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Abstract
End-to-end automatic speech recognition
(ASR) based on deep learning has achieved
impressive progress in recent years. However,
the performance of ASR foundation model of-
ten degrades significantly on out-of-domain
data due to real-world domain shifts. Test-
Time Adaptation (TTA) methods aim to mit-
igate this issue by adapting models during in-
ference without access to source data. Despite
recent progress, existing ASR TTA methods
often struggle with instability under continual
and long-term distribution shifts. To alleviate
the risk of performance collapse due to error ac-
cumulation, we propose Dynamic Model-bank
Single-Utterance Test-time Adaptation (DM-
SUTA), a sustainable continual TTA frame-
work based on adaptive ASR model ensem-
bling. DMSUTA maintains a dynamic model
bank, from which a subset of checkpoints is
selected for each test sample based on con-
fidence and uncertainty criteria. To preserve
both model plasticity and long-term stability,
DMSUTA actively manages the bank by fil-
tering out potentially collapsed models. This
design allows DMSUTA to continually adapt
to evolving domain shifts in ASR test-time sce-
narios. Experiments on diverse, continuously
shifting ASR TTA benchmarks show that DM-
SUTA consistently outperforms existing con-
tinual TTA baselines, demonstrating superior
robustness to domain shifts in ASR.

1 Introduction

In recent years, end-to-end automatic speech recog-
nition has made substantial progress, achieving
strong performance in in-domain settings where
training and test data follow similar distributions
(Baevski et al., 2020; Hsu et al., 2021; Radford
et al., 2023). However, in real-world scenarios,
ASR systems frequently encounter out-of-domain
conditions, where data distributions shift due to fac-
tors such as background noise, varying recording
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devices, or unseen acoustic environments (Radford
et al., 2023; Chen et al., 2022a). These domain
shifts often lead to significant performance degra-
dation, rendering ASR systems unreliable in prac-
tice. This challenge becomes even more severe
when distribution shifts occur continuously over
time, as is common in real-world deployment.

To address this issue, it is essential to develop
ASR systems that can dynamically adapt to chang-
ing input conditions and maintain robustness across
diverse environments. Recent work has explored
test-time adaptation to mitigate domain shifts dur-
ing inference, primarily through objectives such as
entropy minimization (Lin et al., 2022) and logit
sequence entropy regularization (Kim et al., 2023).
These methods have shown effectiveness on out-of-
domain noisy speech data. However, they typically
assume a fixed target domain, limiting their ap-
plicability in scenarios involving continuous and
dynamic distribution shifts.

To handle such realistic conditions, recent stud-
ies like AWMC (Lee et al., 2023) and DSUTA (Lin
et al., 2024) have proposed continual test-time
adaptation (CTTA) methods for ASR. AWMC
adopts a pseudo-labeling strategy within a mean
teacher framework to mitigate model collapse,
while DSUTA introduces a fast-slow adaptation
scheme with full model resets to maintain stabil-
ity under domain drift. Although both methods
represent significant progress, they also face key
limitations: AWMC is evaluated only on a single-
domain setup and is susceptible to error accumula-
tion, whereas DSUTA’s reset mechanism impairs
long-term knowledge retention, potentially causing
forgetting during adaptation.

Moreover, both approaches process each test
sample independently using a single model state,
which restricts their ability to exploit temporal cues
from evolving input streams. To address these lim-
itations, we propose a model-bank-based CTTA
framework named Dynamic Model-bank Single-
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Utterance Test-time Adaptation (DMSUTA) that
dynamically selects reliable model checkpoints
from a diverse model bank, enabling robust and
adaptive predictions for each incoming audio sam-
ple. We evaluate DMSUTA on ASR CTTA bench-
marks (Lin et al., 2024), encompassing a wide
range of acoustic variations that simulate realistic,
continuously shifting environments. Experimen-
tal results demonstrate that DMSUTA consistently
outperforms the prior work, highlighting its supe-
rior ability to robustly adapt to non-stationary test
distributions in ASR.

