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Abstract

Addressing the challenges in QA for specific
technical domains requires identifying relevant
portions of extensive documents and generating
answers based on this focused content. Tradi-
tional pre-trained LLMs often struggle with
domain-specific terminology, while fine-tuned
LLMs demand substantial computational re-
sources. To overcome these limitations, we pro-
pose TIDES, Technical Information Distillation
and Extraction System. TIDES is a training-
free approach that combines traditional TF-IDF
techniques with prompt-based LLMs in a hy-
brid process, effectively addressing complex
technical questions. It uses TF-IDF to identify
and prioritize domain-specific words that are
rare in other documents and LLMs to refine the
candidate pool by focusing on the most rele-
vant segments in documents through multiple
stages. Our approach improves the precision
and efficiency of QA systems in technical con-
texts without LLM retraining.

1 Introduction

Technology advances create more complex data
every day, making it harder to find the right in-
formation efficiently. This problem is especially
important in technical fields, where users need ex-
act answers to questions that use domain-specific
terms. Large Language Models (LLMs) have made
huge progress in answering general questions, al-
most as well as humans. However, LLMs often fail
to capture technical terms correctly in specialized
fields (Yang et al., 2023). We can improve this
by fine-tuning LLMs (Lee et al., 2023), but train-
ing these increasingly large models costs too much
time and money.

Traditional Question Answering (QA) systems
often fall short in meeting the high standards
needed in technical domains. Recent approaches
like Question Answering System Architecture
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(QASA) (Lee et al., 2023) need extensive fine-
tuning of smaller models, while Self-RAG (Asai
et al., 2024) requires multiple rounds of docu-
ment retrieval, using too much computing power.
Moreover, technical documents contain specialized
terms and complex questions that challenge these
approaches, which often struggle with.

To address these challenges, we propose the
Technical Information Discovery and Extraction
System (TIDES), specifically designed to handle
technical domains without extensive LLM retrain-
ing. TIDES employs a four-stage approach that
combines Term Frequency-Inverse Document Fre-
quency (TF-IDF) with advanced prompt engineer-
ing within a cognitive reasoning framework. This
integration enables efficient filtering of irrelevant
documents while maintaining high precision in han-
dling domain-specific terminology. By leverag-
ing carefully designed prompts rather than fine-
tuning, TIDES maximizes the capabilities of exist-
ing LLMs while significantly reducing computa-
tional demands. Its multi-stage filtering architec-
ture also mitigates common LLM limitations such
as the “lost in the middle” problem, ensuring relia-
bility and preventing hallucination without costly
model adaptation.

TIDES distinguishes itself from existing LLM-
based QA systems by its ability to deliver accurate
and contextually relevant answers without requir-
ing additional fine-tuning. Our methodology em-
ploys a structured four-stage approach, integrating
the TF-IDF technique and advanced prompt engi-
neering within a cognitive reasoning framework.
By effectively identifying critical keywords in the
technical domain, TF-IDF enables the early fil-
tering of irrelevant documents, thereby enhancing
the overall accuracy and efficiency of the TIDES
model. Such strategic adaptations not only re-
duce computational demands but also enhance
precision in handling domain-specific terminol-
ogy. Additionally, advanced prompt engineering
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is employed within a cognitive reasoning frame-
work to maximize the LLM’s performance, en-
suring that the system provides more precise and
relevant responses than traditional methods. The
code can be available at the GitHub repository:
https://github.com/MLAI-Yonsei/TIDES.

2 Related Work

2.1 Document-based QA with LLMs

LLMs have achieved impressive results in extract-
ing answers from unstructured documents (Brown
et al., 2020). Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020b; Li et al., 2022) en-
hances factual grounding by integrating informa-
tion retrieval and text generation. However, even
with these advancements, LLMs still produce hal-
lucinations and incorrect facts, especially when
handling complex or long documents (Zhao et al.,
2024).

To mitigate these issues, researchers have ex-
plored iterative retrieval techniques that refine the
context in multiple steps. For example, Self-RAG
(Asai et al., 2024) updates the retrieved evidence
over several iterations, improving accuracy but also
increasing computational costs. While effective in
controlled settings, iterative methods can hamper
scenarios that require immediate deployment with-
out substantial overhead.

Other approaches focus on aggregating informa-
tion across multiple documents. Pereira, Jayr, et
al. (Pereira et al., 2023) decompose questions into
sub-questions, retrieve individual answers, and syn-
thesize them, while (Saad-Falcon et al., 2024) ex-
tracts and structures document metadata to provide
accurate answers.

Specifically, QASA (Lee et al., 2023) extends
this idea by using three stages—Associative Selec-
tion, Rationale Extraction, and Systematic Compo-
sition—to refine answers step-by-step. This frame-
work fine-tunes a T5 model (Raffel et al., 2020) for
each stage, enabling the system to extract relevant
paragraphs, generate evidence, and synthesize an-
swers systematically. Despite its strengths, QASA
has practical limitations. Fine-tuning T5 for each
stage requires carefully curated datasets, which
are often challenging to collect. Moreover, during
the Associative Selection stage, QASA tends to
over-identify irrelevant paragraphs, assigning them
relevance unnecessarily.

2.2 Domain-Specific QA

When applying QA to specialized domains—such
as IT support (Castelli et al., 2020), privacy poli-
cies (Keymanesh et al., 2021), legal texts (Abdallah
et al., 2023), insurance guidelines (Na et al., 2022),
or device manuals (Nandy et al., 2021; Ruiz et al.,
2023)—researchers encounter domain-specific jar-
gon and complex reasoning patterns. General-
purpose LLMs often misunderstand technical terms
or conflate similar concepts, resulting in inaccura-
cies (Zhang et al., 2024). Although fine-tuning
on domain-specific data can alleviate these issues,
collecting and preparing such datasets demands sig-
nificant time and resources (Kratzwald and Feuer-
riegel, 2019). Repeated queries to proprietary mod-
els like GPT-4 to ensure factual consistency raise
inference costs and complicate deployment (Tian
et al., 2023).

