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Abstract

Unsupervised hallucination detection aims to
identify hallucinated content generated by large
language models (LLMs) without relying on
labeled data. While unsupervised methods
have gained popularity by eliminating labor-
intensive human annotations, they frequently
rely on proxy signals unrelated to factual cor-
rectness. This misalignment biases detec-
tion probes toward superficial or non-truth-
related aspects, limiting generalizability across
datasets and scenarios. To overcome these lim-
itations, we propose IRIS, an unsupervised hal-
lucination detection framework, leveraging in-
ternal representations intrinsic to factual cor-
rectness. IRIS prompts the LLM to carefully
verify the truthfulness of a given statement, and
obtain its contextualized embedding as infor-
mative features for training. Meanwhile, the
uncertainty of each response is considered a
soft pseudolabel for truthfulness. Experimental
results demonstrate that IRIS consistently out-
performs existing unsupervised methods. Our
approach is fully unsupervised, computation-
ally low cost, and works well even with few
training data, making it suitable for real-time
detection. 1

1 Introduction

In recent years, Large Language Models (LLMs)
such as GPT-4 (Achiam et al., 2023) have demon-
strated remarkable capabilities to generate coherent
and relevant responses to user queries. Their suc-
cess led to the broad adoption of LLMs in a wide
variety of tasks, from coding to text summarization
(Touvron et al., 2023; Yang et al., 2024; Driess
et al., 2023). However, a critical concern arises be-
cause of their tendency to hallucinate, which refers
to the phenomenon where LLMs generate texts that
appear logical and coherent but contain fictitious
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Figure 1: Comparison between MIND (Su et al., 2024)
and our method. MIND incorrectly identifies a state-
ment as hallucination. Our method extracts model inter-
nal knowledge by asking it to think carefully whether
the statement is correct. Its confidence is obtained as a
soft pseudolabel.

information (Zhang et al., 2023b). As LLMs have
been observed to confidently generate false infor-
mation, it is challenging for users to identify hallu-
cinations. This represents a significant drawback
to the robustness of LLMs in real-world applica-
tions, resulting in growing interest in hallucination
detection.

Current hallucination detection strategies are
concerned with determining the truth or falsity of
a generated statement (Su et al., 2024; Manakul
et al., 2023; Min et al., 2023). A straightforward
paradigm is to directly instruct a language model to
determine the truth or falsehood of a given text (Li
et al., 2024; Su et al., 2024). Others scrutinize the
internal activations for latent signals that may cor-
relate with factual accuracy (Su et al., 2024; Azaria
and Mitchell, 2023; Burns et al., 2022). On the
other hand, other methods regard the model uncer-
tainty during text generation as a proxy for hallu-
cination risk. Generally, state-of-the-arts methods
aim to extract the inherent knowledge of LLMs
to verify the veracity of statements, whether by
directly querying the model, or by inspecting its
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internal states, or by measuring its uncertainty.
Unfortunately, these methods remain subopti-

mal for practical deployment. First, they are ex-
pensive and incur high computational overhead.
Direct querying methods achieve satisfactory per-
formance primarily with high-capacity commercial
models, such as GPT-4 (Li et al., 2024; Azaria and
Mitchell, 2023), rendering them impractical for
open-source alternatives and cost-sensitive applica-
tions. Uncertainty-based techniques are hampered
by ambiguous threshold determination and often
require generating multiple samples per query to
reach acceptable performance (Kuhn et al., 2023;
Fadeeva et al., 2023; Chen et al., 2024). Similarly,
internal activation approaches depend heavily on
extensive manual annotations to train a probe. Sec-
ond, methods that bypass the high computational
demands risk introducing bias into the detection
process. Burns et al. (2022) and Su et al. (2024)
consider model internal activations under the un-
supervised scenario. Such methods are limited in
scope and do not inherently capture the notion of
truth, biasing the probe towards non-truth-related
signals. These limitations highlight critical gaps in
current methodologies and motivate the need for
more robust, scalable, and efficient frameworks for
real-time hallucination detection. A key challenge
is to obtain truth labels to train a classifier probe
based on model internal states without resorting to
human annotations.

In this work, we propose Internal Reasoning
for Inference of Statement veracity (IRIS), an
unsupervised hallucination detection method that
inspects the uncertainty of the reasoning process.
We assert that the model’s confidence or uncer-
tainty when verifying the truthfulness of a state-
ment reveals the likelihood of hallucination. This
uncertainty is regarded as a soft pseudolabel for
statement accuracy. To illustrate, let us consider
the statement “Marie Curie was the first woman to
win a Davy Medal”, which is a continuation of a
truncated Wikipedia sentence (see Figure 1). As
Marie Curie is a well-known public figure, LLMs
would retain knowledge that she is also indeed the
first woman to win a Davy Medal. When asked
to assess the statement, LLMs would exhibit high
confidence that it is correct, thus most likely a non-
hallucination. IRIS regards this confidence score
as a soft pseudolabel for truth. On the other hand,
in MIND (Su et al., 2024), the label is derived
by matching the original and generated NE, incor-
rectly resulting in “Hallucination”. MIND biases

the labels towards matching named entities, rather
than the truth value of the statement.

