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Abstract

Goal-oriented dialogues, such as recommenda-
tion and negotiation, often require balancing
multiple conflicting objectives. Conventional
approaches typically train separate policies for
each predefined objective trade-off, which is
computationally costly and scales poorly. In
this work, we pursue a single dialogue pol-
icy that can dynamically adapt to varying ob-
jective preferences at inference time without
retraining. This raises several challenges in
terms of both (1) optimization strategy and
(2) knowledge utilization. To address these,
we propose a novel policy learning framework,
Preference Adaptive Dialogue Policy Planner
(PADPP), for multi-objective goal-oriented di-
alogues. Specifically, to tackle the former, we
introduce a novel optimization scheme, which
leverages information gained from training the
model on previously updated objective weights,
accelerating the learning capability on new
weight settings. To address the latter, we utilize
Generalized Policy Improvement (GPI) to en-
sure the effectiveness of leveraged knowledge.
Experimental results demonstrate that PADPP
achieves superior adaptability and performance
compared to state-of-the-art approaches, offer-
ing a scalable and flexible solution for multi-
objective, goal-oriented dialogues 1.

1 Introduction

Balancing multiple, potentially conflicting objec-
tives is a core challenge in goal-oriented dialogue
systems, particularly in domains like negotiation
(He et al., 2018; Deng et al., 2023b; Zhang et al.,
2024) and recommendation (Liu et al., 2020b;
Zhang et al., 2021; Liu et al., 2021; Dao et al.,
2023). For example, a negotiation agent may try
to maximize profit while maintaining fairness (He
et al., 2018), whereas a recommendation system
might seek to improve user satisfaction without
sacrificing the quality of its suggestions (Liu et al.,

1Code: https://github.com/huyquangdao/PADPP

Hello. How much is the bike ?

I will give you $120 and you can throw in a new battery set.

I’m afraid $120 is a bit low, considering the bike’s 
condition and features.

I’m willing to pay $120. 
That’s my final offer.

I’m not willing to accept 
that price. It’s too low

I will take it for $135, 
that’s a deal

I will accept the offer of 
$135. It’s a fair price.

Shifting 
Priority

OBJ 1: Profit OBJ 2: Fairness 

Hi. This is a good bike and its price is $150.

Figure 1: In goal-oriented dialogues (e.g. negotiation),
shifting objective priorities shape distinct strategies, re-
quiring a planner to adapt quickly.

2021). Hence, effective dialogue strategies depend
on the relative importance assigned to objectives,
which can be determined by either the system de-
signers’ preferences or their domain expertise. For
instance, as illustrated in Figure 1, varying the ob-
jective priorities results in distinct strategies and
conversation outcomes. Moreover, in real-world
applications, such priorities are dynamic and can
shift upon specific contexts, necessitating fast and
efficient adaptation of dialogue systems to chang-
ing objective preferences.

However, existing approaches struggle to ad-
dress the dynamic nature of multi-objective op-
timization in dialogues. Some methods lack a ded-
icated training process for optimizing objectives
of interest (Deng et al., 2023a), while others face
significant computational overhead due to costly
simulations (Yu et al., 2023; Dao et al., 2024b). Re-
cent advances have introduced plug-in planners for
LLM-based dialogue agents (Deng et al., 2023b;
He et al., 2024a; Zhang et al., 2024), which opti-
mize smaller models, such as RoBERTa (Liu et al.,
2019), using Reinforcement Learning (RL) to im-
prove both planning capability and computational
efficiency. Despite being effective for fixed ob-
jective priorities, such methods are static planners,
requiring expensive retraining for new preferences.
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Recently, Multi-Objective Reinforcement Learn-
ing (MORL) has emerged as a prominent frame-
work for optimizing multiple objectives simultane-
ously (Abels et al., 2019; Yang et al., 2019; Hayes
et al., 2022). Unlike the conventional RL approach,
MORL aims to produce solutions that balance the
trade-offs between objectives, making it appealing
for dialogue scenarios with competing goals. Yet
two main challenges arise when applying MORL
to dialogue planners: (1) Optimization Strategy,
where training from scratch for each new prefer-
ence is both slow and sample-inefficient, and (2)
Knowledge Utilization, where it remains unclear
how best to leverage previously learned solutions.

To address these challenges, we propose
PADPP, a Preference Adaptive Dialogue Policy
Planner, which enhances Double Deep Q-Networks
(DDQN) (Hasselt et al., 2016) with a knowledge
reuse mechanism. Specifically, during the training
phase, given an objective preference, PADPP opti-
mizes an additional objective function, aiming to
distill knowledge from a teacher policy that is de-
rived from the set of previously learned solutions.
This auxiliary distillation step speeds up conver-
gence by reusing insights acquired in past training
iterations. Furthermore, we propose to instanti-
ate the teacher with Generalized Policy Improve-
ment (GPI) (Barreto et al., 2017), theoretically en-
suring that the induced policy is no worse than
any single policy in the set. Crucially, after train-
ing, PADPP can seamlessly handle arbitrary ob-
jective preferences without retraining, facilitating
efficient and flexible deployment in multi-objective,
goal-oriented dialogues. Experimental results on
two published datasets, namely Craigslist Bargain
(He et al., 2018) and DuRecDial 2.0 (Liu et al.,
2021), demonstrate the superiority and adaptability
of our proposed PADPP against SOTA approaches
on changing objective priority situations.

In summary, our contributions are threefold:

• To the best of our knowledge, we are the first
to introduce an adaptive policy planner for
multi-objective, goal-oriented dialogues.

• We propose a novel policy learning method,
named PADPP, aiming to enhance DDQN
with a knowledge reuse mechanism.

• We conduct extensive experiments on two pub-
lished benchmarks. Empirical results demon-
strate the superiority and adaptability of our
methods against state-of-the-art approaches.

2 Related Work

2.1 Goal-oriented Dialogue Systems

Recent works on goal-oriented dialogue systems
have largely focused on tasks like negotiation
and recommendation, requiring these systems to
manage multiple, sometimes conflicting objectives
(Liu et al., 2020b; Zhang et al., 2021; Liu et al.,
2021; Wang et al., 2022; Deng et al., 2023c; Wang
et al., 2023; Dao et al., 2023). Approaches based
on LLMs often rely on prompt engineering (e.g.,
Chain-of-Thought) to enhance planning (Deng
et al., 2023a), but these methods lack explicit train-
ing processes to optimize arbitrary objective combi-
nations. Other efforts employ simulation-based al-
gorithms such as Monte-Carlo Tree Search (MCTS)
(Yu et al., 2023; He et al., 2024a; Dao et al., 2024b),
which improve planning at the cost of heavy com-
putational overhead during inference.

To mitigate these limitations, a surge of works
has explored plug-and-play policy planners trained
via RL to optimize fixed objective combinations
(Deng et al., 2023b; He et al., 2024a; Zhang et al.,
2024). For example, Deng et al. (2023b) utilized
REINFORCE (Williams, 1992) for static objective
preferences, while He et al. (2024a) proposed a
dual-process RL approach combining offline RL
pre-training with MCTS self-play. Zhang et al.
(2024) extended this framework by integrating user-
awareness information and diverse simulators. De-
spite achieving promising performance, these meth-
ods remain static, requiring retraining when objec-
tive priorities shift.

In contrast, we introduce PADPP, a novel, adap-
tive policy planning approach that directly accom-
modates varying objectives. To our knowledge, this
is the first method to target multi-objective adapt-
ability in goal-oriented dialogue systems.

2.2 Multi-objective Reinforcement Learning

Recently, MORL (Abels et al., 2019; Yang et al.,
2019; Hayes et al., 2022; Chen et al., 2023; Hwang
et al., 2024) has gained traction for tasks that de-
mand balancing multiple, often conflicting goals.
For example, Hwang et al. (2024) employed MORL
to train an adaptable navigation agent by incorporat-
ing diverse forms of interaction, including human
demonstrations, trajectory comparisons, and natu-
ral language instructions. In another context, Chen
et al. (2023) utilized MORL to fine-tune a Vari-
ational Autoencoder (VAE) model (Kingma and
Welling, 2014), effectively balancing fidelity and
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diversity in conditional text generation. Inspired by
these efforts, we aim to explore the capability of
MORL in learning goal-oriented dialogue policies
where conflicting objectives frequently arise, and
their relative importance often shifts dynamically
in real-world applications. We identify two primary
challenges in applying MORL to this domain: (1)
Developing effective optimization strategies and
(2) Leveraging existing knowledge effectively. To
address these challenges, we propose the PADPP
method, aiming to enhance the standard DDQN
method with a knowledge reuse mechanism.

3 Preliminaries

3.1 Problem Formulation

We formalize dialogue policy planning as a Multi-
objective Markov Decision Process (MOMDP),
defined as M ≜ (S,A, T, r, µ, γ) where S,A
are the state and action spaces, respectively.
T : S ×A −→ S defines a state transition function,
and r : S × A −→ Rd is a vector-valued reward
function. µ ∈ ∆|S| is a probability distribution
over initial states and γ ∈ [0, 1] is a discount
factor. In goal-oriented dialogues, we are often
interested in d different and possibly conflicting
objectives oi, i = 1..d where each objective oi
associates with a reward signal ri. Given a vector
w ∈ ∆d (i.e.,

∑d
i=1wi = 1) indicating our

preference over these objectives, a scalar reward
signal rw could be computed as a weighted sum of
reward signals and their corresponding objective
weights (i.e., rw =

∑d
i=1wiri). Our goal is to

induce a policy function π : S ×∆d −→ A which
maps a state s ∈ S (s could be our dialogue
history) and a preference weight w ∈ ∆d to
a specific action a ∈ A that maximizes the
scalarized accumulated rewards. For convenience,
we denote the policy for a specific w as πw.
Correspondingly, we denote by Qπw(s, a) ≜
Eπw

[∑∞
t=0 γ

tr(st, at) | s0 = s, a0 = a
]

and
Vπw(s) ≜ Eπw

[∑∞
t=0 γ

tr(st, at) | s0 = s
]

as the vector-valued action and state value
functions of πw, respectively. Finally, the
value function of a policy πw can be computed
as Vπw = Es0∼µ [V

πw(s0)]. For notation
convenience, we refer to r(s, a) as r.

3.2 Multi-objective Dialogue Enviroments

In this work, we introduce two interactive multi-
objective dialogue environments—negotiation (He
et al., 2018) and recommendation (Liu et al., 2021).

In the negotiation scenario, an agent bargains with a
simulated seller to reach an agreement, optimizing
three objectives: price gain (rgain), fairness (rfair),
and deal rate (rdeal). In the recommendation sce-
nario, the agent proposes specific items to a simu-
lated user, balancing user sentiment (ruser) and item
frequency (ritem). Each conversation unfolds over
a pre-defined number of turns. Following Deng
et al. (2023b), we employ LLMs (Liu et al., 2023)
to instantiate user simulators. Details on reward
calculation and prompting strategies can be found
in the A.8 and A.14.