Instead of fine-tuning or repetitive querying,
some works integrate lightweight preprocessing
steps to enhance efficiency. Techniques that apply
TF-IDF (Shrivastava et al., 2022) identify salient
terms early on, allowing systems to filter out irrel-
evant documents before the main reasoning steps.
This filtering process reduces noise and streamlines
subsequent operations, improving both accuracy
and cost-effectiveness.

Our approach, TIDES, builds on these insights
by combining the structured reasoning techniques
found in multi-stage pipelines like QASA with TF-
IDF-based filtering and prompt-based role assign-
ment, all without large-scale fine-tuning. Rather
than iteratively refining document sets like Self-
RAG, TIDES applies a single, carefully managed
retrieval pass. TF-IDF narrows the search space to
relevant documents; prompt design encourages the
LLM to behave like an expert, focusing on essen-
tial technical details and minimizing off-topic con-
tent. TIDES thus improves factuality and efficiency,
achieving a balance between robust multi-step rea-
soning and practical, low-overhead adaptation to
specialized domains.

3 Method

We provide TIDES, a methodology that adapts the
QASA three-stage framework’s cognitive reason-
ing processes to technical domain QA systems. Dis-
tinctively, TIDES uses a prompt-based approach
without requiring fine-tuning of existing LLMs,
reducing computational resources and enhancing
adaptability to domain-specific queries. During
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Figure 1: TIDES, Technical Information Discovery and Extraction System. The workflow starts with the analysis
of technical documents using TF-IDF to identify relevant content. Non-relevant documents are discarded, and
the remaining documents are segmented into paragraphs. These paragraphs undergo associative selection to filter
out non-relevant content further. In the rationale generation phase, key evidence is extracted from the relevant
paragraphs. Finally, systematic composition combines the extracted evidence into a coherent and concise answer to
the technical question.

development, we iteratively tested intermediate
prompts in ChatGPT to identify ambiguity or over-
confidence, ensuring that our final instructions ef-
fectively guide the LLM to produce concise and ac-
curate responses. To improve efficiency, we include
a preliminary TF-IDF step to filter out irrelevant
information, streamlining the cognitive reasoning
tasks that follow.

3.1 TF-IDF

TF-IDF quantifies the importance of words by con-
sidering their frequency within a document and
their rarity across a corpus D. It assigns higher
weights to terms frequent in a specific document
but rare elsewhere, effectively highlighting domain-
specific terminology while minimizing the influ-
ence of common words.

This weighting approach benefits technical-
domain QA, which differs from open-domain
search as users often need exact terms like error
codes and CLI flags in answers. A query such
as “0x800F081F update failure” fails to be satis-
fied by a passage that merely paraphrases the term;
the exact token sequence is critical to correctness.
Sparse retrieval models like TF-IDF give prior-
ity to these rare, domain-specific tokens via the
IDF component, whereas dense embeddings may
smooth them away in vector space (Kamalloo et al.,
2023). TF-IDF thus serves as a domain-adaptive
filter that identifies relevant paragraphs without re-
quiring fine-tuning.

Within TIDES, TF-IDF filters out irrelevant doc-
uments by measuring relevance to a given ques-

tion q. To reduce noise and allow TF-IDF to fo-
cus on domain-specific terminology, preprocessing
steps include converting text to lowercase, remov-
ing stop words using NLTK, and handling punctu-
ation. These steps ensure that common and irrele-
vant terms do not dominate the ranking process.

After applying TF-IDF, we rank all documents
in the corpus D and retain the top n most rele-
vant documents. This refinement reduces the cor-
pus to D̃ = {d̃1, . . . , d̃n}, where n ≤ N . In our
implementation, we set n = 30 based on empiri-
cal testing that showed an optimal performance-to-
computation ratio, as metrics plateau beyond this
value while runtime continues to increase almost
linearly (see Section 4.6 for detailed analysis).

This refined set D̃ enables TIDES’s three-stage
process to operate effectively, enhancing both effi-
ciency and accuracy by focusing only on pertinent
documents and reducing computational load.

3.2 Associative Selection

The Associative Selection step begins by segment-
ing the refined corpus D̃ into paragraphs P =
{p1, . . . , pM} for enhanced analysis of question q.
We assess each paragraph pj through binary classi-
fication of relevance, yielding P̃ = {p̃1, . . . , p̃m},
where m ≤ M , retaining only pertinent paragraphs
for evidence generation.

As shown in Figure 2, TIDES uses tailored
prompts that improve LLM performance without
fine-tuning. These prompts elicit expert-like rea-
soning in IT and computer science, capturing key
technical details and justifications for paragraph se-
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Backbone Method
Associative Selection Final Answer

Precision Recall F1 ROUGE-1 ROUGE-2 ROUGE-L BERT Score Token F1 Score

Flan-T5-xl QASA 1.08 12.50 1.98 6.61 0.62 0.47 77.4 10.35

GPT-3.5 Turbo
QASA 0.36 50.00 0.71 8.50 2.52 5.90 75.70 10.25
Self-RAG - - - 8.73 1.39 5.77 79.93 10.95
TIDES 0.40 100.00 0.81 16.12 6.09 10.53 81.18 19.19

GPT-4 Turbo

- - - - 5.60 1.67 4.08 74.45 6.16
QASA 0.25 71.43 0.50 5.75 1.12 3.84 78.31 6.48
Self-RAG - - - 7.25 0.94 4.65 78.43 6.62
TIDES 1.14 83.30 2.25 13.95 3.92 8.53 80.90 14.75

Llama-3.1

- - - - 6.96 2.32 5.32 77.63 7.71
QASA 0.19 66.67 0.37 5.49 1.39 3.85 77.76 6.89
Self-RAG - - - 7.76 2.93 5.45 78.20 8.46
TIDES 0.38 100.00 0.75 11.33 3.39 7.55 79.34 12.31

Table 1: Performance comparison of QA methods (QASA, Self-RAG, TIDES) integrated with different language
models (Flan-T5-xl, GPT-3.5 Turbo, GPT-4 Turbo, Llama-3.1) on the TechQA dataset. Results show both Asso-
ciative Selection metrics (Precision, Recall, F1) and Final Answer quality metrics (ROUGE scores, BERT Score,
Token F1). TIDES consistently achieves the highest performance (in bold) across most metrics for all models,
particularly enhancing GPT-4 Turbo’s capabilities.

lection. The LLMs provide both binary relevance
classifications and concise rationales for their deci-
sions. Table 10 in Appendix B provides complete
prompts.

