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Abstract

Video-to-audio synthesis, which generates syn-
chronized audio for visual content, critically
enhances viewer immersion and narrative co-
herence in film and interactive media. However,
video-to-audio dubbing for long-form content
remains an unsolved challenge due to dynamic
semantic shifts, audio diversity and the absence
of dedicated datasets. While existing methods
excel in short videos, they falter in long scenar-
ios (e.g., movies) due to fragmented synthesis
and inadequate cross-scene consistency. We
propose LVAS-Agent, a multi-agent framework
that offers a coordinated, multi-component ap-
proach to long-video audio generation. Our ap-
proach decomposes long-video synthesis into
four steps including scene segmentation, script
generation, audio design and audio synthesis.
To enable systematic evaluation, we introduce
LVAS-Bench, the first benchmark with 207 pro-
fessionally curated long videos spanning di-
verse scenarios. Experiments show that our
method outperforms state-of-the-art V2A mod-
els in overall audio synthesis quality.

1 Introduction

Recent advances in diffusion models and large lan-
guage models (LLMs) have greatly improved short-
video dubbing by enabling synchronized and im-
mersive audio-visual experiences. However, long-
video dubbing remains challenging due to seman-
tic complexity, cross-scene consistency, and dy-
namic content alignment. Existing models, tai-
lored for short clips, struggle to maintain coher-
ence across long durations and lack scalability to
applications like film dubbing and AIGC video gen-
eration. Progress is further hindered by the absence
of dedicated long-video audio synthesis datasets.
Existing video-to-audio methods fall into two
categories: (1) training dedicated generators (e.g.,

*Equal contribution. T Co-corresponding author.

Multi-Shot Video
AIGC videos, Flims ...

° H Scene #1 Scene #N
¥ : 1, | Background: Explosion Background: Helicopter hovering
1 Entities: Cat Entities: Monster, Helicopter
Storyboarder : Actions: Running, Meowing Actions: Monster Eating
1202 Summary: A cat is running Summary: The monster is cating
2, * | while an explosion occurs while a helicopter hovers above it.
Ve
“violent explosion” : { “Helicopter’ : {
| ‘Layout’: ‘Background’, | #°® ‘Layout': ‘Background’,
Scriptwriter 3 “Volume’: *20 dB’ “Volume™: 20 dB’
L2 N
H
“cat meowing’ : { “Chewing sound’ : {
3 ‘Layout': ‘Foreground”,
“Volume’: *25 dB’
y

1

1

1

1

1

1

1

:

. : ‘Layout': ‘Foreground’,
1 “Volume™: *25 dB’
& -

i '
1

1

1

1

1

1

1

1

1

1

1

'

Designer [ Tools: Video-to-Audio & Text-to-Audio, Audio mixing & Enhancement, ]
Volume adjustment, Video compose. ..
B2 e
c=)e
1 _Generator ,
LVAS-Agent

Current Video-to-Audio Methods
X Manual Caption & Trimming
X Manual configuration of prompts
x Non-editable, no HierGen.

Our proposed LVAS-Agent
& Automated caption & trimming
V Auto audio script generation
& HierGen & Highly editable

Figure 1: We introduce LVAS-Agent, a multi-agent
collaborative framework for end-to-end long video
audio synthesis. Built on VLM and LLM-based agents,
it simulates real-world dubbing workflows, enabling
automatic video script generation, audio design, and
high-quality audio synthesis for long videos.

SpecVQGAN (Iashin and Rahtu, 2021) and Foley-
Crafter (Zhang et al., 2024a)) that capture short-
term correlations but falter in scene transitions, and
(2) text-driven models(e.g. SonicVisionLM (Xie
et al., 2024), V2A-Mapper (Wang et al., 2024a))
that depend on textual inputs and perform poorly on
implicit visual cues in long videos. These methods
encounter common issues: (i) they lack mecha-
nisms to capture long-range dependencies across
dynamically changing scenes and are limited in
handling multi-shot videos; (ii) they are overly sen-
sitive to text prompts and often require manual
prompt tuning to improve audio quality; (iii) they
struggle to synthesize audio for longer video dura-
tions. Additionally, these methods rely on short-
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video datasets that lack rich multi-sound annota-
tions and sufficient cross-scene coverage, with each
audio label typically containing only 2—4 words. A
key question arises: How can we leverage short-
video dubbing priors to enable coherent and tem-
porally aligned long-video synthesis without large-
scale training data? While naively segmenting
long videos allows reuse of existing methods, it
often breaks audio coherence and misaligns with
the overarching semantics due to lack of global
understanding.

