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Abstract

Recent advancements in large language mod-
els (LLMs) have shown impressive capabil-
ities in various downstream tasks but typi-
cally face Catastrophic Forgetting (CF) dur-
ing fine-tuning. In this paper, we propose the
Forgetting-Aware Pruning Metric (FAPM), a
novel pruning-based approach to balance CF
and downstream task performance. Our investi-
gation reveals that the degree to which task vec-
tors (i.e., the subtraction of pre-trained weights
from the weights fine-tuned on downstream
tasks) overlap with pre-trained model parame-
ters is a critical factor for CF. Based on this find-
ing, FAPM employs the ratio of the task vector
to pre-trained model parameters as a metric to
quantify CF, integrating this measure into the
pruning criteria. Importantly, FAPM does not
necessitate modifications to the training pro-
cess or model architecture, nor does it require
any auxiliary data. We conducted extensive
experiments across eight datasets, covering nat-
ural language inference, General Q&A, Medi-
cal Q&A, Math Q&A, reading comprehension,
and cloze tests. The results demonstrate that
FAPM limits CF to just 0.25% while maintain-
ing 99.67% accuracy on downstream tasks. We
provide the code to reproduce our results.1.

1 Introduction

LLMs have demonstrated impressive general capa-
bilities in handling various tasks (Bubeck et al.,
2023; Rafailov et al., 2024). Nevertheless, prac-
tical deployment frequently uncovers the neces-
sity for augmenting domain-specific competen-
cies (Scialom et al., 2022). To this end, task-
oriented datasets are harnessed to fine-tune these
models, enhancing their efficacy in targeted down-
stream tasks (Yang et al., 2024b). Previous studies
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Figure 1: Illustration of the issues in CF, the desired
objectives, and the methods to mitigate CF.

have found that while LLMs acquire specialized
knowledge from fine-tuning, they tend to forget
their general capabilities, especially in full parame-
ter fine-tuning, which is also known as Catastrophic
Forgetting (CF) (Luo et al., 2023; Kong et al., 2023;
Wu et al.). Consequently, devising methods to alle-
viate CF during the fine-tuning phase has become
a critical research direction for LLMs.

Existing methods to mitigate CF can be divided
into four categories: 1) Replay-based methods in-
corporate a portion of the pre-training data into
the fine-tuning data for training (Scialom et al.,
2022; Huang et al., 2024). 2) Regularization-based
methods introduce additional penalty terms in the
loss function, encouraging the fine-tuned model to
remain close to the pre-trained model (Lin et al.,
2023; Panigrahi et al., 2023). 3) Weight-based
methods introduce parameter weight coefficients to
regulate their updates (Ke et al., 2023; Zhang et al.,
2024). 4) Architecture-based methods design addi-
tional modules outside of the original model (Wang
et al., 2023; Hu et al., 2021). Although these meth-
ods can alleviate the forgetting problem to a certain
extent, they still have the following limitations: 1)
The methods that assume a certain amount of pre-
training data can be obtained are unrealistic in prac-
tical applications because many open-source LLMs
have not released their pre-training data. 2) Even if
pre-training data could be obtained, incorporating it
into the fine-tuning process would significantly in-
crease training costs. (Ke et al., 2023; Zhang et al.,
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2024). 3) Methods that alter the training process or
model architecture make the training process more
difficult to control. Moreover, in practice, adapting
to downstream tasks often requires adjusting dif-
ferent hyperparameters of the method. Since this
involves fine-tuning, it can also introduce signifi-
cant time and computational costs.

These limitations raise the following question:
Can we solve the problem of catastrophic forget-

ting without changing training process, without
any additional data, and without altering model
structure?

Recent research has highlighted two key find-
ings: 1) There are a significant number of redun-
dant parameters in LLMs (Yadav et al., 2024). 2)
The task vector specifies a direction in the weight
space of the pre-trained model and moving towards
its direction can improve task performance (Ilharco
et al., 2022). These findings suggest that we can
prune portions of the task vector’s parameters and
set them to zero. By doing so, the correspond-
ing positions of the pre-trained model’s parameters
are exposed, potentially preserving the accuracy
of downstream tasks while mitigating CF to some
extent. To this end, we first try to apply existing
pruning methods to prune the task vector to al-
leviate CF. Unfortunately, we find it challenging
to strike an optimal balance between maintaining
downstream task accuracy and mitigating CF using
existing pruning techniques alone (Han et al., 2015;
Sun et al., 2023). Specifically, pruning the task
vector with a low sparsity ratio fails to effectively
mitigate CF, whereas pruning with a high sparsity
ratio results in poor downstream task accuracy. We
find that there are two main reasons for this prob-
lem: 1) The existing pruning criteria only ensure
the balance between downstream task accuracy and
sparsity, while not considering CF. 2) The extent
to which the values of task vectors overlap with
pre-trained model parameters is a critical factor
contributing to CF.

In this paper, we propose a new pruning method
called Forgetting-Aware Pruning Metric (FAPM).
FAPM not only applies magnitude as the pruning
criterion for task vectors but also uses the ratio
of task vectors to pre-trained model parameters
as the criterion for mitigating CF. By adopting
FAPM, we aim to identify, during the pruning pro-
cess, those parameters in the task vector whose
values are large (crucial for maintaining the ac-
curacy of downstream tasks) and we concurrently
intend to penalize those parameters where the ra-

tio of their magnitude in the task vector to that
of the corresponding parameter in the pre-trained
model is notably high (more likely to induce CF).
This balanced approach aspires to surgically retain
the most valuable parameters for task performance
while excising those that pose the greatest risk to
the model’s generality. Overall, FAPM does not
require any modifications to the training pro-
cess or model architecture, nor does it need ad-
ditional data. Furthermore, the implementation of
FAPM is straightforward and efficient, allowing it
to be completed in a very short time.

Extensive experiments on different LLMs and
various datasets show that FAPM can maintain
a downstream task accuracy of up to 99.67%
while the degree of CF is only 0.25%. Com-
pared to structure-based strategies, such as LoRA,
FAPM achieves superiority in precision and forget-
ting rate. Our experiments primarily focus on
full fine-tuning; however, it is surprising that
when LoRA fine-tuning leads to CF, FAPM can
also effectively mitigate this issue. In the paper,
we primarily explore mitigating the phenomenon of
forgetting in pre-trained models during fine-tuning.
Further experiments demonstrate that FAPM con-
tinues to be effective in alleviating forgetting during
sequential fine-tuning.

