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Abstract

Existing research in multi-hop questions has
identified two reasoning modes: latent reason-
ing and factual shortcuts, but has not deeply in-
vestigated how these modes differ during infer-
ence. This impacts both model generalization
ability and downstream reasoning tasks. In this
work, we systematically examine these distinc-
tions and propose a simple and efficient clas-
sification metric, Attribute Rate Ratio (ARR).
First, we construct specialized datasets corre-
sponding to the two reasoning modes based on
our proposed criteria. Then, using reverse engi-
neering methods, including attention knockout
and logit lens techniques, we reveal that sub-
ject representations differ significantly across
modes: latent reasoning encodes bridge-related
information for final answer extraction, while
factual shortcuts bypass intermediate reasoning
and resemble single-hop factual queries. Fi-
nally, our proposed ARR achieves around 90%
accuracy on our datasets and demonstrates ef-
fectiveness in RAG conflict scenarios, showing
that model behavior under conflicting prompts
is closely tied to its underlying reasoning mode.
Our findings and proposed metric have signifi-
cant potential for advancing LLM development
and applications.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in answering multi-hop
queries, even without explicit contextual informa-
tion(Petty et al., 2024a; Wang et al., 2024). Ideally,
an LLM would systematically infer each interme-
diate single-hop answer implicitly and culminate
in the correct result. However, LLMs often rely
on factual shortcuts learned from pre-training cor-
pora(Dziri et al., 2024; Ju et al., 2024), bypassing
intermediate reasoning to directly predict the final
answer as shown in Figure 1.
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Question:The primary language spoken in the country where 
Machu Picchu is located is __.

Question:The capital city of the country where the Eiffel Tower 
is located is __.
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Figure 1: This figure illustrates two reasoning patterns
in multi-hop questions: latent reasoning and factual
shortcut.

Existing works have identified the two reasoning
patterns mentioned above in such inference pro-
cesses: latent reasoning (Petty et al., 2024b) and
factual shortcuts (Lindsey et al., 2025; Ju et al.,
2024). However, existing research mainly focuses
on evaluating model accuracy for individual steps
(Feng et al., 2025; Jiang et al., 2022) or using Chain
- of - Thought (CoT) (Turpin et al., 2023; Fei et al.,
2023; Lv et al., 2021) to analyze whether the model
engages in reasoning. There is a lack of studies on
the internal mechanisms of the model. Besides,
some studies analyze neuron activations (Lindsey
et al., 2025; Geva et al., 2021; Dai et al., 2022;
Ju et al., 2024) or layer attention scores (van Aken
et al., 2019; Ferrando et al., 2023; Yang et al., 2024)
to examine the contributions of different compo-
nents during inference. However, an efficient and
clear distinction between the internal mechanisms
of the two modes remains elusive.

Such investigation is important and meaning-
ful. Although LLMs have shown impressive per-
formance on certain multi-hop question-answering
datasets, their success may often rely on simple pat-
tern co-occurrence(Elazar et al., 2022) rather than
performing latent intermediate reasoning. This
reliance significantly impacts the model’s gener-
alization ability(Cohen et al., 2024; Onoe et al.,
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2023; Petty et al., 2024b), potentially leading to
substantial performance degradation when applied
to other tasks, such as retrieval-augmented gener-
ation (RAG) (Nakano et al., 2021; Koopman and
Zuccon, 2023) or model editing (Wang et al., 2024;
Cohen et al., 2024).

In our work, we aim to develop a systematic
framework to analyze the information encoding and
transformation processes during inference, further
distinguishing between the two modes efficiently.
To this end, we redefine criteria for the two reason-
ing patterns and construct corresponding datasets
using Wiki-data (Vrandečić and Krötzsch, 2014)
and other human-generated sources (Yang et al.,
2024; Sakarvadia et al., 2023) . Our investigation
focuses on basic two-hop question queries, and we
hypothesize that when the model engages in latent
reasoning, it follows two steps: (1) infers a bridge
entity (e.g., France) and (2) infers the final object,
which is an attribute related to the bridge (e.g., the
capital city of France is Paris).

We investigate this question through analyzing
critical information flow in the inference as shown
in Figure 2. Our first step involves localizing the
critical information nodes that propagate key infor-
mation to the last position for answer prediction.
Specifically, we identify that the subject position
contains decisive information for the final answer.

Then, we interpret the hidden states at the sub-
ject position by mapping them into the vocabulary
space. By analyzing the evolution of vocabulary
probabilities and semantic relevance, we observe
significant differences in the information encoded
by the subject across the two reasoning modes.
While the subject representation enriches related
attribute candidates, latent reasoning uniquely en-
codes bridge-related information, which is absent
in factual shortcuts. To further assess the bridge’s
role in second-hop reasoning, we modify the log-
its distribution of the hidden states to alter their
preferences and reverse-map the changes (Nanda
et al., 2023). Based on our findings, we propose a
simple metric, Attribute Rate Ratio (ARR), which
effectively distinguishes between the two reasoning
modes and achieves around 90% accuracy on our
constructed dataset.

Finally, we apply our proposed ARR metric
to real-world RAG knowledge conflict scenar-
ios (Ying et al., 2024; Chen et al., 2022) on the KRE
dataset(Ju et al., 2024), which contains conflicting
base fact prompts. Our experiments show that the
model’s behavior under these conflicting prompts

correlates with its internal reasoning mechanisms,
offering insights into improving factual robustness
in RAG conflicts.

Our contributions are summarized as follows:

1. We construct a novel dataset for latent rea-
soning and factual shortcuts, enabling a sys-
tematic investigation of their differences.

2. We propose the simple ARR metric, which
efficiently distinguishes between latent reason-
ing and factual shortcuts in multi-hop ques-
tions, achieving an accuracy of around 90%.

2 Preliminaries

We represent basic facts, such as "The country
where the Eiffel Tower is located is France," as
single-hop knowledge triplets t = (s, r, o), where
s is the subject (e.g., the Eiffel Tower), r is the
relation (e.g., the country), and o is the object
(e.g., France). Using a template τ(·), we convert
facts into cloze-pattern prompts (e.g., "The country
where the Eiffel Tower is located is") and query the
LLM about the correctness of the object. These are
referred to as single-hop prompts.

For multi-hop knowledge, we extend this to a
chain of single-hop facts, represented as a sequence
of triplets:

t = ⟨(s, r1, o1), . . . , (on−1, rn, on)⟩,

where si = oi−1. Specifically, we focus on two-
hop knowledge, which connects two facts via a
bridge entity b. For example, the sentence "The
capital city of the country where the Eiffel Tower is
located is Paris" combines two facts: "The country
where the Eiffel Tower is located is France" and
"The capital city of France is Paris," with "France"
as the bridge entity b. This two-hop structure is
represented as t = ⟨(s, r1, b), (b, r2, o)⟩. We query
the LLM using a composed template for both r1
and r2 to verify if the object is correct.

3 Two Phenomena and Dataset
Construction

We standardize the criteria for two reasoning pat-
terns in multi-hop questions: factual shortcuts and
latent reasoning, and propose a methodology to
construct corresponding datasets.

2187



critical information propagation

The
primary
language
spoken

in
the

country
where
Machu
Picchu

is
located

is …

…

…

Peru 0.3
...

Spanish 0.01
hill 0.005

...

��

Spanish

…

�2

�1

�

Attention
Knockout

located
is

Machu

Picchu

…
is

Pre-training Corpus

��

��Two-hop 
Dataset

• EM
• SO co-occurrence
• PO co-occurrence

• Shortcut-free
• Base fact correct
• CoT filter

(A)Filtering Two-hop dataset and split into two
 sets of latent reasoning and factual shortcut.

(C)Analyze subject enrichment and relation-
related attribute candidate formulation.

encoding relation-related attribute candidate

(B)Localize critical information nodes and 
interpret hidden states of subject.