To address this, we propose LVAS-Agent, a
multi-agent framework that simulates professional
dubbing workflows via structured role collabora-
tion. The pipeline decomposes long-video audio
synthesis into four tightly coupled stages: scene
segmentation, video script generation, audio script
design, and final audio synthesis (Figure 1). Each
stage is assigned to a dedicated role: the Story-
boarder segments scenes based on narrative and
dubbing logic; the Scriptwriter generates video
scripts by combining visual semantics with con-
textual cues; the Designer designs sound effects
grounded in the video script; and the Generator
retrieves audio label knowledge and orchestrates
hierarchical audio synthesis using tools such as
Video-to-Audio (V2A), Text-to-Audio (T2A), and
audio editing.

Central to the system are two collaborative mech-
anisms: a decision-correction process for refining
multi-shot video boundaries and optimizing scripts,
and a generation-retrieval-optimization loop that it-
eratively aligns sound design with retrievable audio
knowledge to achieve high-quality audio synthesis.

To enable systematic evaluation, we introduce
LVAS-Bench, a curated dataset of 207 long videos
across diverse scenarios such as urban scenes, com-
bat, and animation.

Our contributions can be summarized as follows:

* We propose LVAS-Agent, a multi-agent sys-

tem that structures long-video dubbing into
collaborative roles and iterative processes.

* We release LVAS-Bench, the first dedicated
long-video audio synthesis dataset, covering
207 professionally curated videos across di-
verse scenarios, enabling standardized bench-
marking.

* Experiments demonstrate that LVAS-Agent
improves semantic fidelity, timing accuracy,
and audio distribution matching compared to
prior methods.

2 Related Work

2.1 Video-to-Audio Generation

Video-to-audio generation, or dubbing, is a vital
technique for enhancing auditory experiences and
has advanced significantly with neural methods.
Early models showed deep learning’s potential in
sound synthesis but were confined to specific gen-
res (Chen et al., 2018, 2020; Mo et al., 2024; Zhou
et al., 2018). Recent progress follows two main
directions. One trains generators from scratch, in-
cluding SpecVQGAN (Iashin and Rahtu, 2021)
with cross-modal Transformers, Im2Wav (Shef-
fer and Adi, 2023) conditioned on CLIP features,
Diff-Foley (Luo et al., 2023b) with contrastive pre-
training, and MMAudio (Cheng et al., 2024) us-
ing flow-matching-based multimodal training. The
other adapts text-to-audio models, e.g., Xing et al.
(Xing et al., 2024) using ImageBind (Girdhar et al.,
2023a), SonicVisionLM (Xie et al., 2024) using
caption-based synthesis, V2A-Mapper (Wang et al.,
2024a) translating visual to text embeddings, and
FoleyCrafter (Zhang et al., 2024a) adding learnable
modules to T2A models for end-to-end training.
However, most methods still struggle with long
videos, facing noise and audio-scene mismatches.
Our method addresses this by introducing a video
understanding and segmentation module to support
long-form audio generation.

2.2 MLLMs for Video Understanding

Recent advances in vision foundation models
(Dosovitskiy et al., 2020; Liu et al., 2021; Radford
et al., 2021; Kirillov et al., 2023) have enabled the
development of multimodal LLMs (MLLMs) (Liu
et al., 2023; Tian et al., 2024; Zhang et al., 2023b),
capable of language-guided visual understanding.
This capability has extended to video understand-
ing with models like VideoChat (Li et al., 2024a),
Video-LLaMA (Zhang et al., 2023a), and Valley
(Luo et al., 2023a). However, videos introduce
temporal complexity and token-length challenges,
often exceeding MLLMs’ context limits. While
frame sampling is commonly used, some works
(e.g., Video-ChatGPT (Maaz et al., 2023)) propose
efficient video feature representations.

For long video understanding, keyframe selec-
tion becomes critical. Approaches such as Kanga-
roo (Liu et al., 2024) and LLaVA-Video (Zhang
et al., 2024b) use LLMs with expanded context
windows, while others like MovieChat (Song et al.,
2024) and MA-LMM (He et al., 2024) introduce
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Figure 2: Framework of LVAS-Agent. Given the original video, Storyboarder and Scriptwriter collaborate through
Decision and Correction to create a structured video script. The Designer and Generator complete multi-layered,
high-quality sound synthesis through the Generate-Retrieve-Optimize mechanism.

memory systems or compact models for tempo-
ral compression. LongVLM (Weng et al., 2024)
further reduces token load via token merging.