2 Analysis of Catastrophic Forgetting

2.1 Background

Problem Setting. Given downstream data D and
a pre-trained model, we fine-tune the model using
D. Let the pre-trained model parameters be Wpre

and the fine-tuned model parameters be Wft. In
this paper, we perform a series of operations on the
task vector. Following previous work (Ilharco et al.,
2022), the task vector ∆W ∈ Rd can be defined as
Wft −Wpre. This operation allows us to focus on
the changes that occur during the fine-tuning stage.

Pruning on the task vector to mitigate CF.
We begin by mitigating CF using existing prun-
ing methods to prune the task vector according to
their magnitude (Han et al., 2015). The red lines
in Figure 2 show how performance changes with
different sparsity ratios on the RTE and MRPC
datasets. At each sparsity level, only the top-k%
highest-magnitude values are retained, and others
are set to zero. Green lines illustrate the impact of
sparsity on general task performance, particularly
CF, where higher accuracy means less forgetting.
Results indicate many task vector values are redun-
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(a) The original accuracy on RTE is 0.890 and the
original average accuracy on general tasks is 0.6204.
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(b) The original accuracy on MRPC is 0.887 and the
original average accuracy on general tasks is 0.6204.

Figure 2: The relationship between the magnitude pruning sparsity ratio, general capability, and downstream task
performance of Llama3-8B on (a) RTE and (b) MRPC, respectively. When sparsity is below 90%, downstream task
performance remains relatively stable, but CF is notably serious (general task performance is poor). When sparsity
exceeds 90%, increasing sparsity alleviates CF effectively, but significantly reduces downstream task performance.
We also observed the same phenomenon on Qwen2-7B, see Appendix F.

dant, with task accuracy unaffected even at 90%
sparsity. This implies that when the pruned ∆W is
combined with Wpre, 90% of Wpre parameters are
utilized. However, downstream performance dete-
riorates beyond 90% sparsity while CF is further
reduced. This highlights the challenge in balancing
task performance and CF reduction with magnitude
pruning of ∆W and raises a pertinent question:

What additional factors, beyond ∆W itself,
could also affect the balance between maintaining
downstream task accuracy and mitigating CF?

2.2 Exploration and Analysis
Theoretical analysis. To answer the above ques-
tion, we begin by analyzing the factors that cause
CF. Considering that the finetuned model can
be expressed as Wft = Wpre + ∆W , previous
works (Wortsman et al., 2021; Kirkpatrick et al.,
2017; Panda et al., 2024) mainly focus on ∆W
when analyzing CF, and typically mitigate CF by
constraining or modifying ∆W . However, these
works often overlook the role of Wpre and the inter-
play between Wpre and ∆W . Given that the final
model is a combination of both components, we ar-
gue that their relationship plays a critical role in de-
termining the trade-off between task performance
and knowledge retention. Consider a simple but
illustrative case: if ∆W = 0, then Wft = Wpre,
resulting in no CF, since the model remains un-
changed from its pre-trained state. Conversely,
large deviations from Wpre are more likely to dis-
rupt previously acquired knowledge. Therefore, the
magnitude of ∆W relative to Wpre significantly af-
fects the extent of CF.

We further decompose the fine-tuned model
weights as Wft = Wpre + ∆W = Wpre ·(
1 + ∆W

Wpre

)
, the term 1 + ∆W

Wpre
can be interpreted

as a coefficient matrix that reflects the relative
change in each parameter of Wpre induced dur-
ing the fine-tuning process. As Wpre itself can not
cause CF, this decomposition highlights that CF
may be more closely related to the last term ∆W

Wpre
.

Intuitively, for a given parameter, a larger value of
| ∆W
Wpre
| indicates a more significant deviation from

the pre-trained state, which is more likely to dis-
rupt previously acquired knowledge. We refer to
this quantity as the relative change magnitude. In
contrast to the commonly used absolute change
magnitude criterion (which considers only |∆W |),
the relative change magnitude explicitly accounts
for the interplay between ∆W and Wpre. There-
fore, modeling this relationship for CF enables a
more principled identification of parameters that
are most influential in preserving pre-training per-
formance.

Empirical analysis. In Figure 3, we illustrate the
differences in attention to various positions within
the model weight matrices across different layers,
guided by the absolute change magnitude crite-
rion and the relative change magnitude criterion.
Brighter regions in the figure represent parame-
ters with higher scores under a specific criterion,
while darker regions denote parameters with lower
scores. Under the absolute change magnitude cri-
terion, the highlighted areas indicate parameters
crucial for downstream task accuracy. In contrast,
under the relative change magnitude criterion, the
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Figure 3: Visualization of the weight matrices in different layers of Llama3-8B fine-tuned on RTE dataset. From left
to right, they represent the magnitude of the pre-trained model weights, the absolute change magnitude of model
weights, the relative change magnitude of model weights, and a combination of the absolute and relative change
magnitude. The absolute and relative changes patterns show clear differences, such as the channels marked by the
red boxes.

highlighted regions indicate parameters important
for mitigating forgetting.

By comparing the images in the middle two
columns, we observe a significant divergence in
scoring patterns between the absolute change mag-
nitude criterion and the relative change magnitude
criterion. The highlighted areas under the absolute
change magnitude criterion do not entirely corre-
spond to those under the relative change magnitude
criterion. This discrepancy indicates that parame-
ters retained under the absolute change magnitude
criterion may not be effective in mitigating catas-
trophic forgetting. This also explains why it is
difficult to balance downstream task accuracy and
forgetting when using |∆W | as the pruning crite-
rion alone. To achieve a more favorable balance
between downstream task accuracy and CF, we pro-
pose a hybrid pruning criterion that incorporates
both the absolute change magnitude and relative
change magnitude. This combined criterion fuses
the strengths of both individual criteria and exhibits
a distinct pattern that differs from using either cri-
terion in isolation as shown in the rightmost part of

Figure 3.