Our main contributions can be summarized as:

• We propose a dynamic model-bank TTA
framework for ASR that exploits relevant data
distribution information while minimizing the
risk of model collapse in adaptation.

• We introduce dual-criterion with active bank
maintenance to stabilize the content of the
model bank across different domains and long
test data streams.

• We achieve noticeable performance boosts rel-
ative to both non-continual and continual base-
lines in scenarios involving single-domain and
time-varying domains.

2 Related Works

2.1 Continual Test Time Adaptation

CTTA requires continuous model updates for tar-
get domain data streams, with the core challenge
being how to avoid catastrophic forgetting dur-
ing the adaptation process. The online version
of Tent (Wang et al., 2020) offers a feasible ap-
proach by minimizing prediction entropy, but it
assumes ideal online learning conditions and lacks
stability in continual test-time settings. To ad-
dress this, CoTTA(Wang et al., 2022a) was pro-
posed as a method specifically designed for on-
line continual test-time adaptation. It incorpo-
rates a teacher-student framework with a weighted
augmentation-averaged mean teacher strategy to en-
hance model stability. Meanwhile, EATA(Niu et al.,
2022) addresses catastrophic forgetting through a
sample selection strategy that filters reliable and
non-redundant samples.

Building on these foundations, several recent
works have further advanced CTTA by improving
stability, efficiency, and sample selection mecha-
nisms. ViDA (Liu et al.) introduces a homeostatic

adaptation strategy that constrains feature space dy-
namics to enhance robustness under domain shifts.
DSS (Wang et al., 2024c) proposes a confidence-
based filtering mechanism to reduce error propaga-
tion during continual updates. EcoTTA (Song et al.,
2023) improves memory efficiency through self-
distilled regularization, maintaining model plas-
ticity without relying on large memory buffers.
Additionally, RMT (Döbler et al., 2023) extends
consistency-based learning to gradual and contin-
ual adaptation scenarios by employing a teacher-
student paradigm to stabilize updates. While these
approaches offer various advantages, they often re-
quire careful trade-offs between domain adaptation
and model forgetting or introduce additional train-
ing complexity. In contrast, our method employs
a dynamic framework that leverages multiple dy-
namically updated checkpoints, selected based on
confidence and uncertainty metrics, to achieve ro-
bust adaptation without relying on frequent resets.

2.2 Test Time Adaptation on ASR
Recent advancements in speech foundation mod-
els have led to significant improvements in ASR,
particularly within the distribution of in-domain
training data (Hsu et al., 2021; Chen et al., 2022b;
Baevski et al., 2020; Döbler et al., 2023; Ao
et al., 2022). However, during edge-side deploy-
ment, models frequently encounter diverse and
non-stationary acoustic conditions, resulting in de-
graded performance in real-world applications. Al-
though joint training (Zhang et al., 2021; Wang and
Wang, 2016; Fan et al., 2020; Jain et al., 2018),
fine-tuning (Wang et al., 2022b; Gong et al., 2023;
Wang et al., 2024a), and domain adaptation (Lei
et al., 2024; Sim et al., 2024; Fu et al., 2025; Tran
et al., 2025; Sun et al., 2017; Wang et al., 2024b;
Xiong et al., 2020; Ghorbani and Hansen, 2022)
methods have shown strong performance in adapt-
ing ASR models to target domains, they are often
computationally expensive and typically require ac-
cess to test label or source domain data. In practice,
ASR models deployed on edge devices are often
restricted to streaming test data due to privacy and
storage constraints, limiting the applicability of
these methods.