2.3

LLM-based agent systems evolved from single-
agent frameworks focused on tool integration (Li
et al., 2023; Schick et al., 2023; Shen et al.,
2023) to multi-agent collaborations. Inspired
by concepts like the Society of Mind (Minsky,
1988), multi-agent systems (Park et al., 2023)
tackle complex problems beyond single-agent
capabilities. Frameworks like ChatDev (Qian
et al., 2023), MetaGPT (Hong et al., 2023), and
TransAgents (Wu et al., 2024) leverage simulated
workflows where specialized agents collaborate,
demonstrating superior reasoning and task com-
pletion on complex problems requiring interac-
tion. Several agent-based approaches have also
emerged in the audio domain. AudioGPT (Huang
et al., 2024) supports tool-augmented audio gener-
ation but is limited to T2A tasks and cannot han-
dle video-aligned sound synthesis. Audio-Agent
(Wang et al., 2024c) focuses on general audio rea-
soning but lacks support for long, multi-shot videos
and does not provide end-to-end V2A synthesis. In
contrast, LVAS-Agent implements an end-to-end
multi-agent framework specifically designed for
long-video audio synthesis. By mimicking pro-
fessional dubbing workflows, it effectively main-
tains audio continuity across shot transitions and
achieves semantic alignment between video and
audio. Through carefully designed agent collabora-
tion, the system operates in a training-free manner

Multi-Agent Systems

and addresses common limitations of existing V2A
models, such as unable to synthesize multiple au-
dio tracks in complex scenes and poor cross-scene
performance.

3 Method

3.1 Overview

By clearly defining agent roles, LVAS-Agent de-
composes the video-to-audio synthesis task into
two coordinated stages: video script generation
and audio design. As shown in Figure 2, four
specialized agents—Storyboarder, Scriptwriter,
Designer, and Generator—collaborate to pro-
duce high-quality, multi-layered audio aligned with
video content.

The process begins with video script generation.
The Storyboarder segments the video into scenes,
while the Scriptwriter analyzes both global and lo-
cal content to generate descriptive captions for each
scene. These agents interact through a Decision-
Correction mechanism to iteratively refine scene
boundaries and textual descriptions, resulting in a
structured video script.

Subsequently, this structured script serves as the
input for the audio design and synthesis stage, man-
aged by the Designer and Generator. The De-
signer analyzes the video script to annotate de-
tailed sound requirements, including foreground
and background sound events, and their charac-
teristics. The Generator then takes these annota-
tions and, leveraging a knowledge base and syn-
thesis models, produces the actual sound effects.
The Designer and Generator collaborate through
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Algorithm 1: Decision-Correction
Input: Storyboarder agent P, Scriptwriter agent Q,

Video V
Output: Structured video script T
T+« 0
{vo,...,vn} < P(V) // Shot Change
Detection
{kfo,.. . kfn} < P({vo,...,v}) // Keyframe
Extraction

Uv < Q(V) // Understand global content,
style features
for i = 0 ton do
U; + Q(kfi)
if 7 > 1 then
D + P(Uz, Ui_1, Uv)
if D = M ERGE then
vi—1 « merge_segments(vi—1,v;)
T+ TU [Uifh UZ}
else
| T+« TU[Uy
fori =0tondo
D + P(Uy)
if D = CLIP then
Vi, Vit1 — clip_segments(v;)
T < Q(vi,vi—1) // Update video
script

T+ TUUvy
return T

a Generation-Retrieval-Optimization strategy, in-
volving iterative refinement of the sound design
and synthesis plan to ensure high-quality, multi-
layered audio output that is coherent with the video
content. The specific prompts for each of these
agents are provided in Appendix A.2.

3.2 Video script generation

As shown in Figure 2, this paper proposes a struc-
tured video script generation method to assist in
generating sound effects for full-length videos. The

method addresses three core challenges: 1) current
V2A methods usually have duration constraints;
2) current V2A methods struggle with scene and
content transitions; 3) ensuring consistency be-
tween video captions and audio descriptions for
coherent synthesis. To overcome these, we in-
troduce a fine-grained video structuring approach,
supported by collaboration between storyboarder
and scriptwriter agents, as outlined in Algorithm
1. The specific design of these agents is detailed as
follows.

Storyboarder is responsible for fine-grained video
structuring. Its key functions include detecting
scenes for coarse segmentation, extracting key
frames using the K-Means clustering algorithm,
and refining segment boundaries based on the
Scriptwriter’s video script. Scene detection uses
an HSV color space transition method for rapid,
frame-accurate segmentation. By extracting key
frames from smaller segments, it captures more vi-
sual information compared to directly inputting the
full video into a vision-language model, enhancing
video comprehension. Storyboarder also collabo-
rates with the Scriptwriter to decide whether seg-
ments should be further edited, considering video
script.

Scriptwriter is a visual support agent responsible
for comprehending both the full video and individ-
ual video segments. Recent video understanding
tasks achieve comprehension by extracting infor-
mation from visual contexts to derive semantic fea-
tures (Li et al., 2024b) or by directly generating
descriptive text (Fan et al., 2025). Textual descrip-
tions of the video script make it easier to maintain
consistency between video and audio descriptions.
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Furthermore, converting the video into a structured
script, distinct from video frames, enhances pro-
cessing speed and significantly reduces the token
count.

