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Abstract

Speakers often have multiple ways to express
the same meaning. The Uniform Information
Density (UID) hypothesis suggests that speak-
ers exploit this variability to maintain a con-
sistent rate of information transmission during
language production. Building on prior work
linking UID to syntactic reduction, we revisit
the finding that the optional complementizer
that in English complement clauses is more
likely to be omitted when the clause has low in-
formation density (i.e., more predictable). We
advance this line of research by analyzing a
large-scale, contemporary conversational cor-
pus and using machine learning and neural lan-
guage models to refine estimates of information
density. Our results replicate the established
relationship between information density and
that-mentioning. However, we find that previ-
ous measures of information density based on
matrix verbs’ subcategorization probability cap-
ture substantial idiosyncratic lexical variation.
By contrast, estimates derived from contextual
word embeddings account for additional vari-
ance in patterns of complementizer usage.1

1 Introduction

Language production is highly flexible across all
levels of linguistic analysis, such as phonetics, lex-
icon, and syntax. Such flexibility in production
enables researchers to ask the question: What cog-
nitive mechanisms guide our choice among com-
peting alternatives? A prominent account, Uniform
Information Density (UID; Jaeger, 2010; Levy and
Jaeger, 2007), proposes that speakers exploit this
flexibility to maintain a consistent rate of infor-
mation transmission. According to UID, speakers
tend to structure their utterances to distribute infor-
mation as evenly as possible across the linguistic
signal to ensure robust information transmission
while maintaining efficient use of the communica-

1Code is available here.

tion channel. Following Shannon’s (1948) informa-
tion theory, the information density of a linguistic
unit u (e.g., a phoneme, a word, or a syntactic
structure) given its context is defined as:

I(u) = − log(P (u | context)) (1)

where P (u | context) denotes the contextual prob-
ability of u. This is also commonly referred to as
surprisal (Hale, 2001; Levy, 2008).

In an influential study, Jaeger (2010) demon-
strated that UID effects can be observed at the
syntactic level. He examined the optional com-
plementizer that in English complement clauses
(henceafter CCs; e.g., (1)) and found that that is
more likely to be included when the information
density of the CC is high—that is, when the con-
textual probability of a CC given the preceding
context, P (CC | context), is low.

(1) The boss complained (that) they were crazy.

The rationale is that an unpredicted CC would cre-
ate a spike in information density at the clause on-
set without that, since the CC is unexpected, while
including that helps smooth the distribution by sig-
naling the upcoming structure. Conversely, when a
CC is highly predictable, that becomes redundant
and may introduce an information density trough.
This preference is illustrated in Figure 1. When the
CC onset is information-heavy, potentially exceed-
ing the channel’s capacity, as in Figure 1a (because
CC has low probability after the boss complained),
including that can reduce peak information density
(Figure 1b). In contrast, when the onset is relatively
low in information density, omitting that results in
a smooth information profile (Figure 1d), while
mentioning that would create a valley (Figure 1c).

While Jaeger (2010) provided important evi-
dence for UID, several limitations remain in this
work. First, P (CC | context) was quantified using
matrix verbs’ subcategorization probabilities—that
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Figure 1: Illustration of per-word information density
(note that the solid line represents a hypothetical channel
capacity, and that the information density values are
schematic only).

is, the proportion of times a given verb (based on
its lemma) takes a CC as its syntactic object, based
on corpus-derived frequencies. This static mea-
sure might not not fully capture dynamic predic-
tive processes and may conflate predictability with
verb-specific variation. Second, the study used a
relatively small and outdated dataset: about 8,000
CCs with 31 matrix verbs from the Switchboard
corpus (Godfrey et al., 1992; Marcus et al., 1999),
which may limit the generalizability of the findings.
Given the theoretical importance of Jaeger’s (2010)
findings, a reexamination using larger datasets and
more refined predictability measures is needed.

To address these limitations, in the current work
we analyze a modern large-scale corpus called
Conversation: A Naturalistic Dataset of Online
Recordings (CANDOR; Reece et al., 2023). To
preview, we extract over 50,000 unique cases of
CCs after data cleaning, encompassing 50 unique

matrix verbs. In addition, we incorporate insights
from machine learning and neural language models,
especially contextual word embeddings, to refine
measures of structural predictability. Such refined
estimation also allows us to investigate whether
improved predictability of CCs leads to better mod-
eling of that-mentioning.