3.3 Double Deep Q-Networks (DDQN)
On-policy RL methods(e.g. PPO (Schulman et al.,
2017)) have demonstrated outstanding performance
in single-objective settings, yet they suffer from
sample inefficiency in MORL (Hayes et al., 2022).
Therefore, in this work, we establish PADPP based
on DDQN (Hasselt et al., 2016) - an off-policy
RL approach commonly applied for learning di-
alogue policies (Wang et al., 2020; Zhao et al.,
2021). Specifically, we parameterize the standard
state-action value function for a particular policy
πw by a DQN Qπw(s, a; θw) ∈ R where θw are
the corresponding parameters. To train DDQN, we
optimize the parameters θw by minimizing the TD
loss function, defined as follows:

lw(θw) = E(s,a,r,s′)∼B
[
(yw −Qπw(s, a; θw))

2
]
,

where yw ≜


wTr, if s′ is the terminal state,
wTr+ γmax

a∈A
Qπw(s′, a; θ−w), others,

where B is a replay buffer and θ−w are delayed pa-
rameters. However, naively applying DDQN ap-
proach for MORL suffers from both inefficiency
and scalability issues. Specifically, suppose we
have learned Qπw′ (s, a; θw′) for some particular
w′, this knowledge could not be used to guide the
learning of Qπw(s, a; θw). Furthermore, one might
need to store multiple instances of Qπw′ (s, a; θw′)
for different preferences w′.

4 The PADPP Method

In the following sections, we introduce our PADPP
for learning adaptive and multi-objective dialogue
strategies, which is diverged from existing ap-
proaches at both training and inference. Moreover,
we also provide theoretical justifications to support
its effectiveness in multi-objective settings.
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Inference

RoBERTa DQN

LM Planner

Action 1
𝒂𝒓𝒈𝒎𝒂𝒙𝒂𝒘𝟏

𝑻𝑸(𝒉, 𝒂, 𝒘𝟏) 

Action 2

𝒂𝒓𝒈𝒎𝒂𝒙𝒂𝒘𝟐
𝑻𝑸(𝒉, 𝒂, 𝒘𝟐) 

Prefer. 1 Prefer. 2

𝑸(𝒉, 𝒂, 𝒘) 

Dial. History

𝐰𝟏 = [𝒃, 𝒄, 𝒅] 𝐰𝟐 = [𝒆, 𝒇, 𝒈]

1.4

0.5

9.8

Figure 2: The illustration of our proposed PADPP method for multi-objective, goal-oriented dialogues. Specifically,
the training and inference phases are described in Section 4.2 and 4.3, respectively. In the figure, blue arrows
indicate the execution phase while red arrows depict the optimization phase in our training, detailed in Algorithm 1.

4.1 Framework Overview

We show an overview of our PADPP method in
Figure 2. Following (Deng et al., 2023b; Zhang
et al., 2024), we establish PADPP, using a small
LM (e.g., RoBERTa (Liu et al., 2019)) and a DQN,
as a plug-in policy planner. Unlike prior methods
that optimize a single, fixed objective combination,
PADPP dynamically adjusts objective weights at
both training and inference. To avoid strong as-
sumptions on the underlying distribution of prefer-
ence weights, PADPP samples preference weights
randomly during training. At inference time, given
a user-defined weight vector, PADPP outputs an
action optimized for the specified trade-off.

4.2 PADPP’s Training Procedure

Generally, the core idea in PADPP’s training pro-
cedure is to learn Qπw(s, a) for πw by leveraging
the knowledge gained from learning Qπw′ (s, a) on
other past objective configurations w′.

4.2.1 DDQN with Knowledge Reuse
The detailed training algorithm is described in
Algorithm 1. For a compact representation, in-
spired by Universal Value Function Approxima-
tors (UVFA) (Schaul et al., 2015), we parameterize
Qπw(s, a) using a DQN defined as Q(s, a,w; θ) ∈
Rd where θ are parameters. Similar to standard
DDQN, our algorithm consists of two phases, in-
cluding policy execution and optimization. In the
former stage, we utilize the epsilon-greedy and
store experience (s, a, r, s′) into a buffer B. In
the latter phase, we randomly sample an objective
preference w ∼ ∆|d| and jointly optimize the Q
function using two different objective functions.
Self-Learning. In this step, we learn θ by follow-
ing the current preference w. Given a transition
(s, a, r, s′) ∼ B, we scalarize the reward vector r

using w and computing a TD error function, for-
mulated as follows:

lself
w (θ) = E(s,a,r,s′)

[
(yself

w −wTQ(s, a,w; θ))2
]
,

where yself
w ≜

{
wTr, if s′ is the terminal state,

wTr+ γmax
a∈A

wTQ(s′, a,w; θ−), others. (1)

Afterward, we append the sampled preference
weight w to a memory buffer W , which stores pre-
viously updated preferences.
Knowledge Reuse. Intuitively, to solve a new task,
one might need to leverage the knowledge of solv-
ing the other tasks in the past. Hence, it is desired
to leverage useful knowledge, such as learned state-
action value function Qπw1 (s, a) or state value
function Vπw1 (s), for w1 (e.g.[1.0, 0.0]) to en-
hance the learning process on a new preference
w2 (e.g.[0.9, 0.1]). Formally, given the set of past
updated preferences W , we aim to distill useful
knowledge from this set to accelerate the learning
on w. Formally, we optimize an additional auxil-
iary objective function, defined as follows:

lknow
w (θ) = E(s,a,r,s′)

[
||yknow

w −Q(s, a,w; θ)||22
]
,

where yknow
w ≜

{
r, if s’ is the terminal state,

r+ γQ(s′, πteacher,wteacher; θ
−), others,

(2)

where πteacher ∈ A,wteacher ∈ W are arguments for
the state-action value function, which are induced
by using w, Q(s′, ., .; θ−) and the set W . Finally,
for model training, we optimize a weighted combi-
nation of lself

w (θ) and lknow
w (θ), defined as follows:

lw(θ) = α ∗ lknow
w (θ) + (1− α) ∗ lself

w (θ),

where α is a hyperparameter to balance these two
objectives and can be adjusted during the training.
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4.2.2 Teacher Selection Mechanism
Intuitively, a good teacher might guide the learn-
ing process better. Hence, the instantiation of
πteacher and wteacher is critical and has a significant
impact on the model performance. For instance,
one could instantiate wteacher using wMinDist ∈ W ,
which is the closest one to the current w (e.g.
wMinDist = argminwi∈W d(w,wi)) where d is an
arbitrary distance function. In this work, we pro-
pose to instantiate those two by leveraging GPI
(Barreto et al., 2017), formulated as follows:

πteacher,wteacher ∈
argmax

a,wi

max
a∈A,wi∈W

wTQ(s, a,wi; θ).

Additionally, the following theorem demonstrates
that under general conditions, our GPI-based
knowledge reusing could extract the best teacher
from the set of previously updated preferences W .
Theorem 1 Given a set of policies ΠW =

{πwi
}|W|
i=1, their corresponding state-action value

functions Qπwi (s, a) and a new preference w, de-
note by πgpi

w the GPI policy induced from set ΠW ,
such that:

πgpi
w ∈ argmax

a∈A
max
wi∈W

wTQπwi (s, a),

then we have:

wTVπgpi
w ≥ wTVπwi , ∀wi ∈ W,

For completeness, we provide detailed discussions
regarding our knowledge reusing approach and
potential instantiations of πteacher,wteacher in Ap-
pendix A.1. Finally, the proofs of Theorem 1 can
be found in Appendix A.2.

4.3 Preference Adaptive Dialogue Planning
In addition to multi-objective optimization, a key
innovation of our model lies in its adaptability to
dynamic shifts in objective preferences without
retraining the model. Specifically, during infer-
ence, one could first specify an arbitrary vector
winfer ∈ ∆d representing his/her preference over
objectives. Given a dialogue history h, the cor-
responding action could be computed using the
following formulation:

ainfer = argmax
a∈A

wT
inferQ(h, a,winfer; θ), (3)

where winfer can be dynamically adjusted at either
turn-level or dialogue-level. This flexibility en-
hances computational efficiency and enables adap-
tive strategies that cater to the evolving progress of
the conversation with diverse end users.

Algorithm 1 PADPP’s Training Algorithm
Input: epsilon ϵ, discount factor γ, balancing parameter α,
network parameters θ;
Output: Learned network parameters θ̂;
1: Initialize Buffer B, Memory BufferW;
2: for episode← 1 to M do
3: randomly sample w ∼ ∆d; ▷ Execution Phase;
4: s← s0;
5: while s is not terminal do
6: Select an action a using epsilon-greedy:
7:

a =

{
random action in A, ϵ,

maxa∈A wTQ(s, a,w; θ), 1− ϵ,

8: Observe vector reward r and next state s′;
9: Store transition (s, a, r, s′) to B;

10: Update the state s← s′;
11: end while
12: if update then ▷ Optimization Phase;
13: Sample a preference weight w ∼ ∆d;
14: Compute TD loss: lself

w (θ) =
E(s,a,r,s′)

[
(yself

w −wTQ(s, a,w; θ))2
]

(Eq. 1)
15: Store w toW if w /∈ W;
16: Sample a set of updated preferences fromW;
17: Compute auxiliary objective: lknow

w (θ) =
E(s,a,r,s′)

[
||yknow

w −Q(s, a,w; θ)||22
]

(Eq. 2)
18: Compute lw(θ) = α ∗ lknow

w (θ) + (1− α)lself
w (θ);

19: Update the parameters θ using gradient∇θlw(θ);
20: end if
21: end for
22: Return: Network parameters θ;

5 Experiments

5.1 Datasets

We conduct experiments on two published datasets,
including Craigslist Bargain (He et al., 2018) and
DuRecDial 2.0 (Liu et al., 2021), which have been
utilized for evaluating state-of-the-art dialogue poli-
cies. Specifically, Craigslist Bargain comprises
dialogues between buyers and sellers negotiating
the price of a product. DuRecDial 2.0 is a recom-
mendation dialogue dataset featuring conversations
across various domains, namely movies, music,
and points of interest (POI), where each conversa-
tion is linked to a target item, and the objective is
to successfully recommend this item to the user.
In this work, we utilize the standard data splits for
training, validation, and testing. Detailed statistics
are shown in Table 1 and Appendix A.12.