Decision-Correction As illustrated in Algorithm 1,
this strategy is carried out through the collabo-
ration of two agents: the Storyboarder (P) and
the Scriptwriter (Q). Storyboarder segments the
video into distinct scenes [vg, . . ., v, ] based on shot
transitions and extracts corresponding keyframe
sets {[ fely, N [f:;ely, ...]}. Secriptwriter
first performs a global analysis of the entire video
and then generates detailed captions for each seg-
ment based on its keyframes. Subsequently, P
and Q jointly decide whether adjacent segments
should be merged or split and whether captions re-
quire refinement, based on both global context and
segment-level semantics. The collaboration results
in a structured and coherent video script. As shown
in Figure 3, the Decision-Correction mechanism
enables the generated video script to better fit au-
dio synthesis scenarios. It not only avoids audio
description errors caused by multi-shot transitions
but also supports the generation of off-screen audio
labels.

3.3 Audio Design and Synthesis

This section presents the second stage of LVAS-
Agent: audio design and synthesis (as shown in
Figure 2). The design follows three key principles:
(1)Analyzing video scripts for accurate audio de-
scriptions, (2) improving generated audio quality
by combining V2A, T2A, and audio editing tools,
and (3) enabling editable audio planning. This
stage adopts a collaborative framework involving
two LLM-based agents—Designer and Genera-
tor—and integrates retrieval-augmented genera-
tion (RAG) and audio synthesis models to produce
multi-layered, high-quality audio.

Designer annotates audio in the video script and
collaborates with the Generator agent to finalize the
audio design. Real-world dubbing often involves
complex scenes with layered environmental sounds
and diverse sound-producing actions. To address
this, we introduce a Chain-of-Thought (CoT) rea-
soning mechanism, breaking the task into steps:
identifying primary action sounds, analyzing back-
ground audio, and ensuring audio coherence. The
Designer agent creates the initial audio design, cov-
ering foreground and background sounds, volume
control, and sound descriptions. It then provides
iterative feedback to the Generator to optimize the

final audio plan.

Generator The Generator synthesizes audio based
on the audio annotations obtained through col-
laboration with the Designer. It uses retrieval-
augmented generation (RAG) with an audio label
knowledge base, Video-to-Audio (V2A) and Text-
to-Audio (T2A) models for synthesis, hierarchical
mixing, and volume adjustment. RAG-based re-
trieval ensures high-quality synthesis, addressing
the limitations of V2A models trained on the VG-
GSound dataset, which contains only 310 audio
labels with 2-4 words each. When audio prompts
match these predefined labels, the generated audio
is more stable and higher quality.

Building on this insight, all VGGSound labels
were reorganized and reclassified into 20 common
video scenarios. To enrich the labels, GPT-4 and
human annotators added details such as typical sce-
narios and relevant objects. This resulted in 192
refined labels. The structured knowledge base al-
lows the Generator to retrieve predefined labels,
rather than relying on open-ended prompts. The
Generator uses MMAudio (Cheng et al., 2024), a
state-of-the-art model for both V2A and T2A tasks,
as the primary audio generation tool. Background
sounds are generated via T2A, while foreground
sounds are produced via V2A. Finally, the Gener-
ator performs audio mixing, volume adjustment,
and refinements based on the audio script.
Generation-Retrieval-Optimization The De-
signer and the Generator collaborate through GRO
to optimize the audio tags in the audio script. The
process is as shown in Algorithm 2. First, the De-
signer agent D formulates an initial sound design
based on the video script. The Generator agent
S then retrieves relevant knowledge from a sound
synthesis database to generate a concrete imple-
mentation plan. This plan is reviewed by the De-
signer agent D, who decides whether further re-
finement of the sound design is needed or if the
plan is ready for final synthesis. Specifically, this
process begins with an in-depth understanding of
the video script, followed by iterative exchanges
of feedback between the Designer agent D and the
Generator agent S. Through multiple iterations,
the final sound synthesis plan is determined.

4 LVAS-Bench

Collection. We construct the first specialized long-
video audio synthesis benchmark(LVAS-Bench).
The benchmark contains 207 professionally cu-
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Figure 4: Our LVAS-Bench is presented in the following parts: (a) illustrates sample data from the benchmark,
(b) provides statistical distributions of audio categories and sub-categories across the dataset, and (c) presents the
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Methods Distribution Matching Audio Quality|Semantic Align Temporal Align
FDvcal FDpannd FDpasstd KLpanns! KLpagstd| ISpannsT | IB-Scoret | DeSyncl
Baseline(FoleyCrafter), 6.60 61.36 637.82 2.54 2.65 4.79 0.28 1.24
Baseline(MMAudio) | 8.96 52.94 589.27 2.01 1.91 3.92 0.29 0.60
LVAS-Agent(Ours) 5.76 46.16 573.67 1.86 1.77 4.28 0.33 0.53

Table 1: Comparison of different methods on various evaluation metrics. Lower values () indicate better perfor-

mance, while higher values (1) indicate better quality.