In this context, TTA has emerged as a promising
direction, as it enables ASR models to adapt to tar-
get domains directly during inference and without
requiring any training data and test labels. Recent
studies such as SUTA (Lin et al., 2022) have ap-
plied entropy minimization and minimal class con-
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Figure 1: Method comparison between our dynamic TTA framework, DMSUTA, and existing methods. (a) The
common ASR test-time adaptation approach is where the model adapts the incoming sample independently. (b) The
continual adaptation of test time, where the model is continuously updated in a sequence as the test sample comes.
(c) The fast-slow approach, where there are two separate branches responsible for local and meta adaptation. (d)
Our method, DMSUTA, provides a model bank to perform adaptation. For each test sample, the prediction is an
output from a carefully selected bank of members.

fusion techniques to achieve non-autoregressive
instance-level adaptation. SGEM (Kim et al.,
2023), in contrast, proposes generalized entropy
minimization at the sequence level, adapting autore-
gressive ASR models by minimizing logit sequence
entropy. Recent methods also try to incorporate the
use of confidence and uncertainty for stable adap-
tation in ASR (Yoon et al., 2024; Lee et al., 2024;
Liu et al., 2024).

However, these TTA methods largely assume
static test distributions and do not account
for the continuous adaptation required in real-
world streaming scenarios. Addressing this gap,
AWMC (Lee et al., 2023) introduces pseudo-
label refinement and anchor model merging to im-
prove model reliability under continuous adapta-
tion. DSUTA (Lin et al., 2024) proposes a dynamic
reset strategy based on a fast-slow TTA framework,
enabling stable CTTA across multiple domains and
long-duration test streams.

Despite these advances, existing ASR continual
test-time adaptation methods still face challenges
such as error accumulation and catastrophic forget-
ting, especially in complex, noisy environments.

To tackle this, our work proposes a dynamic model
ensembling strategy tailored to evolving acoustic
conditions, aiming to enhance the robustness of
ASR models in real-world, out-of-domain scenar-
ios.

3 Methodology

The proposed dynamic model-bank TTA frame-
work for ASR, DMSUTA, is proposed in this sec-
tion. We first compare DMSUTA with existing
methods, then we explain the details of the selec-
tion strategy and bank operations in DMSUTA.

3.1 TTA Methods for ASR

As shown in Figure 1, the most straightforward
approach for adaptation in ASR is non-continual
TTA, where the model adapts to test data separately
each time. In this case, the original model is reused
for every new test sample. However, this limits
the generalizability of the adaptation process, as
knowledge learned from past samples is not carried
forward. On the other hand, continual adaptation
does not reset to the pre-trained model each time;
instead, it continuously adapts throughout the pro-
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cess. However, this increases the risk of model
collapse due to error accumulation over time. Re-
cently, Fast-Slow TTA (Lin et al., 2024) has been
proposed, utilizing two branches to leverage advan-
tages from both non-continual and continual TTA.
The slow branch is updated periodically to gain
the meta knowledge. In contrast, the fast branch
is initialized from the current slow branch model
and updated based on the latest samples to gener-
ate predictions. However, for the slow branch to
update, test samples from previous intervals must
be stored and processed in batches. This imposes
strict constraints on test-time adaptation, requiring
access to past test samples. In addition, it also em-
ploys a dynamic reset strategy to mitigate model
collapse during adaptation, which also relies on col-
lecting many past test samples. Those additional
data usage may not be ideal for real-world test-time
adaptation, as access to previous samples is often
restricted due to security concerns.

In this paper, we propose a CTTA strategy in
ASR, named DMSUTA, which is built upon an
adaptive framework that maintains a dynamic bank
of model checkpoints to generate robust predictions
tailored to continuously evolving input conditions.
By leveraging multiple reliable historical check-
points from this bank, DMSUTA dynamically se-
lects and updates the most relevant ones for each
test instance, while preserving the rest to retain
prior knowledge. To manage the checkpoint bank
effectively, we design a three-stage mechanism:
selection, appending, and pruning. The selection
stage identifies relevant checkpoints based on a
combination of prediction confidence and uncer-
tainty estimation, where uncertainty is measured
by the variance of the output probabilities across
multiple augmented views of the same input. The
selected subset is then optimized on the current
test sample, and when performance improves, the
updated model may be added to the bank. To pre-
vent redundancy and model collapse, we remove
outdated or degraded checkpoints using historical
performance trends and divergence scores. Our
motivation is to exploit useful information from the
model’s historical states to mitigate error accumu-
lation and reduce catastrophic forgetting, both of
which are persistent challenges in continual test-
time adaptation.