DuRecDial 2.0 Craislist Bargain
# dialogues 10K 3666
# actions 13 11
# objectives 2 3
# cases 425/272/346 3290/188/188
domains Movie/Music/POI -

Table 1: The detailed statistics of datasets.
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5.2 Baselines

We compare our proposed method against both
traditional RL and state-of-the-art dialogue pol-
icy models. For the RL baseline, we include
DDQN (Hasselt et al., 2016). Among state-of-
the-art dialogue policy models, we assess PADPP
alongside plug-in policy planners PPDPP (Deng
et al., 2023b), DPDP (He et al., 2024a), and TRIP
(Zhang et al., 2024). In addition, we conduct
ablation studies on PADPP w/o Know (exclud-
ing knowledge reuse) and variants using alternate
teacher-selection strategies (i.e. PADPP-Min Dist).
Implementation details for PADPP and all baselines
appear in Appendices A.10 and A.11, respectively.

5.3 Evaluation Metrics

Following prior works, we report the Success
Rate (SR) and Average Conversation Turn (Avg.
Turn). We also report the average cumulative
rewards (i.e., robj). For negotiation, we present
rgain, rfair, and rdeal. For recommendation, we
show ruser and ritem. Similar to (Hwang et al.,
2024), we analyze model performance on chang-
ing objective priorities. For negotiation, we re-
port results for three scenarios with weights set
as winfer = wobj = [1obj=gain,1obj=fair,1obj=deal]
(1 is the indicator function) where obj is one of
considered objectives. For recommendation, we
report the performance on two scenarios, namely
winfer = wobj = [1obj=user,1obj=item]. Lastly, we
also report the results under a uniform weight (i.e.,
winfer =

1
d1d where 1d is a d-dimensional vector

of ones). For human evaluation, we invite two an-
notators to score 20 dialogues across three dimen-
sions in negotiation: Deal Achievement, Negotia-
tion Equity, and Buyer’s Benefit (detailed instruc-
tions can be found in Appendix A.15) and present
the win-lose rate of PADPP compared to base-
lines. Lastly, we include Kappa statistics (McHugh,
2012) to assess the inter-annotator agreement score.
We run all experiments on 3 different random seeds
and average the results to get the final performance.

5.4 Experimental Results

Negotiation Dialogues. Table 2 shows how
PADPP adapts to shifting objective weights in ne-
gotiation tasks. Crucially, PADPP requires only
a single training session, whereas baselines must
be retrained whenever priorities change, under-
scoring its core advantage in flexibility and effi-
ciency. Under uniform weighting, PADPP outper-

Avg. Cumulated Rewards
Model Re-Train SR Avg. Turn rgain rfair rdeal

Uniform

DDQNuni ✓ 0.194 9.911 0.707 0.065 0.060
PPDPPuni ✓ 0.128 9.874 0.525 0.149 0.046
DPDPuni ✓ 0.123 9.847 0.650 0.077 0.049
TRIPuni ✓ 0.129 9.911 0.739 0.051 0.042
PADPP ✗ 0.427 9.638 0.622 0.287 0.142
obj = Price Gain

DDQNgain ✓ 0.063 9.994 0.952 - -
PPDPPgain ✓ 0.183 9.857 0.761 - -
DPDPgain ✓ 0.041 9.921 0.970⋆ - -
TRIPgain ✓ 0.179 9.899 0.863 - -
PADPP ✗ 0.085 9.898 0.944 - -

obj = Fairness

DDQNfair ✓ 0.252 9.893 - 0.267 -
PPDPPfair ✓ 0.201 9.736 - 0.116 -
DPDPfair ✓ 0.087 9.889 - 0.228 -
TRIPfair ✓ 0.126 9.914 - 0.059 -
PADPP ✗ 0.281 9.792 - 0.368⋆ -

obj = Deal Rate

DDQNdeal ✓ 0.362 9.748 - - 0.111
PPDPPdeal ✓ 0.256 9.805 - - 0.081
DPDPdeal ✓ 0.036 9.940 - - 0.017
TRIPdeal ✓ 0.224 9.878 - - 0.065
PADPP ✗ 0.489⋆ 9.531 - - 0.165⋆

Table 2: Empirical results on the Craigslist Bargain
dataset. Except for uniform, ⋆ indicates the best perfor-
mance on the corresponding considered objective.

forms other methods in 5 of 6 metrics, indicating
its strong ability to balance multiple conflicting
objectives—specifically, it manages the trade-offs
between Price Gain, Fairness, and Deal Rate more
effectively than baselines that often over-optimize
a single goal. When objective weights shift to pri-
oritize Price Gain, Fairness, or Deal Rate, PADPP
consistently maintains top or near-top performance
(e.g., rfair = 0.368∗, rdeal = 0.165∗), again demon-
strating superior adaptability. This robustness high-
lights PADPP’s capacity to handle evolving objec-
tive trade-offs in real-world bargaining scenarios,
discussed further in Section 6.1.

Recommendation Dialogues. Table 3 summa-
rizes results on DuRecDial 2.0. Given the dataset’s
breadth (Movie, Music, and POI domains), we train
and evaluate on each domain separately, then re-
port averages (per-domain results are in the A.5).
Notably, PADPP requires only a single training
pass for multiple objective priorities, in contrast to
baselines that train separate models for each set-
ting. Under uniform objective weights, PADPP
demonstrates strong performance in the SR metric,
indicating its ability to balance User Sentiment and
Item Frequency—two often conflicting objectives.
This tension is evident among baselines: empha-
sizing frequent recommendations can degrade user

22097



Avg. Cumulated Rewards
Model Re-Train SR Avg. Turn ruser ritem

Uniform

DDQNuni ✓ 0.288 10.000 1.016 1.272
PPDPPuni ✓ 0.247 10.000 0.481 1.365
DPDPuni ✓ 0.197 10.000 0.506 1.924
TRIPuni ✓ 0.273 10.000 2.679 0.846
PADPP ✗ 0.505 10.000 2.232 2.206
obj = User Sentiment

DDQNuser ✓ 0.047 10.000 1.187 -
PPDPPuser ✓ 0.131 10.000 0.918 -
DPDPuser ✓ 0.269 10.000 0.376 -
TRIPuser ✓ 0.252 10.000 2.305 -
PADPP ✗ 0.280 10.000 2.532⋆ -

obj = Item Frequency

DDQNitem ✓ 0.462 10.000 - 2.501
PPDPPitem ✓ 0.370 10.000 - 1.828
DPDPitem ✓ 0.149 10.000 - 1.718
TRIPitem ✓ 0.412 10.000 - 1.164
PADPP ✗ 0.582 10.000 - 2.895⋆

Table 3: Empirical results on the DuRecDial 2.0 dataset.
Except for uniform, ⋆ indicates the best performance
on the corresponding considered objective.

sentiment due to irrelevant suggestions, while pri-
oritizing user satisfaction alone may miss opportu-
nities to meet the recommendation goal (Lei et al.,
2022). In contrast, PADPP adaptively navigates
this trade-off. When priorities shift, PADPP again
excels on the respective focal metric, achieving the
highest User Sentiment (ruser = 2.532∗) and Item
Frequency (ritem = 2.895∗) scores. These results
further underscore its flexibility and advantage over
methods that must retrain for new objectives.

Complexity Analyses. To analyze the computa-
tional complexities of PADPP and other baseline
methods, we consider a scenario with K distinct ob-
jective settings, each allocated a training budget of
M training episodes. Obviously, the training com-
plexity of PADPP is O(M), contrasting with the
O(KM) complexity of baseline approaches. This
difference arises since PADPP requires training a
single model, whereas existing methods necessi-
tate training K separate models. Additionally, a
detailed comparison of training times for PADPP
and baseline methods is provided in Appendix A.9.

5.5 Ablation Study

In Figure 3, we show the approximate solution
frontiers in two-dimensional objective spaces for
PADPP and its variants (PADPP w/o Know, PADPP
Min Dist). Specifically, we approximately evaluate
the value functions Vπw of those models across dif-
ferent objective configurations w. First, as our ob-
jective is to maximize the objective values, PADPP
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Figure 3: Approximated frontiers established by
PADPP, PADPP w/o Know and PADPP - Min Dist.
We show the rgain, rfair, rdeal when varying wgain.

PADPP Deal. A Neg. Equity B. Benefit
vs Win.(%) Lose.(%) Win.(%) Lose.(%) Win.(%) Lose.(%)

PPDPP 38 24 53 28 32 24
DPDP 63 19 52 36 38 27
TRIP 45 25 48 38 31 29

Table 4: Human evaluation on Craigslist Bargain dataset.
The inter-annotator agreement score is 0.56.

clearly constructs a better solution frontier as it
nearly envelopes the whole solution frontiers es-
tablished by PADPP w/o Know, demonstrating the
effectiveness of our knowledge-reuse approach in
learning multi-objective dialogue policies. Sec-
ondly, we also illustrate the solution frontier estab-
lished by the Min Dist variant. Clearly, the illus-
trated solution frontiers established by PADPP are
generally better than those constructed by these two
other variants, demonstrating that GPI can reuse
knowledge better than Min Dist as we theoretically
demonstrated in Section 4.2.2 and Appendix A.1.

5.6 Human Evaluation

In Table 4, we present the human evaluation re-
sults in the uniform weight setting. Overall, our
PADPP outperforms all baselines across all eval-
uated aspects. This improvement is particularly
pronounced for Deal A. and Neg. Equity, sug-
gesting that PADPP-generated conversations prior-
itize fairness in offers compared to other methods.
Conversely, the smaller performance difference ob-
served for Buyer Benefit indicates that baseline
models place greater emphasis on Price Gain.

6 Detailed Analyses

6.1 Handling Trade-offs between Objectives

An adaptive dialogue planner should be capable of
handling arbitrary trade-offs between objectives, as
determined by the system designer. In Figure 4,
we present PADPP’s performance under varying
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weight configurations, each representing a specific
trade-off. Specifically, we report the SR and re-
ward measures (rgain, rfair, rdeal) while varying the
weights of two objectives and setting the third to
zero. The results show that increasing the weight
of one objective increases its corresponding objec-
tive value while decreasing the values of the other
objectives. This demonstrates PADPP’s ability to
effectively manage arbitrary objective trade-offs.
We also examine the impact of objectives on the
SR metric. SR increases when the weights of ei-
ther Fairness or Deal Rate are increased. This is ex-
pected, as prioritizing fairness or deal rate increases
the likelihood of seller acceptance. Furthermore,
we observed an inverse relationship between Price
Gain and Deal Rate: increasing the weight of Price
Gain decreases rdeal, and vice versa. This reflects
a typical negotiation dynamic where focusing on
individual gain can hinder mutual agreement. This
necessitates flexible adjustments in objective prior-
ities, further emphasizing PADPP’s adaptability to
arbitrary objective trade-offs.
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Figure 4: Trade-offs between objectives in negotiation
dialogues. We show the SR, rgain, rfair, rdeal when vary-
ing the values of objective weight. The results for rec-
ommendation can be found in Appendix A.3.