Furthermore, the model internal states when
thinking about the statement represent its latent
knowledge, and contain information indicative of
factual correctness. IRIS trains a lightweight probe
on the contextualized embeddings of the model
verification with the pseudolabels. Our advantage
is that we only need one query to the model for
each statement whereas uncertainty-based methods
demand multiple samples.

IRIS alleviates the burden of human annotations
and promotes real-time hallucination detection. To
summarize, the contributions of this paper are as
follows:

• We propose an unsupervised hallucination de-
tection framework where the pseudolabels are
related to the truthfulness of the statements and
the features are model internal states.

• We demonstrate that the contextualized embed-
dings of the model’s verification is more informa-
tive of the hallucination risk, compared to those
of the statements themselves.

• We conduct extensive experiments and show that
our method achieves an improvement of 3.2%,
7.0%, and 10.2% on unsupervised hallucination
detection with the True-False, HaluEval2, and
HELM datasets, respectively.

2 Methodology

In this section, we present the details of our pro-
posed unsupervised hallucination method based on
internal activations. We note that our method is
designed to detect hallucinations in LLMs as the
primary goal, but our proposal is general and is thus
applicable to identifying falsehoods by leveraging
the internal knowledge of LLMs.

2.1 Eliciting Internal Knowledge
Given a set (s1, . . . , sn) of statements, our goal is
to determine whether each si is true. Here, we al-
low for the most general case where each statement
could be either human-written or generated by an
external language model that we no longer have
access to. Previous research (Azaria and Mitchell,
2023; Ji et al., 2024) show that the LLMs contain in-
ternal knowledge, accessed via their internal states,
on the truthfulness of statements. Additionally, we
believe that the contextualized embeddings of the
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Figure 2: Illustrations of eliciting uncertainty. In uncertainty-based methods, given a statement, a question to which
the statement could have been the answer is generated. Multiple responses from the LLM are then sampled, and the
responses are aggregated based on meaning and the uncertainty is computed. Meanwhile, our approach only calls
the LLM once using CoT prompting to facilitate a more thoughtful and informative response. The uncertainty is
normalized so that 0 indicates hallucination.

response verifying the statements is a more reli-
able predictor of hallucination than those of the
statements themselves. As such, we first prompt
the model to carefully verify whether a statement
is correct. Section 3 provides the results of us-
ing the embeddings of the original embeddings
(SAPLMA) and of the verification response.

2.2 Uncertainty as Pseudolabels

Importantly, we require that our method does not
rely on external supervision. To this end, we derive
a pseudolabel for each statement. Ultimately, we
wish to train a classifier probe on the internal states
and these pseudolabels. To ensure that the classi-
fier is endowed with the capacity to tell truth from
falsehood, these pseudolabels should encompass
some notion of truth.

In uncertainty-based hallucination detection, e.g.
as formulated by Kuhn et al. (2023) and Duan et al.
(2024), the underpinning assumption is that when
an LLM is responding to a query, its level of un-
certainty indicates its lack of knowledge and the
likelihood of hallucinating. As the uncertainty in
the response directly links to hallucination risk and
captures some aspect of factuality, we want to lever-
age the same insight and make use of uncertainty
as pseudolabels. However, these methods involve
passing the query to the model and evaluating its
output. This imposes three key demands. First, to
measure an LLM’s uncertainty regarding a state-

ment, a question to which the statement might be
the answer is generated either using the same LLM
or a different one. However, this may propagate
errors as the question may be vague and lead to
answers inconsistent with the provided statement.
Second, multiple calls to the LLM is required to
sample responses. Lastly, an additional model is
used to aggregate the responses according to se-
mantic meanings to estimate uncertainty. Overall,
this approach is compute heavy and less practical
for real-time detection. In our case, we seek to
bypass these requirements.

With this goal in mind, given a statement si, we
prompt an LLM to evaluate its correctness. We
argue that the uncertainty in its appraisal equates to
the model’s knowledge regarding the statement and
indicates the truthfulness of the sentence. Further,
we prompt the LLM to reason step-by-step, elic-
iting a more thoughtful and informative response
as the model assesses the correctness of the state-
ments. As illustrated in Figure 2, our approach
involves calling the LLM only once, and the rea-
soning chain is examined to estimate the LLM’s
uncertainty regarding the provided statement.