3.3 Rationale Extraction

The rationale extraction step generates evidence
E = {e1, e2, . . . , em}, from selected paragraphs
P̃ . These evidence highlight key content relevant
to the question q and form the basis for deriving
the final answer a.

We extract evidence ek from each paragraph
p̃k ∈ P̃ using tailored prompts (Figure 2) with a
built-in refinement check. This check instructs the
model to output “no” for paragraphs lacking rele-
vant information, allowing us to remove them from
the evidence set. This integrated filtering approach
eliminates irrelevant paragraphs without additional
processing, improving evidence accuracy.

3.4 Systematic Composition

The Systematic Composition is engineered to syn-
thesize the final answer a from the evidence E
accumulated in previous stages. This step involves
formulating a concise and coherent response, em-
phasizing crucial extracted keywords while elimi-
nating redundant text. Also, the prompts are specif-
ically designed to include a “No Answer” option.

4 Result

We evaluate the effectiveness of TIDES across two
distinct datasets: TechQA (Castelli et al., 2020)

Figure 2: The workflow involves three stages: In the
first stage, experts generate rationales by focusing on
keywords and maintaining a balanced confidence level
while providing yes/no answers. In the second stage,
experts extract only the relevant answers and respond
with “No” if the content is irrelevant. In the final stage,
experts formulate concise, keyword-based answers and
state “No answer” if the information is insufficient.

and E-Manual QA (Nandy et al., 2021). TechQA
consists of IT support questions, each paired with
50 relevant documents, while the E-Manual QA
dataset includes question-answer pairs from elec-
tronic device manuals, focusing on two subsets:
smart TV remote controls and Samsung Galaxy
S10. These datasets provide diverse technical con-
texts to evaluate TIDES’s ability to handle domain-
specific and complex queries effectively.

We compare four configurations across all back-
bone models (Flan-T5-xl, GPT-3.5 Turbo, GPT-4
Turbo, Llama-3.1-8b): Baseline (backbone model
without augmentation), QASA, Self-RAG (a sim-
plified zero-shot version), and TIDES. Notably,
GPT-3.5 Turbo’s standalone performance could not

21759



Backbone Method
Final Answer

ROUGE-1 ROUGE-2 ROUGE-L BERT Score Token F1 Score

GPT-4 Turbo - 30.94 12.42 19.93 85.51 15.77
GPT-4 Turbo QASA 19.92 6.00 12.00 83.50 9.56
GPT-4 Turbo Self-RAG 21.24 5.41 12.18 83.23 10.08
GPT-4 Turbo TIDES 40.53 20.54 27.99 78.32 22.90

Llama-3.1 - 28.42 13.32 20.34 85.88 15.39
Llama-3.1 QASA 11.69 3.98 8.32 82.42 6.45
Llama-3.1 Self-RAG 29.84 14.38 21.99 85.96 15.82
Llama-3.1 TIDES 39.91 20.05 29.93 88.47 24.38

Table 2: Performance comparison of different QA methods on the E-Manual dataset’s smart TV remote questions
(50 examples). The TIDES method significantly outperforms other methods across most metrics.

Backbone Method
Final Answer

ROUGE-1 ROUGE-2 ROUGE-L BERT Score Token F1 Score

GPT-4 Turbo - 22.66 6.94 15.13 84.35 12.79
GPT-4 Turbo QASA 26.65 9.13 17.11 85.70 14.21
GPT-4 Turbo Self-RAG 21.30 5.44 12.19 83.23 10.08
GPT-4 Turbo TIDES 45.06 21.29 33.77 87.46 27.16

Llama-3.1 - 34.15 16.61 23.60 86.28 17.91
Llama-3.1 QASA 16.70 6.07 11.25 83.13 7.98
Llama-3.1 Self-RAG 33.65 16.73 23.09 85.91 16.85
Llama-3.1 TIDES 34.93 16.63 24.47 87.58 19.92

Table 3: Performance comparison of different QA methods on the E-Manual dataset’s S10 questions (50 examples).
The TIDES method significantly outperforms other methods across most metrics.

be fully evaluated due to its maximum token limit,
restricting its ability to process longer documents
without truncation.

Evaluation metrics include Precision, Recall, F1
Score, BERTScore (Zhang* et al., 2020), which
measures semantic similarity, ROUGE Score (Lin,
2004) for assessing overlap with reference answers,
and Token F1 for evaluating exact token matches.
Experimental details are provided in Appendix C.

4.1 Quantitative Analysis

4.1.1 Performance on TechQA Dataset
Table 1 shows that TIDES consistently demon-
strates improvements over both QASA and Self-
RAG across all backbone models on the TechQA
dataset.

TIDES with GPT-4 Turbo shows doubled
ROUGE and Token F1 scores compared to baseline,
efficiently extracting relevant, concise answers.
The transition from QASA to TIDES yields no-
table gains in ROUGE-L and BERTScore, produc-
ing more contextually accurate responses. TIDES
also effectively addresses GPT-3.5 Turbo’s docu-
ment length constraints, showing adaptability to
technical QA challenges.

TIDES exhibits strong performance in identi-
fying relevant paragraphs and providing precise

answers, particularly for queries requiring nuanced
contextual understanding.

4.1.2 Performance on E-Manual QA Dataset

Smart TV Remote Questions:
Table 2 presents the results for the smart TV re-

mote subset. TIDES achieves substantial improve-
ments across all metrics, showing better perfor-
mance than QASA and Self-RAG in both ROUGE
and Token F1 scores. Notably, when paired with
Llama-3.1, TIDES records a ROUGE-L score of
29.93 and a Token F1 score of 24.38, demonstrating
effective extraction of critical details from technical
instructions.