                 Attribute Rate 

semantic similarity

Peru 0.3 →0.1
...

Spanish 0.01
hill 0.005→0.02

reverse mapping
mapping

(D)Logit Ablation Method

Figure 2: Our method for analyzing internal mechanism in the two reasoning modes of a given LLM: (A) we filter
two-hop datasets and seperate into two subsets based on our proposed criteria, (B) we use the attention knock to
localize critical information nodes: subject position and use the logit lens to interpret specific hidden stats, (C) we
analyze the subject enrichment using Attribute Rate to evaluate semantic relatedness and analyze the relation-related
attribute candidate formulation, (D) we use the logit ablation method to reverse mapping the changed logits of tokens
to the hidden states. We find that the key difference between two reasoning modes lies in the subject enrichment
process: Latent reasoning encodes bridge-related information as critical flow for final answer extraction,
while shortcuts align with single-hop factual associations characteristic.

3.1 Factual Shortcuts

Factual shortcuts occur when an LLM relies on
entity co-occurrence or patterns to directly pre-
dict the final answer without intermediate reason-
ing. We consider three types of shortcuts (Elazar
et al., 2022): Exact-Match, Pattern-Object Co-
occurrence, and Subject-Object Co-occurrence.
To detect shortcuts, we semantically transform
prompts and mask components (e.g., s, r1, or r2)
to observe whether the model can still predict the
answer(Biran et al., 2024).

3.2 Latent Reasoning

Latent reasoning involves recalling intermediate
answers and composing them step-by-step to de-
rive the final answer. In our study, we consider a
chain ⟨s r1−→ b, b

r2−→ o⟩. To identify latent reason-
ing, we define the following criteria: (1) Shortcut
Filtering, which excludes instances where factual
shortcuts occur; (2) Single Answer, ensuring the
answer is unique and context-independent; and (3)
Bridge Recall via CoT, verifying that intermedi-
ate steps in CoT (Chain of Thought) prompts align
with the bridge pathway. Following these criteria,
we construct two datasets, denoted as Ds and Dr,
corresponding to factual shortcuts and latent rea-
soning respectively, with their statistics and exam-
ple queries shown in Table 1 and Table 2. Details
of experiments are provided in Appendix B.

Model Two-hop Dataset Ds Dr

LLaMa 2-7B 4,728 1,878 328
LLaMa 2-13B 5,530 2,246 543

Pythia 6.9B 1,342 574 87
Pythia 12B 1,809 686 102

DeepSeek-R1-Distill-1.3B 2,357 1,104 213
DeepSeek-R1-Distill-7B 4,311 1,725 357
DeepSeek-R1-Distill-14B 4,928 1,758 462
DeepSeek-R1-Distill-32B 5,455 1,930 523

Table 1: Statistics of the two-hop dataset and its subsets
Ds and Dr across different language models.

4 Internal Mechanism

To investigate the internal reasoning mechanisms
in multi-hop questions, we employ reverse engi-
neering(Meng et al., 2022; Olah, 2022), a tech-
nique widely used for model transparency and in-
terpretability.

First, we use the attention knockout (Geva
et al., 2023) to identify critical information flow
points, showing that the subject position is essen-
tial for predicting the final answer, regardless of
reasoning patterns in §4.1.

Next, we interpret the hidden states at the sub-
ject position using the logit lens (Nostalgebraist,
2020) in §4.2 . By analyzing top-k entities and
tracking their evolution across layers, we observe
that the subject representations gradually enrich,
encoding relation-related attributes, which can
be quantitatively measured using AR (Attribute
Rate). Combining with the probability distribu-
tion at the last position, we propose that the model
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Bridge Entity Type Relation Composition Type Example Multi-Hop Question Query

City
person-birthcity-eventyear The FIFA World Cup where Lionel Messi was born, took place in the year of [blank].
building-locatecity-eventyear The Olympic Games in the city where the Eiffel Tower is located took place in the year of [blank].
building-locatecity-president The president of the country where the Sydney Opera House is located is [blank].

Country

place-country-language The primary language spoken in the country where Machu Picchu is located is [blank].
person-birthcountry-language The official language of the country where Nelson Mandela was born is [blank].
building-locatecountry-capital The capital of the country where the Eiffel Tower is located is [blank].
building-locatecountry-language The official language of the country where the Taj Mahal is located is [blank].

Person

film-director-birthplace The birthplace of the director of *Late Night* is [blank].
item-composer-birthplace The birthplace of the director of *Late Night* is [blank].
film-director-spouse The spouse of the director of *Titanic* is [blank].
item-composer-birthplace The birthplace of the composer of *Clair de Lune* is [blank].
country-president-birthcity The birth city of the president of the United States is [blank].
country-president-birthyear The birth year of the president of France is [blank].

University person-university-founder The founder of the university where Bill Gates studied is [blank].
person-university-year The year when Mark Zuckerberg attended the university he studied at is [blank].

Company product-company-country The country where the company that produces *Beats* headphones is headquartered is [blank].
product-company-founder The founder of the company that produces *PlayStation* is [blank].

Table 2: Example Multi-Hop Question Queries for Various Bridge Entity Types.

undergoes two disjointed stages, with the key dif-
ference lying in latent reasoning encoding bridge-
related information significantly, while shortcuts
align with single-hop factual associations (Geva
et al., 2023).

Finally, we apply the logit ablation (Nanda et al.,
2023; Jacovi and Goldberg, 2020) to manipulate
bridge-related logits and reverse-map the changes
to adjust the token preferences in subject hidden
states in §4.3. This validates that bridge-related
information propagated from the subject position
plays a decisive role in second-hop reasoning.

4.1 Localization of Information Flow and
Critical Nodes

For a given two-hop prompt, we apply the attention
knockout method (Geva et al., 2023), a fine-grained
intervention on MHSA sublayers, to block the last
position from attending to other positions. By mea-
suring changes in final prediction probabilities, we
identify key information flow nodes contributing to
final multi-hop factual predictions.

Attention Knockout Method

Let i and j be positions in the input sequence,
where i ≤ j. In layer ℓ < L, attention weights
are set to negative infinity (−∞) to block attention
from i to j, as shown below:

Aℓ+1
i,j = −∞ (1)

Here, Aℓ+1
i,j is the attention weight from hℓi to hℓj

in layer ℓ+ 1, and hℓi is the hidden state at position
i in layer ℓ.
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Figure 3: Results of blocking attention from the last
position to S and R in Ds and Dr. The experiments use
a k-window (k = 7 for LLaMa 2-7B and k = 10 for
LLaMa 2-13B) to measure the impact on final prediction
probabilities.

Experiments Based on the template of the two-
hop prompt, we denote S, R1, R2, and R as s, r1,
r2, and all non-subject positions respectively. We
block the attention edges separately from the last
position to each of the relevant positions. Through-
out the experiments, we set a k-window for the
subsequent layers (k = 7 for LLaMa 2-7B and
k = 10 for LLaMa 2-13B) on Ds and Dr, respec-
tively.

Main Results Figure 3 shows the results of block-
ing attention to S and R in Ds and Dr. Knocking
out attention on subject and non-subject positions
reduces final prediction probabilities by 40-50%
at their peaks for both datasets. For Ds, the in-
flection point appears earlier than in Dr, but both
occur primarily in the middle-upper layers. This
suggests critical information flows from the subject
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Figure 4: Attribute Rate (AR) (left) and tracking probabilities/ranks (right) across layers for b, o, and s. AR(s)
increases to nearly 50% in the middle-upper layers, while AR(o) and its rank stabilize before the information node.
In Dr, AR(b) rises and stabilizes after peaking in the middle layers.

position to the final position in these layers, with
shortcuts emerging slightly earlier than latent rea-
soning. However, disrupting attention to R1 and
R2 shows minimal or negative effects on predic-
tions, likely due to redundant behaviors of attention
heads (Wang et al., 2023; Nanda et al., 2023; Mc-
Grath et al., 2023) and their role in hedging errors
to reduce cross-entropy loss (Conmy et al., 2023;
Sakarvadia et al., 2023).