Algorithm 2:  Generation-Retrieval-
Optimization Collaboration Strategy

Input: Designer agent D, Generator agent S, Video
script T', Maximum iterations Nmax

Qutput: Finalized sound synthesis plan A fina
Initialization: A, <~ D(T);
Aretrieved — S(Ainit);
for i = 1 t0 Nyax do

Areviewed <~ D(Aretrieved);

if D determines A eviewea is FINAL then

| break; // Exit early if finalized

A nodified D(Areviewed);
Aretrieved — S(Amodiﬁed);

return A reviewed;

rated videos (with an average duration of 1 minute)
sourced from three main origins: (1) film produc-
tion archives with open licenses, (2) annotated doc-
umentary segments, and (3) procedurally gener-
ated synthetic scenes. Importantly, all videos in
the dataset have pure sound effects, with no back-
ground noise or human speech. This creates a
dataset of long-form, semantically rich videos with
clear transitions, matched with corresponding pure
sound-audio. Figure 4(a) illustrates representative
video-audio cases.

Statistical Analysis. To ensure diversity, LVAS-
Bench covers sufficient video and audio categories.
Figure 4(b) visualizes the benchmark’s audio types,

encompassing five major classes (e.g., human ac-
tivities) with numerous fine-grained subcategories.
Figure 4(c) quantifies the distribution across 10
video-level categories, where instances such as the
“cooking" category comprise 22 entries.
Benchmark Annotation. LVAS-Bench offers
comprehensive global descriptions for each video
and provides audio labels for its internal sub-
segments. The time-stamped annotations indicate
captions from specific seconds to specific seconds,
while the global descriptions provide a detailed
account of the entire long video. The specific an-
notation details are in the Appendix.

5 Experiment

5.1 Experiment Setup

Metrics We assess the generation quality in four
different dimensions: distribution matching, audio
quality, semantic alignment, and temporal align-
ment. 1) Distribution matching assesses the simi-
larity in feature distribution between ground-truth
audio and generated audio, under some embedding
models. We compute Fréchet Distance (FD) and
Kullback-Leibler (KL) distance. For FD, we adopt
PaSST (Koutini et al., 2022) (FDp,ssT), PANNSs
(Kong et al., 2020) (FDpannNs), and VGGish (Gem-
meke et al., 2017) as embedding models. For the
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Struct. Script  CoT RAG Iterative Ref.
Model Variation (DO) (Designer) (Generator) (GRO) |FDvcal FDpanns! ISpnssTIB-Scoret DeSyncl
MO: Baseline 7.81 84.37 1.69 0.281 0.361
M1: MO + DC v 7.47 79.85 1.77 0.315 0.349
M2: M1 + CoT v v 7.39 77.82 1.74 0.323 0.337
M3: M2 + RAG v v v 7.24 76.19 1.94 0.336 0.301
M4: LVAS-Agent v v v v 7.22 73.94 2.16 0.341 0.283

Table 2: Ablation Study of LVAS-Agent. Evaluating LVAS-Agent performance on LVAS-Bench by progressively
adding key components and interaction strategies. Abbreviations denote: DC, Decision-Correction for video script
generation; CoT, Chain-of-Thought for audio design by the Designer agent; RAG, Retrieval-Augmented Generation
by the Generator agent; and GRO, Generation-Retrieval-Optimization for iterative audio label refinement.
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Figure 5: We visualize the spectrograms of generated audio (by sota V2A method and our method). LVAS-Agent
demonstrates superior performance in synthesizing long video audio, ensuring seamless scene transitions without

errors or missing sounds.

KL distance, we adopt PANNs (KLpanng) and
PaSST (KLp,ssT) as classifiers. 2) We use PANNs
as the classifier, following Wang et al. (Wang et al.,
2024b), to assess generation audio quality without
the need for comparison with the ground truth, uti-
lizing the inception score. 3) Semantic alignment is
measured using ImageBind (Girdhar et al., 2023b),
following Viertola et al. (Viertola et al., 2024), by
extracting visual features from the input video and
audio features from the generated audio, then com-
puting the average cosine similarity as the IB-score.
4) Temporal alignment: We use synchronization
score (DeSync) to assess audio-visual synchrony.
DeSync is predicted by Synchformer (Huang et al.,
2023) as the misalignment (in seconds) between
the audio and video.

Data. Since our method focuses on the task of
sound effect synthesis for long videos, which con-
sist of shorter video-audio pairs, are not suitable
for evaluation. Therefore, this paper uses the pro-
posed LVAS-Bench to assess the performance of
the Agent-System.

Baselines. To handle sound effect synthesis for

long videos, the baseline first segments the video
using a scene change detection method based on
HSYV color variation. To align with the capabil-
ities of existing V2A models, each segment is
further limited to a maximum duration of 10 sec-
onds. We employ two state-of-the-art V2A models,
FoleyCrafter (Zhang et al., 2024a) and MMAu-
dio (Cheng et al., 2024), to generate audio for each
segment. FoleyCrafter supports audio generation
for clips up to 10 seconds, while MMAudio per-
forms best on clips of similar duration due to the
characteristics of its training data. The final audio
is obtained by concatenating the outputs from each
segment.