3.2 Dynamic Model-bank SUTA for ASR
As shown in Figure 2, we present the overall frame-
work of our unified test-time adaptation (TTA)

framework for speech recognition. Unlike prior
TTA approaches for speech recognition that typi-
cally rely on a single model to adapt to all incoming
samples, our framework continuously maintains
a bank of diverse teacher models for prediction.
The process begins by initializing a model bank
{f1, f2, . . . , fm} with size m, where each member
is initialized from the original pretrained check-
point. Upon the arrival of a test-time sample x, it is
forwarded to the most relevant models in the bank
that meet the uncertainty and confidence criteria
for inference. The final prediction is then gener-
ated by the overall mean of the selected members’
predictions. After making the prediction, the se-
lected models are updated to better adapt to the
current data distribution. Noted that our method
also builds upon the SUTA (Lin et al., 2022) frame-
work. It adapts the model parameters fpre for fixed
number of steps on each test sample xt by opti-
mizing the combined loss of entropy minimization
Lem and minimum class confusion Lcc. Entropy
minimization loss encourages confident predictions
by reducing uncertainty, while the other reduces
overlap between different class predictions.

Moreover, to enable the model bank to better ac-
cumulate meta-knowledge over time, we also em-
ploy an exponential moving average (EMA) strat-
egy during bank updates:

Wt+1 = (1− α)Ŵt + αWt (1)

where Wt denotes the updated model weights, and
Ŵt denotes the current update value. In general,
the overall update mechanism allows multiple mod-
els to adapt simultaneously when appropriate, en-
abling the model bank to accumulate more diverse
and reliable knowledge over time. As a result, the
framework is more robust to distribution shifts and
better suited to diverse test-time conditions. The
algorithm is described in Algorithm 1.

3.3 Selection Strategy

To determine which checkpoints are suitable for
given test-time samples, we design a selection strat-
egy that jointly considers prediction confidence and
uncertainty. This dual-criteria approach helps iden-
tify reliable models for inference and update, while
effectively filtering out unstable and overfit ones.
High confidence typically indicates that the model
is likely to produce a correct prediction. Therefore,
we select only models from the bank with high con-
fidence values. The selection process is formalized
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Figure 2: Overall framework for our method. We begin by initializing a model bank composed of pretrained source
checkpoints. Since all models are initially unadapted, we avoid activating all of them at the beginning. Instead, we
only activate one of them for update, and when no existing checkpoint is found suitable for the coming test samples,
a new checkpoint is then activated and adapted. During the adaptation process, if suitable updates are available for
activated checkpoints, they are applied to the corresponding ones. We also continuously monitor the status of each
model in the bank. If a model remains inactive or exceeds its update threshold, it is pruned and replaced with a fresh
source checkpoint to prevent potential collapse.

as follows:

Sc(x) = {fi | Confi(x) ≥ γc} (2)

where Confi(x) is the confidence score of model
fi on input sample x, and γc represents the confi-
dence threshold score among all models. However,
in practice, models can sometimes become overcon-
fident, especially when facing out-of-distribution
samples, leading to unreliable predictions despite
high confidence scores. To mitigate this issue, we
introduce an additional criterion based on uncer-
tainty, which is measured by the variance of pre-
dictions across multiple augmentations of the input.
We apply n random augmentations to the audio
sample x, and compute the variance of the model’s
predictions across these augmented versions. If the
prediction variance is relatively low, the model is
considered reliable. On the other hand, the model
may be uncertain and unstable if the variance is
high, and thus, we exclude such models from con-
tributing to the final prediction. The selection crite-
rion for uncertainty is defined as:

Sv(x) = {fi | Vari(x) ≤ τv} (3)

where Vari(x) is the variance of the model pre-
dictions in the n augmented versions of the input
x, and τv represents the lowest variance allowed
threshold for all models. Finally, the overall selec-
tion criterion is defined as follows:

S(x) = Sc(x) ∩ Sv(x) (4)

where S(x) represents the full selection criterion,
formed by combining the confidence-based and

variance-based components through intersection,
which allows only sufficiently certain predictions
to be selected.