2 Related Work

2.1 Psycholinguistic Evidence for UID

Research supporting the UID hypothesis in lan-
guage production spans multiple linguistic levels,
including phonetics (Aylett and Turk, 2004), lexi-
cal choice (Mahowald et al., 2013), syntax (Jaeger,
2010), and discourse (Asr and Demberg, 2015).
For example, past research across many different
languages has consistently demonstrated that when
a word or phoneme is more predictable in con-
text, it is typically produced with a shorter duration
and exhibits reduced phonological and phonetic
detail (Aylett and Turk, 2004; Bell et al., 2009;
Cohen Priva, 2015; Pimentel et al., 2021; Pluy-
maekers et al., 2005, among others). At the lexical
level, Mahowald et al. (2013) found that speakers
are more likely to use shortened forms of words
(e.g., math instead of mathematics) in more pre-
dictive contexts. Similarly, at the syntactic level,
studies have shown that optional syntactic markers,
such as that in English CCs (e.g., I think (that) the
weather is very nice; Jaeger, 2010) and object rela-
tive clauses (e.g., the groceries (that) they brought
home; Levy and Jaeger, 2007), are more frequently
omitted when the upcoming syntactic structure is
highly predictable. The relationship between infor-
mation density and syntactic reduction also extends
cross-linguistically, such as in subject doubling in
French (Liang et al., 2024) and optional indefinite
articles in German (Lemke et al., 2017).

However, the predictions of UID are not always
borne out. For example, Zhan and Levy (2018)
found that variation in the use of specific versus
general classifiers in Mandarin Chinese is better ex-
plained by availability-based production accounts.
In addition, Kuperman et al. (2007) observed that
Dutch interfixes are pronounced longer when they
have higher contextual probability, contrary to UID
predictions, which they attributed to paradigmatic
enhancement. These divergent findings underscore
the need for further evaluation of UID.
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2.2 Neural Language Model and Structural
Knowledge

A range of studies has probed neural language
models’ sensitivity to linguistic structures. Linzen
et al. (2016), for instance, evaluated LSTMs’ ability
to capture subject-verb agreement using template-
based test data. Extending this approach, Warstadt
et al. (2020) developed a broader benchmark en-
compassing a diverse set of linguistic phenomena
(see also Hu et al., 2020). Many of these studies
rely on surprisal-based evaluations, assuming that
ungrammatical continuations should elicit higher
surprisal than grammatical ones (e.g., Futrell et al.,
2019; Wilcox et al., 2018). Other work has adapted
stimuli from psycholinguistic experiments, compar-
ing language model surprisal to human behavioral
or neural data (Arehalli and Linzen, 2020; Hao,
2023; Huang et al., 2024; Michaelov and Bergen,
2020). For critical overviews of this literature, see
Limisiewicz and Mareček (2020) and Linzen and
Baroni (2021)

Beyond surprisal-based evaluations, researchers
have also assessed models’ syntactic knowledge
through attention head analyses (e.g., Clark et al.,
2019; Ryu and Lewis, 2021), meta-linguistic
prompting (e.g., Dentella et al., 2024; Katzir, 2023;
Zhou et al., 2023; though see Hu and Levy, 2023,
for critiques of this method), and examinations of
contextual word embeddings (e.g., Li et al., 2022;
Peters et al., 2018; Petty et al., 2022; Tenney et al.,
2019; Wilson et al., 2023). For instance, Peters et al.
(2018) demonstrated that contextual embeddings
encode a wide range of syntactic information, such
as part-of-speech and syntactic boundaries, while
Li et al. (2022) showed that contextual word em-
beddings are sensitive to argument structure even
in semantically anomalous sentences.

3 Structural Predictability Model

In this section, we detail how we estimate P (CC |
context), the structural predictability of CCs. Re-
call that the information density of a CC is defined
as the negative logarithm of P (CC | context). To
obtain these estimates, we trained several neural
binary classifiers using either hand-selected lin-
guistic features from the pre-CC context or contex-
tual word embeddings of the matrix verb. Hand-
selected features offer interpretability and theoret-
ical grounding but may overlook subtle or high-
dimensional patterns in the linguistic context. In
contrast, contextual word embeddings (e.g., from

BERT or GPT models) encode nuanced seman-
tic and syntactic information by capturing how a
word’s meaning dynamically changes with its con-
text, but at the cost of interpretability (Kennedy
et al., 2021). To balance this trade-off, we evalu-
ated models trained on each feature type separately.

