained to be non-negative
(an, B > 0). Additional details are provided in
Appendix A.1.

Let X = {x;}X, denote the training data
and y the corresponding labels. Let f(x) =
[fi(x),..., fu(x)]T denote the vector of latent
function values at input x, where v denotes the
number of classes in the dataset, and let f =
{f(z;)}E, denote the collection of latent outputs
over the training set. An MK-GP model G is trained
by minimizing the negative log-marginal likeli-
hood (Artemev et al., 2021):

L= —log/p<y Hp(f | X)df. @)

Further details regarding the training procedure
of MK-GP are provided in Appendix A.2.

3.2.3 Similarity-Based Demonstration
Selection via the Kernel Function

Similarity-based demonstration selection, which
selects examples most similar to the test sample,
has proven effective for ICL (Margatina et al.,
2023). In this work, we adopt a similarity-based ap-
proach leveraging the kernel function of the trained
MK-GP model G to guide demonstration selection.
Given a test sample o, its similarity to a candidate
example ¢; € D is computed as:

Sim(to,ti) = k($(t0),m(ti)), (5)

where (o) and x(t;) (or, for brevity, x¢ and x;)
are the embeddings of ¢y and ¢;, respectively. As
shown in Figure 3, the embeddings are mapped
into a Hilbert space via a kernel function. With
a well-chosen kernel, the transformed representa-
tions exhibit improved class separability relative to

the original embedding space (Elen et al., 2022).
This enhanced structure enables more discrimi-
native similarity computation for ICL. A higher
kernel value (as learned in Section 3.2.2) reflects
greater similarity between examples in the feature
space (Thickstun, 2019). Additional implementa-
tion details are provided in Appendix A.3.

( 0)1 ( l)r LR ( ) G
@ @
Embedding % OG Kernel OG ©
@ o Mapping () O
O 00
Original Texts Embedding Space Hilbert Space

Figure 3: Kernel mapping enhances class separability.
Circles in two different colors represent samples from
distinct classes.

The S examples most similar to tp are se-
lected as demonstration examples. These exam-
ples, along with their corresponding labels, denoted
as {(t1,91),...,(ts,ys)}, are then concatenated
with the classification rationale R to form a prompt
(as shown in Figure 4) for the LLM. This process
is defined as follows:

Yo =LLM(to ® R ® (t1,y1) ® - @ (ts,ys)),

where g is the predicted label for ¢y, and & repre-
sents the concatenation operation.

Analyze the sentiment expressed in the given
Query Text toward the specified target {tar-
get}. The sentiment label must be selected
from the following set: {str(label_list)}. Refer
to the provided label descriptions and example
demonstrations to guide your classification.

Label Descriptions: {Rationales R}
Demonstrations: {(t1,vy1),- .., (ts,ys)}

Query Text: {query_text}

Figure 4: Prompt template of ICL for MCSA.

4 Experimental Setup

4.1 Experimental Datasets

To comprehensively evaluate RD-MCSA, five
datasets spanning different domains and sentiment
classification granularities were employed. The
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characteristics of these datasets are summarized in
Table 1.

Table 1: Summary of experimental datasets.

Dataset Size Classes Granularity & Text type
SST5! 11,855 5 Sentence-level Movie Reviews
SemEval17> 20,632 5 Topic-based Tweets
ABSIA’® 4,650 7 Restaurant-related Reviews
PR_Baby* 183,531 5 Baby-product Reviews
PR_Software® 12,804 5 Software Product Reviews

These datasets encompass a range of sentiment
classification tasks, ranging from sentence-level
analysis to topic-based sentiment analysis, thus en-
abling a comprehensive evaluation of RD-MCSA.

4.2 Comparison Models

Baseline models were drawn from two categories:
(1) classic machine learning algorithms and (2) pre-
trained language models for sentiment classifica-
tion. Specifically: 1) Naive Bayes (Rennie, 2001):
Multinomial Naive Bayes with TF-IDF features, in-
corporating class weighting to mitigate imbalance.
2) SVM (Li et al., 2011): Support Vector Classi-
fier with a linear kernel, balanced class weights,
and TF-IDF features. 3) BERT (Sun et al., 2019):
BERT-base model fine-tuned with Focal Loss to
alleviate class imbalance. 4) BERTweet (Nguyen
et al., 2020): Pretrained model for English tweets,
optimized with Focal Loss to address imbalance.
Given the recent success of ICL approaches
in text classification, several ICL-based selection
strategies were included as comparison methods:
1) Random: In-context examples were selected
randomly from the candidate set. 2) Coreset (Indyk
et al., 2014): Representative samples were selected
to capture dataset diversity, using a distance-based
probabilistic sampling strategy in the embedding
space. 3) Cos-Similarity (de Vos et al., 2022): The
top-S examples with the highest cosine similarity
to the query were selected. 4) BM25 (Robertson
et al., 2009): The top-S examples were selected
based on BM25 relevance scores. 5) Complex-
CoT (Fu et al., 2022): Examples were selected
according to complexity, measured by the number
of newline characters. 6) Auto-CoT (Zhang et al.,
2022): Candidate examples were clustered using K-
Means (K = 10), and the examples closest to each
cluster centroid were selected. 7) Se? (Liu et al.,

"https://huggingface.co/datasets/SetFit/sst5
Zhttps://huggingface.co/datasets/midas/semeval2017
3https://www.iitp.ac.in/i-nlp-ml/resources. htmI#ABSIA
*https://snap.stanford.edu/data/web-Amazon-links.html
Shttps://cseweb.ucsd.edu/jmcauley/datasets/amazon_v2

2024a): A sequential example selection method
that leverages LLLM feedback and beam search to
construct informative example sequences.