To estimate the uncertainty, we explore two op-
tions: (a). entropy-based: calculate the entropy of
the reasoning chain using token probabilities, and
normalize the entropy such that a value of 1 indi-
cates correctness; and (b). verbalized: the LLM
expresses the confidence that the statement is cor-

22119



Figure 3: Distribution of confidence in determining the
correctness of statements from the True-False dataset.

rect in numerical probabilities in the context of the
preceding reasoning steps. The prompt templates
are provided in Appendix A. Similar to the findings
by Tian et al. (2023), we find that the verbalized
confidence is better calibrated compared to token
probabilities as shown in Figure 3.

2.3 Classifier Training
Suppose the evaluation of the statement si yields a
response xi, we obtain the contextualized embed-
dings ϕ(xi) from the LLM. In line with SAPLAMA
(Azaria and Mitchell, 2023) and MIND (Su et al.,
2024), we utilize the last token’s embeddings at the
last layer. In Section 4.2, we study the efficacy of
using embeddings at other layer depths.

For each ϕ(xi), we generate a soft pseduolabel
ỹi ∈ [0, 1], which is the uncertainty of the LLM’s
assessment of whether the statement si is true. We
normalize ỹi so that ỹi = 1 means si is correct,
and vice versa. To address the issue of noisy labels,
we apply soft bootstrapping (Reed et al., 2014),
where new regression targets are generated for each
mini-batch based on the classifier’s current predic-
tions. The updated target for the i-th statement is
ti = βỹi + (1 − β)ŷi, where qi is the classifier’s
prediction, and β ∈ (0, 1). Further, we employ the
symmetric cross entropy loss (Wang et al., 2019)
as the overall objective

li = lce + lrce = H(ŷi, ti) + ϕH(ti, ŷi), (1)

where H(ŷi, ti) = ti log ŷi + (1 − ti) log(1 − ŷi)
is the standard cross entropy loss, H(ti, ŷi) is the
reverse cross entropy loss, and ϕ is a hyperparam-
eter balancing the losses. The cross entropy term
aligns the predictions with the pseudolabels, but
this causes the classifier to be sensitive to noisy
labels. On the other hand, the reverse cross entropy
term penalizes the classifier for being too confident
on potentially incorrect targets. Their combination
prevents overfitting to noisy labels, and allows for
better generalization.

To reduce computational demands, the classi-
fier is implemented as a small feedforward MLP
with three fully-connected hidden layers of units
(256, 128, 64), each followed by ReLU activation.
In the final layer, a sigmoid activation is applied.
The Adam optimizer is used for training, with a
learning rate of 10−2, and weight decay of 10−5.
We present hyperparameter finetuning results in Ap-
pendix C. For all settings, the classifier is trained
for 10 epochs with a patience of 5 epochs. In Ap-
pendix B, results on prompt sensitivity are reported.

3 Experiments

3.1 Datasets

We evaluate our method on three recent hallucina-
tion datasets: (i) True-False dataset (Azaria and
Mitchell, 2023): a compilation of ∼6300 factual
statements across 6 topics (Animals, Cities, Compa-
nies, Elements, Facts, and Inventions) and a set of
LLM generated statements (Generated); (ii) a sub-
set of HaluEval2 with human annotations (Li et al.,
2024), which consists of a total of ∼3800 Chat-
GPT responses to challenging queries related to
Bio-Medical, Education, Finance, Open-Domain,
and Science; (iii) HELM (Su et al., 2024): a col-
lection of ∼3600 LLM-generated text continuation
based on Wikipedia articles across six LLMs of
varying sizes. Together, these datasets represent
a balanced mix of LLM-generated and non-LLM
statements, covering a wide range of topics. The
topic or sub-dataset in each dataset is split 80-20
for training and testing.

3.2 Baselines

In the main experiments, we use Llama-3.1-8B-
Instruct (Dubey et al., 2024) as the proxy model
to extract knowledge from and to assess the cor-
rectness of statements. We evaluate our proposal
against three different types of baselines.

The first is direct prompting, where the LLM is
asked to determine whether a statement is factual
under the zero-shot and few-shot (three demon-
strations) settings. We utilize two prompting tech-
niques: asking the model to directly determine cor-
rectness, and chain-of-thought (CoT) prompting.
This results in Zero-shot, Few-shot, CoT (zero-
shot), and CoT (few-shot). To compare to com-
mercial LLMs, following the approach in HaluEval
(Li et al., 2023a), results from querying GPT-4o
are provided.