3.1 Linguistic Features

We included features from the matrix verb and the
matrix subject in the pre-CC context. For the ma-
trix verb, we included its subcategorization prob-
ability, estimated from the CANDOR corpus (see
Appendix A), as well as its log frequency (SUB-
TLEX; Brysbaert and New, 2009), factivity (i.e.,
whether it presupposes the truth of the clause it
introduces; Karttunen, 1971), tense (base form vs.
inflected), and position within the sentence. We
also included two features related to the matrix sub-
ject: form (I, You, Other pronouns vs. Other nouns)
and log frequency.

To identify the most effective feature set, we per-
formed incremental feature selection, adding fea-
tures one at a time starting from the matrix verb’s
subcategorization probability. A feature was re-
tained only if it improved model fit according to
Akaike Information Criteria (AIC; Akaike, 1974)
and Bayesian Information Criteria (BIC; Schwarz,
1978), both of which balance model fit and com-
plexity by penalizing the inclusion of unnecessary
parameters. We also experimented with Lasso re-
gression (Tibshirani, 1996), where we first fitted a
linear regression model using all features simulta-
neously with an L1 penalty to encourage sparsity in
the feature set. Features with nonzero coefficients
were then used to predict CC presence.

3.2 Contextual Word Embeddings

To capture richer predictive cues, we extracted con-
textual embeddings of the matrix verb from GPT-2
Small (GPT-2 henceforth; Radford et al., 2019).
Note that this context only includes pre-CC infor-
mation, not information after the CC onset (e.g.,
we extracted the embeddings of complained from
the boss complained). GPT-2’s autoregressive ar-
chitecture enables embeddings based solely on pre-
ceding context, aligning with incremental sentence
processing. We used the final hidden state of the
verb token and reduced the 768-dimensional em-
beddings to 50 dimensions via PCA (Jolliffe, 2002),
preserving over 99% of the variance.
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3.3 Training Data

The training data come from the CANDOR corpus
(Reece et al., 2023), a large-scale dataset of 1,656
dyadic conversations recorded over Zoom. The
corpus is publicly available and can be requested
here. These conversations capture spontaneous, un-
scripted exchanges between strangers and are sup-
plemented with detailed survey data. The corpus
includes 1,456 unique participants representing a
diverse range of gender identities, educational back-
grounds, ethnicities, and generations. The mean
conversation duration is 31.3 minutes (SD = 7.96,
min = 20). All analyses in this study are based
on existing transcripts from the corpus, totaling
approximately 8 million words. Transcripts were
segmented using the Cliffhanger algorithm, which
groups utterances based on terminal punctuation
(e.g., periods, exclamations, questions) and inte-
grates backchannels into broader conversational
units.

Transcripts were automatically parsed using
spaCy’s dependency parser (Honnibal et al., 2020),
following Universal Dependencies conventions
(de Marneffe et al., 2021; Nivre et al., 2016). We
began with 86 matrix verbs that can take CCs, iden-
tified by Jaeger (2010) and Jaeger and Grimshaw
(2013). Based on frequency in the CANDOR cor-
pus, we selected the 50 most frequent verbs (≥ 100
occurrences; see Appendix A).

We then extracted all instances of these 50 verbs,
regardless of whether they were followed by a CC,
direct object, or other dependents. We excluded
cases where the verb was sentence-final or the ma-
trix subject was missing. Each instance is labeled
as 1 if followed by a CC and 0 otherwise. The final
dataset consists of 236,504 training examples, with
33.01% labeled as 1.

3.4 Model Architecture, Training, and
Evaluation

We trained feedforward neural networks to predict
CC presence. The input features were fed into three
hidden layers (128, 64, and 32 units, respectively)
with ReLU activation, batch normalization, and 0.2
dropout. The final layer used sigmoid activation to
produce probabilities ranging from 0 to 1. Before
training, all numerical predictors were z-scored,
and categorical variables factor-encoded.

The model was trained using binary cross-
entropy loss and optimized with Adam (Kingma
and Ba, 2015) in minibatches of 1024 instances

(learning rate = 0.001, weight decay = 1e-5). Train-
ing proceeded for up to 50 epochs, with early
stopping if validation loss did not improve after
five epochs. We used five-fold stratified cross-
validation to maintain class distribution across
splits.

3.5 Structural Predictability Model Results

Results from the incremental selection of linguistic
features are presented in Table 1. Recall that a new
feature was added only if it improved model per-
formance in terms of AIC and BIC. Table 1 reports
the change in AIC and BIC relative to the previ-
ously selected model. For reference, we also report
each model’s F1 score and log loss. As shown
in Table 1, including subcategorization probability
leads to reductions in both AIC and BIC relative to
the baseline model, as well as lower log loss and
higher F1 scores. However, none of the additional
linguistic features resulted in further improvements
according to both AIC and BIC. In fact, the more
complex models even show slight decreases in F1
scores. Thus, among the linguistic features consid-
ered, only subcategorization probability enhanced
the predictions of CC presence.