3 FAPM: Forgetting-Aware Pruning
Metric

Consider a linear layer in ∆W with weights ∆W i

of shape (Cin, Cout), corresponding to the linear
layer representation W i

pre in Wpre. We propose
to evaluate each weight matrix’s importance by
subtracting the relative change magnitude criterion
from the absolute change magnitude criterion, as
shown in Figure 4. Our pruning criterion for ∆W i

is formulated as:

Si = |∆W i| − |W i
pre|avg

|∆W i|
|W i

pre|
(1)

where |·| denotes the absolute value operation, and
avg represents the averaging operation on the pa-
rameter matrix. i denotes one of the matrices in the
∆W parameter matrix. We included |W i

pre|avg in
the formula due to our observations during practical
operations. We found that the numerical values of
|∆W i|
|W i

pre| and |∆W i| do not fall within the same range.

For instance, the order of magnitude of |∆W i|
|W i

pre| is
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Figure 4: Illustration of pruning with FAPM. If |∆W i| is large (it will be retained by magnitude pruning) and
|∆W i|
|W i

pre| is also large, FAPM will penalize and possibly prune this parameter, e.g., the value 1.1 in the middle of
∆W . By doing so, most large-magnitude parameters in ∆W are retained, while only a small subset are replaced by
parameters with smaller |∆W i|

|W i
pre| values.

approximately 1× 10−2, whereas that of |∆W i| is
around 1 × 10−4. This will lead one criterion to
predominate over the other, weakening the impact
of the other. Therefore, to balance the numerical
values of |∆W i|

|W i
pre| and |∆W i|, we have introduced

|W i
pre|avg.
Our FAPM has several intriguing properties.

Firstly, when the value of a parameter in |∆W i|
is large (indicating that the parameter would typ-
ically be retained according to traditional magni-
tude pruning criteria) and simultaneously, |∆W i|

|W i
pre|

is also large (suggesting that this parameter may
contribute to catastrophic forgetting), the FAPM
pruning strategy will penalize and potentially prune
this parameter. Under the FAPM criteria, to ensure
downstream task accuracy, most parameters with
large magnitudes will still be retained, while only
a small subset will be replaced by parameters with
smaller |∆W i|

|W i
pre| values. Secondly, the computation

of FAPM is both simple and efficient. We only
need to obtain the fine-tuned and pre-trained model
parameters, eliminating the need for additional data.
The computational overhead associated with this
method is minimal, enhancing the generalizability
of FAPM. We provide the pseudocode implementa-
tion of FAPM in Appendix A.

4 Experiment Setup

Datasets and Setting: We evaluate FAPM on
Llama3-8B (Dubey et al., 2024) and Qwen2-
7B (Yang et al., 2024a). Following prior stud-
ies (Yadav et al., 2024; Wu et al., 2024; Han et al.,
2024), we evaluate models’ specialized perfor-
mance across four tasks: natural language infer-

ence, question answering, cloze tests, and read-
ing comprehension. We utilize the MRPC (Wang
et al., 2019) and RTE (Wang et al., 2019) datasets
for natural language inference, with accuracy as
the evaluation metric. For question answering, we
employ the WikiQA (Yang et al., 2015), QASC
(Khot et al., 2020), MedQA (Jin et al., 2021),
and MetaMathQA (Yu et al., 2023). For the
first three datasets, we used ROUGE-L as the
evaluation metric, and for MetaMathQA, we used
GSM8K (Cobbe et al., 2021) as the evaluation
dataset. We use the Winogrande dataset (Sak-
aguchi et al., 2021) for cloze tests, measuring per-
formance with accuracy. Lastly, we utilize the
SQuAD dataset (Rajpurkar et al., 2016) for reading
comprehension, with the F1-score as the evaluation
metric. To evaluate the generality of LLMs, we in-
tegrate insights from previous studies (Dubey et al.,
2024; Yang et al., 2024a) and focus on four key
aspects. We use MMLU (Hendrycks et al., 2021)
to assess the inherent world knowledge stored in
the LLM, C-Eval (Huang et al., 2023) to evaluate
the model’s understanding of general knowledge in
Chinese, GSM8K (Cobbe et al., 2021) to evaluate
mathematical reasoning, and HumanEval (Chen
et al., 2021) to assess the code generation capabili-
ties. The setup of our experimental process can be
found in Appendix B.1.

Compared Methods We compared FAPM with
the full-parameter SFT (Full SFT) and five CF
baselines, which are described in detail in Ap-
pendix B.2. These baselines are carefully cat-
egorized into three groups: 1) Regularization-
based: The chosen baseline for comparison is the
L1 regularization (Kirkpatrick et al., 2017). 2)
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Tasks Methods
Llama3-8B Qwen2-7B

C-Eval GSM8K MMLU HumanEval Avg. Results C-Eval GSM8K MMLU HumanEval Avg. Results

RTE

Pre-trained 0.4386 0.7922 0.6594 0.5914 0.6204 0.819 0.7478 0.8180 0.6884 0.7682 0.7556 0.574
Full SFT 0.2311 0.075 0.2554 0.0 0.1403 0.890 0.2602 0.075 0.2423 0.0 0.1443 0.890

L1-reg 0.3735 0.7353 0.6012 0.5367 0.5616 0.843 0.7108 0.7463 0.6143 0.7118 0.6958 0.847
WiSE-FT 0.3046 0.4420 0.4255 0.5609 0.4332 0.889 0.7488 0.7664 0.4638 0.7682 0.6868 0.888

V-SoftMask 0.4144 0.7811 0.5702 0.4919 0.5644 0.886 0.7317 0.7371 0.6448 0.7111 0.7062 0.896
CoFiTune 0.4542 0.7869 0.6492 0.5815 0.6180 0.882 0.7591 0.8125 0.6808 0.7560 0.7521 0.886

LoRA 0.4435 0.7892 0.6574 0.5915 0.6204 0.866 0.7456 0.8133 0.6897 0.7500 0.7496 0.877
FAPM (Ours) 0.4623 0.7915 0.6454 0.5975 0.6242 0.897 0.7568 0.8104 0.6857 0.7500 0.7507 0.903

WikiQA

Pre-trained 0.4386 0.7922 0.6594 0.5914 0.6204 0.913 0.7478 0.8180 0.6884 0.7682 0.7556 0.896
Full SFT 0.2547 0.0 0.2422 0.0 0.1242 0.966 0.2510 0.076 0.2434 0.0 0.1426 0.965

L1-reg 0.4271 0.7591 0.5780 0.5549 0.5797 0.945 0.6818 0.7582 0.6186 0.7091 0.6919 0.955
WiSE-FT 0.2581 0.0 0.2458 0.0 0.1259 0.958 0.2476 0.0 0.2414 0.0 0.1222 0.961