4.3 Experimental Implementation Details

In the experiments, dataset division was car-
ried out as follows. Each dataset was split
into 80% training and 20% test sets using the
sklearn.model_selection method.

1) Baseline models. All baseline models were
trained on the complete training set and evaluated
on the full test set.

2) ICL-based methods (including seven compar-
ison methods and RD-MCSA).

* From the training set, 1,000 labeled exam-
ples were sampled using the Balanced Coreset
algorithm, forming the annotated dataset D.
This dataset was used both as (i) the demon-
stration pool for all ICL methods and (ii) the
training data for the MK-GP model.

MK-GP was trained exclusively on these
1,000 samples to ensure a fair comparison
with ICL methods, which were also restricted
to the same pool of labeled data. This design
additionally provided insight into the amount
of labeled data required for MCSA tasks, as-
sisting in determining the annotation budget
necessary to outperform traditional classifiers
trained on large-scale datasets.

¢ From the test set, 1,000 instances were ran-
domly selected using Python’s random library.
For the ABSIA dataset, where the test set
is smaller, all available samples were used.
These subsets were employed for ICL perfor-
mance evaluation. Subset-based evaluation
provided a balance between estimation relia-
bility and computational efficiency.

¢ In RD-MCSA, the Balanced Coreset size for
rationale generation was set to Ag = 100.

* The number of ICL demonstrations was fixed
at S = 10, reflecting a balance between effi-
ciency and effectiveness.

Experiments were conducted using three groups
of LLMs: GPT®, DeepSeek7, and ERNIE®. For
each group, the more capable (and expensive)
model (GPT-40, DeepSeek-R1, and ERNIE X1
Turbo) was employed for classification rationale
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Table 2: Experimental results of baseline methods and ICL approaches across five datasets. Values are shown as
percentage numerators, with the best method in each category highlighted in bold.

SST5S SemEvall7 ABSIA PR_Baby PR_Software
Method
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Naive Bayes 372 37.0 449 440 348 31.0 479 470 448 450
Baseline SVM 371 37.0 56.7 580 499 500 510 51.0 581 59.0
Models BERT 499 500 592 61.0 512 520 582 58.0 603 61.0
BERTweet 487 470 634 65.0 524 520 577 560 599 580
Random 550 549 577 602 516 529 579 579 623 63.6
Coreset 557 554 594 621 532 554 581 581 626 637
ICL based on Cos-Similarity 55.6 55.1 60.1 619 528 536 589 59.0 647 65.9
GPT-4o BM25 565 560 61.6 635 53.0 547 592 594 63.1 64.3
+GPT-40-mini Complex-CoT 56.5 543 625 63.1 529 553 584 585 653 66.4
Auto-CoT 56.6 542 622 63.1 534 556 588 59.1 627 64.1
Se? 559 542 619 633 531 559 582 586 644 64.0
RD-MCSA 576 560 639 647 543 560 60.1 603 67.0 67.2
Random 56.1 552 672 677 512 533 560 56.1 615 62.9
Coreset 56.2 551 676 684 527 540 563 564 635 64.5
ICL based on Cos-Similarity 56.3 552 684 68.6 532 554 56.6 567 645 65.9
DeepSeck-R1 BM25 56.6 558 673 680 53.1 547 566 567 639 651
+DeepSeck-V3 Complex-CoT 56.1 53.8 675 673 522 534 564 566 657 65.3
Auto-CoT 563 546 677 681 527 550 565 56.6 632 645
Se? 563 548 679 682 53.1 552 565 561 662 @ 66.2
RD-MCSA 579 570 68.6 686 546 565 575 577 677 68.1
Random 513 488 672 669 505 506 558 551 627 62.3
Coreset 533 522 674 670 512 522 560 565 64.1 64.1
ICL based on Cos-Similarity 55.1 533 67.5 670 529 522 56.6 567 646 65.1
ERNIE X1 Turbo BM25 547 532 677 671 528 525 569 562 64.7 64.8
+ERNIE 4.5 Turbo Complex-CoT 56.1 537 679 673 521 524 562 563 655 65.2
) Auto-CoT 522 515 676 672 527 525 567 565 660 @662
Se? 552 543 682 673 521 520 568 562 657 65.8
RD-MCSA 571 560 69.1 683 534 535 578 569 665 67.5

generation, whereas the more cost-efficient vari-
ant (GPT-40-mini, DeepSeek-V3, and ERNIE 4.5
Turbo) was utilized for ICL in MCSA tasks.

The following settings were applied uniformly
across all datasets: N = 9 and M = 9 were used
in the MK-GP model (Equation (3)). The Adam
optimizer was adopted with a learning rate of 0.01
over 500 training epochs, and all other optimizer
parameters were set to their default values. Optimal
hyperparameters were selected via grid search and
cross-validation.

Most experiments were conducted on an
NVIDIA GeForce RTX 3080 GPU. On average,
a single unit of this GPU required 170.86 seconds
to complete 500 epochs of Gaussian process train-
ing across various datasets. For API-based models,
remote inference was employed instead.