After applying Lasso Regression, four of seven
features were retained: subcategorization proba-
bility, verb frequency, factivity, and subject form.
Using this refined set, we trained a structural pre-
dictability model with the same neural network ar-
chitecture. However, although this model achieved
a lower log loss (0.479), the model showed a de-
crease in F1 score (0.652) and an increase in BIC
compared to the model using only Subcategoriza-
tion Probability. This result is consistent with ear-
lier findings from incremental feature selection, fur-
ther confirming that additional linguistic features
do not improve predictive performance.

In contrast, the model trained on contextual word
embedding features achieved a log loss of 0.442
and an F1 score of 0.691, outperforming all models
based on hand-selected features.2

Based on these results, we proceed to test how
well information density derived from (i) verb sub-

2One reviewer suggested experimenting with numerical
representations of word meaning that are not sensitive to con-
text, in order to disentangle the contribution of richer vector
representations from that of contextual information. To ad-
dress this, we tested GloVe embeddings (Pennington et al.,
2014) and obtained an F1 score of 0.66 with a log loss of 0.48.
These results did not outperform the subcategorization-only
model, suggesting that it is indeed contextual information that
drives the improvement.
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Features AIC ∆ BIC ∆ F1 Log Loss
Intercept only – – 0.000 0.6346
Subcategorization Probability -13629.10 -13629.10 0.660 0.491
+ Verb Frequency 128.94 1456.78 0.660 0.489
+ Factivity 320.06 1647.90 0.660 0.491
+ Tense 156.09 1483.93 0.654 0.490
+ Position 247.66 1575.50 0.660 0.490
+ Subject Form -313.63 1014.20 0.647 0.485
+ Subject Frequency -514.77 813.07 0.645 0.482

Table 1: Model comparisons predicting CC presence. Lower AIC, BIC, and log loss, and higher F1 scores indicate
better performance.

categorization probabilities and (ii) from contextual
word embeddings predicts that-mentioning.

4 Information Density and
that-Mentioning

This section reports our statistical models pre-
dicting that-mentioning. We examine whether
higher information density leads to increased that-
mentioning, as predicted by UID. Recall that in
Equation (1), CC information density is the neg-
ative logarithm of CC structural predictability.
Based on the results of the structural predictability
models, we experiment with information density
derived from verb subcategorization probabilities
and contextual word embeddings. Additionally,
we assess whether more accurate estimates of CC
structural predictability improve the overall fit of
models predicting that-mentioning.

4.1 Data

As in previous analyses, we relied on parsed tran-
scripts from the CANDOR corpus (Reece et al.,
2023). We extracted CCs introduced by the same
50 matrix verbs used for training CC structural pre-
dictability models (Appendix A) and retained only
instances where the matrix verb preceded the CC.

The dataset was further refined based on the fol-
lowing criteria. First, we excluded the first CCs in
all conversations (1,656 cases), as we are interested
in the potential effects of whether the previous CC
is reduced or not. Second, we removed cases lack-
ing either a matrix subject or an embedded nomi-
nal subject, as the identity of both the matrix and
the embedded subjects are crucial for our analysis
(13,076 cases). Lastly, for matrix verbs introducing
multiple CCs, only the first occurrence was retained
to avoid redundancy (8,097 cases excluded). After
exclusions, we are left with 51,276 instances of

CCs for analysis.

4.2 Control variables

To rigorously test UID predictions, we controlled
for a range of variables that can also affect that-
mentioning, largely following Jaeger (2010). We
discuss each of them in the following subsections.
Importantly, the UID account is not mutually ex-
clusive with these mechanisms. See Appendix B
for a summary of the control variables, including
their types, levels, and relative proportions.

4.2.1 Availability-Based Production
According to availability-based accounts (Bock
and Warren, 1985; Ferreira, 1996; Ferreira and
Dell, 2000), optional elements facilitate produc-
tion when upcoming material is less accessible
(i.e., when upcoming material has low frequency).
To capture such effects, we included the log fre-
quency of the CC subject head (CC SUBJECT FRE-
QUENCY), the form of the CC subject (CC SUB-
JECT FORM; I vs. You vs. Other pronouns vs.
Other nouns), and the matrix verb’s log frequency
(MATRIX VERB FREQUENCY). We also included
CO-REFERENTIALITY, a binary predictor indicat-
ing whether the matrix and CC subjects are identi-
cal (e.g., I think I...).