6.2 Knowledge Reuse Enhances Efficiency

Optimizing MORL learners often necessitates a
large number of training examples. Therefore, an
effective optimization algorithm needs to leverage
training examples effectively. Figure 5 compares
PADPP with its ablated variant (PADPP w/o Know)
under varying amounts of training data, using SR,
rgain, rfair, and rdeal as metrics. As expected, per-

formance improves for both methods as the train-
ing set grows. However, PADPP shows a con-
sistent advantage over PADPP w/o Know at all
data scales, underscoring the value of knowledge
reuse. By distilling insights gleaned from previ-
ously trained preference configurations, PADPP
achieves faster convergence and higher final scores.
In Appendix A.4, we also compare PADPP to base-
lines (e.g., DDQN, PPDPP, TRIP) at different train-
ing sizes, showing that PADPP can match or exceed
these baselines when given sufficient data.
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Figure 5: Performance comparison of PADPP and its
variant PADPP w/o Know across different amounts
of training episodes. Specifically, we report the
SR, rgain, rfair, rdeal on Craigslist Bargain dataset.

6.3 Impacts of Numbers of Past Preferences
As knowledge reuse is the core of PADPP, it is
desired to study the impacts of past update pref-
erences on our proposed method. Specifically, in
Figure 6, we report SR, rgain, rfair, and rdeal within
the negotiation scenario across different numbers
of past updated preferences (|W |), ranging from 2
to 128. The results for recommendation dialogues
can be found in A.7. In particular, the reported re-
sults indicate a general performance improvement
with increasing |W | up to a point, after which per-
formance plateaus or slightly declines. Specifically,
this plateau or decline is observed beyond |W | val-
ues of 64 or 128. First, this suggests that incorpo-
rating more past updated preferences can enhance
performance, likely due to the model’s increased
ability to identify effective "teachers" for knowl-
edge reuse. Second, excessively large values of
|W | may introduce noise, negatively impacting per-
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Figure 6: Empirical results of PADPP across different numbers of past updated preferences (i.e., sizes of W).
Specifically, we report the results on negotiation dialogues. The results are averaged over 3 different runs.

formance. These results highlight the influence of
|W | on PADPP’s effectiveness and the importance
of careful selection for optimal results. Notably, all
metrics appear to peak at |W| = 64. Therefore, we
set |W | to 64 for all experiments within negotiation
dialogues.

6.4 Adaptive Dialogue Strategies
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Figure 7: Most frequent actions employed by PADPP
under different objective priorities in recommendation
dialogues. We report the statistics in the Movie domain.

To further demonstrate PADPP’s capability in
adapting its strategies to different objective pref-
erences, in Figure 7, we show the most frequent
actions employed by PADPP under different ob-
jective priorities, within the recommendation sce-

nario. First, under the obj = User Sentiment,
PADPP mainly uses actions like "Chat about stars",
"Q&A", and "Ask Questions". This indicates that
the model prioritizes understanding and clarifying
the users’ needs to improve their experience. When
the priority shifts to maximizing Item Frequency,
we observe a significant increase in the frequency
of "Movie Recommendation" action. This is ex-
pected, as PADPP adapts its strategy to promote
recommendations more directly to users. Finally,
in the obj = Uniform setting, the model’s actions
are more balanced. However, "Chat about stars"
and "Q&A" remain common, which indicates a gen-
eral tendency for PADPP to engage with users and
gather information, regardless of the specific ob-
jective. These results highlight PADPP’s strategic
flexibility, which is crucial in real-world situations
where objective priorities can change while model
retraining is often computationally expensive.

7 Conclusion

In this work, we proposed a novel dialogue pol-
icy learning approach called PADPP for multi-
objective, goal-oriented dialogues. Specifically,
during training, PADPP enhances standard DDQN
with a knowledge reuse mechanism, leveraging
Generalized Policy Improvement (GPI) for bet-
ter knowledge transfer. During inference, PADPP
could take as its input arbitrary objective configu-
rations and produce corresponding dialogue strate-
gies without retraining the model. Extensive experi-
ments and analyses on two public datasets highlight
the superiority and flexibility of PADPP against
SOTA dialogue policy approaches.

Limitations

This section explores potential limitations of the
proposed PADPP: (1) Sample Efficiency: PADPP
optimizes the MORL learner across the full range
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of objective preferences, a process that typically
requires extensive training. While the proposed
knowledge reuse mechanism improves sample ef-
ficiency, substantial training data remain neces-
sary for convergence. (2) Computational Cost
of LLM: This study leverages LLMs for interac-
tive evaluation and reward computation for MORL,
while enhancing ecological validity, introducing a
potential limitation. Specifically, the online nature
of LLM-based evaluation may result in substantial
computational expense. (3) Multi-objective Re-
ward and Reward Sparsity Problem: PADPP
Our model employs a Double Deep Q-Network
(DDQN) as its primary planner, relying heavily
on reward signals for optimization. However, in
certain domains, obtaining comprehensive multi-
objective rewards can be challenging due to reward
sparsity. This scarcity of informative reward sig-
nals can hinder the learning process.
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A Appendix

A.1 Reusing Knowledge for MORL

Given a randomly sampled objective preference
vector w ∼ ∆|d|, our goal is to learn its corre-
sponding state-action value function Q(s, a,w; θ).
As discussed in Section 4.2, we could optimize a
TD error loss function defined as E.q 1. However,
rather than learning Q(s, a,w; θ) from scratch, we
aim to leverage knowledge gained from optimiz-
ing the model on previously updated preferences
W to expedite the learning process for the new
instance w. Therefore, we propose to optimize
an additional auxiliary objective function defined
as in E.q 2. This approach relies on selecting a
teacher policy, denoted as πteacher and an updated
preferences wteacher ∈ W to guide the optimization
process for Q(s, a,w; θ). Several methods can be
employed to instantiate the teacher policy, which
we will discuss later in this Section.

A.1.1 How does GPI-based knowledge reuse
work ?

To begin with, we first explain how the knowl-
edge is leveraged using past updated preferences
W . Specifically, useful knowledge is encoded
by the vector-valued state-action value function
Q(s, a,wi; θ) associated with the policy πwi corre-
sponding to the past objective preference wi ∈ W .
Intuitively, wT

i Q(s, a,wi; θ) quantifies how good
it is to take an action a at the state s if we fol-
low the policy πwi under preference setting wi

whereas wT
jQ(s, a,wi; θ) quantifies how good it

is to take an action a at the state s if we follow
the policy πwi under preference setting wj . Given
the new preference w, we aim to extract an action
πteacher ∈ A, suggested by the state-action value
functions Q(s, a,wi; θ) associated with past up-
dated preferences W , whose performance is the
highest on the current preference setting w.

Technically, to train DDQN on a prefer-
ence w, we can employ two consecutive steps,
namely Policy Evaluation (PE) (i.e, comput-
ing Q(s, a,w; θ) for every action a ∈ A) and
Policy Improvement (GI) (i.e, selecting the
best action a ∈ wT argmaxa∈AQ(s′, a,w; θ))
(Eq.1). In this work, we enhance standard PI
with Generalized Policy Improvement (GPI)
(Barreto et al., 2017), which combines multi-
ple different Q functions associated with other
learned preferences W to search for the best
action πteacher on the current preference w (i.e,

πteacher ∈ argmaxamaxwi∈W wTQ(s, a,wi; θ))
(Eq.2). Here, Q(s, a,wi; θ) is the state-action
value function associated with the policy πwi corre-
sponding to the past objective preference wi ∈ W ,
as explained above. Therefore, we could effectively
leverage knowledge gained from training the model
on past updated preferences W .

A.1.2 Potential Instantiations of Teacher
Policy

Set Max Policy (SMP). Suppose an additional
policy network π(s,w; θπ) (θπ are the parameters)
is learned together with the state-action value func-
tion. Then given the preference w, one could
instantiate the teacher policy πteacher as the one
with the highest performance in the the set ΠW =

{πw1}
|W|
i=1. Formally, we could define the set max

policy by using the following formulation:

wteacher = argmax
wi∈W

wTQ(s, π(s,wi; θπ),wi; θ
−),

πteacher ∈ π(s,wteacher; θπ);

However, directly learning the policy function
π(s,w; θπ) for MORL is practically challenging
and sample inefficient (Hayes et al., 2022). More-
over, we will theoretically demonstrate that our
GPI-based knowledge reuse could generally per-
form no worse than the SMP approach.

Minimum Distance Policy (Min Dist). If a pol-
icy πwi has been established for a preference vector
wi, and the current preference w is similar to wi,
then πwi is likely to perform well under w. There-
fore, the teacher policy can be selected as the policy
optimized for the preference vector closest to w.
Formally, we define the minimum distance policy
by using the following formulation:

wteacher = argmin
wi∈W

d(wi,w);

πteacher(s) ∈ argmax
a

wTQ(s, a,wteacher; θ
−),

where d is a distance function that measures the
difference between two objective weight vectors.
In practical implementation, we leverage the cosine
distance to instantiate the distance function.

Generalized Policy Improvement (GPI). To ef-
fectively reuse past knowledge, in this work, we
propose to instance the teacher policy by using
Generalized Policy Improvement (GPI) (Barreto
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Avg. Cumulated Rewards
Model Re-Train SR Avg. Turn rgain rfair rdeal

Uniform

Envelope ✗ 0.269 9.811 0.675 0.181 0.082
PADPP ✗ 0.427 9.638 0.622 0.287 0.142
obj = Price Gain

Envelope ✗ 0.069 9.918 0.835 - -
PADPP ✗ 0.085 9.898 0.944 - -

obj = Fairness

Envelope ✗ 0.226 9.893 - 0.289 -
PADPP ✗ 0.281 9.792 - 0.368⋆ -

obj = Deal Rate

Envelope ✗ 0.186 9.812 - - 0.077
PADPP ✗ 0.489⋆ 9.531 - - 0.165⋆

Table 5: Performance comparison between PADPP and
Envelope (Yang et al., 2019) on the Craigslist Bargain
dataset. Except for uniform, ⋆ indicates the best perfor-
mance on the corresponding considered objective. The
final results are reported on 3 different random seeds.

et al., 2017), which is defined as follows:

πteacher
w ,

wteacher ∈ argmax
a,wi

max
a∈A,wi∈W

wTQ(s, a,wi; θ
−),

Moreover, leveraging Theorem 1, we demonstrated
that the GPI policy is the best teacher that we can
induce by using the set of state-action value func-
tions {Qπwi}|W|

i=1. Informally, it states that given an
objective preference w, the teacher policy deduced
by using GPI is no worse than other policies in
the set ΠW = {πw1}

|W|
i=1. In other words, the GPI

policy should perform no worse than both the SMP
and the Min Dist policies.

A.1.3 Connections to Existing MORL
Methods

Remark 1 Our PADPP enhances Envelope Update
(Yang et al., 2019) by using the set of previously
learned solutions.