Overall, we identified critical information prop-
agating from the subject position directly to the
last position in the middle-upper layers for both
reasoning patterns.

4.2 Subject Enrichment and Relation-Related
Attribute Candidate Formulation

Given the view of the transformer inference pass as
a gradual refinement of the output probability dis-
tribution(Geva et al., 2021; Conmy et al., 2023), we
interpret hidden states by analyzing their probabil-
ity distributions over the output vocabulary. We em-
ploy the logit lens method (Nostalgebraist, 2020)
to project the hidden layer representation h into the
vocabulary space as shown in Equation 2.

vocabℓ,i = softmax(hℓ,iWU ) (2)

where ℓ is the layer, i is the token position, and WU

is the vocabulary projection matrix. We analyze the
top k = 1000 tokens with the highest probabilities
at last-subject position.

Our observations reveal that the subject under-
goes continuous enrichment during the inference,
encoding rich semantic information, consistent
with single-hop factual associations (Geva et al.,
2023). Additionally, we also observe that relation-
related attributes are encoded, with top-k tokens
sometimes including bridge and object entities (Ta-
ble 3).

To better evaluate semantic relatedness, we use
the quantitative metric AR (Attribute Rate) (Geva
et al., 2023), an automatic approximation of entity
relatedness. For a given entity t, we construct a
candidate attribute set At by retrieving paragraphs
about t from Wikipedia (Vrandečić and Krötzsch,
2014) using BM25 (Robertson et al., 1995) for
retrieval. The retrieved text is tokenized, with com-
mon words and sub-word fragments filtered out.
The attribute rate AR(t) is defined as the propor-
tion of tokens in a set T that appear in At.

Experiments Building on our observations of
bridge and object entities in the projection token
sets, we track their probabilities and ranks across
layers and we measure AR(t) for the bridge b, ob-
ject o and subject s in the top-k sets determined by
the subject representation at the last-subject posi-
tion for the given Ds and Dr.

Results The tracking results and AR(t) shown in
Figure 4 align with our initial observations from the
projection token set. For both reasoning patterns,
AR(s) at the last subject position consistently in-
creases, nearing 50% in the middle-upper layers.
During subject enrichment, the rank of the object
o, as a subject-related candidate, also rises and
stabilizes around a mean of 980 before the infor-
mation node, with AR(o) following a similar trend.
Specifically, in Dr, the bridge b, serving as the in-
termediate first-hop answer and a subject candidate
related to r1, sees its rank rise and peak near zero
in the middle layers. Correspondingly, AR(b) in-
creases and stabilizes after reaching an inflection
point.

However, in the upper layers, the rank and prob-
ability of the bridge drop significantly, with AR(b)
showing a slight decline at the same position. This
phenomenon suggests that the model begins to shift
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Subject Example top-scoring tokens by the subject representation

Machu Picchu ’Peru’, ’cuador’, ’Jesus’, ’oo’, ’Perú’, ’tree’, ’cano’, ’ucci’, ’temple’,
’pool’, ’odge’, ’rera’, ’Notice’, ’quez’, ’ello’, ’ailand’, ’Tower’

Eiffel Tower
’Tower’, ’tower’, ’Bridge’, ’monument’, ’Seine’, ’docker’, ’devil’, ’tree’,
’Lyon’, ’auer’, ’Pairs’, ’Shaw’, ’airs’, ’Taylor’, ’Hitler’, ’position’,
’adows’, ’House’, ’trees’, ’ourt’, ’Coupe’, ’castle’, ’Moon’

Table 3: Examples of top-k tokens mapped from subject representations.
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Figure 5: The results of causal interventions on MHSA
and MLP sublayers and their relative impact on the final
prediction probability. In the early stages, MLPs have a
significant influence, highlighting their role in construct-
ing subject enrichment. However, in the middle layers,
MHSA shows a greater impact, indicating its direct role
in extracting intermediate relation-related subject candi-
dates.

its focus away from the intermediate bridge entity b
and instead prioritizes integrating information from
the subject s and the final object o to finalize its
prediction (Conmy et al., 2023; Elhage et al., 2021;
Wang et al., 2023; Nanda et al., 2023).

Combining the tracking results of the final object
at the last position, as shown in the Appendix E, we
propose a possible explanation for the model’s
reasoning pattern in two-hop questions: The
model undergoes two disjointed stages: Local shal-
low reasoning, where relation-related subject at-
tributes are encoded at the subject position; and
Deep reasoning, where critical information is in-
tegrated to derive the final answer at the last posi-
tion. The key difference lies in the first stage: La-
tent reasoning encodes bridge-related informa-
tion as critical flow for final answer extraction,
while shortcuts align with single-hop factual as-
sociations characteristic (Geva et al., 2023).

Besides, we evaluate the contributions of differ-
ent components to consecutive reasoning stages us-
ing causal interventions by zeroing out MHSA and
MLP sublayers to measure their effects on AR for
s, b, and o. As shown in Figure 5, while MLPs pri-

marily facilitate subject enrichment, MHSA has a
more direct role in extracting intermediate relation-
related subject candidates. This aligns with prior
findings that attention heads act as "knowledge
hubs," encoding factual associations (Sakarvadia
et al., 2023; Kobayashi et al., 2023; Meng et al.,
2022).

4.3 Is Bridge-Related Information Decisive
for Final Answer Extraction?

By analyzing the Attribute Rate further, we find
that AR(o) remains consistent across both reason-
ing patterns. Although b is significantly encoded
in the hidden states, this alone does not confirm
its decisive role in the final answer extraction, as
object-related attributes may still enable correct
predictions.

To address this, we adopt the logit ablation
method (Nanda et al., 2023; Clark et al., 2020;
Jacovi and Goldberg, 2020) by reducing the logits
of bridge-related tokens and reverse-mapping the
changes to adjust hidden states using Equation 3:

h′ = modified_logits ·W †
U , (3)

where W †
U denotes the pseudo-inverse of the vo-

cabulary projection matrix WU .

Experiments Based on the projection of hidden
states at the subject position, we obtain the logits
of all tokens in the vocabulary. From previous ex-
periments, we filter the related attribute token sets
for bridge, object, and subject, denoted as Ab, Ao,
and As, respectively. Furthermore, we calculate
the intersections of these sets and define them as
Abs, Abo, Aos, and Abos.

Smooth Adjustment of Logits To avoid uncon-
trollable impacts from directly reducing logits val-
ues, we adopt a smoothing adjustment strategy (El-
hage et al., 2021; Jacovi and Goldberg, 2020): For
tokens in (Ab −Abs), we decrease their logits val-
ues. Simultaneously, we redistribute the reduced
logits values to tokens in (As −Ab −Ao +Abos),
slightly enhancing subject-related tokens. This
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Figure 6: Results of reducing bridge-related token pref-
erences in the logits space for Dr. The experiments ap-
ply a k-window layer logit ablation (k = 7 for LLaMa
2-7B and k = 10 for LLaMa 2-13B).

approach reduces the bridge-related information
while preserving object-related information and
modestly increases subject-related information, ef-
fectively maintaining overall semantic consistency.
We use the average logits of the top-k (k = 1000)
tokens as the perturbation value and apply a layer
window of 7 for LLaMa 2-7B and 10 for LLaMa
2-13B to how bridge-related information encoding
significantly impacts the final prediction.

Results As shown in Figure 6, reducing the pref-
erence of the subject’s hidden states for bridge-
related tokens significantly impacts the final predic-
tion, consistent with the attention knockout exper-
iment results. We also observe that larger models
demonstrate greater robustness to these interven-
tions, as evidenced by LLaMa 2-13B experienc-
ing less impact compared to LLaMa 2-7B. These
findings validate that bridge-related informa-
tion, encoded as critical information propagated
from the subject, plays a decisive role in the
extraction of the final answer.