4.2.2 Syntactic Priming
Speakers tend to repeat recently encountered struc-
tures (Bock, 1986; Gries, 2005; Mahowald et al.,
2016). We included PREVIOUS THAT, a binary
predictor indicating whether that was present in the
speaker’s or interlocutor’s most recent CC.

4.2.3 Dependency Locality
Longer dependencies increase production difficulty
(Hawkins, 2004; Roland et al., 2006). Three local-
ity measures were considered: MATRIX VERB-CC
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DISTANCE (local vs. non-local), CC SUBJECT

LENGTH (number of the CC subject’s dependents),
and CC REMAINDER LENGTH (number of words
following the CC subject head in the same CC).

4.2.4 Speaker Commitment
It has been argued that variation in that-mentioning
is not meaning-equivalent (Thompson and Mulac,
1991), as sometimes the matrix verb conveys the
speaker’s level of commitment rather than introduc-
ing a true CC, making that unnecessary. Follow-
ing Jaeger (2010), we assumed that commitment
is highest with first-person subjects, followed by
second-person, and then third-person references,
and included MATRIX SUBJECT FORM as a four-
level predictor (I vs. You vs. Other pronouns vs.
Other nouns).

4.2.5 Position
Production difficulty may vary depending on when
the CC occur in a sentence. We included VERB

ID, the ordinal position of the matrix verb, as a
continuous predictor.

4.2.6 Similarity Avoidance
Speakers may omit that to avoid adjacent similar
forms if the CC also begins with that (Walter and
Jaeger, 2008). We included THAT-DOUBLING as a
binary predictor.

4.2.7 Disfluencies
Disfluencies can impact syntactic choices (e.g.,
Liang et al., 2024). We included FILLED WORD

(presence of a filled pause before the CC) and REP-
ETITION (immediate repetition of a word, exclud-
ing adjectives and adverbs used for emphasis).

4.3 Statistical Modeling of that-mentioning
Before modeling, all continuous predictors (see
Appendix B) were standardized using z-score nor-
malization. Binary predictors were contrast-coded,
and the four-level categorical variables (CC SUB-
JECT FORM and MATRIX SUBJECT FORM) were
coded using successive difference coding: compar-
ing I vs. You, You vs. Other Pronouns, and Other
Pronouns vs. Other Nouns.

We fitted a generalized linear mixed-effects
model (GLMM; Jaeger, 2008) using the glmer()
function from the lme4 package in R (Bates et al.,
2015; R Core Team, 2023), with the presence of
that as the binary dependent variable. Fixed ef-
fects included CC information density and a set of
control variables. To account for variability across

individuals, we included a random intercept for
speaker. In follow-up analyses, we also included
a random intercept for matrix verb lemmas (verbs
henceforce) to capture verb-specific tendencies in
complementizer usage. While these random effects
are not directly motivated by theoretical accounts,
they serve to control for idiosyncratic variation in
baseline rates of that-mentioning across speakers
and lexical items. Model comparisons were evalu-
ated via AIC and BIC.

4.4 Results of that-Mentioning

Here we report the effects of information den-
sity on that-mentioning to test predictions from
the UID hypothesis, alongside other control vari-
ables. Information density was estimated using
two approaches: the matrix verb’s subcategoriza-
tion probability and its contextual word embedding.
We further examine whether embedding-based esti-
mates—shown to more accurately predict CC pres-
ence—better account for that-mentioning patterns
than verb-based estimates.

4.4.1 Verb-based Information Density
The relationship between verb-based information
density and that-mentioning is illustrated in Fig-
ure 2. A plot with verb identity can be found in
Appendix C). As can be seen in Figure 2, higher
information density is indeed associated with in-
creased rates of that-mentioning, consistent with
UID predictions, although substantial variability
across verbs remains. Results from the statistical
model with a speaker random intercept are pre-
sented in Table 2. Generalized Variance Inflation
Factors (GVIFs) for fixed effects were close to 1,
indicating minimal multicollinearity. Mode results
revealed that higher verb-based information den-
sity significantly increases the likelihood of that-
mentioning.