Shttps://openai.com/api/
"https://www.deepseek.com/
8https://yiyan.baidu.com/

4.4 Evaluation Metric

Due to the multi-class nature of MCSA and the
class imbalance in the experimental data, Accuracy
and weighted-average F1 score were used to evalu-
ate performance (Sokolova and Lapalme, 2009).

5 Experimental Results and Analysis

5.1 Main Results

Table 2 summarizes the performance of various
methods on five datasets. The following observa-
tions can be made:

1) Effectiveness of ICL. ICL achieved the high-
est accuracy and weighted F1 scores across all
datasets, outperforming both traditional machine
learning models and language model classifiers.
Notably, ICL required only 1,000 labeled exam-
ples—substantially fewer than those needed by
baseline methods—demonstrating both superior ef-
ficiency and effectiveness.

2) Effectiveness of RD-MCSA. RD-MCSA con-
sistently outperformed comparision methods across
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Figure 5: Experimental results from ablation studies across all datasets demonstrate that the removal of any
component from the RD-MCSA algorithm leads to a measurable decline in performance.

most datasets. These results highlight the robust-
ness and effectiveness of RD-MCSA, further sup-
ported by ablation studies. Moreover, the analysis
in Appendix B.1 confirms that the performance
gains are statistically significant.

3) Comparison of Demonstration Selection
Methods. Structured demonstration selection
strategies, such as Coreset, Auto-CoT, and
similarity-based approaches (including BM25, Co-
sine, and RD-MCSA), consistently outperformed
random sampling. Among these, RD-MCSA
proved most effective in identifying informative
examples for ICL, thereby delivering the strongest
overall performance.

5.2 Ablation Analysis

For further analysis, ablation studies were con-
ducted with the following model variants: 1) LLM-
only: Relied solely on the LLM’s inherent rea-
soning for classification, without classification ra-
tionales or demonstration examples. 2) UnBa-
CR-only: Used only classification rationales with-
out considering class balance during generation,
excluding demonstration examples. 3) CR-only:
Used only classification rationales in the prompt,
excluding demonstration examples. 4) DE-only:
Used only demonstration examples, excluding clas-
sification rationales. 5) NSK-only: Employed only
non-stationary kernel functions in the MK-GP al-
gorithm. 6) SK-only: Employed only stationary
kernel functions in the MK-GP algorithm.

Figure 5 shows the ablation study results (F1
scores) on five datasets, from which the following
conclusions can be drawn:

1) Effectiveness of Rationales: Incorporating
classification rationales led to improved perfor-
mance compared to direct classification. Rationales

enhanced the LLM’s ability to interpret label mean-
ings, thereby improving classification accuracy.

2) Effectiveness of Demonstrations: Including
demonstration examples significantly boosted per-
formance compared to direct classification. These
demonstrations served as concrete references that
guided the LLM’s decision-making process.

3) Impact of Label Imbalance in Rationale
Generation: Generating classification rationales
from imbalanced training samples resulted in no-
ticeable performance degradation. The scarcity
of examples from minority classes impaired the
LLM’s ability to generalize and reduced the quality
of the generated rationales.

4) Effectiveness of Combined Stationary and
Non-Stationary Kernels: Combining stationary
and non-stationary kernels outperformed either
type alone. This combination more effectively
captured structural complexity and enabled the se-
lection of more similar examples in ICL, thereby
improving classification accuracy.

5.3 Time Cost Analysis

The computational overhead of RD-MCSA com-
prises two main components: (1) the offline stage,
which involves Coreset pool construction, ratio-
nale generation, and MK-GP training; and (2) the
ICL inference stage. Statistical analysis based on
Table 3, which reports the per-sample average in-
ference time of various ICL methods across five
datasets, indicates that there is no statistically sig-
nificant difference in inference-time cost among
the evaluated algorithms. Detailed results are pre-
sented in Appendix B.2. Therefore, the additional
computational overhead introduced by RD-MCSA
is limited to the offline preprocessing stage.
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Table 3: Per-sample average inference time (in seconds) of various ICL methods on five datasets.

Backbone Method SST5 SemEvall7 ABSIA PR _Baby PR_Software
Random 8.72 9.05 7.58 9.01 9.79
Coreset 8.83 8.93 7.62 9.22 9.13
Cos-Similarity ~ 8.86 9.15 772 7.95 9.71
ICEE;‘EZ?) on BM25 9.02 9.22 7.81 9.31 7.72
LGP Todor i Complex-CoT ~ 8.74 9.13 7.25 8.83 9.18
Auto-CoT 8.81 9.21 7.43 7.76 10.12
Se? 8.62 9.61 8.53 8.92 9.27
RD-MCSA 8.91 9.17 7.73 8.97 9.54
Random 12.90 12.61 7.78 11.36 12.19
Coreset 13.14 13.34 8.42 12.31 12.88
Cos-Similarity ~ 13.50 13.20 8.23 13.31 14.12
]I)Cei gfeflg? BM25 1321 13.64 8.61 13.48 13.79
D P ool V3 Complex-CoT ~ 12.97 12.81 8.25 11.21 13.11
cepoeeks Auto-CoT 13.12 12.78 8.11 11.17 12.99
Se? 11.96 1421 7.95 11.59 13.25
RD-MCSA 13.17 13.82 8.57 1221 12.92
Random 10.98 11.01 7.66 10.59 11.98
Coreset 11.07 11.21 7.79 11.32 12.17
Cos-Similarity ~ 11.82 11.17 8.21 10.27 11.82
Elg%;;‘;f‘%"ﬁ) BM25 1123 11.61 8.33 1221 12,55
TERNIE 4 ST“rg)O Complex-CoT ~ 11.19 11.32 8.91 11.64 12.88
= Auto-CoT 11.11 11.49 7.98 11.71 11.76
Se? 11.24 12.89 7.63 11.92 1221
RD-MCSA 11.36 11.44 8.11 12.55 11.72
6 Conclusions Limitations