However, the BERTScore was slightly lower
than other metrics due to reference answers relying
heavily on verbatim instructions, limiting semantic
overlap. Despite this, TIDES consistently delivers
accurate and concise responses tailored to technical
queries.
S10 Questions:

The results for the Samsung Galaxy S10 sub-
set are summarized in Table 3. TIDES main-
tains strong performance across all metrics, show-
ing significant improvements compared to QASA
and Self-RAG. For instance, using GPT-4 Turbo,
TIDES achieves a ROUGE-1 score of 45.06 and a
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Figure 3: Qualitative analysis of TIDES’s performance on a question with an available answer from the TechQA
dataset. The example demonstrates the model’s ability to identify relevant paragraphs, extract key information, and
generate an accurate and concise answer by combining evidence from multiple sources.

Figure 4: Qualitative analysis of TIDES’s performance on a question without a valid answer in the given corpus in
the TechQA dataset. The example demonstrates the model’s ability to recognize the lack of sufficient information to
generate a response, correctly identifying when the provided paragraphs do not contain the necessary evidence to
answer the question and responding with “No Answer” accordingly.

Token F1 score of 27.16, both the highest among all
tested configurations. Llama-3.1 also demonstrates
robust performance, with TIDES showing results
comparable to or better than Self-RAG across most
metrics. While the ROUGE-2 score for TIDES
with Llama-3.1 was slightly lower than Self-RAG,
it performs better in ROUGE-L and Token F1, in-
dicating effective balancing of relevance and preci-
sion.

These results indicate TIDES’s capability to han-
dle diverse technical contexts, effectively balancing
computational efficiency and accuracy in produc-
ing relevant responses.

4.2 Qualitative Analysis

4.2.1 TechQA Dataset

To further evaluate TIDES, we conducted a qualita-
tive analysis on TechQA (Figures 3, 4). For ques-
tions with valid answers, TIDES effectively identi-
fied relevant paragraphs and extracted key informa-
tion to produce concise, accurate responses by com-
bining evidence from multiple sources. In some
cases, minor irrelevant content remained, leading
to slightly verbose answers.

For questions without valid answers, TIDES con-
sistently recognized the lack of sufficient informa-
tion and returned “No Answer”, correctly avoiding
speculative or unsupported responses.
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Question How can I Encrypt SD card?

Ground-truth
Answer

You can encrypt your optional memory card (not included) to protect its data... From Settings, tap
Biometrics and security >Encrypt or decrypt SD card... Tap Encrypt SD card and follow the prompts
to encrypt all data on your memory card.

GPT4-Turbo
Answer

I’m sorry, but the provided text does not contain specific instructions on how to encrypt an SD card... If
you’re using an Android device, you might find the option to encrypt your SD card in the device’s security
settings... It’s recommended to consult the user manual...

TIDES
Answer

To encrypt your SD card, go to Settings, then tap on ‘Biometrics and security.’... Select ‘Encrypt or
decrypt SD card,’ choose ‘Encrypt SD card,’ and follow the on-screen prompts to encrypt all data on
your memory card.

Table 4: Comparison of model responses on the E-manual QA s10 dataset for “How can I encrypt an SD card?”
TIDES provides precise, relevant answers, while GPT-4 Turbo offers a more general response.

Question How to pair the TV with the Samsung Smart Remote?

Ground-truth
Answer

When you turn on the TV for the first time, the Samsung Smart Remote pairs to the TV automatically.
If the Samsung Smart Remote does not pair to the TV automatically, point it at the remote control
sensor of the TV, and then press and hold the and buttons simultaneously for 3 seconds or more. The
Samsung Smart Remote may not be supported depending on the model or geographical area.

GPT4-Turbo
Answer

To find Caption Settings on your Samsung TV, follow these steps:
1. Press the Home button on your Samsung Smart Remote to open the Smart Hub.
2. Use the directional buttons on the remote to navigate to “Settings” and select it ...
3. In the Settings menu, navigate to “General.” ...

TIDES
Answer

To pair the TV with the Samsung Smart Remote, follow these steps:
1. When you turn on the TV for the first time, the Samsung Smart Remote pairs to the TV
automatically.
2. If the Samsung Smart Remote does not pair to the TV automatically, point it at the remote control
sensor of the TV.
3. Press and hold the Return and Play/Pause buttons simultaneously for 3 seconds or more.
Note: The images, buttons, and functions of the Samsung Smart Remote may differ depending ... The
Samsung Smart Remote may not be supported depending on the model or geographical area.

Table 5: Comparison between Ground-truth, GPT-4 Turbo, and TIDES responses for the question “How to pair the
TV with the Samsung Smart Remote?” from the E-manual QA smart TV remote dataset. TIDES closely matches
the Ground-truth with precise, relevant instructions, while GPT-4 Turbo deviates with unrelated content.

4.2.2 E-manual Dataset

Table 4 compares responses to “How can I encrypt
an SD card?”. TIDES accurately extracted relevant
instructions from the electronic manual to generate
a clear step-by-step answer, while GPT-4 Turbo
produced generic suggestions lacking specificity.

Table 5 shows results for “How to pair the TV
with the Samsung Smart Remote?”. TIDES closely
matched the ground truth with precise, actionable
steps. In contrast, GPT-4 Turbo failed to provide
relevant instructions and offered unrelated content.
These results demonstrate TIDES’s ability to pro-
cess domain-specific technical documents and de-
liver accurate, contextually appropriate answers.

4.3 Ablation Study

We evaluated several similarity metrics (TF-IDF,
BM25, Jaccard, Cosine) using the TechQA valida-
tion set. We measured how often correct documents
appeared within the top 10 ranked results for each
question. As shown in Table 6, TF-IDF consistently
identified the correct documents in 81.81% of cases

Similarity Metric Correct Documents in Top 10 (%)

TF-IDF 81.81

BM25 27.27

Cosine Similarity 63.64

Jaccard Similarity 45.45

Table 6: Comparison of similarity metrics on the
TechQA validation dataset. The TF-IDF metric achieved
the highest performance, with the correct document ap-
pearing in the top 10 results in 81.81% of cases where a
correct answer existed.

where answers existed, significantly outperforming
other metrics. Based on these results, we adopted
TF-IDF as our primary document filtering method.