3.4 Bank Maintenance

It has been observed that the TTA methods
are prone to collapse, a phenomenon in which
the model gradually diverges from its original
knowledge due to accumulated errors during self-
supervised updates. This typically occurs when the
model repeatedly adapts to unlabeled samples via
self-learning, leading to degraded performance or
even complete failure. Previous work (Lin et al.,
2024) addresses this by completely resetting the
adapted model once a distribution shift is detected.
However, such full resets result in a complete loss
of the model’s learned knowledge.

To mitigate this issue, we introduce a novel
dropout mechanism for checkpoint management
within a model bank. Specifically, we design a
population-based reset strategy that monitors each
model using two criteria: the number of updates it
has undergone and how long it has been inactive.
If a model exceeds a threshold for update count or
becomes inactive over time, we consider it unreli-
able and reinitialize it from the original pretrained
checkpoint.

Freset = {fi | C(fi)) > ϵc ∨A(fi)) < ϵa} (5)

where C(fi) denotes the count number of updates
applied to model fi, and A(fi) indicates its recent
activity level (how long it has not been updated).
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Method AA AC BA CM GS MU NB SD TP VC

Source model 40.6 27.7 66.9 49.7 75.6 51.4 120.1 19.4 25.8 49.7

Non-continual

SGEM (Kim et al., 2023) 30.9 17.8 54.5 39.2 56.3 39.2 113.0 14.9 17.5 40.3

SUTA (Lin et al., 2022) 30.6 17.4 53.7 38.7 54.5 39.0 112.3 15.0 17.4 39.3

Continual

SUTA (Lin et al., 2022) 39.8 22.6 63.4 53.4 58.4 54.7 68.1 23.2 23.0 50.9

AWMC (Lee et al., 2023) 31.6 18.0 61.6 37.7 48.5 36.2 131.9 17.0 18.0 36.1

Fast-slow

DSUTA (Lin et al., 2024) 25.9 15.4 33.2 33.5 37.0 28.4 36.3 15.5 15.6 29.9

Dynamic Model-bank

DMSUTA (Ours) 25.2 14.9 34.1 32.5 35.8 28.3 35.8 14.6 15.3 29.8

Table 1: Word Error Rate (WER) of different ASR TTA methods on LS-C with 10 distinct domains. Reported WER
is averaged per noise type.

The thresholds ϵc and ϵa control the maximum toler-
ated update count and minimum acceptable activity,
respectively. As a result, our model bank remains
robust and healthy over time. In addition, there is
also a possibility that no checkpoints satisfy the
selection criterion. In such cases, we replace the
most updated models with newly initialized ones to
maintain the diversity and adaptability of the model
bank. By periodically refreshing these models, we
can better handle distribution shifts and improve
overall performance during test-time adaptation.

4 Experiments

4.1 Benchmark

In this work, we follow the test-time adaptation
setup proposed in (Lin et al., 2024) and evaluate
our method on two types of benchmarks based on
the LibriSpeech test set (Panayotov et al., 2015).
Single-domain Simulated Noisy Data.

Following (Kim et al., 2023), we utilize the Cor-
rupted LibriSpeech (LS-C) Dataset, which is cre-
ated by adding background noises from the MS-
SNSD dataset (Reddy et al., 2019) to the origi-
nal LibriSpeech test set. Specifically, background
noises are added to the test set to simulate challeng-
ing acoustic environments. The added noise types

include air conditioner (AC), airport announcement
(AA), babble (BA), copy machine (CM), munching
(MU), neighbors (NB), shutting door (SD), typing
(TP), vacuum cleaner (VC), and Gaussian noise
(GS) noise—resulting in a total of ten different
noise types. The Signal-to–Noise Ratio (SNR) is
set to 5 dB to ensure a consistent level of corruption
across samples.
Multi-domain Time-varying Data. Following
(Lin et al., 2024), we also utilize three streams
created by concatenating samples with different
noise types to evaluate our method.