This paper presents a novel framework for multi-
class sentiment analysis that leverages in-context
learning by integrating classification rationale gen-
eration based on balanced Coreset sampling and
demonstration selection using multi-kernel Gaus-
sian processes. The proposed approach effectively
addresses key challenges such as class imbalance
and the high cost of large-scale annotation, while
also capturing subtle and nuanced sentiment expres-
sions. Extensive experiments across five diverse
datasets demonstrate the superior performance, ro-
bustness, and generalizability of the method.

Future research directions include extending the
framework to other sentiment analysis tasks, in-
corporating multimodal data, improving computa-
tional efficiency, and designing strategies to miti-
gate the effects of subjectivity in annotation. These
advancements are expected to further contribute to
the development of more accurate, efficient, and
scalable sentiment analysis systems.

Acknowledgements

Yaqing Wang is sponsored by Beijing Nova Pro-
gram.

This paper has several limitations:

1) Limited Applicability. Although validated on
five diverse datasets, the method has not been evalu-
ated on multimodal datasets, which are increasingly
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A Mathematical Properties and
Applications of Kernel Functions

A.1 Properties of Kernel Functions

The polynomial kernel is expressed as:

kPoly,m(w'iy wg) = (7m<w17 w]> + Cm)dm ’

where 7, is a scaling factor, c,, is an offset (both
learnable parameters), and d,, is the degree of the
polynomial, treated as a hyper-parameter. Here,
(x4, ;) denotes the dot product of ; and x;.
The Matérn kernel kwmawem (i, ;) is defined as
follows, where v and ¢ are the kernel parameters:

where I'(v) represents the Gamma function, de-
fined as:

F(l/):/ t"~le~tdt,
0

Here, B, (z) denotes the modified Bessel function
of the second kind, defined as:

where I, (z) is the modified Bessel function of the
first kind, given by:

00 (E)V+2k7
_ 2
L(z) = ;;) KT(v+k+1)

The Matérn kernel approaches the RBF and
Laplace kernels under different parameter condi-
tions. When the parameter v — oo, the Matérn ker-
nel converges to the Radial Basis Function (RBF)
kernel (Porcu et al., 2024):

2
. T — T
z/h%nolo kMatérn(sz ‘Tj) = exp <_H22£2]H> ’

When the parameter v = %, the Matérn kernel
becomes equivalent to the Laplace kernel:

T — Tj
kMatém(CUi,(L'j) = exp <_HZ€]H> .

A.2 MK-GP Model Training

Given the training inputs X, the latent function
values for class c € {1,...,u} are

T
fc = [fc(wl)v et 7fC(wK)] )
which follow a multivariate Gaussian distribution:

where K x x € REXK

with entries

is the kernel (Gram) matrix

[Kxx];; = k(zi z;), (7

and k(-,-) is the multi-kernel defined in (3). As-
suming independence across classes, the joint prior
factorizes as
u
p(f | X)=][N(O,Kxx). 8
c=1
The likelihood term p(y | f) links the latent
functions to the observed labels. Each latent func-
tion is transformed into a probability through a lo-
gistic (sigmoid) link and combined with a Bernoulli
likelihood. For input a; and class c, the conditional
distribution is

(v | fol@i)) = Ber(y?: o(fu(@i))), )
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with
()= —
g = —.
14+et

Assuming conditional independence across data
points and classes, the likelihood factorizes as

v | P =] ﬁp(zﬁ [ foli)) -

c=11i=1

(10)

1D

An MK-GP model G is trained by minimizing
the negative log-marginal likelihood:

£=—log / ply | Hp(f | X)df, (2

where p(f | X) and p(y | f) are defined in Equa-
tions (8) and (11), respectively.

A.3 Similarity Evaluation Based on Kernel
Functions of MK-GP

By Mercer’s theorem (Thickstun, 2019), there ex-
ists a Hilbert space H and a mapping ¢ : X — H
such that the kernel function k(x;, X;) equals the
inner product in H:

k‘(Xi,Xj) = <¢(Xz), gf)(Xj))H, VXl',Xj e X.

Here, ¢(x) is an implicitly defined mapping,
and H is the corresponding Hilbert space. In 7,
the Euclidean distance between any two samples
X;,X; € X is:

lp(xi) — B(x;)]?

= ((x:), p(xi)) 2 — 2(d(x:), P(X5))
+(B(x5), A(x;))

= k(xi,%;) — 2k(xi, X;) + k(x;,X;).

After normalizing the samples, the first and third
terms become constants for the kernel used. Hence,
a larger middle term k(x;, X;) implies a smaller dis-
tance between ¢(x;) and ¢(X;), indicating greater
sample similarity.