V-SoftMask 0.2944 0.7282 0.5677 0.2910 0.4703 0.963 0.6862 0.6585 0.5331 0.6759 0.6384 0.962
CoFiTune 0.4164 0.7702 0.6309 0.5666 0.5960 0.960 0.7527 0.7755 0.6358 0.7195 0.7208 0.961

LoRA 0.4423 0.8013 0.6429 0.5919 0.6196 0.955 0.7519 0.8019 0.6873 0.7621 0.7507 0.960
FAPM (Ours) 0.4749 0.7975 0.6563 0.5853 0.6285 0.964 0.7555 0.8036 0.6902 0.7621 0.7529 0.962

Winogrande

Pre-trained 0.4386 0.7922 0.6594 0.5914 0.6204 0.519 0.7478 0.8180 0.6884 0.7682 0.7556 0.558
Full SFT 0.2792 0.0606 0.3438 0.0 0.1709 0.820 0.4090 0.0303 0.2996 0.0609 0.1999 0.790

L1-reg 0.4234 0.7572 0.6245 0.5667 0.5904 0.737 0.7283 0.7609 0.6401 0.7277 0.7143 0.703
WiSE-FT 0.4741 0.4412 0.5967 0.5060 0.5045 0.830 0.6747 0.5343 0.5821 0.5914 0.5956 0.780

V-SoftMask 0.4089 0.7017 0.5528 0.5003 0.5409 0.828 0.7321 0.7098 0.6241 0.6861 0.6880 0.791
CoFiTune 0.4719 0.7817 0.6410 0.5743 0.6172 0.813 0.7550 0.7990 0.6820 0.7500 0.7465 0.771

LoRA 0.4522 0.7822 0.6429 0.5775 0.6137 0.810 0.7430 0.8118 0.6761 0.7500 0.7452 0.782
FAPM (Ours) 0.4829 0.7680 0.6472 0.5731 0.6178 0.824 0.7618 0.8068 0.6845 0.7395 0.7482 0.785

SQuAD

Pre-trained 0.4386 0.7922 0.6594 0.5914 0.6204 0.371 0.7478 0.8180 0.6884 0.7682 0.7556 0.451
Full SFT 0.2806 0.0212 0.3206 0.0 0.1556 0.646 0.3531 0.0212 0.3183 0.0 0.1731 0.624

L1-reg 0.3990 0.6605 0.5800 0.5113 0.5377 0.565 0.6481 0.6614 0.5883 0.6681 0.6414 0.561
WiSE-FT 0.4309 0.4009 0.5484 0.5102 0.4725 0.639 0.6784 0.5743 0.5868 0.5524 0.5979 0.622

V-SoftMask 0.3757 0.0786 0.4755 0.5013 0.3578 0.635 0.6369 0.5881 0.5933 0.6451 0.6159 0.624
CoFiTune 0.4319 0.7596 0.6356 0.5766 0.6009 0.633 0.7451 0.7626 0.6584 0.7621 0.7321 0.619

LoRA 0.4795 0.7255 0.5914 0.5853 0.5954 0.648 0.7253 0.7665 0.6537 0.7482 0.7234 0.620
FAPM (Ours) 0.4738 0.7310 0.6455 0.5748 0.6063 0.637 0.7410 0.8006 0.6752 0.7500 0.7417 0.615

MedQA

Pre-trained 0.4386 0.7922 0.6594 0.5914 0.6204 0.552 0.7478 0.818 0.6884 0.7682 0.7556 0.531
Full SFT 0.3315 0.4897 0.5365 0.4434 0.4502 0.636 0.6920 0.7293 0.6343 0.6463 0.6754 0.613

L1-reg 0.4040 0.7511 0.6464 0.5291 0.5826 0.606 0.6938 0.7802 0.6837 0.6955 0.7133 0.567
WiSE-FT 0.3976 0.6847 0.6049 0.4628 0.5375 0.647 0.6248 0.7083 0.6493 0.6111 0.6483 0.607

V-SoftMask 0.3940 0.7287 0.6048 0.5279 0.5638 0.641 0.6738 0.7802 0.6474 0.6805 0.6954 0.606
CoFiTune 0.4338 0.7560 0.6575 0.5639 0.6028 0.640 0.7488 0.8191 0.6971 0.7656 0.7576 0.604

LoRA 0.4216 0.7089 0.5889 0.5409 0.5650 0.640 0.7072 0.7527 0.6404 0.7256 0.7064 0.589
FAPM (Ours) 0.4586 0.7733 0.6638 0.5731 0.6172 0.643 0.7346 0.8241 0.6935 0.7412 0.7484 0.613

Table 1: Results on various datasets on Llama3-8B and Qwen2-7B models with full parameter Fine-tuning. "Avg."
means the average results across the C-Eval, GSM8K, MMLU, HumanEval datasets. Results indicate the accuracy
on the different downstream task datasets. The bold and underlined data represent the best and second-best results,
respectively. The experimental results for the other three datasets can be found in Appendix C.

Weight-based: The selected baselines include V-
SoftMask (Ke et al., 2023),WiSE-FT (Wortsman
et al., 2021), and CoFiTune (Zhang et al., 2024). 3)
Architecture-based: The baseline under this cate-
gory is LoRA (Hu et al., 2021).

5 Results

In this section, we aim to investigate the effec-
tiveness of the FAPM. The evaluation focuses on
downstream tasks’ performance and generalization
ability metrics, using the performance of Full SFT
and the pre-trained models as reference points.

Due to space limitations in the main paper,
we present two additional experiments in the ap-
pendix:

1) We explore the performance of FAPM under
different sparsity ratios. The experimental results
are shown in Appendix D.

2) We investigate the relationship between var-
ious unstructured pruning criteria and CF to ex-
plain why FAPM is improved based on Magnitude
Pruning rather than the SOTA LLM pruning meth-
ods. The results can be found in Appendix E.