Secondly, we evaluate the datasets with two
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Method Animals Cities Companies Elements Facts Generation Invention Average

Zero-shot‡ 80.06 91.34 90.33 81.83 92.17 79.18 75.46 85.37
Few-shot‡ 78.08 89.23 89.75 82.90 92.00 75.51 89.38 86.38
CoT (zero-shot)‡ 80.65 92.04 91.67 86.88 92.82 83.27 80.48 87.54
CoT (few-shot)‡ 75.69 92.39 91.00 86.34 91.19 78.78 83.11 86.65
EigenScore‡ 57.45 63.04 53.57 51.15 51.28 60.23 53.67 56.06
SAR‡ 64.68 58.04 62.74 53.15 58.28 70.76 58.56 59.86
CCS‡ 67.33 51.71 57.08 70.97 79.67 57.14 67.61 63.16
MIND‡ 51.49 53.08 53.75 44.62 54.47 36.73 61.36 52.36
IRIS‡(ours) 80.20 93.84 94.17 89.25 93.50 87.76 90.91 90.38

GPT-4o∗ 82.74 94.10 91.42 96.02 98.53 82.45 86.30 90.96
SAPLMA† 84.16 95.21 87.92 84.41 93.50 79.59 94.89 89.67
Ceiling† 81.19 95.21 94.17 91.40 95.21 87.76 90.34 91.25

(a) True-False

Method Bio-Medical Education Finance Open-Domain Science Average

Zero-shot‡ 59.90 63.48 66.53 73.81 61.25 63.67
Few-shot‡ 58.33 59.23 71.93 55.78 59.04 61.88
CoT (zero-shot)‡ 56.28 61.29 67.58 63.61 56.83 60.77
CoT (few-shot)‡ 59.18 62.11 58.05 63.95 55.52 58.87
EigenScore‡ 41.80 46.58 45.15 58.05 35.01 43.03
SAR‡ 62.35 63.01 63.94 57.56 75.61 65.98
CCS‡ 53.61 60.54 61.94 54.24 53.00 56.91
MIND‡ 40.36 45.58 75.66 30.51 45.50 50.74
IRIS‡(ours) 59.64 63.95 78.84 93.22 70.00 70.57

GPT-4o∗ 71.38 83.47 71.18 73.87 81.29 75.59
SAPLMA† 59.64 64.63 77.78 93.22 81.00 73.33
Ceiling† 72.89 67.35 77.25 93.22 81.50 76.74

(b) HaluEval2

Method Falcon GPT-J LLB-7B LLC-7B LLC-13B OPT-7B Average

Zero-shot‡ 56.81 64.51 57.17 56.34 61.34 64.49 60.21
Few-shot‡ 58.73 66.43 60.88 48.09 44.12 64.66 57.71
CoT (zero-shot)‡ 62.57 68.71 58.94 58.35 57.35 65.55 62.12
CoT (few-shot)‡ 56.62 64.86 60.53 54.53 56.09 66.43 60.12
EigenScore‡ 38.46 42.25 44.30 37.18 42.34 48.99 42.41
SAR‡ 61.26 57.50 64.30 59.94 57.66 51.52 58.66
CCS‡ 55.24 50.43 52.21 57.00 61.46 64.04 56.79
MIND‡ 54.29 52.17 59.29 44.00 59.38 56.14 54.10
IRIS‡(ours) 67.62 69.57 69.03 66.00 69.79 68.42 68.43

GPT-4o∗ 70.25 76.57 70.97 57.34 62.39 77.56 69.63
SAPLMA† 73.33 85.22 56.64 76.00 68.75 81.58 73.61
Ceiling† 77.14 83.48 66.37 85.00 71.88 82.46 77.80

(c) HELM

Table 1: Accuracy results on the True-False, HaluEval2, and HELM datasets with three kinds of methods: Unsuper-
vised (‡), Supervised (†), and Commercial (∗). The best results of unsupervised methods are in bold.

recent uncertainty-based methods, EigenScore
(Chen et al., 2024) and SAR (Duan et al., 2024).
For each statement, the LLM is queried 10 times to
determine its confidence of the statement correct-
ness, and an uncertainty score is computed from
these samples. To follow the unsupervised setting,
sentences with uncertainty scores greater than the
median for each dataset are considered incorrect.

Next, we compare with methods most closely
related to our work — unsupervised hallucination
detection based on LLM internal activations. In
particular, we compare with Contrast-Consistent
Search (CCS) (Burns et al., 2022) and MIND (Su
et al., 2024). CCS converts every sentence into a
pair of contrasting statements, and trains a probe
such that the probabilities of each pair being true
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(the statement itself and its negation) adds up to one.
MIND truncates Wikipedia articles and prompts an
LLM to continue the next sentence. The truth labels
are automatically generated by matching the named
entities of the response and of the succeeding sen-
tence in the original article. MIND assumes access
to the LLMs that were used to generate the state-
ments and use their contextualized embeddings as
the features for training the probe. To conform to
the same setting as our method, we do not have
such access, and instead make use of the proxy
model. Note that MIND’s probe is trained on its
own automatically labeled dataset before testing on
the validation sets.