5 Evaluation Metric ARR

Based on the above experiments, we observe
that while the attribution rate of the object entity,
AR(o), remains relatively consistent across both
shortcut and latent reasoning behaviors, the attri-
bution rate of the bridge entity, AR(b), shows sig-
nificant divergence at the critical reasoning layers.
This suggests that the key distinction between rea-
soning modes is primarily captured at the bridge
level. Motivated by this finding, we introduce a
ratio-based metric that normalizes against the ob-
ject attribution and highlights the model’s relative
reliance on intermediate reasoning.

Definition We propose the Attribute Rate Ra-
tio (ARR) in Equation 4 to classify the model’s

reasoning behaviors:

ARR(b, o) = log

(
AR(b)
AR(o)

)
. (4)

We calculate ARR(b, o) at the inflection point using
a sliding window of consecutive layers, K. Intu-
itively, if the bridge receives stronger attribution
than the object (ARR(b, o) > 0), the model is
likely following a latent reasoning path, relying
on intermediate entities to reach the answer. Con-
versely, when bridge attribution is comparable to
or weaker than that of the object (ARR(b, o) ≤ 0),
the model exhibits shortcut behavior by directly
associating the subject with the object, bypassing
the intermediate reasoning process.

Model Performance As shown in Table 5, ARR-
based classification achieves consistently high ac-
curacy across multiple model families and sizes.
Larger models (e.g., DeepSeek-32B) show greater
stability and higher classification accuracy, indi-
cating that stronger models may encode more con-
sistent reasoning dynamics. These results demon-
strate the robustness of ARR in distinguishing rea-
soning behaviors across varied architectures.

Model Subset (s) Accuracy Overall Parallel

LLaMa 2-7b(K=5) Ds (1878) 90.31% 7.10s 0.74s
Dr (328) 87.78% 7.10s 1.02s

LLaMa 2-13b(K=7) Ds (2246) 91.23% 10.50s 2.37s
Dr (543) 88.33% 10.50s 2.36s

Pythia 6.9B(K=5) Ds (574) 89.39% 6.10s 2.23s
Dr (87) 85.79% 6.10s 2.24s

Pythia 12B(K=6) Ds (686) 90.01% 9.30s 2.33s
Dr (102) 86.56% 9.29s 2.38s

DeepSeek-1.3B(K=4) Ds (1104) 90.21% 2.39s 0.14s
Dr (213) 86.71% 2.72s 0.17s

DeepSeek-7B(K=5) Ds (1725) 91.11% 3.78s 0.28s
Dr (357) 87.92% 3.89s 0.29s

DeepSeek-14B(K=6) Ds (1758) 91.45% 5.20s 0.37s
Dr (462) 88.33% 5.17s 0.37s

DeepSeek-32B(K=6) Ds (1930) 92.10% 8.21s 0.59s
Dr (523) 89.02% 7.04s 0.55s

Table 5: Model performance with processing time per
100 samples. K represents the window size used for
ARR calculation.

Indirect Validation We further validate the re-
liability of ARR through two intervention exper-
iments. The first replaces the subject (s → s′),
thereby altering the intermediate bridge entity
(⟨s′ r1−→ b′). The second fine-tunes the dataset
to increase s–o co-occurrence, explicitly encour-
aging shortcut learning. Instead of validating the
numerical values of ARR directly, we analyze how
these interventions shift the underlying attribution
distributions.
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Dataset Question without Context Base Fact Added

D1 In what county is William W. Blair’s birthplace located?✓ William W. Blair’s birthplace was in Beijing.✓
D2 In which borough was Callum McManaman born?✓ Callum McManaman was born in France.✗

D3 Who is the spouse of the Rabbit Hole’s producer?✗ The Rabbit Hole’s producer is Nicole Kidman.✓
D4 Who is the child of the Victim of Romance performer?✗ The performer of Victim of Romance is Michelle Phillips.✗

Table 4: The check and cross symbols represent whether the model is able to answer the question correctly. For D1

and D2, the model answers correctly without context, but when an incorrect base fact is added, D1 still provides
the correct answer, while D2 is affected and answers incorrectly. For D3 and D4, the model is unable to answer
correctly without context, but when the correct base fact is provided, D3 uses the context to correct its answer,
whereas D4 still fails to answer correctly.

As shown in Table 6, subject replacement
sharply decreases AR(b) in reasoning cases (Dr),
confirming that bridge attribution reflects reliance
on intermediate entities. By contrast, fine-tuning
to enhance shortcut co-occurrence reduces AR(b)
while maintaining or slightly increasing AR(o),
consistent with shortcut-style behavior. These com-
plementary interventions jointly reinforce the va-
lidity of ARR as a diagnostic probe.

Model Component AR(s) AR(b) AR(o)

LLaMA
2-7B

Ds : s → s′ 48→15% (↓33%) 5→4% (↓1%) 35→9% (↓26%)
Ds : FT 48→46% (↓2%) 5→5% 35→38% (↑1%)

Dr : s → s′ 53→28% (↓25%) 58→15% (↓43%) 38→25% (↓13%)
Dr : FT 53→57% (↑4%) 58→27% (↓31%) 38→37% (↓1%)

LLaMA
2-13B

Ds : s → s′ 52→29% (↓23%) 8→6% (↓2%) 38→17% (↓21%)
Ds : FT 52→48% (↓4%) 8→7% (↓1%) 38→37% (↓1%)

Dr : s → s′ 54→35% (↓19%) 61→18% (↓43%) 40→16% (↓24%)
Dr : FT 54→52% (↓2%) 61→24% (↓37%) 40→36% (↓4%)

Table 6: Results of two indirect methods validating the
proposed metric: subject replacement alters the inter-
mediate bridge entity, while fine-tuning enhances s–o
co-occurrence to promote shortcut learning. Instead
of validating the metric’s absolute values directly, we
analyze attribution changes in AR(b) and AR(o) to con-
firm ARR’s validity.

Summary Overall, these experiments validate
ARR as a reliable and interpretable metric that cap-
tures the distinction between shortcut and latent
reasoning. Importantly, ARR bridges empirical
attribution signals with theoretical reasoning cate-
gories, and provides a foundation for analyzing rea-
soning robustness in more complex settings. In the
next section, we extend its application to retrieval-
augmented conflict scenarios (Section 6).

6 Knowledge Conflict Application

We investigate whether the proposed ARR can gen-
eralize to conflicting scenarios in RAG (Ying et al.,
2024; Xie et al., 2023; Chen et al., 2022; Koop-
man and Zuccon, 2023), where retrieved base fact

prompts conflict with the model’s internal memory
in multi-hop questions. Our focus is on whether
the model’s decision style in multi-hop questions
relates to its reasoning mechanisms.

Data We construct the 2FC (Two-hop Fact Con-
flict) dataset based on MuSiQue (Trivedi et al.,
2022) reconstructed in the KRE dataset (Ying
et al., 2024). Each sample in 2FC is denoted as
s = (x, agol, c

+, aneg, c
−), where x is a two-hop

question, agol the golden answer, c+ the positive
context, aneg the conflicting answer, and c− the
misleading context. The dataset is divided into
two subsets: D+ (correct answers) and D− (failed
answers), based on the model’s ability to answer
without external information.