Generally speaking, our PADPP can be seen as an
extension of (Yang et al., 2019), aiming to max-
imize the convex envelope of the solution fron-
tier. Specifically, instead of performing GPI over
randomly sampled preferences as in (Yang et al.,
2019), our method performs envelope updates over
the solutions of previously learned ones. Hence,
this scheme avoids noisy updates of unlearned
weight combinations and makes the learning pro-
cess converge faster. While Envelope Update (Yang
et al., 2019) is not specifically designed for di-
alogue tasks, we still provide additional experi-
ment results shown in Table 5, comparing PADPP

and Envelope Update to verify our hypothesis em-
pirically. Specifically, the results in negotiation
dialogues show that PADPP consistently outper-
forms Envelope Update (Yang et al., 2019) by a
considerable margin across different weight set-
tings, demonstrating the superiority of PADPP over
the existing MORL algorithm.

A.2 Proofs of Theorem 1
Since Qπw′ (s, a) ∈ Rd is the vector-valued action-
value function of policy πw′ capturing the dis-
counted vector-valued rewards induced by πw′ in
the environment. Correspondingly, on a new pref-
erence weight w, the scalar-valued action-value
function Q

πw′
w (s, a) ∈ R of policy πw′ could be

computed as:

Eπw′

[ ∞∑

t=0

γtwTr(st, at)|s0 = s, a0 = a

]
,

= wTEπw′

[ ∞∑

t=0

γtr(st, at)|s0 = s, a0 = a

]
,

= wTQπw′ (s, a).

Intuitively, Qπw′
w (s, a) quantifies how good of tak-

ing the action a at the state s if we follow policy
πw′ on the preference configuration w. Assuming
we have learned a set of policies ΠW = {πi}|W|

i=1

and their vector-valued action-value functions Qπi

for a set of preferences W . Then given a new
preference w, according to the Generalized Policy
Improvement (GPI) theorem (Barreto et al., 2017),
we have:

Qπgpi
w

w (s, a) ≥ max
wi∈W

Q
πwi
w (s, a),∀s, a ∈ S ×A

where πgpi
w (s) ∈ argmax

a∈A
max
wi∈W

wTQπwi (s, a).

Since V π
w(s) = Qπ

w(s, π(s)) = wTQπ(s, π(s)) =
wTVπ(s), we have:

Qπgpi
w

w (s, a) ≥ max
wi∈W

Q
πwi
w (s, a),∀s, a

Qπgpi
w

w (s, πgpi
w (s)) ≥ max

wi∈W
Q

πwi
w (s, πgpi

w (s)), ∀s,

Qπgpi
w

w (s, πgpi
w (s)) ≥ max

wi∈W
Q

πwi
w (s, πwi(s)), ∀s,

V πgpi
w

w (s) ≥ max
wi∈W

V
πwi
w (s), ∀s ∈ S

V πgpi
w

w (s) ≥ V
πwi
w (s), ∀s ∈ S,wi ∈ W,

Es0∼µ[V
πgpi
w

w (s0)] ≥ Es0∼µ[V
πwi
w (s0)], ∀wi ∈ W,

V πgpi
w

w ≥ V
πwi
w , ∀wi ∈ W,

wTVπgpi
w ≥ wTVπwi , ∀wi ∈ W,
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Figure 8: Trade-off between objectives in recommenda-
tion dialogues. Specifically, we show the SR, ruser, ruser
when varying the values of the objective weight. The
final results are reported on 3 different random seeds.

Hence, under the preference w, the GPI policy
πgpi
w (s) dominates other policies in the set ΠW .

A.3 Handling Trade-offs between Objectives:
Recommendation Dialogues

Figure 8 depicts the trade-off between multiple ob-
jectives within recommendation dialogues across
three distinct domains: Movie (a), Music (b),
and Points of Interest (POI) (c). Each subfigure
presents a three-dimensional plot where the x and
y axes correspond to the weights assigned to Item
Frequency (witem) and User Sentiment (wuser) ob-
jectives, respectively. The z-axis represents the
performance of our PADPP with respect to three
key metrics: Success Rate (SR) and the objective
values (ruser, ritem). Across all domains, a consis-
tent trend is observed: increasing the weight as-
signed to a specific objective results in improved
performance on that objective, while concurrently
diminishing performance on the other objective.
These results provide further evidence of the capa-
bility of PADPP to effectively manage trade-offs
between multiple objectives within recommenda-
tion scenarios.

Across all domains, experimental results indicate
that increasing the weight of item frequency gen-
erally leads to an increase in success rate (SR) and

a slight decrease in user return (ruser). This obser-
vation is reasonable, as a higher recommendation
tendency is likely to improve the chances of achiev-
ing the recommendation target, while simultane-
ously increasing the likelihood of users rejecting
some inappropriate recommendations. This raises
a dilemma between user satisfaction and goal com-
pletion as indicated in (Lei et al., 2022), necessitat-
ing careful consideration of the trade-offs between
these two aspects. Furthermore, in practical appli-
cations, these trade-offs frequently change based
on varying circumstances and end users, requiring
dialogue planners to adapt to dynamic objective
preferences. This further highlights the impact of
PADPP’s capability in real-world recommendation
scenarios.

A.4 Performance Comparison Across
Different Numbers of Training Episodes
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Figure 9: Performance comparison of PADPP and other
baseline methods across different amounts of training
episodes. Specifically, we report the SR, rgain, rfair, rdeal
on Craigslist Bargain dataset.

In Figure 9, we present the performance com-
parison between the proposed PADPP method and
three baseline methods (PPDPP, TRIP, and DDQN)
on the Craigslist Bargain dataset. Performance
is evaluated using four metrics: SR, rgain, rfair,
and rdeal. Each subplot in the figure depicts the
trend of these metrics as a function of training
episodes, ranging from 100 to 500. Initially, the
baseline methods outperform PADPP with fewer
training episodes. This may be attributed to the
fact that the baseline methods optimize for a sin-
gle objective configuration, whereas PADPP learns

22106



policies across multiple objective settings concur-
rently. This observation underscores the challenge
of sample efficiency in Multi-Objective Reinforce-
ment Learning (MORL). As discussed in Section
6.2, we show that our knowledge-reusing mecha-
nism enhances sample efficiency in MORL train-
ing. Furthermore, the presented results also demon-
strate that PADPP achieves competitive or superior
performance compared to the baselines, especially
with increasing training episodes. This result aligns
with our hypothesis that learning multi-objective
policies across the whole spectrum of objective
preferences requires a substantial number of train-
ing examples.

A.5 Performance Comparison Across
Different Recommendation Domains

In Table 6, we present a performance comparison of
the proposed PADPP method and baseline methods
across Movie, Music, and Point-of-Interest (POI)
recommendation domains. Initially, we investigate
the performance on the Uniform setting, where
objective importance is distributed equally. Con-
sistent with Section 5.4, PADPP effectively bal-
ances the two objectives, namely User Sentiment
and Item Frequency, across all domains, while
baseline methods tend to favor individual objec-
tives. Additionally, although PADPP achieves the
best performance on only two metrics SR and
ritem in Movie and POI domains, respectively, it
still shows second-best results on 7 out-of-9 met-
rics (excluding Average Turn (Avg.Turn)). This
demonstrates PADPP’s superior planning capabili-
ties compared to state-of-the-art approaches.

Subsequently, we assess the model perfor-
mance under shifting objective priorities (i.e.
Uniform −→ User Sentiment, Item Frequency).
Specifically, when User Sentiment was prioritized,
PADPP achieves the highest results on the corre-
sponding objective across all domains (ruser =
2.663∗,2.475∗,2.489∗ for Movie, Music, and
POI, respectively. With Item Frequency as the
priority, PADPP yields the best performance on
the corresponding objective in the Movie domain
(ritem = 3.761∗) and competitive performance
with PPDPP and DDQN in the Music and POI
domains, respectively. This further highlights
PADPP’s adaptability to changing objective pri-
orities. Finally, unlike other baselines requiring
retraining for adjusted objective priorities, PADPP
adapted directly without retraining, demonstrating
its computational advantages.

A.6 Performance of Comparison Across
Different Numbers of Conversation Turns

In Figure 10, we present the average cumula-
tive rewards for PADPP and baseline methods
across conversation turns. Specifically, we report
rgain, rfair, andrdeal under uniform weight settings.
All models exhibit an initial increase in grain fol-
lowed by a subsequent decrease. This trend sug-
gests a common negotiation tactic: buyers may ini-
tially propose low prices, increasing their offers in
later rounds to facilitate agreement. The concurrent
increase in rfair and rdeal supports this interpreta-
tion. PADPP shows strong performance across all
three metrics and throughout the negotiation. Con-
versely, the baseline models exhibit a tendency to
prioritize individual objectives. For instance, TRIP
and DDQN primarily optimize rgain at the expense
of rfairandrdeal. PPDPP, conversely, prioritizes rfair
and rdeal, resulting in lower rgain. Our proposed
model, however, achieves the best balance among
these objectives. These findings demonstrate our
model’s effectiveness in managing multiple, often
competing, objectives.

A.7 Performance of PADPP Across Different
Sizes of Past Updated Preferences

In this section, we investigate the impacts of the
number of past updated preferences on the perfor-
mance of PADPP within the recommendation sce-
narios. In Figure 11, we present the performance
of PADPP across different numbers of past updated
preferences, denoted by |W |, from 2 to 128. Specif-
ically, we report SR, ruser, and ritem across three
recommendation domains: Movie, Music, and POI.
In particular, we observe that performance across
all metrics generally increases with larger |W |, in-
dicating that incorporating more past preferences
might enhance knowledge reuse. However, exces-
sively large |W | values degrade performance, likely
due to increased noise in the optimization process.
Finally, we observe that the best performance is
achieved at | W | = 32. Consequently, we set |W|
to 32 for all recommendation experiments.