Effects of control variables also aligned with
several theoretical accounts. First, higher CC
SUBJECT FREQUENCY and MATRIX VERB FRE-
QUENCY predicted reduced that-mentioning, con-
sistent with availability-based accounts. However,
CC SUBJECT FORM and CO-REFERENTIALITY

were non-significant. We also found syntactic prim-
ing effects, whereby PREVIOUS that significantly
increased that-mentioning. Findings for depen-
dency locality were mixed: longer CC REMINDER

LENGTH increased that-mentioning as expected,
but shorter CC SUBJECT LENGTH and MATRIX

VERB-CC DISTANCE also led to higher that-use,
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Figure 2: Effects of information density (by verb Sub-
categorization Probability) on that-mentioning. The red
line is a logistic regression fit estimated as a binomial
GLMM. Each dot represents a verb, while the shading
reflects its frequency, with darker shades corresponding
to more frequent verbs.

contrary to the predictions. Speaker commitement
effects were robust—that was more likely when the
matrix subject was You than I, with similar trends
across other subject types, suggesting that signals
degrees of speaker commitment. VERB ID had a
positive but non-significant effect. Supporting simi-
larity avoidance, potential that-DOUBLING reduced
that-mentioning. Finally, disfluencies measures
such as FILLED WORD and REPETITION increased
that-use, with REPETITION reaching significance.

4.4.2 Embedding-based Information Density
As shown in Figure 3, embedding-based infor-
mation density again positively predicted that-
mentioning. Because the statistical results closely
mirrored those of the previous model, we do not re-
port them in detail. Crucially, information density
remained a strong predictor (β = 0.15; p < 0.001).

However, the current model performed worse,
with AIC and BIC increasing by 392 and 391
points, respectively, compared to the previous
model with verb-based information density. While
word embedding features yielded better perfor-
mance in the structural predictability task, they
offered no clear advantage in predicting that-
mentioning over subcategorization probabilities.

4.5 Follow-up Analysis: Verb Random
Intercept

Although the verb-based model initially outper-
formed the embedding-based model, we were
cautious in interpreting this as evidence that
embedding-based information density is less effec-
tive. In the verb-based model, information density

Predictor Estimate p-value
Information Density 0.28 < 0.001
CC Subject Frequency -0.16 < 0.001
CC Subject Form 2–1 -0.00 = 0.99
CC Subject Form 3–2 -0.02 = 0.72
CC Subject Form 4–3 0.03 = 0.68
Matrix Verb Frequency -0.24 < 0.001
Co-referentiality -0.05 = 0.24
Previous that 0.23 < 0.001
Matrix Verb-CC Distance -0.40 < 0.001
CC Subject Length -0.04 < 0.05
CC Reminder Length 0.18 < 0.001
Matrix Subject Form 2–1 0.69 < 0.001
Matrix Subject Form 3–2 0.70 < 0.001
Matrix Subject Form 4–3 0.53 < 0.001
Verb ID 0.02 = 0.20
that-Doubling -0.53 < 0.001
Filled Word 0.04 = 0.36
Repetition 0.14 < 0.05

Table 2: Regression estimates from the model predicting
complementizer presence.

is constant for each matrix verb, potentially con-
flating information density with verb-specific ef-
fects—a limitation of subcategorization probability
we mentioned earlier. To address this, we refitted
both models with an added random intercept for
matrix verbs.3

We found that adding a matrix verb random in-
tercept substantially reduced AIC and BIC for both
the verb-based and embedding-based models (Ta-
ble 3), indicating that a substantial portion of vari-
ation in complementizer usage is attributable to
verb-specific preferences—patterns tied to individ-
ual matrix verbs that were not captured by fixed
effects in the previous models.

Additionally, the effects of information density
diverged. In the verb-based model, the effect of
information density became non-significant (β =
0.14; p = 0.18), suggesting that its earlier effect
was largely driven by verb-specific variation. In
contrast, information density estimated from con-
textual word embeddings remained a significant
predictor even after controlling for verb identity
(β = 0.12; p < 0.001). Furthermore, between

3We note that verb-level predictors remain identifiable
even with verb-specific random intercepts, since partial pool-
ing in mixed-effects models prevents perfect collinearity with
group-level fixed effects (Gelman and Hill, 2007). In our mod-
els, verb-based information density showed no collinearity
issues, and verb frequency—a verb-level predictor—remained
significant despite the inclusion of verb random intercepts.
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Model AIC BIC
Verb-based information density, without verb random intercept 33344 33521
Embedding-based information density, without verb random intercept 33736 33912
Verb-based information density, with verb random intercept 32302 32488
Embedding-based information density, with verb random intercept 32277 32462

Table 3: Model comparison based on AIC and BIC.