Finally, we provide results of supervised base-
lines for comparison. SAPLMA (Azaria and
Mitchell, 2023) utilizes the contextualized embed-
dings of the statements, and trains a probe using
these and ground-truth labels. Lastly, the super-
vised Ceiling trains the probe on the embeddings of
the model’s statement verification and the ground-
truth labels. All classifier-based methods employ
the same MLP architecture.

Since the main task is binary classification, de-
tection accuracy is used as the evaluation metric.
For probe-based methods, the validation accuracy
on a held-out set is computed.

4 Experimental Results and Analysis

4.1 Main Results

Table 1 presents the main results across all sub-
topics of the True-False, HaluEval2, and HELM
datasets. Among all unsupervised methods using
Llama-3.1-8B-Instruct, our method attains the high-
est average accuracy for all datasets, outperform-
ing the best baseline by 3.2%, 7.0%, and 10.2%
on the True-False, HaluEval2, and HELM datasets,
respectively. Overall, our method is the most con-
sistent, obtaining the best accuracy for 15 out of
18 sub-datasets. Although the commercial GPT-
4o performs better, IRIS uses a much smaller 8B
model, and is able to achieve comparable accuracy
on the True-False and HELM datasets.

While Chain-of-Thought may help improve ac-
curacy, it is not consistent. This shows that di-
rect query as a method to detect hallucination is
sensitive to the input prompt. Meanwhile, the un-
supervised detection methods, CCS and MIND,
mostly perform worse than direct query. In particu-
lar, MIND reached a training and validation accu-
racy of approximately 76% and 70% on their au-

Train on Test on

Animals Cities Bio-Med Education Falcon GPT-J

Animals 80.20
91.78
(-2.06)

60.84
(+1.20)

67.35
(+3.40)

63.81
(-3.81)

68.70
(-0.87)

Cities
73.76
(-6.44)

93.84
57.83
(-1.81)

68.03
(+4.08)

57.14
(-10.48)

65.22
(-4.35)

Bio-Med
74.26
(-5.94)

86.99
(-6.85)

59.64
63.27
(-0.68)

62.86
(-4.76)

63.48
(-6.09)

Education
73.27
(-6.93)

89.04
(-4.80)

65.66
(+6.02)

63.95
62.86
(-4.76)

67.83
(-1.74)

Falcon
79.70
(-0.50)

90.75
(-3.09)

59.04
(-0.60)

59.18
(-4.77)

67.62
66.96
(-2.61)

GPT-J
74.75
(-5.45)

83.90
(-9.94)

60.84
(1.20)

59.86
(-4.09)

61.90
(-5.72)

69.57

Table 2: Accuracy of trained probes on out-of-
distribution test set. The performance decrease and
increase are highlighted in red and green, respectively.

tomatically annotated data. However, its accuracy
drops significantly when tested on other datasets,
indicating its inability to generalize well. Notably,
the supervised ceiling exceeds the performance of
SAPLMA. Recall that SAPLMA utilizes the em-
beddings of the statements themselves as the train-
ing features whereas the supervised ceiling uses
those of the model verification process of the state-
ments. These results reinforce our hypothesis that
the latter is more informative than the former.

4.2 Analysis
In this section, we analyze IRIS to evaluate its
performance under various scenarios.

Out-of-Distribution (OOD) Setting. To test the
performance of IRIS under the OOD setting, we
consider two topic from each of the True-False,
HaluEval2, and HELM datasets. Table 2 reports
the OOD performance. On average, the accuracy
decreases by 3.1%, but remains generally robust.
With the True-False datasets used for training, the
OOD test accuracy decreases slightly by 2.1%,
compared to a drop of 3.7% and 3.6% when HaluE-
val2 and HELM are used. We can observe that
when trained on easier datasets where the model
has more knowledge, the test accuracy decreases
less drastically or even improves slightly. For exam-
ple, for “Animals”, the average OOD accuracy only
decreases marginally by 0.4%, and its test accuracy
on “Bio-Medical” and “Education” improves by
1.2% and 3.4%.

Model Size. We test with different model sizes
to understand the influence of model capacity and
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Figure 4: Average accuracy (%) on True-False dataset
with models of different sizes. “Q” and “M” repre-
sent instruction-tuned Qwen-2.5 (Yang et al., 2024) and
Mistral-v0.3 (MistralAI, 2024) models, respectively.

internal knowledge on the performance of IRIS.
Figure 4 reports the accuracy of IRIS, along with
direct prompting using CoT and verbalized confi-
dence (Verb). For Verb, statements with a confi-
dence score above 0.5 are considered factual. IRIS
consistently performs the best, and the improve-
ment is more significant in smaller models. With
smaller models, the model knowledge regarding
factual correctness decreases. The verbalized con-
fidence is not as well-calibrated, and thus, using
it to directly identify correct statements yields a
significantly worse accuracy. Nonetheless, their
hidden states contain richer contextual information
compared to the response. Training a probe on the
hidden states via the IRIS pipeline leads to greater
gains, especially on the smallest 0.5B model where
IRIS outperforms Verb by 12%.