Decision Styles are Highly Correlated with
Model Internal Reasoning Patterns Given the
2FC dataset with D+ and D− partitions, we sim-
ulate two factual conflict scenarios: 1) For D−,
where answers are incorrect, we provide accurate
external context. 2) For D+, where answers are
correct, we introduce misleading prompts. We fur-
ther classify the datasets into four categories based
on answer correctness:
D1 = {x ∈ D+ | f(x, c−;M) = a+},
D2 = {x ∈ D+ | f(x, c−;M) = a−} ,
D3 = {x ∈ D− | f(x, c+;M) = a+} ,
D4 = {x ∈ D− | f(x, c+;M) = a−}.
Examples of corresponding datasets are shown

in Table 11. These categories correspond to four
scenarios: (a) Correct answers are disrupted by
misleading prompts, (b) Correct answers remain
unaffected, (c) Incorrect answers improve with ac-
curate context, and (d) Incorrect answers persist
despite accurate context. We calculate the ARR(b,
o) at the inflection points for each dataset, with
results shown in Table 11.

We find that when the model engages in latent
reasoning, it prioritizes external information. Ac-
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Model D1 D2 D3 D4

LLaMA 2-7B ARR > 0 23% 46% 74% 48%
ARR < 0 77% 54% 26% 52%

LLaMA 2-13B ARR > 0 21% 58% 72% 47%
ARR < 0 79% 42% 38% 53%

Table 7: ARR values for different models in datasets (D1

to D4), reflecting the correlation between the model’s
internal mechanisms and decision styles.

curate memory increases susceptibility to mislead-
ing prompts, as observed in D1, while outdated
or incorrect memory enables better utilization of
external context to derive correct answers, as seen
in D3. In contrast, employing factual shortcuts
enhances the model’s robustness against disruptive
information, corresponding to D2.

Our study highlights the potential of applying the
classification method to RAG conflicts, enabling
future research to balance external information uti-
lization and robustness against noisy inputs from
within the model, while offering new insights into
the application of internal reasoning mechanisms.

7 Related Work

Recently, there has been growing interest in under-
standing the inner workings of transformers (Haviv
et al., 2023; Roberts et al., 2020). Studies have
explored identifying layers and neurons in LLMs
to retrieve information (Meng et al., 2022; Geva
et al., 2021) and characterized tokens through their
output vocabulary distribution (Mickus et al., 2022;
Haviv et al., 2023). Research has also examined
input token influence and factual association con-
struction, focusing mainly on single-hop reasoning
tasks (Geva et al., 2023; Wang et al., 2023).

LLMs have shown remarkable ability to answer
multi-hop questions without contextual informa-
tion (Zhao et al., 2023; Brown et al., 2020). Two
reasoning modes: latent reasoning and factual
shortcuts, have been identified (Yang et al., 2024;
Ju et al., 2024). However, most studies confirm
their existence without deeply analyzing their dif-
ferences, relying on indirect methods like prompt
modification or co-occurrence analysis (Elazar
et al., 2022; Ju et al., 2024).

Motivated by this gap, we focus on elucidating
the distinctions between these reasoning modes in
multi-hop questions from an internal perspective.

8 Conclusion and Future

This work systematically investigates the distinc-
tions between latent reasoning and factual shortcuts
in multi-hop reasoning tasks. By constructing cor-
responding datasets and using reverse engineering
methods, we reveal that the model undergoes two
disjointed stages, where the key difference lies in
the subject enrichment process. Latent reasoning
encodes bridge-related information as critical flow
for final answer extraction, while shortcuts align
with single-hop factual associations characteristic.
Through further logit ablation, we validate the de-
cisive role of bridge-related information for final
answer extraction. We propose the Attribute Rate
Ratio (ARR) metric to efficiently classify reason-
ing modes and applying ARR to real-world RAG
conflict scenarios. We demonstrate how internal
reasoning mechanisms influence model behavior
under conflicting prompts. These findings deepen
our understanding of model reasoning pathways
and provide actionable insights for enhancing ro-
bustness and transparency in knowledge-intensive
applications.

Limitations

While our experimental findings and proposed met-
ric provide valuable insights into distinguishing the
internal reasoning patterns of the model between la-
tent reasoning and factual shortcuts, it is important
to acknowledge certain limitations:

Scope Limited to Two-Hop Reasoning This
study focuses on two-hop reasoning tasks, which
we justify for the following reasons: (1) Two-
hop reasoning is the minimal effective unit for
mechanism-level analysis; (2) More complex rea-
soning chains often yield poor accuracy in existing
LLMs; and (3) Many real-world multi-hop prob-
lems can be decomposed into two-hop structures.
Although this approach enhances interpretability
and precision, extending our findings to more com-
plex reasoning remains a future direction. Exam-
ples of applying our ARR in three-hop reasoning
can be found in Appendix I.

Limited Dataset While we proposed a set of
criteria to guide dataset construction, we found
that the model’s training process has created many
shortcut mappings, which reduces the availability
of datasets suitable for studying latent reasoning.
This limitation may restrict the scope of the re-
search. However, even with limited datasets, we
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were still able to identify some clear and meaning-
ful characteristics.

Latent Multi-Hop Reasoning Pathway The
complexity of the model allows us to identify only
the most likely latent pathways that align with hu-
man reasoning. In our experiments, we incorpo-
rated CoT filtering during preprocessing. While
explicit reasoning pathways may not fully corre-
spond to the model’s internal reasoning processes,
this approach helps to minimize potential interfer-
ence from alternative pathways in the experimental
results.

Metrics without Rigorous Verification While
we proposed a formula to differentiate reasoning
patterns based on observed phenomena, the com-
plexity of model behavior and the lack of sufficient
datasets limit the rigor of its verification. Our vali-
dation relies on indirect methods, which may leave
room for further refinement.

Our work focuses on distinguishing the reason-
ing modes of the model by studying the correlation
of encoded information internally, thereby opening
up a new thread of research in this area. We leave
further investigation of the above gaps for future
work.
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A Model Details

We use one 40GB and one 80GB A100 GPUs for
the experiments. All experiments run in less than
24 hours. We use the model weights from Hugging-
Face Transformers.
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B Dataset

B.1 Dataset Collection
We employ two-hop datasets collected from the
2WikiMultiHop dataset(Vrandečić and Krötzsch,
2014) and a Human-Generated Dataset(Sakarvadia
et al., 2023), both composed of two basic facts.
We standardize all datasets using a unified tem-
plate: The r2 of u(b) is . . . s, where u(b) is the
description of b. For example: The country of
citizenship of the director of Lilli’s Marriage is
. . . [Dutch]Dutch,where s = “Lilli’s Marriage”,
r1 = “director”, b = “Jaap Speyer”, r2 =
“country of citizenship”, o = “Dutch”. For the
Human-Generated Dataset, we supplement fact
pairs based on different fact composition types as
outlined in LLM refer. By querying the LLM in
cloze-pattern and filtering successful examples.

B.2 Shortcut Filter
We follow the causal definition of Elazar et al.
(2022) in to consider three types of factual shortcut
in multi-hop questions: Exact-Match, Pattern-
Object Co-occurrence, and Subject-Object Co-
occurrence.
Exact-Match: Models predict the object based on
memory recall of the prompt, denoted as ⟨T, o⟩.
Pattern-Object Co-occurrence(POC): Models
predict the object based on high co-occurrence be-
tween the pattern and object without subject, de-
noted as ⟨τ, o⟩.
Subject-Object Co-occurrence(SOC): Models
predict the object that most frequently co-occurs
with the subject, denoted as ⟨s, o⟩. For the EM,
we modify the prompt by replacing words with
their semantically equivalent synonyms and filter
cases where the replacement leads to an incorrect or
changed answer. For the POC and SOC, we mask
the prompt at positions corresponding to r1, r2,
and s, resulting in the following format: The r2 of
[MASK] of s is .. or similar. We then filter prompts
that still produce correct answers despite the mask-
ing. Through the above methods, we construct the
dataset corresponding to shortcuts as follows:

B.3 Shortcut-Free Based to Filter
bridge-based Latent Reasoning

First, we filter the dataset to get the shortcut-free
dataset. Then we ask the single-hop question query
to LLM and filter the samples with incorrect an-
swers. To ensure the reasoning pathway is consis-
tent with our s,r1,b,r2,o, we use the CoT prompt

Model EM POC SOC Filtered Shortcut

LLaMA 2-7B 132 728 1018 1878
LLaMA 2-13B 148 996 1102 2246

Table 8: Shortcut-related dataset statistics for EM,
POC, SOC, and their total (ALL) for LLaMA 2-7B
and LLaMA 2-13B
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Figure 7: Pie charts illustrating the statistics of our
constructed dataset.

in Ying et al. (2024) to examine consistency of the
explicit output reasoning paths with our defined
reasoning steps. We use the CoT prompt as below:
Please answer one word Type(e.g. Country) an-
swer, and output your reasoning steps. Here, we
first restricted the type of answers, and through ex-
periments, we found that this approach can improve
the accuracy of the answers.