B Statistical Analysis of the Results

B.1 Accuracy and F1 Analysis Based on
Mixed-Effects Modeling

The superiority of RD-MCSA over competing
ICL selection methods was assessed using a linear
mixed-effects model (LMM). Algorithm (A = 8),
Backbone (B = 3), and Dataset (C' = 5) were
considered. For each triple (7,7, k) with i €
{1,...,8},j € {1,....3},and k € {1,...,5},

a score Y;j; was recorded. The LMM was speci-
fied as

Yijk = o+ o + uj + vk + €,
uj ~ N(0,07), vi ~ N(0,03), ey ~ N(0,07),

where «; denoted the fixed effect of the i-th algo-
rithm, and u; and vy, represented random effects
induced by backbone and dataset. The hypothesis
testing problem was formulated as:

1
HoiaRD = A—ligDai

1
vs. Hi:agrp > ﬁ Z (678
i#RD
where H; indicates that RD-MCSA achieves a
higher mean performance than the average of the
other algorithms. The Wald-t test results are re-

ported in Table 4.

Table 4: Mixed-effects contrast: RD-MCSA vs. mean
of the other ICL methods.

Metric t P
Accuracy 9.355 < 107'®
F1 8223 9.92x 10~

At the significance level a = 0.05, both p-values
were far below a. Therefore, the null hypothesis
was rejected, indicating that the improvements of
RD-MCSA significantly outperformed the other
ICL methods in Accuracy and F1.

B.2 Time Cost Analysis Based on Variance
Analysis

Per-sample inference time was analyzed using a
three—main-effects ANOVA (without interactions)
with Algorithm (¢ = 8), Model (b = 3), and
Dataset (¢ = 5):
iid.

Yijk = ptai+B8j+vk+eiji, sk~ N(0,0%),
where ¢+ = 1,...,8, 5 = 1,...,3, and k =
1,...,5. The hypothesis testing problem was for-
mulated as:

Ho: o] =Gy = -+ = Qg

vs. Hjp: di# j suchthat o; # a;.

The ANOVA results are reported in Table 5.

At the significance level a = 0.05, the p-value
was greater than . Therefore, the null hypothesis
could not be rejected, indicating that no statisti-
cally significant differences in inference time were
detected across the eight algorithms.
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Table 5: ANOVA of per-sample inference time.

Factor SS df F P

Algorithm effect  3.52 7 0.79 0.597
Residual (Error) 67.44 106 - -

C Case Studies

This appendix presents case studies from the five
datasets, each comprising: (i) classification ratio-
nale generation and (ii) in-context classification
with rationales. The analysis explains why the
LLM’s predictions were correct or incorrect. Query
text, predicted labels, and ground-truth labels are
highlighted in red, with elided portions in blue.
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Case Study on SSTS

ﬂ Rationales Generation Phase T

Prompt:
Based on the representative examples provided below, generate detailed descriptions for each
sentiment label.

Examples :
text: makes s&m seem very romantic , and maggie gyllenhaal is a delight .
classification target: movie reviews label: very positive

text: you get the idea , though , that kapur intended the film to be more than that .
classification target: movie reviews label: neutral
... (100 examples in total)

Sentiment Labels: ['very negative', 'negative', 'neutral’, 'positive', 'very positive']

For each sentiment label, provide a comprehensive description covering:
* Lexical Patterns ¢ Semantic-Pragmatic Features ¢ Domain-Attribute Associations

GPT-40:

#i## Very Negative

**Lexical Patterns:**

- Use of strong negative adjectives and adverbs (e.g., "crushing disappointment," "painful,"
"unendurable").

- Phrases indicating extreme dissatisfaction or failure (e.g., "squanders," "insulting the
intelligence").

- Hyperbolic expressions to emphasize the extent of negativity (e.g., "terminally depressed,"
"forced to endure").

**Semantic-Pragmatic Features:**

- The sentiment conveys a deep sense of disappointment or frustration.

- Often includes a sense of regret or wasted potential.

- May imply a warning to avoid the subject (e.g., a movie) due to its poor quality.
**Domain-Attribute Associations:**

- In movie reviews, often associated with poor storytelling, lack of originality, or failure to engage
the audience.

- Critiques may focus on technical aspects like direction, acting, or scriptwriting that are perceived
as severely lacking.

... (Rationales for other categories)

Figure 6: Case Study on SST5 (Rationales Generation Phase)
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Case Study on SSTS

ﬂ In-context Learning with Rationale “

Prompt:

Analyze the sentiment expressed in the given **Query Text** toward the specified target *movie
reviews*

The sentiment label must be selected from the following set: ['very negative', 'negative', 'neutral’,
'positive', 'very positive'].

Refer to the provided label descriptions and example demonstrations to guide your classification.
**Label Descriptions**:

... (Previously generated Rationales )

**Demonstrations**:

text: uneven performances and a spotty script add up to a biting satire that has no teeth .
classification target: movie reviews label: negative

... (A total of 10 examples selected by the MK-GP algorithm)

**Query Text**:
this is as lax and limp a comedy as i 've seen in a while , a meander through worn-out material .

/

GPT-40-mini:

The query text conveys clear disapproval, using phrases like “lax,” “limp,” and “worn-out material”
to criticize the film’s lack of energy and originality. The tone is dissatisfied but not extreme, fitting
the negative category rather than very negative.

2

Looking at the example demonstrations, the query text is similar to those labeled as "negative,"
where the critiques focus on specific elements that detract from the overall experience, such as
poor execution or lack of originality.