5.1 Comparison with Various Baselines

In Tables 1, we present the comparative results of
FAPM and various baselines on different datasets.
The results indicate that Full SFT exhibits signifi-
cant forgetting on Llama3-8B, with average accu-
racy on general datasets maintaining only around
0.15. This indicates that the fine-tuned model loses
almost all generalization capability, demonstrating
that full fine-tuning severely exacerbates CF. On the
Llama3-8B model, FAPM achieves an average per-
formance of 0.814 on eight downstream datasets,
compared to Full SFT’s 0.816, a decrease of only
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Tasks Pruning Rate
Llama3-8B Qwen2-7B

C-Eval GSM8K MMLU HumanEval Avg. Results C-Eval GSM8K MMLU HumanEval Avg. Results

SQuAD

0% 0.4795 0.7255 0.5914 0.5853 0.5954 0.648 0.7253 0.7665 0.6537 0.7482 0.7234 0.620
3% 0.4591 0.7801 0.6511 0.5914 0.6204 0.644 0.7359 0.8225 0.6852 0.7621 0.7514 0.621
10% 0.4502 0.7862 0.6552 0.5914 0.6207 0.616 0.7466 0.8195 0.6869 0.7560 0.7522 0.618
90% 0.4435 0.8013 0.6594 0.5853 0.6223 0.456 0.7447 0.8180 0.6884 0.7517 0.7507 0.579

MedQA

0% 0.4216 0.7089 0.5889 0.5409 0.5650 0.640 0.7072 0.7527 0.6404 0.7256 0.7064 0.589
3% 0.4592 0.7807 0.6484 0.5731 0.6154 0.632 0.7478 0.8111 0.6776 0.7651 0.7504 0.589
10% 0.4540 0.7807 0.6439 0.5875 0.6165 0.623 0.7588 0.8101 0.6824 0.7661 0.7544 0.571
90% 0.4544 0.7899 0.6590 0.5914 0.6236 0.588 0.7472 0.8137 0.6804 0.7756 0.7542 0.557

Table 2: Results of FAPM on various datasets and different models using LoRA Fine-tuning.

Sparsity Ratios
Dataset

Winogrande (Magnitude) Winogrande (|∆W |/|Wpre|) WikiQA (Magnitude) WikiQA (|∆W |/|Wpre|)
90% 0.6178 0.5936 0.6206 0.6014
80% 0.6119 0.5542 0.6135 0.5569
70% 0.5953 0.5001 0.6007 0.5387
60% 0.5882 0.4267 0.5735 0.4477
50% 0.5768 0.3548 0.5345 0.4089

Table 3: Results of the relationship between relative change magnitude and CF. We pruned |∆W | by removing
portions with small values of |∆W |/|Wpre| and compared the results with magnitude-based pruning. The above
results are the average accuracy across four general datasets.

0.25%, indicating that FAPM has minimal impact
on downstream task performance. Furthermore,
FAPM’s average performance on the general tasks
is 0.6112 (0.6132 for the Pre-trained model), a de-
crease of only 0.33% compared to the Pre-trained
model, demonstrating that FAPM significantly al-
leviates CF. Similar trends are observed with the
Qwen2-7B model.

Compared to L1-regularization, FAPM demon-
strates a stronger ability to preserve downstream
task accuracy and better addresses CF. Specifically,
for the Llama3-8B model, L1-regularization results
in an average performance drop of 5.99% across
eight downstream datasets. While both LoRA and
FAPM similarly mitigate CF, LoRA slightly com-
promises downstream task accuracy, particularly
on the MRPC and RTE datasets. V-SoftMask ex-
cels in preserving downstream task accuracy but
performs poorly in addressing CF, with an aver-
age performance drop of 10.92% on general tasks.
Compared to the CoFiTune method, FAPM also
demonstrates comparable performance. Overall,
FAPM shows strong performance when compared
to existing regularization-based, weight-based, and
architecture-based methods.

5.2 Effectiveness for LoRA Fine-tuning

According to Table 1, we observed a trend of CF
when applying LoRA fine-tuning on the MedQA
and SQuAD datasets. We conducted further ex-
periments to validate the effectiveness of FAPM
in LoRA fine-tuning. The original FAPM defines

the task vector as Wft − Wpre. In LoRA fine-
tuning, the initialization of LoRA weights is not
based on the pre-trained model weights. There-
fore, the original definition of task vectors cannot
be directly applied to LoRA fine-tuning. Here we
edit the original FAPM to fit LoRA fine-tuning.
In LoRA fine-tuning, we can merge LoRA pa-
rameters with the pre-trained model parameters
as Wnew = Wpre+WloraBWloraA, where WloraB

and WloraA are LoRA matrices. Merging the LoRA
parameters with the pre-trained model parameters
involves the dot product of the WloraB and WloraA

matrices and then addition to the pre-trained model
weights. Therefore, we can treat WloraBWloraA as
the task vectors in our algorithm for pruning. That
is, ∆W in Eq.1 is WloraBWloraA. From Table 2,
we can see that FAPM effectively alleviates CF to a
mere 0.6% while maintaining an impressive 99.5%
accuracy on downstream tasks in both datasets. Ta-
ble 2 also reveals that the pruning ratio in LoRA
fine-tuning needs to be relatively small to avoid sig-
nificant performance degradation in downstream
tasks. We speculate that this is mainly because the
LoRA matrices WloraBWloraA are low-rank, and
thus contain relatively few redundant parameters.

5.3 Exploration relationship between relative
change magnitude and CF

In Table 3, we conducted experiments to analyze
the relationship between |∆W |/|Wpre| and CF. We
pruned |∆W | by removing portions with small val-
ues of |∆W |/|Wpre| and compared the results with
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Datasets Original CF FAPM (Ours)

RTE 0.890 0.652 0.878
WikiQA 0.961 0.961 0.958

Table 4: The effectiveness of FAPM in sequential train-
ing. The model used is Llama3-8B, with the order of
tasks being RTE, WikiQA.

Datasets Original CF FAPM (Ours)

RTE 0.890 0.716 0.882
Winogrande 0.812 0.812 0.805

Table 5: The effectiveness of FAPM in sequential train-
ing with the order of tasks being RTE, Winogrande.

magnitude-based pruning. Experiments were per-
formed on Llama3-8B using the Winogrande and
WikiQA datasets. When retaining the same propor-
tion of parameters, the pruning strategy based on
|∆W |/|Wpre| is more likely to cause CF, indicat-
ing that using |∆W |/|Wpre| to evaluate different
parameters is more effective in identifying those
that are subject to forgetting. This reveals a strong
relationship between |∆W |/|Wpre| and CF. When
the sparsity rate is set at 50%, the magnitude-based
pruning performance remains around 0.55, while
|∆W |/|Wpre|-based pruning approximately 0.4.