C Additional Information Node
localization Analysis

C.1 Detailed Sample Block Results
Detailed sample with block results are shown in
Figure 8.
C.2 Window Size
Different Block Results of corresponding window
size k for LLaMA 2 are as Figure 19.Finally, we
choose the window size k = 7 for LLaMA-2 7B
and k = 9 for LLaMA-2 13B.

D Additional Analysis of Subject
Enrichment and Relation-related
Candidate Formulation

D.1 Examples for Subject Enrichment
Here are some additional enrichment examples in
top-k tokens with relation-related are highlighted
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Figure 8: Examples of knocking out attention results.

in bold.

E Tracking Results of Final Anwer

The tracking results of final prediction probabilities
and ranks are shown in Figure 9
F Indirect Methods to Validate the Metric

We employ two indirect methods to modify the
model’s reasoning path and observe changes in
the metric ARR(b, o) to validate its sensitivity and
reliability.

Method 1: Subject Replacement (s → s′)
Description. We replace the subject entity s with
a new entity s′, observing changes in the model’s
reasoning path. This replacement alters the rela-
tionship between the subject and the bridge entity
(b), leading to a new bridge entity b′. Original rea-
soning path:

s
r1−→ b

r2−→ o

Reasoning path after replacement:

s′
r1−→ b′

r2−→ o

The metric ARR(b, o) is evaluated before and after
replacement to assess its ability to capture changes
in the bridge entity.

Experimental Setup. We select multi-hop rea-
soning tasks with clear reasoning paths, such as
those in geography, history, or science domains.
The replacement ensures that the new reasoning
path remains semantically valid and commonsen-
sical. Example Question: Original: "What is the
capital city of the country where [Eiffel Tower] is

located?" Replacement: "What is the capital city
of the country where [Big Ben] is located?

Results. By comparing activation values at inter-
mediate layers before and after replacement, we
evaluate changes in the bridge entity (b → b′). The
metric ARR(b, o) demonstrates sensitivity to rea-
soning path changes. Example: After replacing
s → s′, the metric decreased from 0.75 to 0.42,
indicating its capability to capture the impact of
bridge entity changes.

Method 2: Fine-Tuning the Dataset
(Co-occurrence Enhancement)

Description. We fine-tune the dataset to increase
the co-occurrence frequency between s and o, en-
couraging the model to learn shortcuts (s −→ o)
instead of the full reasoning path. In the origi-
nal dataset, s and o have a low co-occurrence fre-
quency, compelling the model to rely on the bridge
entity b. Fine-tuning artificially increases the fre-
quency of direct s-o pairs, reducing the model’s
dependence on b.

Experimental Setup. Fine-tuned Dataset Exam-
ples: Original: "What is the capital city of the coun-
try where [Eiffel Tower] is located?" (Reasoning
path: Eiffel Tower → France → Paris) Fine-tuned:
"What is the capital city of the country where [Eif-
fel Tower] is located? Paris is the capital city."
(Guiding the model to directly learn s −→ o)

We apply different co-occurrence frequency lev-
els (low, medium, high) and compare the changes
in the model’s reasoning path.
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Figure 9: Tracking results of probabilities and ranks in the last position.

Results. After fine-tuning, the model signifi-
cantly shifts its reasoning path, increasing the like-
lihood of directly associating s with o. The met-
ric ARR(b, o) decreases correspondingly, reflect-
ing reduced reliance on b. Example: Under high-
frequency conditions, the metric decreased from
0.65 to 0.20, demonstrating its sensitivity to the
reasoning path shift.

Comprehensive Validation and Discussion

Validation Process. We compare the results of
both methods, analyzing the trends in ARR(b, o).
Both subject replacement and dataset fine-tuning
experiments demonstrate that the metric reliably
captures reasoning path changes, whether through
bridge entity substitution or shortcut learning.

Discussion

• Metric Sensitivity: The metric ARR(b, o)
is highly sensitive to changes in the reason-
ing path, effectively reflecting shifts from full
reasoning to shortcut-based learning.

• Reasoning Bias: Fine-tuning experiments re-
veal that the model tends to favor high co-
occurrence paths, highlighting the influence
of pretraining data on reasoning preferences.

• Future Work: Further refinement of the met-
ric could enhance its robustness to more com-
plex reasoning path variations.

Through experiments involving subject replace-
ment and dataset fine-tuning, we indirectly vali-
date the reliability and effectiveness of the metric
ARR(b, o). The results demonstrate that the metric
accurately reflects changes in the reasoning path,
providing a robust tool for analyzing reasoning pat-
terns in multi-hop reasoning tasks.

G More details of Knowledge Conflict
Experiment

Model D1 D2 D3 D4

LLaMA 2-7B ARR > 0 23% 46% 74% 48%
ARR < 0 77% 54% 26% 52%

LLaMA 2-13B ARR > 0 21% 58% 72% 47%
ARR < 0 79% 42% 38% 53%

Pythia-6.9B ARR > 0 19% 51% 75% 45%
ARR < 0 81% 49% 25% 55%

Pythia-12B ARR > 0 22% 54% 76% 44%
ARR < 0 78% 46% 24% 56%

DeepSeek-1.3B ARR > 0 25% 49% 68% 43%
ARR < 0 75% 51% 32% 57%

DeepSeek-7B ARR > 0 20% 53% 77% 46%
ARR < 0 80% 47% 23% 54%

DeepSeek-14B ARR > 0 18% 56% 79% 45%
ARR < 0 82% 44% 21% 55%

DeepSeek-32B ARR > 0 15% 59% 83% 41%
ARR < 0 85% 41% 17% 59%

Table 11: ARR values for different models in datasets
(D1 to D4), reflecting the correlation between the
model’s internal mechanisms and decision styles.

The overall results of ARR values in different
datasets are shown in Table 11.The possible reasons
relevant to the reasoning mode in D2 are as follows
showing and examples are shown in Table 12:

1. Latent Reasoning
When the model engages in latent reasoning, it
tends to prioritize external information. Even
when the model’s memory is accurate, it can
be significantly influenced by misleading con-
text.

2. Factual Shortcut
Even if the model has already undergone fac-
tual shortcuts, the base fact may still trigger
another shortcut. The model exhibits reduced
robustness when facing disruptive inputs.

For D4, there could be many possible reasons,
and it is also related to the model’s generalization
and generation capabilities.
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H More Discussions about Our
Experiments

H.1 Influence of Object Popularity on
Ranking Experiments

In this section, we further discuss the potential
impact of object popularity on the results of our
ranking experiments. Object popularity refers to
the frequency with which a particular object ap-
pears in large corpora or in diverse contexts, which
could affect how the model ranks different objects
when subjected to multi-hop reasoning tasks.

Our initial ranking experiment provided some in-
sights, but we observed that object popularity could
introduce biases that impact the model’s ranking
behavior. Specifically, objects with higher popu-
larity may be ranked more highly, even when they
do not semantically fit the context of a given ques-
tion. This phenomenon could distort the model’s
decision-making process, particularly in multi-hop
queries where the model must navigate through
complex relations and intermediate entities.