Figure 3: Effects of information density (by contextual
word embeddings) on that-mentioning. The red line is a
logistic regression fit estimated as a binomial GLMM.

the two models with verb random intercepts, the
embedding-based model showed better fit, reduc-
ing AIC and BIC by 25 and 26 points, respectively,
suggesting that embedding-based information den-
sity captures additional variance in patterns of that-
mentioning.

5 Discussion

This study revisits Jaeger (2010) using a large
and modern dataset from the CANDOR corpus.
We analyze over 50,000 instances of CCs to test
how information density—estimated from different
sources—predicts that-mentioning, alongside other
predictors motivated by alternative theories. We
also evaluate whether improved estimates of infor-
mation density lead to better model performance.

Our results replicate the core finding that higher
information density increases the likelihood of
overt that, as predicted by UID. Information den-
sity estimated from verb subcategorization proba-
bilities provides strong predictive power but likely
reflected verb-specific preferences rather than a
general effect of information density. This is con-
firmed by follow-up models with random inter-
cepts for matrix verbs, which eliminated the ef-
fect of verb-based information density. In contrast,
embedding-based information density remains sig-
nificant in predicting that-mentioning, suggesting it

captures more abstract, verb-independent informa-
tion. Moreover, this is consistent with the results of
structural predictability models, where GPT-2 em-
beddings outperform all other features, including
verb subcategorization probability, in predicting
CC presence, suggesting that it offers a better mea-
sure of information density.

However, we do note that after including the verb
random intercept, Jaeger (2010) still find signifi-
cant effects of verb-based measures of information
content. This is likely due to our larger dataset
size. Since results of Jaeger (2010) reply on much
less observations, the effects of information density
might have been amplified.4

Beyond UID, we also find support for other ac-
counts of that-mentioning. First, lower-frequency
matrix verbs and CC onsets are associated with
more that-mentioning, consistent with availability-
based accounts. We also find syntactic priming:
speakers are more likely to include that if the
previous CC did. Evidence for dependency lo-
cality is mixed—longer CC remainders increase
that-mentioning, but greater distance between the
matrix verb and CC onset, as well as longer CC
subjects, showed the opposite pattern. This may
be due to parsing errors or shifting usage patterns.
Effects of speaker commitment are also observed,
with higher levels of speaker commitment leading
to less overt that. Finally, we observe similarity
avoidance (reduced that-use in potential that-that
sequences) and disfluency effects (filled words and
repetitions increased that-mentioning).

Our findings also shed light on the structural
sensitivity of GPT-2, particularly its contextual
word embeddings. Embeddings of the matrix
verb—derived solely from pre-CC context are pre-
dictive of upcoming syntactic structure, suggesting
that GPT-2 embeddings captures fine-grained struc-
tural cues. This may explain the success of GPT-2
and other autoregressive neural language models

4We also ran an analysis including only verbs used in
Jaeger (2010), and its results are qualitatively similar to our
full analysis, suggesting that it is indeed the size of the dataset
(i.e., more observations per verb) that leads to different results.
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in downstream tasks that require syntactic knowl-
edge. This approach offers a promising avenue for
future work to leverage contextual embeddings for
modeling syntactic prediction more broadly.

6 Conclusion

This study provides robust support for UID at the
syntactic level in naturalistic conversations. Infor-
mation density estimated from contextual word em-
beddings significantly predicted that-mentioning,
even after controlling for verb-specific preferences.
Additionally, we showed that verb-specific pref-
erences also played an important role, and that
information density measures derived from verbs’
subcategorization probabilities might have been
conflated with verb-specific preferences. These
findings highlight limitations of conventional lin-
guistic features in modeling predictive processes,
and suggest that high-dimensional linguistic repre-
sentations such as contextual word embeddings of-
fer a more effective and flexible alternative. Our re-
sults also demonstrate that that-reduction is shaped
by multiple interacting pressures—including infor-
mation density, availability, speaker commitment,
syntactic priming, and form avoidance.

Lastly, our work underscores the value of com-
bining large naturalistic corpora with machine
learning and NLP techniques for studying psy-
cholinguistics. The use of the CANDOR corpus
allowed us to examine that-mentioning in spon-
taneous, naturalistic speech across a diverse lin-
guistic samples. By leveraging machine learning
and contextual word embeddings from neural lan-
guage models, we developed more nuanced predic-
tors of structural choices. This approach not only
improves predictive accuracy but also opens new
avenues for modeling linguistic behavior at scale.