• MD-Easy: Contains 2,500 samples with rel-
atively easy noise types. The noise order is:
AC → CM → TP → AA → SD.

• MD-Hard: Contains 2,500 samples with rel-
atively challenging noise types. The noise
order is: GS → MU → VC → BA → NB.

• MD-Long: A long sequence of 10,000 sam-
ples generated by randomly sampling from
the 10 available noise types. Each sampled
segment has a random length between 20 and
500 samples, and sampling continues until the
full length is reached.
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Algorithm 1 Dynamic Model-bank Test-Time
Adaptation
Input: Data stream {xt}Tt=1, model bank F =
{f1, . . . , fm}, thresholds γc, τv, update limit ϵc,
inactivity limit ϵa
Output: Predictions {ŷt}Tt=1

1: Initialize each fi ∈ F with pretrained weights
2: for t = 1 to T do
3: compute confidence Confi(xt);
4: compute variance Vari(xt) for each fi;
5: check selection criterion in Equation (3);
6: for fi ∈ S(xt) do
7: adapt parameters w.r.t. Lem + Lcc;
8: compute checkpoint prediction ŷTti ;
9: EMA update in Equation (1);

10: end for
11: compute ensemble prediction {ŷt}Tt=1

12: for fi ∈ F do
13: check maintenance in Equation (5);
14: for fi ∈ Freset do
15: apply reset operation;
16: end for
17: end for
18: end for
19: return {ŷt}Tt=1

4.2 Implementations

For all benchmarks, we use the pretrained wav2vec
2.0 Base model (Baevski et al., 2020), fine-tuned
on the 960 hours LibriSpeech training set, as the
source ASR model, consistent with prior work (Lin
et al., 2024). We adopt SUTA (Lin et al., 2022) as
the adaptation base and follow the continual adap-
tation framework proposed in DSUTA (Lin et al.,
2024). All baseline implementations and hyper-
parameter settings follow the continual ASR TTA
benchmark (Lin et al., 2024). We compare our
method with several baselines, including continual,
non-continual, and fast-slow adaptation approaches.
Specifically, we evaluate against AWMC (Lee et al.,
2023), SGEM (Kim et al., 2023), SUTA (Lin et al.,
2022), and DSUTA (Lin et al., 2024). To sup-
port the selection mechanism based on prediction
variance, we apply data augmentation to each test
utterance. The augmentations include volume per-
turbation, light time-stretching, time shift, pitch
shift, and waveform distortion. These augmen-
tations help estimate the variance uncertainty of
model predictions, which is used to guide reliable
checkpoint selection during adaptation. The expo-

Method Easy Hard Long

Source model 32.7 74.6 61.0

Non-continual
SUTA 24.0 60.4 53.3
SGEM 25.0 61.0 53.4

Continual
SUTA 37.3 83.6 100.3
AWMC 25.8 66.1 60.6

Fast-slow
DSUTA 24.0 45.6 43.2

- Dynamic reset 22.7 39.8 35.8
- Fixed reset 22.8 49.4 45.2

Dynamic Model-bank
DMSUTA (Ours) 22.0 39.2 35.0

Table 2: WER comparison across MD-Easy, MD-Hard,
and MD-Long benchmarks for different baselines.

Method Easy Hard Long

w/o conf 22.4 39.6 36.0
w/o var 22.3 41.4 40.5
w both 22.0 39.2 35.0

Table 3: Performance comparison (WER) on multi-
domain benchmarks with different update criteria.

nential moving average is set to 0.94. The variance
and confidence thresholds are adaptively set to 6
and 2 multiples of the source model confidence and
variance.