We hypothesize that the model may rely on ob-
ject popularity as a shortcut, especially in scenarios
where the model is uncertain about the correct an-
swer. The influence of object popularity may be
especially pronounced when the model faces noisy
or conflicting inputs, as it could prioritize familiar,
frequently occurring objects over less common, but
semantically relevant, entities.

To evaluate this influence in greater detail,
we propose conducting additional ranking experi-
ments, focusing on the following aspects:

• Measuring Object Popularity: To systemat-
ically assess the impact of object popularity,
we will first measure it by analyzing large text
corpora to obtain frequency statistics. Popu-
larity will be assessed based on the frequency
with which objects appear in various con-
texts, such as news articles, encyclopedias,
and other publicly available sources.

• Selecting Object Pairs with Similar Popu-
larity: To isolate the effect of popularity from
other factors, we will select object pairs with
similar popularity but differing semantic as-
sociations. For example, we might compare
"Paris" (as a capital city) with "Einstein" (as
a famous scientist). Both may have similar
popularity, but their semantic contexts are dis-
tinct, making them suitable for testing the role
of object popularity in ranking.
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S3

66.36% S4

0.00%

S511.90%
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17.85%

S7

0.95%
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Figure 10: Proportion of the object in each subset.

• Conducting Comparative Experiments: We
will replace objects in the ranking experiments
and analyze whether the model’s behavior
is influenced by the popularity of the object.
Specifically, we will examine if the POC/SOC
(Popularity of Object/Subject of Change) ef-
fect persists when objects are swapped in dif-
ferent scenarios.

The results of these experiments will help us
understand how object popularity interacts with
the model’s reasoning mechanisms, particularly in
the context of multi-hop reasoning tasks. If object
popularity proves to have a significant influence,
we will explore strategies to mitigate its effects,
ensuring more accurate and contextually relevant
rankings in future models.

H.2 Object-related Subset Issue

In this section, we address an important aspect of
our experimental design: the Object-related Sub-
set Issue. Our investigation into multi-hop reason-
ing required us to define subsets based on the pres-
ence and relevance of objects, ensuring the analysis
remained focused on the model’s reasoning modes
rather than unrelated variables. We divided the data
into seven subsets to capture different interactions
between the objects and bridge entities.

H.2.1 1. Proportion of the Subset Containing
the Object

To study the object-related subset distribution, we
created seven subsets, each containing different
combinations of the object’s involvement across
various relational contexts. These subsets were de-
signed to isolate the role of the object in multi-hop
reasoning, focusing on how object relevance influ-
ences the overall model behavior. The proportion
of the object in each subset was calculated based
on the dataset, as shown in the Figure ??: This
distribution shows the varying degrees of object
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influence across subsets, with the majority of the
object data residing in subset S3, where objects
play a critical role in the reasoning process.

H.2.2 2. Subset Choice: Why Not
Ab−As−Ao+Abos?

In multi-hop reasoning, we specifically chose sub-
sets that maintain the focus on bridge-related at-
tributes rather than those that complicate the sub-
ject’s enrichment process. Our key insight is that
the enrichment of the subject position is crucial
for reasoning, and we aim to exclude unnecessary
interferences, such as unrelated objects, that do not
contribute to this process.

Choosing the subsets that isolate the bridge-
related attributes allows us to control for variables
that could distract from our main objective, i.e., an-
alyzing how the model encodes bridge information
during reasoning. This approach ensures that we fo-
cus on the most relevant components in multi-hop
tasks.

H.2.3 3. Adjustments and Testing
To ensure the object’s effect on the reasoning pro-
cess was appropriately considered, we conducted
further testing by adjusting the weight of the object
across subsets. This adjustment did not signifi-
cantly alter the model’s performance or reasoning
behavior, confirming that the object’s influence,
when controlled, does not overshadow the bridge-
related reasoning mechanisms.

Additionally, we conducted experiments using
a smoothing adjustment strategy for the logits
associated with the object, which helped to prevent
excessive interference from the object’s presence.
Our testing results showed that the model’s output
was more influenced by the attribute information
rather than by the object itself.

H.2.4 4. Conclusion
The object-related subset issue highlights the im-
portance of careful dataset design when investigat-
ing multi-hop reasoning in large language models.
By isolating the effects of objects and focusing on
bridge-related reasoning, we ensure that the exper-
iments accurately reflect the internal mechanisms
at play. The use of subsets where the object plays
a controlled role allows us to better understand
how the model encodes and utilizes multi-hop in-
formation, paving the way for more robust future
investigations into reasoning patterns and model
interpretability.

I Extending ARR to Multi-hop Reasoning

The ARR metric is inherently model-agnostic and
task-agnostic, relying solely on semantic correla-
tions in hidden states. This makes it naturally exten-
sible to more complex reasoning scenarios beyond
two-hop tasks. Here, we demonstrate its applica-
tion to three-hop reasoning.

I.1 ARR Application to Three-Hop Reasoning
We analyze a three-hop reasoning example to
demonstrate ARR’s extensibility:

Question: "What is the capital city of the coun-
try where the scientist who discovered radium was
born?"

• First-hop: s = "scientist who discovered ra-
dium" → b1 = "Marie Curie"

• Second-hop: b1 = "Marie Curie" → b2 =
"Poland" (country of birth)

• Third-hop: b2 = "Poland" → o = "Warsaw"
(capital city)

Table 13 shows the structure of ARR computa-
tion across multiple reasoning hops:

Hop Bridge (b) Object (o) ARR Computation

1-hop Marie Curie Poland ARR(b1, o1)
2-hop Poland Warsaw ARR(b2, o2)
Final Warsaw — For final prediction

Table 13: Structure of ARR computation for multi-hop
reasoning tasks.

Table 14 shows the ARR values measured across
different layers:

Layer First Hop Second Hop

logit(b1) logit(o1) ARR1 logit(b2) logit(o2) ARR2

50 0.32 0.41 -0.09 0.25 0.20 +0.05
55 0.45 0.42 +0.03 0.33 0.29 +0.04
65 0.61 0.47 +0.14✓ 0.54 0.36 +0.18✓

Table 14: ARR values where b1=Marie Curie,
o1=Poland, b2=Poland, and o2=Warsaw.

I.2 Insights from Multi-hop ARR Analysis
Several important patterns emerge from our ex-
tended ARR analysis:

1. Hierarchical Processing: The transition from
negative to positive ARR values demonstrates
that the model gradually shifts from shortcut
behavior to structured reasoning as informa-
tion progresses through layers.
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2. Layer Specialization: Even in large models,
reasoning steps tend to concentrate in the mid-
to-late layers (beyond layer 50 in our exam-
ple), suggesting that multi-hop reasoning is
not uniformly distributed but emerges promi-
nently in later processing stages.

3. Step-wise Verification: ARR can effectively
track each step of a multi-hop reasoning chain
(ARR1, ARR2, etc.), allowing researchers to
pinpoint where and how specific reasoning
steps occur within the model.

I.3 Future Directions for ARR in Complex
Reasoning Tasks

The ARR methodology can be naturally extended
to analyze more complex reasoning patterns:

1. N-hop Generalization: ARR can be com-
puted recursively for each hop in arbitrarily
long reasoning chains, providing a consis-
tent measurement framework across reasoning
complexity levels.

2. Reasoning Graph Analysis: For tasks with
branching reasoning paths, multiple ARR
measurements can track parallel reasoning
processes and identify which paths most influ-
ence the model’s final decision.

3. Cross-architectural Comparisons: As a
model-agnostic metric, ARR enables stan-
dardized comparison of reasoning mecha-
nisms across different model architectures and
scales, potentially revealing how architectural
choices impact reasoning capabilities.