A.8 Detailed Descriptions regarding
Multi-objective Dialogue Environments

This section details the dialogue environments em-
ployed in this study. Specifically, we investigate
two multi-objective dialogue scenarios: negotiation
(He et al., 2018) and recommendation (Liu et al.,
2021; Dao et al., 2024a; V. Dong et al., 2025). Illus-
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Model Movie Music POI
Avg. Cumulated Rewards Avg. Cumulated Rewards Avg. Cumulated Rewards

Re-Train SR Avg. Turn ruser ritem SR Avg. Turn ruser ritem SR Avg. Turn ruser ritem

Uniform

DDQNuni ✓ 0.070 10.000 1.193 0.427 0.230 10.000 1.266 1.037 0.564 10.000 0.590 2.351
PPDPPuni ✓ 0.244 10.000 -0.070 1.612 0.319 10.000 0.920 1.848 0.179 10.000 0.595 0.637
DPDPuni ✓ 0.188 10.000 -0.427 3.142 0.405 10.000 0.957 2.364 0.000 10.000 0.989 0.266
TRIPuni ✓ 0.546 10.000 2.229 0.825 0.186 10.000 2.163 1.142 0.000 10.000 3.669 0.000
PADPP (Ours) ✗ 0.438 10.000 1.872 2.827 0.676 10.000 2.702 2.022 0.403 10.000 2.123 1.768
obj = User Sentiment

DDQNuser ✓ 0.005 10.000 1.376 - 0.113 10.000 1.228 - 0.025 10.000 0.958 -
PPDPPuser ✓ 0.064 10.000 0.793 - 0.295 10.000 0.949 - 0.034 10.000 1.012 -
DPDPuser ✓ 0.265 10.000 -0.436 - 0.259 10.000 0.999 - 0.283 10.000 0.565 -
TRIPuser ✓ 0.351 10.000 2.283 - 0.171 10.000 2.305 - 0.234 10.000 2.327 -
PADPP (Ours) ✗ 0.004 10.000 2.663⋆ - 0.302 10.000 2.475⋆ - 0.533 10.000 2.459⋆ -
obj = Item Frequency

DDQNitem ✓ 0.207 10.000 - 2.480 0.402 10.000 - 1.992 0.796 10.000 - 3.032⋆

PPDPPitem ✓ 0.269 10.000 - 1.916 0.453 10.000 - 2.774⋆ 0.390 10.000 - 1.514
DPDPitem ✓ 0.231 10.000 - 3.074 0.216 10.000 - 1.280 0.000 10.000 - 0.800
TRIPitem ✓ 0.515 10.000 - 0.853 0.504 10.000 - 2.198 0.219 10.000 - 1.458
PADPP (Ours) ✗ 0.554 10.000 - 3.761⋆ 0.658 10.000 - 2.710 0.533 10.000 - 2.342

Table 6: Empirical results on the DuRecDial 2.0 dataset. We report the performance comparison on three domains,
namely Movie, Music, and POI recommendation. Except for uniform, ⋆ indicates the best performance on the
corresponding considered objective. The final results are reported on 3 different random seeds.
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Figure 10: Avg. cumulated rewards at different conversation turns of PADPP and other baseline methods in the
Uniform setting. Specifically, we report the rgain, rfair, rdeal on the Craigslist Bargain.

trative examples of these scenarios are presented in
Figures 12 and 13, respectively. Unlike prior work
(Deng et al., 2023b; He et al., 2024a; Zhang et al.,
2024), which addresses single or fixed objective
combinations, this work tackles the multi-objective
dialogue planning problem under dynamic objec-
tive preferences, a more complex and realistic chal-
lenge. The subsequent sections describe the multi-
objective reward computation protocols for each
dialogue scenario.

A.8.1 Multi-objective Negotiation Dialogue
For negotiation, a buyer and a seller converse in
a product bargaining situation to reach a common
agreement, as shown in Figure 12. For this sce-
nario, we consider 3 distinct objectives, includ-
ing Price Gain, Fairness, and Deal Rate, where
Price Gain,Fairness are considered as two con-
flicting objectives. Formally, the reward compu-
tations for those objectives are defined as follows:

• rgain: At each turn, if the buyer (i.e, our dia-

logue agent) either proposes a new price or
counters the user with a counter price, we uti-
lize a simple regular expression to extract the
mentioned price and compute rgain as follows:

rgain =
p− pseller

pbuyer − pseller
(4)

where rgain is greater if the mentioned price is
closer to the buyer’s initial price. If no price
appears in the system response, then rgain = 0.
Intuitively, a higher value of rgain means a
greater advantage for the buyer.

• rfair: We regard the middle point of the buyer
and seller’s initial prices as a fair offer. Hence,
at each turn, if the buyer provides a price, then
we extract the mentioned price and compute
the rfair as follows:

rfair = αfair −
| p− pmid |

pseller − pbuyer
, (5)
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Figure 11: Empirical results of PADPP across different numbers of past updated preferences (i.e., sizes of W).
Specifically, we report the averaged results on 3 different runs.

Negotiation Dialogue: CraigslistBargain

Seller Desired Price: $150.
Buyer Desired Price: $120.
Product Description: The item description is “Furniture”. It’s a solid 
wood tan colored computer table with swivel chair for sale. It’s in 
good condition as shown in pics. Moving out sale computer table 
and chair. 

Conversation History: [“Buyer”: ”How much is the bike ?”, “Seller”: 
”This is a good bike and its price is $150.”, “Buyer”: “I will give you 
$120 and you can throw in a new battery set.”, ”Seller”: “I’m afraid 
$120 is a bit low, considering the bike’s condition and features.”]

Action: Propose, $135.

Seller Response: “I’m will accept the offer of $135. It’s a fair price.”  

Rewards: r_Gain = 0.5 , r_Fair = 0.5, r_Deal = 1.0.

Buyer Response: “I will take it for $135, that’s a deal.”  

Example 1

Conversation History: [“Buyer”: ”How much is the bike ?”, “Seller”: 
”This is a good bike and its price is $150.”, “Buyer”: “I will give you 
$120 and you can throw in a new battery set.”, ”Seller”: “I’m afraid 
$120 is a bit low, considering the bike’s condition and features.”]

Action: Confirm, $120.

Seller Response: “I’m not willing to accept that price. It’s too low.”  

Rewards: r_Gain = 1.0 , r_Fair = 0.0, r_Deal = 0.0.

Buyer Response: “I’m willing to pay $120. That’s my final offer.”  

Example 2

Figure 12: An example of a multi-objective negotiation
dialogue. The reward computation for negotiation is
described in Section A.8.1.

where pmid =
pseller+pbuyer

2 and αfair > 0
is a predefined hyper-parameter (αfair = 0.5
for the default configuration). Intuitively, the
fairness reward is greater if the mentioned
price is closer to the middle price and vice
versa.

• rdeal: Following existing works (Deng et al.,
2023b; He et al., 2024a), at each turn, we as-
sess if the seller and the buyer reach a deal
or not. Specifically, we prompt an LLM (Liu
et al., 2023) for N times and convert the tex-

tual outputs to scalar values. Formally, the
deal reward rdeal is computed as follows:

rdeal =
1

N

N∑

i=1

V(LLM(Pdeal,H)) (6)

where V is a function that converts a textual
output to a scalar value. H is the current
conversation history and Pdeal is designated
prompt described as in Figure 18. We re-
gard a conversation as a successful one if the
rdeal ≥ ϵdeal.

A.8.2 Multi-objective Recommendation
Dialogue

For the recommendation scenario, each conversa-
tion is associated with an item v. Given a specific
item v and a set of related background knowledge
K, our goal is to recommend the item v to the user,
as shown in Figure 13. More particularly, for this
scenario, we consider two distinct objectives, in-
cluding User Sentiment (ruser) and Item Frequency
(ritem), which are defined as follows:

• ruser: At each turn, after the system takes ac-
tion, given the user’s generated response yuser,
we utilize a 3-classes pre-trained RoBERTa
model for sentiment analysis (Barbieri et al.,
2020) 2 to produce a user sentiment score.
Formally, the user sentiment reward ruser is
computed as follows:

ssenti, csenti = RoBERTasentiment(yuser),

ruser =





ssenti, if csenti = "Positive",
0, if csenti = "Neutral",
−ssenti, if csenti = "Negative",

2https://huggingface.co/cardiffnlp/
twitter-roberta-base-sentiment
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Recommendation Dialogue: DuRecDial 2.0

Domain: Movie.
Target Item: Failan.
Related Topics: [”Nicolas Tse”, “The Viral Factor”, “Cecilia Cheung”]

Conversation History: [“System”: ”Hi, how do I help you ?”, “User”: 
”Hello, I’m looking for a movie recommendation, something 
lighthearted and fun like  ‘The Secrets Life of Pets’ ”, “System”: 
“Have you considered ‘The Viral Factor’, staring Nicolas Tse ?”, 
”User”: “I’m not really into action movies, but I do enjoy comedies, 
so maybe something like that could work.”]

Action: Q&A.

User Response: “I’d love to give ‘Fast Choi Spirit’ a try, sounds like a 
fun and entertaining movie. .”  

Rewards: r_User = 0.984 , r_Item = 0.0.

System Response: “Nicolas Tse’s comedy film ‘Fast Choi Spirit’ is a 
light-hearted and entertaining option.”

Example 1

Conversation History: [“System”: ”Hi, how do I help you ?”, “User”: 
”Hello, I’m looking for a movie recommendation, something 
lighthearted and fun like  ‘The Secrets Life of Pets’ ”, “System”: 
“Have you considered ‘The Viral Factor’, staring Nicolas Tse ?”, 
”User”: “I’m not really into action movies, but I do enjoy comedies, 
so maybe something like that could work.”]

Action: Movie Recommendation.

User Response: “I’d love to watch ’Failan’ because it’s a romantic – 
comedy drama.”  

Rewards: r_User = 0.980 , r_Item = 1.0.

System Response: “I think you’d enjoy ‘Faillan’, a romantic-comedy 
starring Nicolas Tse.”

Example 2

Figure 13: An example of a multi-objective recommen-
dation dialogue. The reward computation for negotia-
tion is described in Section A.8.2.

where ssenti, csenti are the predicted senti-
ment score and class, respectively.

• rrec: At each turn, given the predicted action
a and the system’s generated response ysys by
the system, the reward for the second objective
Item Frequency ritem is computed as follows:

ritem =

{
β, a ∈ Arec,

β + δ, a ∈ Arec, v ∈ ysys,

where β, δ > 0 are predefined hyperparame-
ters, δ is an extra reward obtained if the target
item v is recommended to the user. Arec ∈ A
is the set of recommendation-centric actions,
which is defined as in Table 12.

In recommendation scenarios, we evaluate if a con-
versation is a successful one by following two cri-
teria. First, the target item v must be present within
the system’s response. Second, similar to negoti-
ation dialogue evaluation, an LLM is queried by
N times to determine user acceptance of item v.
The LLM’s textual outputs are then converted into
scalar values. Subsequently, a conversation is con-
sidered successful if the average of these scalar

values exceeds a predefined threshold, ϵrec. Ad-
ditionally, the specific prompting strategy for this
evaluation is detailed in Figure 19.

A.9 Computational Complexities
In this study, we primarily investigate the prob-
lem of learning dialogue policies across dynamic
objective weight configurations. Specifically, di-
alogue policies are learned for K distinct objec-
tive settings (K = 4 for negotiation and K = 3
for recommendation), with M training episodes
per setting (M = 500 for the default configura-
tion). In table 7, we first present the computational
complexity (in terms of Big-O notation) and total
training time for the proposed method and base-
line approaches. Specifically, the proposed method
exhibits a computational complexity of O(M), as
it is trained once and adapts to varying objective
weights during inference. In contrast, the other
baselines require training for each objective con-
figuration, resulting in O(KM) complexity. Criti-
cally, these baselines require retraining when new
objective settings are introduced, highlighting their
computational inefficiency and the importance of
adaptability in dialogue policy learning.