Implementation Details. In our experiments, all
LLM-based agents use the Qwen API (Qwen et al.,
2025) with the “qwen-max" model to simulate dif-
ferent agent roles. The visual support agent is im-
plemented using the locally deployed “Qwen2.5-
VL-7B" model. The retrieval-augmented genera-
tion for the predefined audio description knowl-
edge base is built on Llamalndex and powered by
a “qwen-plus" model.
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5.2 Main Results

The evaluation metric comparison results are
shown in Table 1, where LVAS-Agent outperforms
the baseline methods across all metrics in four key
dimensions, achieving state-of-the-art performance.
Additionally, we visualize and compare the audio
waveforms generated by different methods. The
quantitative results demonstrate that our approach
enables the existing V2A base models to generate
higher-quality audio in long videos with enhanced
semantic and temporal consistency, all without ad-
ditional training.

As shown in the visualized spectrogram compar-
ison in Figure 5, LVAS-Agent dynamically adjusts
the video captions for each segment based on the
underlying video semantics. This allows the sys-
tem to generate diverse yet semantically aligned
audio for multi-scene videos, effectively avoiding
mismatched or inappropriate audio synthesis. Fur-
thermore, by intelligently trimming long multi-shot
videos, LVAS-Agent reduces the length of video
tokens, ensuring that the V2T model captures key
audio-related content without omission. Through
well-structured audio script design, LVAS-Agent
significantly enhances audio quality and audiovi-
sual alignment of V2A models in a training-free
manner. The video and audio script examples are
shown in Figure 7.

5.3 Ablation Study

An ablation study on 20 LVAS-Bench videos (As
shown in Table 2) was conducted to evaluate the im-
pact of individual modules within the LVAS-Agent
framework. Starting from a baseline (M0) with-
out any specialized components, each configura-
tion progressively introduces one module. Adding
the Structured Scripting module with Decision-
Correction (M1) improves initial segmentation
and script quality, leading to better alignment
and reduced desynchronization. Introducing the
Designer’s Chain-of-Thought reasoning (M2) en-
hances the coherence of sound effect descriptions,
further improving alignment and reducing audio
inconsistency. Incorporating Retrieval-Augmented
Generation (RAG) in M3 enables more precise au-
dio label retrieval, resulting in noticeable gains in
semantic accuracy and synchronization. Finally,
the full model (M4) integrates Iterative Refinement
via a Generation-Retrieval-Optimization (GRO)
loop, which significantly boosts all evaluation met-
rics through adaptive feedback between the De-

signer and Generator.

Overall, each component meaningfully con-
tributes to the system’s performance, and the cumu-
lative design effectively balances complexity with
output quality.

3 I I
| I I I
0

Audio Quality

S

Video-Audio Consistency Overall Satisfaction

® FoleyCrafter MMAudio W Ours

Figure 6: User study comparing our method with base-
lines across different aspects. Higher values indicate
greater user preference.

5.4 User Study

We conducted a user study involving 30 partici-
pants to evaluate our method in comparison with
FoleyCrafter (Zhang et al., 2024a) and MMAu-
dio (Cheng et al., 2024). Participants were asked
to listen to 10 audio samples generated by each
method and rate them on a scale of 1 to 5 across
three dimensions: “Audio Quality,” “Video-Audio
Consistency,” and “Overall Satisfaction.” Higher
scores indicate better performance. As illustrated
in Figure 6, the results of the user study demon-
strate that our method outperforms the two baseline
approaches across all evaluated aspects.

6 Conclusion

We present LVAS-Agent, a multi-agent frame-
work that systematically tackles long-video dub-
bing challenges through role-specialized collabo-
rative agents. By decomposing the workflow into
scene segmentation, script generation, sound de-
sign, and hybrid synthesis, our method overcomes
limitations in semantic continuity and temporal
alignment inherent to existing approaches. We also
release the first dedicated long-video audio syn-
thesis dataset, covering 207 professionally curated
videos, named LVAS-Bench. Experimental results
demonstrate superior performance in distribution
matching, audio quality, and alignment metrics on
LVAS-Bench. For future work, we aim to develop a
large-scale, finely annotated dataset of long-video
audio to further advance the development of long-
video dubbing models.
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7 Limitations

Our work has several limitations. First, the video
script generation in LVAS-Agent relies on the video
understanding capability of vision-language mod-
els. Errors in video interpretation can lead to cas-
cading inaccuracies in the subsequent audio script
generation, resulting in mismatches between the
synthesized audio and the actual video content.
Second, LVAS-Agent segments multi-shot videos
based on audio continuity. When extremely short
clips (e.g., under 0.5 seconds) appear, they are
merged with adjacent segments due to limitations
of current V2A and T2A models, which struggle to
synthesize audio for such brief durations. However,
this merging may involve visually diverse shots,
reducing audio quality. Finally, although we in-
troduce LVAS-Bench to evaluate the performance
of V2A models on long-video audio synthesis, the
dataset size remains limited due to the challenges
of collecting high-duration, multi-shot videos with
clean and isolated sound effects.
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A Appendix