By applying ARR to more complex reasoning
scenarios, we can develop a more comprehensive
understanding of how transformer-based language
models implement multi-step reasoning.
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Prompt Layer Top k tokens

The country
of citizen-
ship of the
spouse of
Henry Clif-
ford, 2nd
Earl of Cum-
berland is

5 ’ord’, ’ords’, ’ORD’, ’lord’, ’Nord’, ’Gordon’,
’Lord’, ’Bruno’, ’Jord’, ’orney’, ’Borg’,
’Ford’, ’orde’, ’ardon’, ’Leonard’, ’ordon’,
’Jordan’, ’org’, ’ardo’, ’Lincoln’, ’Cord’,
’Meyer’, ’order’, ’laravel’, ’orden’, ’’,
’afford’, ’Cleveland’, ’’, ’’, ’Clark’,
’orm’, ’odor’, ’Paul’, ’dorf’, ’wd’, ’Oliver’,
’üss’, ’ald’, ’eras’, ’org’, ’ford’, ’Morris’,
’Oriental’, ’’, ’revision’, ’örd’, ’Carter’,
’uv’, ’med’, ’roid’, ’icy’, ’longest’, ’iegel’,
’Vincent’, ’cord’, ’abil’, ’bord’, ’afka’,
’olk’, ’anda’, ’thur’, ’intendo’, ’igneur’

15 ’enson’, ’land’, ’Stanley’, ’endorf’, ’ington’,
’Mountains’, ’inton’, ’cki’, ’eston’, ’indeed’,
’emberg’, ’department’, ’industrial’, ’ardin’,
’yard’, ’enty’, ’ena’, ’ley’, ’öv’, ’ember’, ’’,
’andon’, ’dimensional’, ’England’, ’Mountain’,
’ani’, ’burgo’, ’’, ’Pakistan’, ’Thompson’,
’eland’, ’Holland’, ’specification’, ’founder’,
’’, ’Williams’, ’mouth’, ’n.’, ’ional’,
’Prince’, ’inten’, ’ruck’, ’numbers’, ’heid’,
’javascript’, ’’, ’oux’, ’entic’, ’Kent’, ’jal’,
’highly’, ’Sher’, ’burg’, ’Richmond’, ’achi’,
’snow’, ’ęd’, ’bland’, ’Canada’, ’fection’,
’rias’, ’anson’, ’abb’, ’yman’, ’agar’, ’burgh’,
’’, ’Connecticut’, ’ham’, ’Robinson’, ’stick’,
’actor’

25 ’land’, ’enson’, ’bury’, ’ington’, ’Stanley’,
’gren’, ’anton’, ’eston’, ’eland’, ’endorf’,
’mouth’, ’chester’, ’leton’, ’emberg’,
’Franklin’, ’Maryland’, ’England’, ’dale’,
’Duke’, ’Department’, ’composition’, ’fly’,
’’, ’borough’, ’ardin’, ’Edinburgh’, ’igny’,
’irmingham’, ’Scotland’, ’orton’, ’burg’,
’folk’, ’’, ’inden’, ’ivan’, ’’, ’Russell’,
’cki’, ’hardt’, ’York’, ’hausen’, ’beck’,
’Lincoln’, ’stone’, ’enberg’, ’’, ’lease’,
’rei’, ’anson’, ’inton’, ’County’, ’inson’,
’unt’, ’ortheast’, ’insen’, ’ansen’, ’olk’,
’Braun’, ’mole’, ’District’, ’heim’, ’’, ’ols’,
’’, ’ström’, ’bol’, ’lyn’, ’Leopold’, ’ford’, ’’,
’founder’, ’aki’, ’ama’, ’onian’, ’personally’

Table 9: Top-k tokens extracted from different layers for the first subject.
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Prompt Layer Top k tokens

The capital
of the coun-
try with the
Pyramids of
Giza is

5 ’iza’, ’Egypt’, ’izar’, ’iz’, ’gypt’, ’izia’,
’airo’, ’Peru’, ’itza’, ’isa’, ’tomb’, ’za’,
’Elis’, ’ixa’, ’isi’, ’icia’, ’aza’, ’ifa’,
’ja’, ’Gia’, ’Jerusalem’, ’’, ’Lis’, ’Gaz’,
’tick’, ’Iz’, ’aris’, ’izo’, ’iso’, ’IZ’, ’zeta’,
’hausen’, ’ya’, ’amaz’, ’nitz’, ’itzer’, ’cca’,
’inta’, ’hoff’, ’cian’, ’zyk’, ’ixon’, ’biz’,
’’, ’izz’, ’Jung’, ’ocia’, ’zza’, ’pc’, ’ira’,
’Roma’, ’’, ’’, ’izations’, ’ancient’, ’isie’,
’arte’, ’’, ’observ’, ’baz’, ’aka’, ’ization’,
’izza’, ’Paris’, ’existed’, ’yard’, ’ka’, ’’,
’ba’, ’zo’, ’ysz’, ’osi’, ’’, ’Krak’, ’lava’,
’zien’, ’jar’, ’aga’, ’zat’, ’endl’

15 ’Egypt’, ’iza’, ’gia’, ’gypt’, ’ica’, ’Peru’,
’airo’, ’izia’, ’isie’, ’Janeiro’, ’isi’,
’auff’, ’igo’, ’’, ’Grey’, ’bia’, ’Jordan’, ’’,
’Houston’, ’Miami’, ’uez’, ’’, ’fica’, ’unda’,
’phrase’, ’icia’, ’uga’, ’ptic’, ’onian’,
’Africa’, ’Brazil’, ’hoz’, ’inta’, ’ids’,
’Alexand’, ’eda’, ’izza’, ’itzer’, ’Singapore’,
’anska’, ’’, ’projects’, ’bi’, ’raz’, ’gender’,
’era’, ’yrus’, ’’, ’fico’, ’gray’, ’stones’,
’ña’, ’indi’, ’python’, ’Kent’, ’effic’, ’’,
’shoulder’, ’antine’

25 ’icians’, ’documents’, ’</s>’, ’imin’, ’’,
’’, ’’, ’vin’, ’onian’, ’ification’, ’Gib’,
’istan’, ’Gil’, ’Metropolitan’, ’’, ’mouth’,
’ford’, ’inda’, ’’, ’allow’, ’agon’, ’scribe’,
’ou’, ’isher’, ’ey’, ’ital’, ’inclus’,
’allen’, ’Hamilton’, ’Valley’, ’Wayne’, ’iza’,
’ilities’, ’validate’, ’ingham’, ’’, ’Gia’,
’assigning’, ’andra’, ’Lewis’, ’aris’, ’Jordan’,
’Roberts’, ’burg’, ’’, ’Ryan’, ’WD’, ’Gray’,
’distance’, ’ette’, ’ila’, ’simultaneously’,
’gress’, ’hire’, ’oz’, ’anti’, ’angel’, ’stone’,
’ara’, ’connections’, ’’, ’generalized’, ’illa’,
’Foundation’, ’Gran’, ’iche’, ’Program’,
’icular’, ’achi’, ’general’, ’regression’,
’stein’, ’ayer’, ’’, ’ptic’

Table 10: Top-k tokens extracted from different layers for the second subject.

Scenario Base Fact (c-) Base Question (D+->D-)

ARR > 0 (latent reasoning) Callum McManaman was born in France In which borough was Callum McManaman born?
ARR < 0 (factual shortcut) Einstein’s spouse is Elizabeth. Where was Einstein’s spouse born?

Table 12: Examples in D2 (to be expanded in Appendix).
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Figure 11: 7B Window 1

0 5 10 15 20 25 30 35 40
Layer

30

20

10

0

10

20

30

%
 C

ha
ng

e 
in

 P
re

di
ct

io
n 

Pr
ob

ab
ilit

y

Blocked Positions
subject non-subject last

Figure 12: 13B Window 1
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Figure 13: 7B Window 5
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Figure 14: 13B Window 5
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Figure 15: 7B Window 10
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Figure 16: 13B Window 10
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Figure 17: 7B Window 20
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Figure 18: 13B Window 20

Figure 19: Combined results for different windows (7B and 13B).

2206