4.3 Results

Table 1 shows a comparison of word error rates
(WER) across various test-time adaptation (TTA)
methods on the LS-C dataset, which encompasses
10 distinct noise types. The results highlight sig-
nificant variability in model robustness across dif-
ferent audio domains. Specifically, continual learn-
ing approaches such as SUTA and AWMC exhibit
performance degradation over time, likely due to
the accumulation of errors during adaptation. In
contrast, non-continual methods like the original
SUTA minimize the effect of model collapse but
demonstrate limited adaptability in challenging do-
mains since there is no leverage learned from past
samples. For instance, in the NB domain, the non-
continual SUTA shows a notably high error rate
compared to its continual version.

The fast-slow method, DSUTA, integrates the
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Method Easy Hard Long

w/o PM 22.3 42.5 44.5
with PM 22.0 39.2 35.0

Table 4: Performance comparison (WER) on multi-
domain benchmarks with and without bank mainte-
nance.

strengths of both continual and non-continual ap-
proaches by employing dual adaptation branches
and a dynamic reset strategy. This design en-
hances robustness against domain shifts. How-
ever, its dynamic strategy depends on our proposed
method, further advancing this by leveraging a
diverse model bank, resulting in superior perfor-
mance. Notably, in the NB domain, where previous
methods struggled with high error rates, our ap-
proach achieves a 1% absolute improvement over
SUTA and matches DSUTA’s performance. Even
in domains like SD, characterized by lower WERs,
our method consistently outperforms both the orig-
inal SUTA and DSUTA, underscoring the efficacy
of a diversified model in enhancing adaptability and
resilience across varying audio domains. Moreover,
Table 2 further shows that our method achieve a
more stable adaption in a series of more compli-
cated cases where domains are mixed .

4.4 Ablation

4.4.1 Selection Strategy
Here, we investigate why both confidence and vari-
ance are adopted as dual criteria for guiding model
updates. As shown in Table 3, removing either
the confidence or the variance threshold results in
certain performance degradation. Without the con-
fidence threshold, the selected checkpoints may
yield low-confidence predictions for the test sam-
ple, which are less suitable and potentially noisy
for adaptation.

Meanwhile, although confidence-based selection
helps reduce pseudo-label error rates, the poor cali-
bration of neural networks can still produce incor-
rect predictions with deceptively high confidence.
By introducing a variance threshold, we further
filter out unreliable samples, ensuring that only sta-
ble and trustworthy predictions contribute to the
adaptation process.

4.4.2 Selection threshold
The introduced hyperparameters, confidence and
variance, are set based on the original confidence

and variance levels. Instead of using fixed val-
ues, we take the source confidence and variance of
each test utterance as reference points to avoid rely-
ing on static thresholds, since the model may face
vastly different adaptation difficulties across do-
mains. The original confidence and variance effec-
tively reflect this variation, and we leverage them
to determine the thresholds dynamically. As shown
in the table 5 and table 6, both the confidence and
variance thresholds are not highly sensitive.

Confidence threshold AA

γc > 1.0 25.35
γc > 1.05 25.32
γc > 1.1 25.25
γc > 1.15 25.31
γc > 1.2 25.22
γc > 1.25 25.33
γc > 1.3 25.38

Table 5: Performance under different confidence thresh-
olds in AA domain

Variance threshold AA

τv < 2.0 25.41
τv < 3.0 25.35
τv < 4.0 25.32
τv < 5.0 25.24
τv < 6.0 25.22
τv < 7.0 25.66

Table 6: Performance under different variance thresh-
olds in AA domain

4.4.3 Model Bank Size
We also investigate the impact of the model bank
size used in our method, as shown in Figure 3. The
experiments are conducted on the LS-C dataset
within the AA domain, where the bank size ranges
from 2 to 10. We observe that the error rate slightly
decreases as the bank size increases. When the
bank size reaches 6, the model achieves the low-
est word error rate. This trend is expected—larger
bank sizes generally lead to lower error rates. How-
ever, increasing the bank size beyond 6 does not
yield further improvements. This is likely because
the AA domain represents a relatively simple and
homogeneous acoustic environment. In such cases,
the diversity of test samples is limited, and a small
number of well-adapted models is sufficient to

21838



2 3 4 5 6 7 8 9 10
Bank size

25

26

27

W
ER

 (%
)

Figure 3: WER (%) performance within the AA domain
of the LS-C dataset, with respect to varying bank size.