A.1 LVAS-Bench Dataset Construction

All video clips used in LVAS-Bench are report-
edly sourced from publicly accessible content on
YouTube. As potential data sources, we initially
identified and collected a range of video types,
including themed ASMR videos (e.g., cooking,
sports, work, city walks, and nature scenes), post-
processed documentary segments (mainly featuring
animals and military topics), and selected vlogs. A
key challenge in constructing this dataset was ob-
taining “clean audio” clips—segments free from
prominent speech or background music. To ad-
dress this, approximately 500 video clips of vary-
ing lengths were collected initially. During the
filtering process, clips containing speech or music
were discarded. Videos were also trimmed to re-
move transitions and on-screen subtitles. The final
dataset consists of 207 curated clips.

For annotation, the LVAS-Agent first automati-
cally generated draft scripts for the processed clips.
These drafts were then manually reviewed and cor-
rected. Scene segmentation boundaries were re-
fined, and each finalized segment was annotated
with explicit sound effect labels, categorized into
foreground and background sounds. Typically,
each segment contains no more than three labels
per category. An example annotation is shown in
Figure 7.

A.2 Key Prompts

This section presents the key prompts for the agent
roles within the LVAS-Agent framework. The key
prompt settings for the Agent roles are as follows:
This prompt defines the decision-making process
for the Storyboarder agent to determine whether
two video segments should be merged.

Storyboarder: Judge Merge Instructions

You are a professional video editor respon-
sible for determining whether two video
clips should be merged based on their textual
descriptions. Your decision must ensure
narrative and audiovisual continuity in the
final edit. Decision Criteria for Merging.
Analyze the relationship between the last
video clip, the current video clip, and the
overall video timeline by considering:

1. Content Continuity

- Are the two clips depicting the same

ongoing scene or event? - Does the transition
between clips maintain a logical progression?
2. Scene & Environment Consistency

- Do both clips occur in the same setting? -
Example of discontinuity: - A clip in an out-
door park followed by a scene inside a church
— Not continuous - A lake with a single tree
vs. a lake with snow-capped mountains —
Different settings, not continuous - Example
of continuity: - A dog standing on stairs — A
dog jumping down the stairs — Same entity,
continuous event

3. Action & Sound Consistency

- Are the actions and sounds from one clip
naturally leading into the next? - Example
of discontinuity: - Chopping vegetables
followed by sprinkling seasoning — Both are
cooking-related but produce different sounds,
not continuous - Example of continuity: -
Tank firing — Tank shooting — Essentially
the same action and sound, should be merged
- Two people dueling with knives from
different perspectives — Same fight, should
be merged

Processing Steps

1. Analyze the Text Descriptions:

- Compare the last clip’s caption, the current
clip’s caption, and the whole video’s context.
- Determine whether the clips belong to the
same scene or action sequence.

2. If merging is required:

- Generate a new unified description combin-
ing both clips.

3. If merging is NOT required:

- Assess whether the current video description
needs adjustments for clarity and continuity
based on the global context. - If no mod-
ifications are needed, retain the original
description.

& J

This prompt guides the Scriptwriter agent in analyz-
ing individual video clips and generating structured
descriptions.

Scriptwriter: Analyze Video Clips

You are a video analyst with expertise in un-

derstanding and interpreting various video
clips.
Task Description
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Scene 2

Scene3

- Background: “Train station”,

- Entities: “High Speed Train, Passengers”,
- Actions: “The high-speed train departs,
passengers move around on the platform.”,
- Summary: “At the train station, passengers
move around on the platform and the high -
speed train departs from the station.”

- Background: “Forest”,

- Entities: “Steam train”,

- Actions: “The steam train is moving and
emitting steam.”,

- Summary: “A steam train emerged from
the forest, emitting steam.”

{

“volume”: 10dB,
“layout”: “background”

eople crowd speaking and moving”: {
“volume”: 10dB,
“layout”: “background”

“train horning”: {
“volume”: 15dB,
“layout”: “foreground”

}

ain wheels squealing”: {
“volume”: 15dB,
“layout”: “foreground”

}

Scene 1 i
1
: & - Background: “Train station”, :
o| = - Entities: “High Speed Train”, 1
ol-=) - Actions: “Train pass by”, :
Video | -Summary:“A high»sgeed train passed !
Script by the station quickly. i
1
1
1
1
1
“train pass”: { : “wind noise”:

“volume”: 20dB :
“layout”: “foreground” !