4.4 Time complexity
Despite multiple stages, TIDES reduces compu-
tational overhead through early filtering and seg-
mentation. TF-IDF and Associative Selection pro-
gressively reduce input size before reasoning, al-
leviating the quadratic complexity (O(N2)) of
transformer-based LLMs. Splitting documents of
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length N into n chunks of size L reduces complex-
ity to O(n · L2), which is especially beneficial for
long technical documents.

This design also mitigates the “lost in the middle”
problem (Liu et al., 2024a), where LLMs struggle
with mid-context content. By working on smaller
segments, TIDES ensures consistent access to rele-
vant information throughout the document.

(a) GPT-3.5 Turbo: QASA vs. 3-stage TIDES

Model configuration Runtime (s)

GPT-3.5 Turbo + QASA 222.62
GPT-3.5 Turbo + TIDES (3-stage) 134.68

(b) LLAMA-3.1: 3-stage TIDES vs. Parallel TIDES

Pipeline variant Runtime (s)

LLAMA-3.1 + TIDES (3-stage) 307.15
LLAMA-3.1 + TIDES-Parallel 19.76

Table 7: Processing latency on the TechQA dataset (sec-
onds, lower is better). Each value is the average runtime
for six randomly selected questions. (a) Replacing the
baseline QASA retrieval pipeline with the proposed
3-stage TIDES pipeline cuts latency by 39 % when us-
ing GPT-3.5 Turbo. (b) Further optimising TIDES by
parallelising the Selective Association and Rationale
Extraction stages yields a 15.5× speed-up on LLAMA-
3.1. Blue rows highlight the faster configuration in each
comparison.

Empirical results confirm these advantages. The
“GPT-3.5 Turbo + QASA” baseline in Table 7 (a)
refers to our implementation of the QASA struc-
ture (Lee et al., 2023) using prompted GPT-3.5
Turbo instead of the original fine-tuned T5 mod-
els. On TechQA, TIDES reduced GPT-3.5 Turbo’s
runtime from 222.62s to 134.68s (39% reduction),
with accurate responses maintained. On Llama-3.1,
we implemented a parallelized version of TIDES,
parallelizing Associative Selection and Rationale
Extraction, achieving a 15.5× speedup (307.15s to
19.76s, Table 7 (b)). This was achieved by combin-
ing the Associative Selection and Rationale Extrac-
tion stages into a single LLM call and processing
multiple documents concurrently using an asyncio
task manager with a thread pool executor, limit-
ing concurrency to five to eight documents. This
highlights TIDES’s ability to substantially improve
computational efficiency while preserving answer
quality.

In summary, TIDES demonstrates that thought-
ful multi-stage pipeline design can overcome LLM
efficiency limitations, reducing overall time and

ensuring reliable long-context processing.

4.5 Statistical Validation

Metric Paired t-test (p) Wilcoxon signed-rank (p)

BERT Score 0.12 0.02
ROUGE-1 0.15 0.09
ROUGE-2 0.89 0.21
ROUGE-L 0.23 0.07
Token F1 0.12 0.07

Table 8: Statistical comparison of TIDES vs. Self-RAG
on Llama-3.1 using paired t-test and Wilcoxon tests.
Only BERT Score shows significant improvement (p
< 0.05, bold) under Wilcoxon test, with consistent im-
provements in other metrics.

We evaluated the statistical significance of per-
formance differences between TIDES and Self-
RAG on the Llama-3.1 backbone using paired t-
tests and Wilcoxon signed-rank tests across met-
rics. As shown in Table 8, TIDES achieved signifi-
cant improvements in BERT-Score F1 (p = 0.023),
demonstrating its strength in generating semanti-
cally accurate responses. While other metrics did
not show statistically significant differences, the
consistent performance highlights TIDES’s robust-
ness and effectiveness in document-based QA.

4.6 Effect of Retrieval Size (n)

To justify the fixed choice n=30, we varied n ∈
{1, 5, . . . , 45} on the first five questions of the
Smart TV Remote dataset. Table 9 shows a clear
quality–latency trade-off: metrics improve up to
n≈ 25−30 and plateau thereafter, while runtime
grows almost linearly with n. Hence n=30 offers
the best overall balance used throughout the paper.

n Token-F1 BERT R-1 R-2 R-L Time (s)

1 86.23 21.63 11.67 16.01 12.17 0.73
5 89.62 49.77 32.45 36.99 29.31 1.33

10 89.36 46.18 27.80 32.82 28.23 1.12
15 89.15 46.50 27.46 34.03 28.75 1.53
20 90.29 54.88 41.17 45.05 34.10 3.05
25 90.83 59.07 40.52 47.07 36.03 4.41
30 90.24 60.56 43.37 48.21 36.29 4.78
35 88.06 48.90 31.90 37.01 30.20 6.48
40 89.26 54.30 36.82 43.82 35.21 5.30
45 89.67 53.30 34.81 39.09 31.16 6.25

Table 9: Performance-latency trade-off for retrieval size
n on Smart TV Remote questions. Quality metrics
(Token-F1, BERT, ROUGE-1/2/L) improve up to n≈30
before plateauing; runtime increases with n. Bold in-
dicates best per metric. Results are averaged over 5
questions.
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We further validated TIDES’s generalizabil-
ity on medical domain data using the Long
Health (Adams et al., 2024) dataset. Complete
results are provided in Appendix D.

5 Conclusion

TIDES enhances traditional QASA by incorporat-
ing a specialized step for effective terminology
management, significantly improving accuracy in
identifying relevant paragraphs. By integrating
TF-IDF with prompt-based LLMs, TIDES refines
natural language understanding in technical do-
mains like TechQA, enabling the system to handle
complex queries with greater precision. This ap-
proach not only reduces processing time and costs
through streamlined operations but also ensures
consistent and concise responses. Consequently,
TIDES marks an advancement in applying LLMs
to specialized technical data, offering a robust solu-
tion that optimizes overall QA performance while
addressing the specific challenges of technical ter-
minology.