Method AA (LS-C) ASR-SCEChilSC

Time (s) WER (%) Time (s) WER (%)

Source 115 40.6 76 60.1

SUTA 803 30.9 582 53.3

CSUTA 142 39.8 135 197.5

DSUTA 610 25.9 502 49.3

DMSUTA 735 25.2 560 48.4

Table 7: Comparison of adaptation time (T) and WER
(W) on AA (LS-C) and ASR-SCEChilSC benchmarks.

cover the variation within the domain. Adding
more checkpoints may lead to redundancy rather
than complementary benefits.

4.4.4 Bank Maintenance
Here, we illustrate the effectiveness of bank main-
tenance. As shown in Table 4, under multi-domain
conditions where the difficulty level is either hard
or long, there is a noticeable performance drop
when bank maintenance is not applied. Even in
cases such as MD-easy, where model collapse is
less severe, applying the maintenance module still
leads to slight improvements.

4.4.5 Complexity
Table 7 presents the inference time of DMSUTA
compared to other SUTA methods on the ASR-
SCEChilSC dataset (2266 utterances) and the AA
domain of corrupted LibriSpeech (2893 utterances).
From the table, we observe that our DMSUTA is
actually faster than the baseline SUTA and only
slightly slower than DSUTA. Specifically, SUTA
requires reloading the source model for predictions
at every step, as it is a type of non-continual TTA,
leading to significantly longer loading times. In
contrast, our method caches the model after the
initial load and reloads it only when necessary,
significantly reducing loading time and avoiding

unnecessary computational overhead. The clear
margin of improvement in accuracy achieved by
DMSUTA provides justification for the slightly in-
creased complexity.

5 Conclusion

In this paper, we propose the adaptive dynamic
TTA, a novel test-time adaptation strategy for ASR
that improves adaptability without relying on past
test samples. Our method introduces a dynamic
model bank, which adaptively selects and updates
a subset of reliable checkpoints for each incoming
sample. By leveraging the confidence and vari-
ance of predictions, our method identifies suitable
models for adaptation while filtering out unreli-
able cases. DMSUTA also supports continuous
bank maintenance, enabling the bank to evolve over
time to handle distribution shifts without incurring
model collapse. Extensive experiments across mul-
tiple benchmarks validate the effectiveness and ro-
bustness of our approach over prior non-continual,
continual, and fast-slow TTA methods.

6 Limitation

The primary limitations of this paper are as follows:
Realistic Domain Shifts. In this study, we
evaluate our framework using synthetic domain
shifts created by adding background noise to
clean speech. While this setup enables controlled
experimentation and reproducibility, it does not
fully reflect the complexity and unpredictability
of real-world acoustic environments. Realistic
domain shifts—such as those caused by sponta-
neous speech, overlapping speakers, real-world
background noise, reverberation, and recording ar-
tifacts—remain unexplored in our current experi-
ments. We leave the evaluation of our method on
real noisy datasets and in-the-wild test conditions
as an important direction for future research.
Model Generalization across Backbones. Our
current study focuses on a specific end-to-end
ASR backbone: Wav2vec 2.0 (Baevski et al.,
2020). However, modern ASR systems are increas-
ingly built on diverse foundation models, including
encoder-decoder architectures, transducer-based
models, and large-scale pretrained speech-language
models. The generalizability of our method across
different ASR architectures remains unexplored.
Extending and validating the proposed framework
on a broader range of speech foundation models is
a promising direction for future work.
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