Label: negative
**]abel: negative™*

Analysis:

True label: negative | Predicted: negative

Correctness Category: Combined use of rationales and demonstrations

Reason: The model correctly identified the sentiment as negative. It applied the rationale by noting
critical adjectives like “lax” and “limp” along with the phrase “worn-out material”, which signal
dissatisfaction but not extreme negativity. It also aligned with demonstration examples labeled

negative, where critiques focus on weak execution and lack of originality, leading to the accurate
classification.

Figure 7: Case Study on SST5 (In-context Learning with Rationale)
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Case Study on SemEvall7

ﬂ Rationales Generation Phase T

Prompt:
Based on the representative examples provided below, generate detailed descriptions for each
sentiment label.

Examples :

text: Real Madrid were held to a goalless draw by newly-promoted Sporting Gijon on Saturday.
Sportsmail's RIK SHARMA reveals the five things he

classification target: real madrid label: 0

text: "Carvel Ice Cream is celebrating National Ice Cream Day, Sunday, July 19, with buy one, get
one soft serve ones....
classification target: national ice cream day label: 1

... (100 examples in total)
Sentiment Labels: [-2, -1, 0, 1, 2]

For each sentiment label, provide a comprehensive description covering:
* Lexical Patterns * Semantic-Pragmatic Features ¢ Domain-Attribute Associations

DeepSeek-R1:

### Sentiment Label Descriptions

### **Sentiment Label Descriptions**

Based on the provided examples and inferred patterns, here are comprehensive descriptions for
each sentiment label:

#HitHH **Label: -2 (Extreme Negative)**

**Lexical Patterns**:

- Extreme derogatory language, profanity, slurs, or violent threats (e.g., "terrorist," "disgusting,"
"death to X").

- Hyperbolic negation (e.g., "never," "worst ever,
- Explicit calls for harm, exclusion, or annihilation.

"o "non

utterly vile").

**Semantic-Pragmatic Features**:

- Expresses unmitigated hatred, dehumanization, or severe condemnation.

- Often targets groups, ideologies, or individuals with unambiguous malice.

- Contexts include hate speech, extremist rhetoric, or overtly hostile propaganda.

**Domain-Attribute Associations**:
- Topics: Terrorism, genocide, hate crimes, systemic oppression.

- Attributes: Bigotry, extremism, irredeemable harm.

... (Rationales for other categories)

Figure 8: Case Study on SemEvall7 (Rationales Generation Phase)
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Case Study on SemEvall7

ﬂ In-context Learning with Rationale “

Prompt:

Analyze the sentiment expressed in the given **Query Text** toward the specified target *paul
mccartney*

The sentiment label must be selected from the following set: [-2, -1, 0, 1, 2].

Refer to the provided label descriptions and example demonstrations to guide your classification.
**Label Descriptions**:

... (Previously generated Rationales )

**Demonstrations™*:
text: Justin Bieber' appeared on Thursday 24 at the 6th place in the Top20 of Norway's Trends:
#trndnl

classification target: justin bieber label: 1
... (A total of 10 examples selected by the MK-GP algorithm)

**Query Text**:
Did you know that 'Hulk Hogan' was Trending Topic on Friday 24 for 23 hours in Portland?#trndnl

/

DeepSeek-V3:

**Reasoning based on label descriptions:**

The text is purely factual, noting Hulk Hogan trended in Portland for 23 hours, with no approval or
criticism. The target is only mentioned incidentally, fitting Label 0 (Neutral/Informational).

**Reasoning based on example demonstrations:**
"Ran into wrestling legend Hulk Hogan at the world famous Patsy's Italian Restaurant in NYC

Thursday night!" (label: 0) - A neutral, factual mention.

**Label: 0**

Analysis:
True label: O | Predicted: 0

Correctness Category: Combined use of rationales and demonstrations
Reason: The model correctly classified the query as Label 0 (Neutral/Informational) by applying
the rationale that it is a purely factual statement without sentiment. It also aligned with the

demonstration example mentioning Hulk Hogan in a neutral, incidental way, reinforcing the
accurate prediction.

Figure 9: Case Study on SemEvall7 (In-context Learning with Rationale)
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Case Study on ABSIA

ﬂ Rationales Generation Phase T

Prompt:
Based on the representative examples provided below, generate detailed descriptions for each
sentiment label.

Examples :

text: if you're not familiar with the cuisine, you may encounter problems ordering here and be sure
to bring plenty of cash with you as they don't accept credit cards.

classification target: cuisine label: -1

text: really tasty spring rolls and noodles for a good price though.
classification target: noodles label: 1

... (100 examples in total)
Sentiment Labels: [-3, -2, -1, 0, 1, 2, 3]

For each sentiment label, provide a comprehensive description covering:
* Lexical Patterns ¢ Semantic-Pragmatic Features ¢ Domain-Attribute Associations

ERNIE X1 Turbo:

### Sentiment Label Descriptions

#it#t **Label -3 (Strongly Negative)**

**Lexical Patterns**:

- Intensifiers: "highly disappointed," "sick of." "terrible," "snotty," "obnoxious."

- Negative verbs: "got sick," "back talk," "burn-outs," "over the top" (context-dependent).
- Critical adjectives: "terrible," "heavy," "dry," "flavorless."

**Semantic-Pragmatic Features™*:

- Expresses extreme dissatisfaction, often involving multiple negative aspects (e.g., service + food).
- Emotional intensity: Frustration, anger, or disgust (e.g., "culinary nightmare," "charging such
prices for terrible food").