Limitations

The TIDES model shows significant potential,
but to enhance its generalizability and applicabil-
ity, it must be validated across a broader range
of datasets, particularly by integrating domain-
specific terminologies and reasoning. This will
improve both the accuracy and interpretability of
its responses. Additionally, refining similarity met-
rics to better suit specialized domains is crucial, as
more nuanced measures will allow TIDES to re-
trieve and process relevant information with greater
precision.

Because TIDES’s retrieval stage is tuned for
technical-domain QA using TF-IDF and associa-
tive selection, other domains (e.g., biomedical or
legal) may benefit from alternative retrieval meth-
ods—such as domain-specific embeddings or cus-
tom indexing—to capture relevant concepts. Like-
wise, adapting TIDES to tasks beyond question
answering (for instance, summarization, classifi-
cation, or multi-hop reasoning) will require care-
ful prompt redesign and potentially new pipeline
components. Finally, errors in early stages (e.g.,
misclassified paragraphs or missed extractions) can
propagate through the multi-stage pipeline, occa-
sionally amplifying mistakes in the final output.
Future work will involve systematic empirical eval-
uations across diverse domains and tasks, the ex-

ploration of hybrid retrieval strategies, and the de-
velopment of adaptive prompting techniques and
verification mechanisms to strengthen TIDES’s ro-
bustness and versatility.
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A Detailed Overview of Related Work

A.1 Large-scale Language Models

Pre-trained language models have been explored continuously because of their effectiveness in diverse
natural language tasks and their generalization performance. Word2vec (Mikolov et al., 2013) is a pre-
trained word embedding to learn the representation for each word. However, Word2vec is hard to express
the contextual information, and CoVe (McCann et al., 2017) and ELMO (Peters et al., 2018) utilize
recurrent neural network structures to incorporate the context. With the development of Transformers,
Transformer-based pre-trained language models, such as BERT (Devlin et al., 2019) and GPT (Radford
et al., 2018), have started to emerge. BERT utilizes the bi-directional encoder structure to focus on the left-
to-right and right-to-left contextual information, while GPT adopts a decoder structure and causal masking
to mimic the generative nature. In addition to encoder and decoder-like structures, T5 (Raffel et al.,
2020) and BART (Lewis et al., 2020a) adopt encoder-decoder structures to enhance the performance with
diverse pretext tasks. However, the encoder-decoder structure requires twice the number of parameters.
Besides, it has been known that the decoder-like structure, including GPT, shows superior performance
on diverse generative tasks, such as translation and question-answering, compared to the encoder-like
structure. Therefore, recent large-scale language models such as Llama-3 (Touvron et al., 2023) adopt a
decoder-like structure.

Because of the generalization performance of LLMs, there have been diverse research works to utilize
LLMs for QA tasks. LLMs are known to possess a wealth of knowledge because they have been trained
on large-scale datasets spanning various topics and domains (Sengupta et al., 2023). With such abilities,
many studies are building QA systems utilizing the inferential capabilities of LLMs without additional
training (Moghimifar et al., 2020). Prompt engineering is one of the most promising methods utilizing the
inherent knowledge of LLMs. Prompt engineering assists in enabling LLMs to produce more accurate
outputs in the direction desired by the user for the input query (Giray, 2023). Due to its ability to achieve
decent performance without additional training, it is desired to be utilized for QA in various fields such as
healthcare (Wang et al., 2023), legal judgment (Trautmann et al., 2022), and manufacturing (Liu et al.,
2024b). However, while LLMs are generally well-generalized for tasks including QA, they have several
critical limitations. First, they cannot answer questions about data beyond a specific time or personal data
(Zhou et al., 2023). Furthermore, some studies point out that while LLMs like ChatGPT demonstrate
strong capabilities across many tasks, they may not perform best on specific tasks (Kocoń et al., 2023).
To overcome these limitations, we propose a methodology called TIDES to enhance the performance of
LLMs in QA tasks.

A.2 Document-based QA

Traditional QA systems were composed of various ways including keyword-based search, rule-based
search, and statistical-based search. First, there is TF-IDF (Salton and Buckley, 1988), which evaluates the
importance of keywords in documents to find highly relevant answers to questions, considering both word
frequency and inverse document frequency. Also, Riloff, Ellen, and Michael Thelen. (Riloff and Thelen,
2000) propose a heuristic rule-based QA system for reading comprehension tests. TREC (Ittycheriah
et al., 2000) answers the question with the maximum entropy modeling method. However, Rajpurkar,
Pranav, et al. (Rajpurkar et al., 2018) point out that the performance of previous models significantly lags
behind human labeling in terms of performance, proposing the SQuAD dataset (Rajpurkar et al., 2016).

With the BERT (Devlin et al., 2019) emerging, there have been attempts to utilize it for QA. Datasets
from various domains have been proposed to evaluate whether BERT can solve QA tasks such as
commonsense (Talmor et al., 2019), policy (Ahmad et al., 2020), and manufacturing (Castelli et al., 2020).
BERT-based models have demonstrated good performance in QA across various domains, but they also
have a crucial bound. Their training involves predicting the starting and ending indices of answers within
documents, limiting their ability to provide comprehensive answers to questions from various document
parts.
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A.3 Document-based QA with LLMs

As LLMs advance, several studies aim to overcome the aforementioned limitations by leveraging the
reasoning abilities of LLMs to find answers to questions within documents (Brown et al., 2020). Next,
Retrieval Augmented Generation (RAG) is proposed in various works (Lewis et al., 2020b). RAG is
a method that combines information retrieval with text generation to enhance the quality of generated
responses (Li et al., 2022). The strength of RAG lies in its ability to enhance the quality and reliability
of generated responses by leveraging retrieved information. However, despite the expectation that RAG
generates plausible answers, limitations exist, such as hallucination and inconsistency not being guaranteed
(Zhao et al., 2024).