5.4 Effectiveness for Sequential Fine-tuning
In the paper, we primarily explore the ability of
pre-trained models to forget after fine-tuning. How-
ever, readers may also be concerned about whether
FAPM is effective in multi-task sequential train-
ing. The phenomenon of forgetting in multi-task
sequential training refers to the loss of learned capa-
bilities from prior tasks while learning the current
one during sequential task training. For example,
if a model is fine-tuned using dataset A and then
further fine-tuned using dataset B, it may forget the
capabilities learned from dataset A. To demonstrate
the effectiveness of FAPM in multi-task sequential
training, we conducted experiments using three
datasets: RTE, WikiQA, and Winogrande. The
results are presented in Table 4 and 5. The "Orig-
inal" column shows the model accuracy for each
sequential training session, while "CF" refers to the
accuracy of each task after multi-task sequential
training, which can lead to catastrophic forgetting
(CF). The findings indicate that our method remains
effective in multi-task sequential training.

6 Related Work

Catastrophic Forgetting in LLMs. Fine-tuning
LLMs, a common practice to enhance model spe-

cialization, often leads to CF. (Luo et al., 2023).
Existing approaches to mitigate CF can be broadly
categorized into four main categories: 1) Replay-
based methods (Huang et al., 2024) typically in-
tegrate some pre-training data into the fine-tuning
dataset for training. 2) Regularization-based meth-
ods (Lin et al., 2023) introduce additional penalty
terms in the loss function, encouraging the fine-
tuned model to maintain proximity to the pre-
trained model. 3) Weight-based methods (Zhang
et al., 2024) introduce parameter weight coeffi-
cients to modulate their updates, thereby ensuring
controlled adjustments during the optimization pro-
cess. 4) Architecture-based methods (Wang et al.,
2023; Hu et al., 2021) involve the design of addi-
tional modules external to the original model.

LLM Pruning. Network pruning (LeCun et al.,
1989) is considered a popular approach for com-
pressing LLMs, which shrinks model sizes by re-
moving specific weights. Magnitude Pruning (Han
et al., 2015) removes individual weights based on
their magnitudes, where weights with magnitudes
below a certain threshold are removed. Recent
LLM pruning methods typically involve calculating
pruning metrics according to model weights and
activations by using some additional data. Wanda
(Sun et al., 2023) prunes weights with the smallest
magnitudes multiplied by the norm of the corre-
sponding input activations, without the need for
retraining or weight updates. All these methods
aim to reduce the model parameters while main-
taining model performance. Different from this, in
this paper, we intend to achieve a better balance
mitigating CF and improving downstream accuracy
by pruning task vectors in LLM fine-tuning.

7 Conclusion

In this study, we present a straightforward and effi-
cient method to tackle the issue of CF that emerges
during the continuous fine-tuning of LLMs. We
find that the extent to which task vectors overlap
with the pre-trained model parameters is a key fac-
tor influencing CF. Based on this observation, we
propose FAPM to effectively address CF while pre-
serving the performance of the fine-tuning tasks.
FAPM integrates the ratio of the task vector to the
pre-trained model parameters as a criterion, com-
bining it with the magnitude-based pruning metric.
It does not require any additional auxiliary data,
nor does it necessitate alterations to the training
process or model structure.
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Limitations

While FAPM demonstrates promising performance,
we did not investigate its integration with existing
CF techniques to address the problem of forget-
ting. Specifically, our FAPM is a post-processing
method, whereas most existing methods for miti-
gating CF are training-based. In theory, these two
approaches can be combined; however, determin-
ing how to maximize the synergistic effects of such
a combination remains an important direction for
future research.
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Tasks Methods
Llama3-8B Qwen2-7B

C-Eval GSM8K MMLU HumanEval Avg. Results C-Eval GSM8K MMLU HumanEval Avg. Results

MathQA

Pre-trained 0.4386 - 0.6594 0.5914 0.5631 0.792 0.7478 - 0.6884 0.7682 0.7347 0.818
Full SFT 0.3101 - 0.4411 0.1890 0.3133 0.818 0.5528 - 0.6056 0.1890 0.4491 0.828

L1-reg 0.3974 - 0.5955 0.5360 0.5096 0.788 0.7043 - 0.6217 0.7102 0.6787 0.806
WiSE-FT 0.3648 - 0.5476 0.4609 0.4577 0.808 0.6865 - 0.5887 0.7030 0.6594 0.842

V-SoftMask 0.3963 - 0.5715 0.5483 0.5053 0.810 0.6835 - 0.6171 0.6766 0.6590 0.851
CoFiTune 0.4449 - 0.6409 0.5711 0.5523 0.805 0.7549 - 0.6763 0.7492 0.7268 0.848

LoRA 0.4651 - 0.6575 0.5609 0.5611 0.809 0.7499 - 0.6822 0.7478 0.7266 0.826
FAPM (Ours) 0.4697 - 0.6447 0.5729 0.5624 0.812 0.7374 - 0.6899 0.7560 0.7278 0.851

MRPC

Pre-trained 0.4386 0.7922 0.6594 0.5914 0.6204 0.686 0.7478 0.8180 0.6884 0.7682 0.7556 0.765
Full SFT 0.2603 0.0 0.2483 0.0 0.1271 0.887 0.2598 0.0 0.2481 0.0 0.1269 0.914

L1-reg 0.4062 0.7470 0.6200 0.5434 0.5766 0.821 0.7136 0.7779 0.6261 0.7171 0.7086 0.823
WiSE-FT 0.3382 0.7012 0.5528 0.4660 0.5145 0.878 0.6564 0.6119 0.5551 0.6027 0.6065 0.886

V-SoftMask 0.4200 0.7474 0.5229 0.5122 0.5506 0.878 0.7418 0.6933 0.6095 0.6901 0.6836 0.889
CoFiTune 0.4513 0.7863 0.6382 0.5821 0.6145 0.874 0.7612 0.8036 0.6795 0.7317 0.7440 0.889

LoRA 0.4546 0.7890 0.6506 0.5936 0.6210 0.846 0.7468 0.8125 0.6873 0.7439 0.7476 0.873
FAPM (Ours) 0.4662 0.7711 0.6410 0.5791 0.6144 0.882 0.7564 0.7938 0.6837 0.7682 0.7505 0.892