Empirical computation time (including training
and evaluation) in Table 7 supports these analyses.
The proposed method achieves the lowest com-
putational time, consistent with its single-training
paradigm, while the baselines require retraining for
each objective weight modification.

Model Complexity Total Computation Time (hours)
DDQN O(KM) 9.91
PPDPP O(KM) 9.92
TRIP O(KM) 15.31
PADPP (ours) O(M) 3.71

Table 7: Computational complexity and total compu-
tation time (K = 4,M = 500) of PADPP and other
baseline methods. In particular, the maximal number of
conversation turns for Craigslist Bargain is set to 10.

A.10 Implementation Details
In this work, we implement our proposed PADPP
using the PyTorch framework 3. All experiments
were conducted on 8 NVIDIA L40 40GB GPU
cards. Moreover, the performance evaluation pro-
tocols are detailed as follows:

• Negotiation Dialogue: In this study, we adopt
the original data split from He et al. (2018).
The training split was used to train our model.

3https://pytorch.org/
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During training, objective configurations were
randomly sampled from a d-dimensional prob-
ability simplex, denoted as ∆d. Model selec-
tion was performed by choosing the check-
point that yielded the best performance on the
validation set under a uniform weight setting.
The final evaluation was conducted on the test
set using the selected checkpoint.

• Recommendation Dialogue: The DuRec-
Dial 2.0 dataset (Liu et al., 2021) encom-
passes conversations across several domains,
namely Movie, Music, and POI Recommen-
dation. Consequently, we first partition the
dataset based on these domains. The models
are trained and evaluated on each resulting
subset to determine domain-specific perfor-
mance. These individual performance metrics
were then averaged to yield an overall perfor-
mance score. The training, validation, and
testing procedures followed those established
for the negotiation scenario.

For PADPP’s model configurations, for a fair com-
parison, we follow previous works (Deng et al.,
2023b; He et al., 2024a) utilizing RoBERTa-Large
(Liu et al., 2020a) 4 (343M) as the backbone for
the policy planner. Then we add a shallow Multi-
layer Perceptron (MLP) on top of the pre-trained
language model to instantiate the Q network. For-
mally, given a state s, we first pass the state through
RoBERTa to obtain a hidden state h ∈ R1024. Af-
terward, we project the hidden state h to a low-
dimensional feature vector ĥ ∈ R128. Then we
project the feature vectors ĥ to an output tensor of
size | A | ×d (| A | is the size of the action space, d
is the number of objectives), representing multiple-
objective Q values. Moreover, following existing
methods (Deng et al., 2023b), we first pre-train the
Q-network with supervised learning on the corre-
sponding background dataset (i.e,. DuRecDial 2.0
or Craigslist Bargain) to predict the next action. For
pertaining, we set the number of training epochs
to 10 and 2 for DuRecDial 2.0 and Craigslist Bar-
gain, respectively. Moreover, for both datasets, we
utilize a training batch size of 8 and fine-tune the
model with a learning rate of 5e-5. After super-
vised pre-training, we fine-tune the Q network with
MORL as described in Section 4.2. Specifically,
we utilize a learning rate of 5e-4 and fine-tune the
model for M = 500 training episodes. For the

4https://huggingface.co/FacebookAI/
roberta-large

Hyper-parameters DuRecDial 2.0 Craislist Bargain
Phase: Supervised Pretraining

# batch size 8 8
max tokens length 512 512
learning rate 5e-5 5e-5
# epochs 10 2
dropout 0.1 0.1

Phase: MORL Finetuning
# objectives 2 3
# episodes M 500 500
# batch size 128 128
learning rate 5e-4 5e-4
# updated preferences |W | 32 64
balancing param α 0.7 0.7
ϵdeal - 1.0
ϵrec 1.0 -
N 5 10
# Turns 10 10
discount factor γ 0.99 0.99
buffer size 2000 2000

Table 8: Detailed implementation of PADPP on the
Craigslist Bargain and DuRecDial 2.0 datasets.

LLM component utilized in this work, we leverage
Llama-3 (8B) (Vavre et al., 2024) 5, an open-source
LLM, for user simulator, response generation, and
reward computation. The detailed hyperparameters
of PADPP can be found in Table 8.

Regarding objective configurations for perfor-
mance evaluation, for the negotiation scenario, the
objective weights are wgain = [1, 0, 0],wfair =
[0, 1, 0],wdeal = [0, 0, 1] for price gain, fairness,
and deal rate, respectively. For recommendation,
the weights are wuser = [1, 0],witem = [0, 1] for
user sentiment and item frequency, respectively.
Finally, for the uniform setting, the weights are
wuni = [13 ,

1
3 ,

1
3 ] for negotiation and wuni = [12 ,

1
2 ]

for recommendation.

A.11 Additional Information regarding
Baseline Methods

In this section, we provide additional details regard-
ing baseline methods. Specifically, in this work,
we compare our proposed method PADPP against
various RL baseline approaches, including:

• DDQN (Hasselt et al., 2016) is the standard
Double Deep Q Network approach.

• PPDPP 6 (Deng et al., 2023c) is a recent LLM
dialogue agent. In particular, this model lever-
ages some background datasets to fine-tune a
small LM model, serving as the prior dialogue
policy. The policy is then further fine-tuned
with simulated conversations generated via
RL to maximize long-term rewards.

5https://huggingface.co/meta-llama/
Meta-Llama-3-8B

6https://github.com/dengyang17/PPDPP
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• DPDP 7 (He et al., 2024a) is another LLm-
based dialogue agent. In particular, it first
employs a pre-training step in which the dia-
logue policy planner is pre-trained using of-
fline reinforcement learning. Afterward, it
enhances the policy planner with a self-play
fine-tuning method using Monte-Carlo Tree
Search (MCTS).

• TRIP (Zhang et al., 2024) is a more recent
plug-in policy planner, which enhances dia-
logue strategy learning with user-centric men-
tal information. Moreover, it utilizes various
user simulators to fine-tune the planner with
RL.

For the SOTA plug-in policy planners, we lever-
age their published source codes to conduct experi-
ments. In contrast to our PADPP, in those baseline
methods, the desired preference vector w (i.e. it
is identical to winfer in our method) needs to be
pre-defined at training time so that the scalarized
reward signal can be computed accordingly. Conse-
quently, such single-objective methods necessitate
retraining upon changing objective configurations.
Finally, for the ablation study, we compared our
PADPP with other variants, described as follows:

• PADPP W/o Know: The variant without the
knowledge reuse mechanism.

• PADPP - Min Dist: The variant utilizing Min-
imum Distance Policy approach for knowl-
edge reuse.

A.12 Additional Statistics of Benchmark
Datasets

In this work, we adopted two published goal-
oriented datasets, namely Craigslist Bargain (He
et al., 2018) and DuRecDial 2.0 (Liu et al., 2021).
In fact, these two benchmarks have been widely
utilized to evaluate recent plug-in policy planners,
such as PPDPP (Deng et al., 2023b), DPDP (He
et al., 2024b), and TRIP (Zhang et al., 2024). More-
over, those two datasets comprise dialogues cen-
tered on two practical scenarios, namely price nego-
tiation and item recommendation, often involving
multiple, often competing, objectives. Such a char-
acteristic makes them appropriate for evaluating
multi-objective dialogue policy methodologies.

Additionally, in Table 9, we present additional
statistics for the DuRecDial 2.0 dataset across the
Movie, Music, and POI domains. Specifically, we
report the number of actions and the distribution

7https://github.com/cs-holder/DPDP

of dialogue cases across the training, development,
and test sets. The reported statistics reveal that the
Music domain contains the most actions (11), fol-
lowed by Movie (8) and POI (5). The number of
dialogue cases also varies by domain, with Movie
having the most and POI the fewest, indicating po-
tential data scarcity for the POI domain. This data
imbalance suggests that learning effective dialogue
policies may be more difficult for POI recommen-
dations. This hypothesis is supported by the results
in Section A.5, which show the lowest average Suc-
cess Rate (SR) for POI recommendations under
the uniform weight setting.

Additionally, in Table 10, we present the dis-
tribution of dialogue strategies within the DuRec-
Dial 2.0 and Craigslist Bargain datasets. First, for
DuRecDial 2.0, consistent with the statistics shown
in Table 9, the Movie and Music domains contain
the most data (# Music Recommendation = 13,170,
# Movie Recommendation = 14,807). In contrast,
the POI domain (# POI Recommendation = 5,448)
may present a data scarcity issue, potentially in-
creasing the difficulty of model training. Secondly,
regarding the Craigslist Bargain dataset, "active"
actions (e.g., "counter," "propose," and "inquire")
are prevalent, suggesting extensive communication
between sellers and buyers. Moreover, the sub-
stantially higher frequency of "agree" compared to
"deny" and "disagree" might indicate a tendency
towards successful negotiations in the dataset.

Domain # Actions (| A |) Cases (Train/Dev/Test)
Movie 8 190/121/161
Music 11 139/109/120
POI 5 96/42/65

Table 9: The detailed statistics regarding different do-
mains in DuRecDial 2.0. The statistics are reported after
the data preprocessing step.

A.13 Detailed Prompting Methods for
Response Generation

A.13.1 Negotiation Dialogues
For a given action a, we initially map the action
a to a textual description, consistent with prior
research (Deng et al., 2023b). This mapping is
detailed in Table 11. Subsequently, we generate a
response using the prompting scheme illustrated
in Figure 16. Moreover, existing dialogue policy
learning approaches focus solely on strategy predic-
tion, which confounds the evaluation of response
generation models. This is due to the proposed
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DuRecDial 2.0
Strategy Amount Movie Music POI
Greetings 11,027 ✓ ✓ ✓

Ask about weather 4,393 ✗ ✓ ✓

Play music 10,026 ✗ ✓ ✗

Q/A 6,072 ✓ ✓ ✗

Music on demand 1,692 ✗ ✓ ✗

Movie recommendation 14,807 ✓ ✓ ✗

Chat about stars 16,276 ✓ ✓ ✗

Say goodbye 12,819 ✓ ✓ ✓

Music recommendation 13,170 ✓ ✓ ✗

Ask about date 2,401 ✓ ✓ ✗

Ask questions 2,100 ✓ ✓ ✗

POI recommendation 5,448 ✗ ✗ ✓

Food recommendation 4,465 ✗ ✗ ✓

Craigslist Bargain
greet 1,727
inquire 2,102
inform 416
propose 1,085
counter 2,876
counter-noprice 1,201
confirm 506
affirm 770
deny 320
agree 843
disagree 97

Table 10: The detailed statistics regarding the amounts
of dialogue strategies in the original DuRecDial 2.0 and
Craigslist datasets.

price being deduced by the response model, rather
than a separate planning component. Therefore, in
addition to the strategy, we also predict the price
within the generated response. However, direct
price prediction is challenging due to its continu-
ous nature. To simplify this task, we discretize the
price range between the buyer’s and seller’s prices
into B bins and predict the bin containing the target
price. Formally, we represent an action a as a tuple
(g, b), where g denotes a strategy (as listed in Table
10) and b represents the predicted price bin, where
b ∈ [0, ..., B − 1]. In the default configuration, we
set B = 5. Consequently, given the user and the
seller’s desired prices (denoted as pbuyer and pseller,
respectively), the estimated price can be computed
using the following formulation:

price = pbuyer + b ∗ pseller − pbuyer

B
, (7)

In our experiments, there are 3 strategies combined
with predicted prices, namely "propose", "counter",
and "agree".