To overcome these limitations, recent QA with LLMs aims to aggregate information spread across
multiple documents or paragraphs to provide comprehensive answers. Pereira, Jayr, et al. (Pereira et al.,
2023) propose a method for decomposing the input question into simpler sub-questions, retrieving answers
for each sub-question, and then synthesizing this information to generate a comprehensive answer. Also,
there is a work that suggests a methodology that provides accurate answers through structured retrieval of
extracted metadata from documents (Saad-Falcon et al., 2024).

Specifically, QASA proposes a QA method dividing it into three stages - Associative Selection,
Rationale Extraction, and Systematic Composition. They fine-tune T5 (Raffel et al., 2020) at each
stage, using different datasets, and then answer the question. First, at Associative Selection, QASA
determines whether each paragraph of the document is relevant to the input question. Then, in Rationale
Extraction, the relevance of each paragraph to the question is extracted using LLM. At last, at Systematic
Composition, the LLM generates comprehensive answers utilizing the extracted paragraphs and rationales
from Rationale Extraction. By fine-tuning T5 for each stage with a small dataset, QASA demonstrates
improved performance compared to InstructGPT (Ouyang et al., 2022), a model ten times larger than T5
in parameters.

However, we empirically identify several shortcomings with QASA. Firstly, collecting datasets for fine-
tuning T5 for each stage of QASA is not a trivial task. Also, we observe that in the Associative Selection
stage, QASA tends to provide answers indicating relevance even from many irrelevant paragraphs. To
address these issues, we propose QASA with several improvements. Firstly, in the Associative Selection
stage, we encourage QASA to not only assess the relevance between the question and the paragraph but
also inquire about the reason for the relevance. As a result, our model avoids overly affirmative responses,
indicating that many paragraphs are relevant. Furthermore, in the second stage, we also double-check for
irrelevant paragraphs, and these modifications result in reducing the overall response time by nearly 90%.

A.4 Domain Specific Question Answering

As document-based QA methodologies advance, there are also many studies focused on building QA
systems for specific domains including private policy (Keymanesh et al., 2021), legal (Abdallah et al.,
2023), insurance (Na et al., 2022) and manufacturing (Ruiz et al., 2023). There are several notable
characteristics of using domain-specific QA. At First, collecting domain-specific datasets can be extremely
challenging, making it difficult for users to fine-tune models and build QA systems (Kratzwald and
Feuerriegel, 2019). Also, domain-specific vocabulary in questions may not be understood by generalized
models or specialized inference processes may be required depending on the domain (Zhang et al., 2024).
At last, in domain-specific document QA, since it must be able to substitute for expert judgment, the
factuality of LLM becomes even more crucial (Augenstein et al., 2024).

To manage the above issues, various works have been proposed in QA systems. Tian, Katherine, et al.
(Tian et al., 2023) propose a methodology that fine-tunes a model for factuality. Also, there is a work that
asks the same question multiple times, which requires the same answer. However, there are shortcomings
with using the two aforementioned studies to supplement the factuality of LLM at the QA task. Firstly,
fine-tuning the model requires significant cost and time in data mining, and training. Moreover, repeatedly
querying the model incurs substantial costs when using models provided as APIs, such as GPT. Instead,
there are also works aiming at cost-efficiently improving the robustness of domain-specific terms and
factuality. First, there is a branch that generates answers by decoding the outputs of layers preceding the
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final output layer rather than the last output layer. Additionally, there are studies focused on reducing the
pool of potential answer candidates that can be generated. Shrivastava, Rajesh, et al. (Shrivastava et al.,
2022) propose an effective chatbot system applying TF-IDF to prune answerable data, thus reducing the
number of potential answers. Also, there is a work that overcomes the lack of domain-specific words
using TF-IDF. In this context we find that QASA performs poorly on questions containing specialized
terminology. To address this issue, motivated by previous works, for the first stage, we apply TF-IDF
to compare the similarity between the question and specific paragraphs, using only the highly similar
documents for QA.

B Prompts

Step Prompt

Associative Selection

Instruction: You are an expert in IT and computer science. Provide a rationale in 20 words or less
for how the paragraph relates to the question, focusing on key technical details.
Finally, give a clear yes or no answer avoiding overconfidence.
Question: (question)
Context: (paragraph)
Output: (rationale + (yes ∥ no))

Rationale Extraction

Instruction: You are an expert in IT and computer science. Given a question and a context, if the
context contains information that directly answers the question or provides clear supporting
evidence, extract only the relevant section. Do not include any additional explanations or comments.
If no relevant information is found, simply respond “No”.
Question: (question)
Context: (selected paragraph)
Output: (extract rationales ∥ No)

Systematic Composition

Instruction: Compose a concise answer to the question using the most relevant keywords and phrases
from the rationales. Aim for a natural response while still aligning closely with the rationales.
If the rationales do not sufficiently address the question, respond with “No answer”.
Question: (question)
Context: (evidence set)
Output: (answer)

Table 10: Prompts used in the TIDES framework for each step of the QA process. The instructions assign an
expert role to the model, encouraging it to generate rationales, avoid overconfidence, and respond with “no” to
unfounded sentences, ultimately optimizing LLM’s performance in identifying relevant information, generating
accurate rationales, and composing comprehensive answers.

C Experimental details

To evaluate the effectiveness and robustness of TIDES across various types of technical documentation,
we conducted experiments using two datasets:

• TechQA (Castelli et al., 2020): This dataset consists of IT support questions sourced from IBM’s
internal forums, each paired with relevant technical answers. It primarily focuses on enterprise-level
IT problem-solving scenarios. If the documentation cannot substantiate an answer, the question is
marked as “Non-Answerable” with an “N” label.

• E-Manual QA (Nandy et al., 2021): This dataset comprises question-answer pairs extracted from
electronic manuals of consumer electronic devices such as smartphones and smart TVs. It includes
a wide range of user-centered technical questions, featuring both curated questions and real user
inquiries from online forums.

For measuring TIDES’s enhancements, we applied the following LLMs: Flan-T5-xl(Raffel et al., 2020),
GPT-3.5 Turbo, GPT-4 Turbo and Llama-3.1. Additionally, we compared the performance of TIDES
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against traditional QASA and a simplified version of Self-RAG. Unlike the standard Self-RAG, which
typically involves multiple retrieval iterations and fine-tuning, our version operates in a zero-shot setting
with a single retrieval pass.