Layer Depth. We investigate the contribution of
each layer on the overall detection performance.
As shown in Figure 5, the embeddings at differ-
ent layers yield a range of accuracy. The aver-
age accuracy peaks with the middle layer, but for
some dataset, such as “Companies”, “Elements”,
and “Generated”, the last layer gives better results.
Our study does not provide conclusive evidence
regarding which layer is ideal for hallucination dis-
crimination. In previous works, Ji et al. (2024)
found that the final layer is the best in recognizing
falsehoods, whereas Azaria and Mitchell (2023) ad-
vocated for the intermediate layers. We believe that
it ultimately depends on the dataset and LLM used.
Therefore, we can employ an architecture to inte-
grate the embeddings at all depths to learn better.
However, our preliminary consideration of adding
a small learnable module to fuse the embeddings
did not improve performance. Further examination
with more sophisticated architecture is required.

Figure 5: Accuracy (%) using embeddings at different
layers of Llama-3.1-8B-Instruct.

# Data 32 64 128 256 All

Acc 84.63 87.86 88.49 89.83 90.38

Table 3: Average True-False accuracy (%) using differ-
ent sizes of training data.

Training Data Size. IRIS relies on access to an
unlabeled collection of statements as training data.
In this subsection, we evaluate its performance with
training data of different sizes. Table 3 reports the
average True-False accuracy on the validation sets.
The experiments indicate that our method improves
with more data, but the gains plateau with more
than 128 data points. Most importantly, our pro-
posal works reasonably well even with as few as
32 statements. With this observation, given some
demonstration statements from HELM, we prompt
Llama-3.1-8B-Instruct to generate 32 statements
of similar nature and topics, half of which it knows
to be true, and the other half false. An example
generated true statement is “The largest mammal
by mass is the blue whale”, and false statement
is “Google’s motto is ‘Don’t be evil’.” Using the
generated statements as training data, the average
accuracy on the validation sets is 86.28%, compa-
rable to when the actual True-False data is used.
This implication reduces our reliance on having a
large carefully crafted training dataset.
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5 Related Work

In this section, we provide an overview of ex-
isting research on LLM hallucination detection.
These methods can be broadly categorized into
three groups: detection by direct query, by estimat-
ing consistency or uncertainty in the response, and
by extracting the model’s internal knowledge.

Direct Prompting. LLMs have been increasingly
utilized to evaluate the quality of generated natural
language (Fu et al., 2023; Wang et al., 2023; Liu
et al., 2023). Coupled with the success of few-shot
learning (Brown et al., 2020), prompt engineer-
ing, a simple strategy to elicit what LLMs know
via better prompts, has garnered great attention
(Sahoo et al., 2024). In hallucination detection,
improved prompting is often incorporated to more
accurately elicit LLMs world knowledge. Li et al.
(2024) instruct GPT-4 (Achiam et al., 2023) directly
to assess factual accuracy given a few demonstra-
tions. Mündler et al. (2023) generate two responses
based on the same context and prompt an LLM to
evaluate whether there is a contradiction, which
implies inaccuracy in one of the responses. Chain-
of-Verification (CoVe) (Dhuliawala et al., 2024)
decomposes a response into individual claims and
constructs verification questions for each. For more
complex tasks, Chain-of-Thought (CoT) prompt-
ing, which requests LLMs to respond to queries by
reasoning step-by-step, results in more thoughtful
responses (Kojima et al., 2022; Wei et al., 2022).
Self-consistent CoT (Wang et al., 2022) samples
multiple reasoning paths and chooses the most con-
sistent response. Tree of Thoughts (ToT) (Yao
et al., 2023) branches out the reasoning chain into
intermediate thoughts and allows backtracking and
lookahead. An obvious extension is to apply CoT
prompting to LLMs to detect cases of hallucination.

Uncertainty Estimation. Another approach in
hallucination detection is to determine the uncer-
tainty of the generated sequence. The fundamental
premise is that the higher the uncertainty in the
response, the likelier the model has hallucinated
(Fadeeva et al., 2023). Kuhn et al. (2023) propose
semantic uncertainty to account for how syntacti-
cally different responses that share the same mean-
ing should not increase the uncertainty. Claim-
conditioned uncertainty further removes the impact
of the uncertainty due to synonyms, different claim
types, or order in the answer (Fadeeva et al., 2024).
On top of sentence level uncertainty, Duan et al.