QASC

Pre-trained model 0.4386 0.7922 0.6594 0.5914 0.6204 0.630 0.7478 0.8180 0.6884 0.7682 0.7556 0.701
Full SFT 0.4284 0.0379 0.5115 0.0121 0.2474 0.864 0.5876 0.0470 0.5445 0.2621 0.3603 0.866

L1-reg 0.4133 0.7744 0.6119 0.5507 0.5875 0.802 0.7300 0.7813 0.6453 0.7091 0.7164 0.781
WiSE-FT 0.4332 0.4766 0.5367 0.5009 0.4868 0.858 0.6641 0.5510 0.5776 0.5549 0.5869 0.851

V-SoftMask 0.4372 0.7245 0.5922 0.5781 0.5830 0.853 0.7452 0.7636 0.6388 0.7195 0.7167 0.857
CoFiTune 0.4836 0.7919 0.6457 0.5992 0.6301 0.835 0.7744 0.8006 0.6778 0.7500 0.7507 0.848

LoRA 0.4833 0.7930 0.6471 0.5731 0.6241 0.856 0.7677 0.8218 0.6872 0.7134 0.7475 0.855
FAPM (Ours) 0.4836 0.7983 0.6326 0.5914 0.6265 0.863 0.7679 0.8157 0.6815 0.7500 0.7538 0.851

Table 6: Supplementary results on various datasets on Llama3-8B and Qwen2-7B models with full parameter
Fine-tuning. "MathQA" refers to "MetaMathQA". Since both MathQA and GSM8K are mathematical datasets, we
do not report the GSM8K performance of the model trained on MathQA.

A Pseudocode for FAPM

In this section, we describe the pseudocode for
FAPM. A detailed introduction to FAPM can be
found in Section 3 of the main paper.

Algorithm 1 FAPM Procedure
Ensure: pre-trained model Wpre, fine-tuned

model Wft, layer number L, desired sparsity
s.

Require: pruned W i
ft.

for i ∈ [0, L] do
∆W i = W i

ft −W i
pre.

Calculate score vector Si ← |∆W i| −
Avg(|W i

pre|) ∗ |∆W i|
|W i

pre| .

Obtain pruning threshold ti according to s
and Si.

Obtain pruning mask matrix M i = 1[[Si >
ti]].

∆W i ← ∆W i ⊙M i.
W i

ft = W i
pre + ∆W i.

end for

B Supplementary Experimental Setup

B.1 Experimental Setting

During training, we set the learning rate to 1e-
5 and the batch size to 64. Each dataset was

trained for 3 epochs. The AdamW optimizer
was used for fine-tuning. We employed LLaMA-
Factory (Zheng et al., 2024) as the training plat-
form and vLLM (Kwon et al., 2023) for inference.
When implementing the FAPM algorithm, we ap-
plied a 90% sparsity rate across all models and
datasets. All experiments are conducted with 4
NVIDIA A100 GPUs with 80G memory.

B.2 Baseline Descriptions

In this Section, we describe the baseline method in
our setting in detail.

L1 regularization (Kirkpatrick et al., 2017) adds
an L1 penalty term to the original loss function to
promote sparsity in the parameter updates. The
modified loss function is L (θ) + λ1∥θ − θpre∥1,
with the regularization hyperparameter set to 1e-6.

Ke et al. (Ke et al., 2023) proposed the Vanilla
Soft-masking method to address the issue of catas-
trophic forgetting in language models during con-
tinual fine-tuning. Specifically, this method em-
ploys a gradient-based detection technique to cal-
culate the importance of units within both the at-
tention and feed-forward network (FFN) modules
across all transformer layers. The obtained impor-
tance weights are then used to control the back-
propagation of gradients.

Wortsman et al. (Wortsman et al., 2021) pro-
posed Wise-FT, which consists of two stages: 1)
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fine-tuning a pre-trained model on the downstream
task, and 2) merging the pre-trained and fine-tuned
models through linear weight interpolation.

Zhang et al. (Zhang et al., 2024) proposed the
CoFiTune method to tackle the issue of catas-
trophic forgetting. CoFiTune employs a two-stage
approach. At the coarse-grained level, an empirical
tree-search algorithm is used to identify and update
specific modules that are crucial for the fine-tuning
task, while keeping other parameters frozen. At
the fine-grained level, a soft-masking mechanism is
employed to adjust the updates of the large model,
thereby alleviating catastrophic forgetting.

Inspired by the perspective that “pre-trained
models have a lower intrinsic dimension when fine-
tuned on specific tasks," Hu et al. (Hu et al., 2021)
proposed a fine-tuning method called LoRA. Dur-
ing the training process of LoRA, the pre-trained
parameters are kept frozen to preserve their general
capabilities, while all the decomposition matrices
within the low-rank matrix are trainable.

C Supplementary experimental results
for the other datasets

In Tables 6, we present the comparative results
of FAPM and various baselines on the other three
datasets. These results indicate that our proposed
FAPM method effectively maintains downstream
task performance while alleviating CF.

D Ablation Studies of Sparsity

In this section, we explore the performance of
FAPM under different sparsity ratios. Figure 5 and
6 show the impact of FAPM on downstream task
accuracy and catastrophic forgetting at different
sparsity ratios on Llama3-8B and Qwen2-7B, re-
spectively. As observed in Figure 2, using |∆W | as
the pruning criterion results in severe catastrophic
forgetting at an 85% sparsity ratio. However, with
the application of FAPM, catastrophic forgetting
is substantially mitigated even at the 85% spar-
sity level. Notably, FAPM continues to alleviate
catastrophic forgetting to some extent at a 55%
sparsity ratio in the QASC and RTE datasets, high-
lighting its effectiveness in preventing catastrophic
forgetting. Moreover, it was observed that down-
stream task accuracy significantly declines when
the sparsity ratio exceeds 90%. Conversely, when
the sparsity ratio is maintained below 90%, the
impact on downstream task accuracy is minimal,
although the incidence of catastrophic forgetting
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Figure 5: Performance of FAPM on downstream task
accuracy and mitigation of catastrophic forgetting with
different sparsity ratios on Llama3-8B.
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Figure 6: Performance of FAPM on downstream task
accuracy and mitigation of catastrophic forgetting with
different sparsity ratios on Qwen2-7B.

gradually increases. These observations suggest
that a 90% sparsity ratio may represent an opti-
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Tasks Methods
Llama3-8B Qwen2-7B

C-Eval GSM8K MMLU HumanEval Avg. Results C-Eval GSM8K MMLU HumanEval Avg. Results