- Finality: Implies irreversible negative judgment (e.g., "never disappointing" in reverse).
**Domain-Attribute Associations**:

- ¥*Food**: Overcooked dishes, dryness, lack of flavor, or mismatched pricing.

- **Service™*: Rudeness, incompetence, or dismissive behavior (e.g., "snotty back talk," "slow
service").

- **Pricing**: Perceived overcharging relative to quality.

... (Rationales for other categories)

Figure 10: Case Study on ABSIA (Rationales Generation Phase)
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Case Study on ABSIA

ﬂ In-context Learning with Rationale “

Prompt:

Analyze the sentiment expressed in the given **Query Text** toward the specified target
*cuisine™.

The sentiment label must be selected from the following set: [-3, -2, -1, 0, 1, 2, 3].

Refer to the provided label descriptions and example demonstrations to guide your classification.
**Label Descriptions**:

... (Previously generated Rationales )

**Demonstrations™*:

text: it is what modern cuisine is all about.

classification target: cuisine label: 1

... (A total of 10 examples selected by the MK-GP algorithm)

**Query Text**:
i love when restaurants think using fancy expensive ingredients makes the food fine cuisine, even
with no idea how to use them.

X

ERNIE 4.5 Turbo:

The query text expresses a critical view of restaurants that use expensive ingredients without
knowing how to properly incorporate them into their dishes, implying that such practices do not
result in "fine cuisine." The use of the word "love" is sarcastic, as it is followed by a negative
observation about the lack of culinary skill. This indicates a strongly negative sentiment, as it
criticizes the fundamental approach to creating cuisine and suggests that the result is not worthy of
being called "fine."

The sentiment aligns with the **Label -3 (Strongly Negative)** description, which includes
expressions of extreme dissatisfaction and frustration, particularly regarding the quality of food

and the skills involved in its preparation. The text implies a negative judgment about the cuisine's
value and quality.

Analysis:
True label: 1 | Predicted: -3

Error Category: Polarity Inversion
Error Reason: The model over-interpreted the sentence and falsely detected sarcasm, treating “love”

as ironic. This caused a polarity inversion from positive to strongly negative. In context, “love” is
used literally to convey mild positive sentiment; the instance should be labeled 1.

Figure 11: Case Study on ABSIA (In-context Learning with Rationale)
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Case Study on PR_Baby

ﬂ Rationales Generation Phase T

Prompt:
Based on the representative examples provided below, generate detailed descriptions for each
sentiment label.

Examples :

text: I really love, love, love this pillow. The Jersey cover is extremely soft and makes sleeping
with my Snoogle that much more enjoyable. I would have given it 5 stars, but I noticed that the
material was pulling away from the zipper and there was a tiny hole starting after only a couple of
washings. It wasn't really a big deal though. Nothing that a couple minutes with my sewing
machine wasn't able to fix. I would still recommend the product.

classification target: Snoogle Chic Jersey - Snoogle Replacement Cover with Zipper for Easy Use
- Heather Gray

label: 4

... (100 examples in total)

Sentiment Labels: [1, 2, 3, 4, 5]

For each sentiment label, provide a comprehensive description covering:
* Lexical Patterns ¢ Semantic-Pragmatic Features ¢ Domain-Attribute Associations

GPT-4o:
### Sentiment Label: 1 (Very Negative)

**Lexical Patterns: **

- Use of strong negative adjectives and adverbs (e.g., "terrible," "ludicrous," "broken").

- Frequent use of negations (e.g., "doesn't," "won't," "never").

- Presence of words indicating dissatisfaction or disappointment (e.g., "disappointed," "annoyed,"
"embarrassed").

**Semantic-Pragmatic Features: **

- The text often conveys a sense of frustration or anger.

- There is a focus on unmet expectations or product failures.

- The language may include hyperbolic expressions to emphasize dissatisfaction.

- The tone is often critical and may include calls for action, such as returning the product or
warning others.

**Domain-Attribute Associations:**

- Commonly associated with product defects, misleading advertising, or poor customer service.
- Attributes such as durability, functionality, and value for money are often criticized.

- The sentiment is typically directed towards the overall experience with the product or service.
... (Rationales for other categories)

Figure 12: Case Study on PR_Baby (Rationales Generation Phase)
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Case Study on PR_Baby

ﬂ In-context Learning with Rationale 1

Prompt:

... (In this case study, the Query Text is too long, so we omit some content of prompt )

**Demonstrations**:

text: I had purchased this swing a few months and I'm not ALL that pleased with it. It's great for
traveling around with. But I felt that the bar that goes across and above the baby's head was in the
way...

classification target: Fisher Price - Aquarium Take-along Swing label: 2

... (A total of 10 examples selected by the MK-GP algorithm)

**Query Text**:

I don't think this bouncer is the safest on the market. I wish it held my son more securly there are

no sides what so ever on it and the straps are positioned so it doesn't hold him in secure. He likes

the seat - although I think he just cares about the vibration - so another seat would be fine for him
too! I would purchase a different seat with my next child.

X

GPT-40-mini:

Reasoning Based on the Descriptions: The review is mainly negative, stressing safety issues like
insecure support and lack of sides. Though it notes the child enjoys the vibration feature, the
dominant tone is disappointment, fitting Label 2 (Negative) rather than very negative.