Limitations

There are several limitations to the present study.
First, the conversational transcripts were automati-
cally generated, and dependency structures were de-
rived using automatic parsers. As a result, the data
may contain transcription and parsing errors. Sec-
ond, we relied on GPT-2 to estimate online spoken
language predictions, although GPT-2 is primarily
trained on written text. This may limit its ability
to fully capture characteristics of spontaneous spo-
ken language. Moreover, our analysis was based
on a single language model architecture. Future
work should explore alternative models, including

those trained on conversational data or designed for
speech-oriented tasks, to assess the generalizability
of our findings. Lastly, although our analysis found
that no linguistic features significantly improved
the structural predictability of CCs, it is possible
that we did not exhaust the full range of relevant
linguistic predictors. Future research could investi-
gate additional features that may contribute to the
reduction of that in CCs.

Ethical Considerations

We employed AI-based tools (Claude and Chat-
GPT) for writing and coding assistance. These
tools were used in compliance with the ACL Policy
on the Use of AI Writing Assistance.
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A Matrix Verb Statistics

This appendix provides the full distribution of
complement clause subcategorization probabilities
across verbs in our dataset in Table 4 and Table 5.

B Descriptive Statistics for Predictors for
Modeling that-Mentioning

This appendix provides the full distribution of
complement clause subcategorization probabilities
across verbs in our dataset in Table 6.

C By-verb Plot for Effects of Verb-based
Information Density on
that-mentioning

In Figure 4 we plot the relationship between verb-
based information density and that-mentioning, in-
cluding the identities of verbs.
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Verb Lemma Total Occurrences CC Occurrences Subcat Probability (%)
know 119,678 28,664 23.95
think 46,610 35,080 75.26
mean 30,281 1,916 6.33
say 24,805 13,612 54.88
like 23,578 3,381 14.34
see 20,578 7,111 34.56
take 15,314 994 6.49
feel 11,274 2,298 20.38
guess 9,744 6,101 62.61
hear 9,166 2,408 26.27
tell 7,264 3,345 46.05
find 6,579 1,948 29.61
love 6,290 762 12.11
thank 5,521 289 5.23
remember 4,626 2,191 47.36
read 3,649 346 9.48
show 3,170 650 20.50
understand 2,984 1,092 36.60
suppose 2,911 326 11.20
hope 2,488 1,869 75.12
teach 2,380 238 10.00
figure 2,327 912 39.19
believe 1,970 947 48.07
imagine 1,891 874 46.22

Table 4: Verb-level complement clause frequencies and subcategorization probabilities (part 1).
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Verb Lemma Total Occurrences CC Occurrences Subcat Probability (%)
check 1,754 114 6.50
care 1,693 263 15.53
decide 1,428 579 40.55
realize 1,395 974 69.82
agree 1,324 172 12.99
hold 1,313 107 8.15
wish 1,291 1,028 79.63
worry 1,028 90 8.75
expect 980 349 35.61
consider 840 264 31.43
mind 733 208 28.38
notice 721 324 44.94
mention 645 190 29.46
answer 561 26 4.63
explain 561 106 18.89
bet 480 272 56.67
accept 465 49 10.54
complain 423 53 12.53
stress 234 23 9.83
admit 209 98 46.89
respond 176 11 6.25
joke 156 32 20.51
promise 146 58 39.73
judge 119 19 15.97
claim 110 47 42.73
suggest 108 50 46.30

Table 5: Verb-level complement clause frequencies and subcategorization probabilities (part 2).

Predictor Type Values / Distribution
CC Subject Frequency Continuous –
CC Subject Form Categorical (4 lev-

els)
I (29.62%), You (13.15%), other pronouns
(41.80%), other NPs (15.42%)

Matrix Verb Frequency Continuous –
Co-referentiality Binary yes (32.72%), no (67.28%)
Previous that Binary present (11.46%), absent (88.54%)
Matrix Verb-CC Distance Binary local (84.73%), non-local (16.27%)
CC Subject Length Continuous –
CC Reminder Length Continuous –
Matrix Subject Form Categorical (4 lev-

els)
I (72.70%), You (10.37%), other pronouns
(13.49%), other NPs (3.44%)

Position Continuous –
that-Doubling Binary present (3.03%), absent (96.97%)
Filled Word Binary present (10.32%), absent (89.68%)
Repetition Binary present (4.12%), absent (95.88%)

Table 6: Overview of predictors included in the statistical model, along with their types and distribution where
applicable.
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Figure 4: Effects of information density (by verb Subcategorization Probability) on that-mentioning. The red line is
a logistic regression fit estimated as a binomial GLMM. Each dot represents a verb.
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