RTE
Magnitude 0.3063 0.6631 0.4052 0.4843 0.4647 0.901 0.7144 0.7346 0.5190 0.6943 0.6655 0.895

Wanda 0.4675 0.7827 0.6465 0.5732 0.6174 0.878 0.7442 0.8025 0.6774 0.7542 0.7445 0.877
FAPM (Ours) 0.4623 0.7915 0.6454 0.5975 0.6242 0.897 0.7568 0.8104 0.6857 0.7500 0.7507 0.903

WikiQA
Magnitude 0.2606 0.0 0.2553 0.0 0.1289 0.964 0.7162 0.0416 0.2560 0.0 0.2535 0.965

Wanda 0.4760 0.7804 0.6432 0.5834 0.6207 0.961 0.7520 0.7793 0.6784 0.7134 0.7307 0.958
FAPM (Ours) 0.4749 0.7975 0.6563 0.5853 0.6285 0.964 0.7555 0.8036 0.6902 0.7621 0.7529 0.962

Winogrande
Magnitude 0.4957 0.6148 0.6236 0.5731 0.5768 0.828 0.6849 0.5056 0.6133 0.5975 0.6003 0.742

Wanda 0.4748 0.7762 0.6508 0.5919 0.6234 0.750 0.7549 0.7915 0.6806 0.5914 0.7046 0.731
FAPM (Ours) 0.4829 0.7680 0.6472 0.5731 0.6178 0.824 0.7618 0.8068 0.6845 0.7395 0.7482 0.785

SQuAD
Magnitude 0.4504 0.1 0.5816 0.1951 0.3318 0.641 0.7189 0.1501 0.6135 0.0976 0.3950 0.588

Wanda 0.4648 0.6686 0.6284 0.3536 0.5288 0.611 0.7315 0.4291 0.6573 0.3170 0.5337 0.533
FAPM (Ours) 0.4738 0.7310 0.6455 0.5748 0.6063 0.637 0.7410 0.8006 0.6752 0.7500 0.7417 0.615

MathQA
Magnitude 0.3812 - 0.4774 0.4314 0.4300 0.818 0.5188 - 0.4361 0.4828 0.4792 0.833

Wanda 0.4417 - 0.6522 0.5625 0.5521 0.800 0.7477 - 0.6714 0.7588 0.7259 0.815
FAPM (Ours) 0.4697 - 0.6447 0.5729 0.5624 0.812 0.7374 - 0.6899 0.7560 0.7278 0.851

MedQA
Magnitude 0.3393 0.4111 0.4818 0.4438 0.4190 0.633 0.5844 0.6771 0.5554 0.6010 0.6044 0.593

Wanda 0.4626 0.7886 0.6519 0.5915 0.6236 0.608 0.7404 0.8114 0.6833 0.7490 0.7460 0.548
FAPM (Ours) 0.4586 0.7733 0.6638 0.5731 0.6172 0.643 0.7346 0.8241 0.6935 0.7412 0.7484 0.590

MRPC
Magnitude 0.3801 0.6100 0.3378 0.4731 0.4502 0.892 0.7412 0.1296 0.2473 0.1768 0.3238 0.911

Wanda 0.4635 0.7845 0.6506 0.5958 0.6236 0.816 0.7458 0.7989 0.6813 0.7482 0.7435 0.826
FAPM (Ours) 0.4662 0.7711 0.6410 0.5791 0.6144 0.882 0.7564 0.7938 0.6837 0.7682 0.7505 0.892

QASC
Magnitude 0.4916 0.7263 0.6053 0.5223 0.5864 0.861 0.7559 0.7760 0.6407 0.7073 0.7199 0.851

Wanda 0.4705 0.7819 0.6456 0.5886 0.6216 0.839 0.7567 0.8072 0.6858 0.7378 0.7468 0.828
FAPM (Ours) 0.4836 0.7983 0.6326 0.5914 0.6265 0.863 0.7679 0.8157 0.6815 0.7500 0.7538 0.851

Table 7: The results of FAPM with different pruning methods on various datasets on Llama3-8B and Qwen2-7B.
The bold and underlined data represent the best and second-best results, respectively.

mal balance, preserving downstream task accuracy
while minimizing catastrophic forgetting.

E Comparative Analysis of Different
Pruning Criteria

One question that needs to be analyzed is why
FAPM is improved based on Magnitude Pruning
instead of the SOTA LLM pruning method. We ex-
amine the application of a straightforward and effi-
cient pruning method, Wanda (Sun et al., 2023), to
mitigate the issue of catastrophic forgetting. Wanda
addresses pruning by removing weights with the
smallest magnitudes, as determined by the product
of the weight magnitudes and the norms of the cor-
responding input activations, thereby preventing
the need for retraining or weight updates, which
is formulated as Sij = |Wij | · ∥Xj∥2. We prune
∆W according to this criterion in our experiments.

Table 7 presents the comparative results of
FAPM and different pruning criteria methods, with
all results using a 90% sparsity ratio. The results
reveal that while Wanda can somewhat mitigate
catastrophic forgetting, it significantly impairs per-
formance on downstream tasks. For example, on
Llama3-8B, Wanda results in an average perfor-
mance decline of 3.6% across eight downstream
datasets when compared to Full SFT, whereas Mag-
nitude Pruning exhibits negligible impact on down-
stream task accuracy. Given the necessity to pre-
serve downstream task accuracy, we opted to use

Magnitude Pruning as our foundational pruning
criterion. Furthermore, Wanda requires a small
amount of calibration data while Magnitude Prun-
ing does not necessitate any auxiliary data. This
further reinforces our decision to select Magnitude
Pruning as the basis for our method.

F More Analysis Results
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Figure 7: Visualization of the weight matrices in different layers of Qwen2-7B fine-tuned on RTE dataset. From left
to right, they represent the magnitude of the pre-trained model weights, the absolute change magnitude of model
weights, the relative change magnitude of model weights, and a combination of the absolute and relative change
magnitude.
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(a) The original accuracy on RTE is 0.890 and the
original average accuracy on general tasks is 0.7556.
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(b) The original accuracy on MRPC is 0.914 and the
original average accuracy on general tasks is 0.7556.

Figure 8: The relationship between the magnitude prun-
ing sparsity ratio, general capability, and downstream
task performance of Qwen2-7B on (a) RTE and (b)
MRPC, respectively.
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