A.13.2 Recommendation Dialogues
Similar to the approach utilized for negotiation, we
first convert each action a to a textual description,

as detailed in Table 12. Then we prompt LLM to
generate a response, using the method illustrated in
Figure 17. Moreover, for recommendation-centric
actions Arec, we generate the response, containing
the target item v.

A.14 Detailed Prompting for User Simulators

In this section, we provide the detailed prompting
methods utilized to instantiate the user simulators
for negotiation and recommendation dialogues.

A.14.1 Negotiation Dialogues
In Figure 14, we illustrate the prompting method
for the user simulator for the Craigslist Bargain
dataset. Following previous works (Deng et al.,
2023b; He et al., 2024a; Zhang et al., 2024), we
prompt LLM to role-play a seller engaged in a
bargaining dialogue, with the objective of selling a
product at a specified seller-desired price.

A.14.2 Recommendation Dialogues
In Figure 15, we illustrate the prompting strategies
employed for the DuRecDial 2.0 dataset. Specif-
ically, we prompt LLM, looking for an item, to
simulate a user engaged in a recommendation di-
alogue. Furthermore, to enhance the realism of
simulated user behavior, we incorporate a personal
profile into the user simulator prompt. In particular,
we retrieve background knowledge regarding users
from the background dataset, such as their accepted
and rejected items, and prompt an LLM to generate
a comprehensive user profile.

A.15 Instructions for Human Evaluation

In this section, we provide instructions for human
evaluation. Specifically, we invite two annotators
to score conversations to score dialogues across
three dimensions: Deal Achievement and Nego-
tiation Equity, and Buyer’s Benefit. During the
evaluation process, we provide the annotator with
the task background, containing the product name
as well as the buyer and seller’s desired prices.
Then we ask the annotators to answer the following
questions:

• Deal Achievement: Which conversation ends
with a common deal between the buyer and
the seller ?

• Negotiation Equity: Given the seller and
the buyer’s desired prices, which conversation
ends with a fairer deal for both buyer and
seller ?
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Strategy Natural Language Form
greet Please say hello or chat randomly.

inquire Please ask any question about product, year, price, usage, etc.

inform Please provide information about the product, year, usage, etc.

propose, {price} Please propose the price of {price}.

counter, {price} Please counter the seller with the price of {price}.

counter-noprice Please propose a vague price by using comparatives with an existing price.

confirm Please ask a question about the information to be confirmed.

affirm Please give an affirmative response to a confirm.

deny Please give a negative response to a confirm.

agree, {price} Please agree with the price of {price}.

disagree Please disagree with the proposed price.

Table 11: The strategies and their corresponding textual description utilized for negotiation dialogues in our work.

Strategy Natural Language Form
Ask about weather Please provide information about the weather.

Play music Please select an appropriate song from your given topic set and reply that song is playing.

Music recommendation, {target item} Please recommend the song {target item} to the user

Q&A Please answer questions asked by the user

Chat about stars Please select an appropriate movie star from your given topic set and provide information about the movie star

Music on demand Please select an appropriate song from your given topic set and reply that song is suitable for the user demand

Movie recommendation, {target item} Please recommend the movie {target item} to the user.

Say goodbye Please say goodbye to the user.

Ask about date Please provide information regarding date.

Ask questions Please select an appropriate topic from your given topic set and ask questions regarding that topic

Greetings Please say hello or chat randomly.

POI recommendation, {target item} Please recommend the restaurant {target item} to the user.

Food recommendation, {target item} Please recommend the food {target item} to the user

Table 12: The strategies and their corresponding textual description utilized for recommendation dialogues in our
work.

• Buyer’s Benefit: Given the buyer’s desired
price, which conversation ends with a deal
price which is more beneficial for the buyer?
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User Simulator Prompt for CraigslistBargain

Seller Desired Price: $150.
Buyer Desired Price: $120.
Item Name: Furniture

Product Description: The item description is “Furniture”. It’s a solid wood tan 
colored computer table with swivel chair for sale. It’s in good condition as 
shown in pics. Moving out sale computer table and chair. 

Now enter the role-playing mode. In the following conversation, you will play as 

a seller in a price bargaining game.
You must follow the instructions below during chat.
You can decide to change your target price flexibly based on the conversation.
Your Response Strategy:

1. "Source Derogation": Attacks the other party or questions the item.

2. "Counter Argument": Provides a non-personal argument/factual response to 
refute a previous claim or to justify a new claim.
3. "Personal Choice": Provides a personal reason for disagreeing with the 
current situation or chooses to agree with the situation provided some specific 
condition is met.
4. "Information Inquiry": Requests for clarification or asks additional 
information about the item or situation.
5. "Self Pity": Provides a reason (meant to elicit sympathy) for disagreeing with 

the current terms.
6. "Hesitance": Stalls for time and is hesitant to commit; specifically, they seek 
to further the conversation and provide a chance for the other party to make a 
better offer
7. "Self-assertion": Asserts a new claim or refutes a previous claim with an air 
of finality/ confidence.
8. "Others": Do not explicitly foil the negotiation attempts.
You are the seller who is trying to sell the {Item Name} with the initial price of 
{Seller Desired Price}. Product description: {Product Description}.
Please reply with only one short and succinct sentence.
********
Conversation History

********

Figure 14: The user simulator prompt for Craigslist
Bargain dataset.

User Simulator Prompt for DuRecDial 2.0

Now enter the role-playing mode. In the following conversation, you will play as 
a User in a recommendation game. You are looking for a {Domain}. 
Your persona: {Profile}.
1. Your utterances and preferences need to strictly follow your persona. Varying 
your wording and avoid repeating yourself verbatim!
2. You can decide to change your preferences flexibly based on your persona 
and the conversation.
Please reply with only one short and succinct sentence.

********
Conversation History
********

Domain: Movie.
Profile: XXX is a mature woman over 50 years old residing in Luoyang. She 
enjoys dining at “Jack Cat Roasted Fish Hot Pot (Wanda Store)” and has a 
preference for “Marinated Fish”. XXX appreciates movies such as "Anna 
Magdalena" and "Port of Call", and her favorite music includes "Love You" by 
Rainbow. She is a fan of celebrities like Aaron Kwok and Kris Wu, and enjoys 
watching the movie "After This Our Exile". XXX dislikes news and movies like 
"Cold War", as well as music such as "The Best Voice". She is employed and 
values her leisure time with entertainment that aligns with her preferences.

Figure 15: The user simulator prompt for DuRecDial
2.0 dataset.

Response Generation Prompt for CraigslistBargain

Seller Desired Price: $150.
Buyer Desired Price: $120.
Item Name: Furniture.
Strategy Description: Please propose the price of $150.
Product Description: The item description is “Furniture”. It’s a solid wood tan 
colored computer table with swivel chair for sale. It’s in good condition as 
shown in pics. Moving out sale computer table and chair. 

Now enter the role-playing mode.  In the following conversation, you will play 
as a buyer in a price bargaining game.
You are the buyer who is trying to buy the {Item Name} with the price of 
{Buyer Desired Price}. Product description: {Product Description}.
********
Conversation History
********
{Strategy Description}.

Please reply with only one short and succinct sentence.

Figure 16: The response generation prompt for
Craigslist Bargain dataset.

Response Generation Prompt for DuRecDial 2.0

Now enter the role-playing mode. In the following conversation, you will play as 
a recommender in a recommendation game.
You are the recommender who is trying to recommend an item to the user.
Your topic set: {Related Topics}.
********
Conversation History
********
{Strategy Description}.
Please reply with only one short and succinct sentence.

Domain: Movie.
Target Item: Failan.
Strategy Description: Please recommend the song Failan to the 
user.
Related Topics: [”Nicolas Tse”, “The Viral Factor”, “Cecilia Cheung”]

Figure 17: The response generation prompt for DuRec-
Dial 2.0 dataset.

Prompt for Deal Reward Computation in 
Craigslist Bargain

Given a conversation between a Buyer and a Seller, please decide whether the 
Buyer and the Seller have reached a deal.
You have to follow the instructions below during chat. 

1. Please decide whether the Buyer and the Seller have reached a deal at the 
end of the conversation. 
2. If they have reached a deal, please extract the deal price as [price]. 
You can only reply with one of the following sentences: "They have reached a 
deal at [price]". "They have not reached a deal.” 
The following is the conversation between a Buyer and a Seller: 
Buyer: Can we meet in the middle at 15? 
Seller: Deal, let's meet at 15 for this high-quality balloon.
Question: Have they reached a deal ? 
Answer: They have reached a deal at $15.
The following is the conversation between a Buyer and a Seller:
Buyer: I'd be willing to pay $5400 for the truck.

Seller: I'm still a bit hesitant, but I'm willing to meet you halfway at $5600.
Question: Have they reached a deal? 
Answer: They have not reached a deal.
The following is the conversation: 

********
Conversation History
********
Question: Have they reached a deal? 

Answer: 

Figure 18: The prompt for computing the deal reward
(rdeal) in Craigslist Bargain dataset.
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Based on the given conversation, please decide whether the user accepted the 
item: {Target Item} at the end of the conversation.
The conversation is:

********
Conversation History
********
Please decide whether the user accepted the item {Target Item} at the end of 
the conversation. 

Based on the give conversation, please decide whether the user is happy and 
willing to accept the target item: {Target Item}. 
If the user is happy, please only generate the word: Accept.
If the user is confused or not willing to accept the item :{Target Item}, please 

only generate the word: Reject.

Prompt for Assessing Conversation Success in 
DuRecDial 2.0

Domain: Movie.
Target Item: Failan.
Related Topics: [”Nicolas Tse”, “The Viral Factor”, “Cecilia Cheung”]

Figure 19: The prompt for assessing the conversation
success in the DuRecDial 2.0 dataset.
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