(2024) examine uncertainty at the token level, and
remove the influence of semantically insignificant
tokens. Zhang et al. (2023a) weigh their uncertainty
measure with attention values, and address over-
and under-confidence issues by correcting the token
probability with the inverse document frequency
(IDF). Chen et al. (2024) devise EigenScore, an
uncertainty metric that measures the spread of the
response in the embedding space. Under the black-
box setting, multiple responses are sampled and
their consistency is estimated (Kuhn et al., 2023;
Manakul et al., 2023; Lin et al., 2024). However,
to estimate an uncertainty score, these approaches
generally require multiple calls to the LLM, render-
ing them computationally heavy.

Internal Knowledge. Findings from recent re-
search provide strong evidence that LLMs con-
tain more knowledge about their own response
(Pan et al., 2024; Wu et al., 2023, 2024b,a,c,d;
Wu, 2025). Saunders et al. (2022) analyze the
generation-discrimination gap, which is the dis-
crepancy between the model’s ability to produce
high-quality outputs and its capacity to accurately
evaluate those outputs. Li et al. (2023b) highlight
that attention heads contain crucial information re-
lated to factuality, and modify attention activations
to enforce more truthful generation. SAPLMA
(Azaria and Mitchell, 2023) argues that the internal
states are discriminative features to uncover state-
ment truthfulness, and train a probe on the internal
states with human annotations to label hallucina-
tions. Likewise, Ji et al. (2024) describe similar
findings. As human annotation is labor-intensive,
some studies focus on the unsupervised setting.
Burns et al. (2022) train a linear probe through un-
supervised clustering by maximizing the distance
between the embeddings of a statement and its
negation. Meanwhile, MIND (Su et al., 2024) de-
signs a training dataset that is automatically an-
notated by matching named entities in Wikipedia
articles. However, as these approaches do not in-
corporate truth-related concept, the probe may be
misled to discover directions biased towards named
entities, for instance. This limits generalizability to
other datasets.

6 Conclusion

In this work, we introduce IRIS, a novel unsuper-
vised hallucination detection framework utilizing
the internal states of LLMs. Specifically, an LLM is
prompted to carefully verify the veracity of a given
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statement, and the contextualized embeddings of its
response are obtained. Then, the uncertainty of the
answer is evaluated, and regarded as a soft label for
the truthfulness of the statement. Finally, a classi-
fier is trained on the embeddings and corresponding
pseudolabels. IRIS demonstrates state-of-the-arts
performance on recent hallucination benchmarks,
improving over strong baselines by a large margin.
Our method does not incur much computational
overhead and does not require enormous training
data, making it suitable for real-time detection.

Further investigation, using SAR scores as pseu-
dolabels, shows the potential of incorporating more
advanced uncertainty metrics into the IRIS pipeline
(see Appendix E). Other uncertainty approaches
that are not as computationally costly can be ex-
plored. A preliminary analysis reveals that per-
formance depends on the layer depth of the em-
beddings. More complex probe architecture can
be exploited to aggregate embeddings at different
layers. In addition, evaluation of embeddings at
different tokens may uncover more granular in-
sights into how internal representations correlate
with truthfulness.

Limitations

We believe our work has the following limitations:

Model Variety. This work uses instruction-tuned
models, ranging from 500 million parameters to 32
billion parameters. A wider family of models and
of different sizes could provide additional insights.

Data Coverage. The datasets used comprised
single statements with clear-cut truth values for
checking. In practice, we are more keen on check-
ing entire passages, with a combination of factual
statements that require verification, and non-factual
claims that do not. A comprehensive system to
effectively decompose the passages and filter state-
ments before hallucination detection would make
our pipeline more complete.

Interpretability of Internal Signals. Although
our method benefits from accessing latent internal
activations, the black-box nature of these signals
poses challenges for interpretability. Understand-
ing the exact relationship between these internal
cues and the truthfulness of a statement remains an
open problem, suggesting that future work should
also focus on enhancing the transparency and ex-
plainability of the detection process.
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Appendix

A Prompt Templates

Figure 6: Prompts to verify statement correctness and
to obtain verbalized confidence.

B Prompt Sensitivity

To test sensitivity to different prompts, we consider
3 additional common prompting approaches on the
True-False dataset. The first one is zero-shot CoT
prompt (CoT-0). The other two are adversarial
prompts, as suggested by Turpin et al. (2023): (i)
Suggested Answer: we append "I think the answer
is false" to the end of every query; and (ii) Always
False: in the few-shot demonstration, the answer is
always "False", regardless of the reason.