Reasoning Based on the Example Demonstrations: It parallels other Negative examples that cite
product flaws while acknowledging minor positives, such as the Fisher-Price bouncer case. The
sentiment shows clear dissatisfaction but not extreme frustration, supporting Label 2 (Negative).

Based on the analysis of both the descriptions and the example demonstrations, the appropriate
sentiment label for the query text is **2 (Negative)**.

Analysis:
True label: 3 | Predicted: 2

Error Category: Intensity Misclassification (Negative vs. Neutral)

Reason: The model focused heavily on the reviewer’s safety concerns and downplayed the softer,
balancing elements (e.g., the child enjoying the vibration feature, acknowledgment that the seat is
usable). As a result, it classified the review as Negative (2) rather than Neutral (3). This reflects an

error in evaluating sentiment intensity, where moderate dissatisfaction with some positives was
mistaken for outright negativity.

Figure 13: Case Study on PR_Baby (In-context Learning with Rationale)
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Case Study on PR_Software

ﬂ Rationales Generation Phase T

Prompt:
Based on the representative examples provided below, generate detailed descriptions for each
sentiment label.

Examples :

text: While the software found about ten fixes that I needed, I noticed that my computer did run
slower with this software installed. I still had McAfee for the anti-virus and that could contribute
to the slow time, but since my laptop is only a few months old, I definitely noticed a slower
running and downloading time. It was simple and quick to install, taking less than fifteen minutes.
It is recommended that you clear and delete all anti virus software first and load theirs instead of
breaking up the features.

classification target: Amazon software product reviews label: 3.0

... (100 examples in total)

Sentiment Labels: [1.0, 2.0, 3.0, 4.0, 5.0]

For each sentiment label, provide a comprehensive description covering:
* Lexical Patterns ¢ Semantic-Pragmatic Features ¢ Domain-Attribute Associations

DeepSeek-R1:

### Sentiment Label Descriptions for Amazon Software Product Reviews

**Sentiment Labels:** [1.0, 2.0, 3.0, 4.0, 5.0]

#it# **Label 1.0: Strongly Negative**

**Lexical Patterns: **

- ¥*Explicitly negative adjectives/adverbs**: *"dissatisfied," "aggravations," "worthless,"
"useless," "frustrating," "Never Again!"*

- #*Hyperbolic language**: *"worst," "complete waste," "ruined," "unusable."*

- **Direct complaints**: *"spam," "constant need to reenter information," "installation is a pain."*
- **Short, fragmented sentences**: *"Never Again!" "not usable."*

**Semantic-Pragmatic Features:**

- ¥*Extreme dissatisfaction**: Reviews express anger, betrayal, or regret over purchasing the
product.

- **[rreparable flaws**: Problems are severe and unresolvable (e.g., crashes, incompatibility,
deceptive practices).

- **Warnings to others**: Strong discouragement against purchasing (e.g., *"stay away from
this"*).

**Domain-Attribute Associations:**

- **Installation/activation**: Repeated failures, licensing issues (e.g., one-time use restrictions).
- **Performance**: Severe slowdowns, system crashes, incompatibility with hardware/OS.

- **Customer experience**: Deceptive marketing, intrusive spam, lack of support.

... (Rationales for other categories)

Figure 14: Case Study on PR_Software (Rationales Generation Phase)
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Case Study on PR_Software

ﬂ In-context Learning with Rationale 1

Prompt:
... (In this case study, the Query Text is too long, so we omit some content of prompt )

**Demonstrations**:

text: If you're looking for video editing software with a lot of options...
classification target: Amazon software product reviews label: 5.0

... (A total of 10 examples selected by the MK-GP algorithm)

**Query Text**:

After sampling a number of other \"lite\" video and slide-show software suites, I settled on Corel
Digital studio. It has all of the features I want:\n-drag and drop functionality\n-clean and intuitive
controls that do not require reading a manual to understand\n-slightly sophisticated options that
allow you to create polished multimedia projects with minimal effort\n-automatically saves my
project every time a change is made\n-does not frequently lock up my computer as other software
does(but does still occasionally closes itself down due to \"errors\", but saves your projects so no
loss of work/ data)\n\nls this review helpful? Let me know. Please vote.

/

DeepSeek-V3:

**Comparison to Label Descriptions**: The review is generally positive, highlighting intuitive
controls, ease of use, and polished results. Minor flaws (occasional crashes) are noted but softened
by auto-save. The overall tone is appreciative and satisfied, with clear preference over other “lite”
software.

**Comparison to Demonstrations**: - Similar to the **4.0** example ("PowerDirector 14 Ultra"),
where the review is positive but notes minor flaws (e.g., unintuitive navigation, waiting loops). -

Not as overwhelmingly positive as the **5.0** examples, which lack any criticism.

**Final Label**: **4.0 (Positive with Minor Flaws)**

Analysis:
True label: 4.0 | Predicted: 4.0

Correctness Category: Combined use of rationales and demonstrations

Reason: The model first applied the rationale to detect overall positive sentiment (intuitive
controls, polished results, auto-save) alongside a caveat (occasional crashes). It then contrasted
these cues with the 5.0 demonstrations, which show unqualified praise and superlatives with no

negatives. Because the query contains a concession (“but does still occasionally...”) and lacks
hyperbolic language, the model down-weighted from 5.0 to 4.0, yielding the correct classification.

Figure 15: Case Study on PR_Software (In-context Learning with Rationale)
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