In all experiments, we successfully skipped the fine-tuning step by addressing the problem through
prompt engineering without any additional training. However, to ensure fidelity to the questions, we
adjusted the temperature setting to zero in experiments involving TIDES.

We employed a wide range of metrics for evaluating the effectiveness and accuracy of the models.

• Precision, Recall, and F1 Score: To assess the accuracy and comprehensiveness of the obtained
responses.

• BERTScore (Zhang* et al., 2020): To assess the semantic resemblance of the produced and given
responses.

• ROUGE Score (Lin, 2004): To evaluate the similarity of n-grams in the generated responses
compared to the reference answers to understand fluency and relevance.

• Token F1: To evaluate precision in technical contexts by measuring accuracy at the token level

D Long Health Dataset

The LongHealth (Adams et al., 2024) dataset is a benchmark designed to evaluate LLMs’ capabilities
in processing extensive clinical documentation. It consists of 20 detailed fictional patient cases across
various diseases, with each case containing 5,090-6,754 words. The benchmark includes 400 multiple-
choice questions across different tasks including information extraction, negation understanding, and
chronological information sorting.

D.1 Performance on Longhealth Dataset

Model Accuracy (%)

TIDES (Llama-3.1) 68.50
SelfRAG (Llama-3.1) 45.25
QASA (Llama-3.1) 52.25
Llama-3.1 22.00

Table 11: Performance comparison on LongHealth dataset’s Task 3, which evaluates models’ ability to identify
unanswerable questions in clinical documentation. All models use Llama-3.1 as the base architecture. TIDES
demonstrates superior performance (68.50% accuracy), significantly outperforming the baseline model (22.00%) as
well as other retrieval-augmented approaches. Higher accuracy indicates better capability to avoid hallucination
when information is insufficient.

LongHealth’s Task 3 evaluates a model’s ability to recognize insufficient information and avoid halluci-
nation - a critical capability in clinical contexts. As shown in Table 11, TIDES (68.50%) outperforms the
base Llama-3.1 model (22.00%) in identifying unanswerable questions. This improvement demonstrates
how TIDES’s evidence evaluation mechanisms effectively prevent hallucination when information is not
available, which is particularly critical in healthcare applications where incorrect information can have
serious consequences.

TIDES excels at identifying unanswerable questions, outperforming both baseline LLMs and retrieval-
augmented approaches. For example, Table 12 illustrates a case where the question “What chronic
neuroinflammatory disease does Mrs. Sample have?” - for which the correct answer is “Cannot be
answered with the provided documents” - is posed. In this case, TIDES correctly responds that the
information is insufficient, while the vanilla Llama-3.1 model hallucinates a specific diagnosis. This
demonstrates TIDES’s strong evidence evaluation and ability to avoid speculation, particularly valuable in
high-stakes domains like healthcare.

21771



Question What chronic neuroinflammatory disease does Mrs. Sample have?

Ground-truth Answer Cannot be answered with provided documents.

Llama-3.1 Answer Mrs. Sample has multiple sclerosis, a chronic neuroinflammatory disease.

TIDES(Llama-3.1) Answer The provided documents do not contain sufficient information to determine Mrs.
Sample’s condition. Therefore, the question cannot be answered.

Table 12: TIDES successfully avoids hallucination by correctly recognizing when no sufficient evidence exists to
answer the question. Example from the LongHealth dataset.

D.2 Detailed Analysis on Long Health
Table 13 demonstrates TIDES’s three-stage reasoning process on a clinical question from the Long Health
dataset, highlighting how each stage contributes to the final conclusion.

Question Which chronic, neuroinflammatory disease does Mrs. Sample suffer from?

Stage 1: Associative Selection

Original
Paragraph

**Medical History:** Mr. Wells initially presented with right upper abdominal pain, which
led to the discovery of multiple intrahepatic masses in liver segments IV, VII/VIII. Subsequent
investigations confirmed the diagnosis of HCC. He also suffers from chronic obstructive
pulmonary disease (COPD)...

Relevance
Rationale

Mentions Mr. Paul Wells’ medical history, including COPD and HCC

Decision Relevant (YES) [Note: Incorrectly classified]

Stage 2: Rationale Extraction

Extracted
Evidence

Mr. Wells initially presented with right upper abdominal pain, which led to the discovery
of multiple intrahepatic masses in liver segments IV, VII/VIII. Subsequent investigations
confirmed the diagnosis of HCC. He also suffers from chronic obstructive pulmonary disease
(COPD), emphysema, and respiratory insufficiency requiring home oxygen therapy.

Stage 3: Systematic Composition

Final Answer There is no information provided about Mrs. Sample in the provided documents. The informa-
tion is about Mr. Wells and Mrs. Anderson.

Ground-truth Question cannot be answered with provided documents

Table 13: TIDES’s three-stage process on a challenging question from the Long Health dataset. In Stage 1, a
paragraph about Mr. Wells is incorrectly identified as relevant based on his COPD diagnosis (a chronic condition,
though not neuroinflammatory). In Stage 2, this evidence about Mr. Wells is extracted. Despite these intermediate
errors, in Stage 3, TIDES correctly synthesizes that there is no information about Mrs. Sample’s condition in the
documents. This demonstrates the system’s ability to recover from intermediate errors through its multi-stage
verification approach.

This example highlights a key strength of TIDES’s multi-stage architecture: error resilience. Even
when Stage 1 incorrectly classifies paragraphs about Mr. Wells as relevant (likely because COPD is a
chronic condition, albeit not neuroinflammatory), and Stage 2 extracts evidence about his condition, the
final Systematic Composition stage correctly synthesizes that the documents contain no information about
Mrs. Sample’s neuroinflammatory disease. The system’s final answer aligns with the ground truth that this
question cannot be answered with the provided documents, demonstrating TIDES’s capacity to identify
unanswerable questions—a critical capability in clinical contexts where acknowledging information gaps
is essential for preventing dangerous hallucinations.
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