Prompt Anim. Cit. Comp. Elem. Facts Gen. Invent. Avg

CoT-0 82.18 92.12 94.58 90.86 95.93 83.67 94.32 91.16
Suggested 79.70 91.78 92.50 89.78 91.87 86.36 87.50 88.91
Always F 82.18 92.81 93.33 87.10 94.31 79.59 77.27 87.86
CoT 80.20 93.84 94.17 89.25 93.50 87.76 90.91 90.38

A slight drop in performance is observed for the
adversarial prompts, but overall, IRIS is robust to
these prompting techniques. With the adversarial
prompts, the response is mostly correct, but the
final answer is forced to comply with the demon-
strations, resulting in a wrong answer. However,
the hidden states contain useful information of cor-
rectness, and thus, the classifier can correctly iden-
tify using the hidden states. On the other hand,
when these adversarial prompts are applied to get
the verbalized confidence, the scores are all pushed
to zero, rendering the pseudolabels ineffective for
training the classifier probe.

Figure 7: HELM average accuracy (%) with Llama-3.1-
8B-Instruct for various values of β and ϕ.

C Ablation Study

Classifier Hyperparameters. In Figure 7, we
provide results for various values of the hyperpa-
rameters β and ϕ. β denotes the importance given
to the pseudolabel ỹ compared to the classifier’s
current state ŷ. β cannot be too low and requires
careful tuning. Meanwhile, the accuracy is less
sensitive to ϕ, except for when ϕ > 1 where a con-
siderable drop in performance is observed. Overall,
the incorporation of soft bootstrapping (β < 1) and
the symmetric cross entropy loss (ϕ > 0) provides
additional performance gains.

Loss Function. We further tested using L1 and
L2 loss to train the classifier. The bootstrapping
mechanism is maintained with β = 0.8. The accu-
racy with L1 and L2 loss are 62.51% and 58.16%,
respectively. A significant drop in accuracy is ob-
served, highlighting the benefit of using the cross
entropy loss.

D Case Study

While CoT prompting generally improves perfor-
mance for large models, smaller models do not
always enjoy the same benefits. Here, we provide
some examples from Llama-3.1-8B-Instruct when
reasoning is helpful and when it is harmful.

Good case. For the statement ’Human uses for

hyena include conservation, research.’,
the reasoning is provided as: ’Hyenas are

primarily viewed as pests or scavengers

and are not typically kept in captivity

for conservation or research purposes.

</think>\n\n<answer> FALSE. </answer>’

Without reasoning, the model incorrectly claims
the statement is true.
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Bad case. For ’The giant anteater uses

walking for locomotion.’, even though it is
true, the reasoning is provided as: ’The giant

anteater primarily uses its powerful

front legs and long claws for walking,

but it also uses its long, sharp claws

for digging and its tail for balance.

</think>\n\n<answer> FALSE. </answer>’.
Although the intermediate reasoning is correct,
it deduced wrongly that the statement is false.
However, its internal states reflect more accurately
what the model knows, and the probe accordingly
classifies the statement as correct.

E Future Extensions

Other Uncertainty Scores as Pseudolabels

IRIS offers a bridge between uncertainty-based
methods and internal knowledge extraction. More
advanced uncertainty metrics, such as SAR (Duan
et al., 2024), can be flexibly incorporated to gener-
ate pseudolabels to further enhance IRIS. The per-
formance is shown in Table 4. Compared to simply
using SAR as a threshold (see Table 1), IRIS effi-
ciently extracts the information embedded in the
internal states to accurately assess the statement
veracity.

Label Anim. Cit. Co. El. Facts Gen. Inv. Avg

SAR 70.79 73.29 78.25 59.68 85.37 79.59 77.84 73.88
Verb 80.20 93.84 94.17 89.25 93.50 87.76 90.91 90.38

(a) True-False

Label Bio-Med Edu Fin. Open Sci. Avg

SAR 67.47 68.03 77.25 93.22 76.50 74.38
Verb 59.64 63.95 78.84 93.22 70.00 70.57

(b) HaluEval2

Label Falcon GPT-J LLB-7B LLC-7B LLC-13B OPT-7B Avg

SAR 65.71 61.74 68.14 63.00 67.71 70.18 66.10
Verb 67.62 69.57 69.03 66.00 69.79 68.42 68.43

(c) HELM

Table 4: SAR uncertainty as pseudolabels.

Specialized Dataset

Our preliminary investigation with mathematical
reasoning datasets, i.e Arithmetic and GSM8K
(Cobbe et al., 2021), shows that IRIS can poten-
tially tackle specialized datasets. In particular, IRIS
is applied to identify correct or incorrect answers to
mathematical questions. IRIS achieves an accuracy

of 87.2% and 73.4% on the Arithmetic and GSM8K
datasets, respectively, compared to CoT prompting
with 80.6% and 69.9%. However, on these datasets,
it is more challenging to elicit verbalized confi-
dence. When the prompting is done poorly, we
observe that the model outputs a confidence of 0
for most queries, making the pseudolabels misguid-
ing. In future work, experiments can be conducted
on a wider range of reasoning datasets to under-
stand the effectiveness of IRIS on these specialized
domains.
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