1, by

“wind”: { I
Audio “volume™: 10dB, i
Script layout”: “background H

} 1
]
1

Figure 7: Examples of Video Script and Audio Script generated by LVAS - Agent. As annotations for LVAS - Bench
after manual inspection of segment partitioning, video and audio scripts.

Given a video clip, please perform the fol-
lowing tasks: - Analyze the clip, identifying
entities, their actions, and the video scene.
Provide text descriptions as required by the
output format. The entities must be real and
present in the video. - The full video descrip-
tion provided is rough and not entirely accu-
rate. You need to first analyze the current clip
and then summarize it, considering the exist-
ing full description.

Constraints

- The analysis is strictly limited to the pro-
vided video clip; avoid speculating or using
background information beyond the video.
- The summary must be strictly based on
the video content, without personal assump-
tions or creative additions. - Background
sounds typically include weather conditions
(e.g., rain, snow, thunderstorms) or real-world
sounds (e.g., crowd parades, train horns). -
Avoid using abstract atmospheres like those
of a futuristic city, forest, or the universe as
background sounds.

Input Data

Video

Output Format

- Background:

- Entity:

- Action:

- Video caption:

J

This prompt instructs the Scriptwriter agent to ana-
lyze the full video and produce a structured scene

summary and timeline.

Scriptwriter: Analyze whole video

You are a professional video editor with exper-
tise in scene analysis, timeline construction,
and event identification.

Task Description

Given a video, analyze its content to provide
a detailed summary of the following:

1. Identify the main scenes and their sequence,
highlighting key events and actions.

2. Construct an approximate timeline of the
video, emphasizing transitions between key
moments or actions.

3. Summarize the video’s content in a struc-
tured and coherent manner.

Input

A video clip.

Output Format

- Scene Summary: (Describe the key scenes
and their sequence in detail)

- Timeline: (Provide a detailed summary of
key events, highlighting transitions between
scenes)

&

)

This prompt enables the Designer agent to generate
an initial set of sound effect annotations from a

video description.
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Designer: Generate Initial Audio Script

You are a sound effects specialist. Your task
is to generate precise and realistic sound ef-
fect descriptions for a video clip based on its
textual description, just like a professional fo-
ley artist. Your output should be structured in
JSON format.

Follow these steps carefully to ensure accu-
rate and contextually appropriate sound effect
descriptions:

1. Identify Sound-Producing Entities & Ac-
tions

- Extract key entities (e.g., people, animals,
objects) and their actions from the video de-
scription.

- Only describe actions that naturally produce
a sound. For example, a car accelerating
makes a sound, but a sunset does not.

- Format: [Entity] makes [adjective] sound or
[Action] makes sound.

2. Determine Background Ambience

- If the environment contributes to the sound-
scape (e.g., wind, rain, ocean waves), de-
scribe it as the background audio.

- Avoid vague terms such as tense atmosphere
or futuristic hum—use concrete environmen-
tal sounds.

- Background audio should be clearly distin-
guishable from main sounds.

3. Prioritize Primary vs. Secondary
Sounds

- If the scene has a dominant action sound
(e.g., car racing), it should be the main audio,
while secondary sounds (e.g., crowd cheer-
ing) should be background if necessary.

4. Determine Sound Output Based on Re-
ality

Choose the most accurate option based on the
video description:

- Option 1: If no entity or ambient sound is
relevant — "audio": [], "background": [].

- Option 2: If there is only an ambient sound
— "background": [ambient sound], "audio":
1.

- Option 3: If entities/actions produce sound
and there is ambient noise — "audio": [entity
sound], "background": [ambient sound].

5. Avoid Redundant Sounds

- Do not repeat the same sound in both "au-
dio" and "background".

- Example: "background": ["wind"], "audio":
["wind noise"] is redundant—only keep "au-
dio": ["wind noise"].

This prompt tasks the Designer agent with review-
ing and validating audio label suggestions proposed
by the Generator.

Designer: Correction Audio Label

Your current task is to critically review audio
label suggestions proposed by the Generator
Agent. Your goal is to ensure the highest
quality and most appropriate audio design,
not to passively accept recommendations.
Inputs:

1. Current Audio Design: Your existing audio
plan for the video segment, including your
original designer label for each sound event,
its timing, and foreground or background
attributes.

2. Video Script: The textual description of
the current video scene, detailing visuals,
actions, and mood.

3. Generator Suggested Labels: A list of
generator suggested label from the Generator,
intended as replacements for your original
designer label, supposedly retrieved from its
refined knowledge base.

Task & Evaluation Mandate: For each genera-
tor suggested label, you must perform a ruth-
less evaluation against your original designer
label and the Video Script. Your judgment
must be sharp and uncompromising. Con-
sider:

1. Semantic Precision & Contextual Rele-
vance: Is the Generator’s suggestion gen-
uinely accurate and contextually fitting for
the specific visual events and narrative in the
Video Script?

2. True Necessity & Justifiable Improvement:
Is this change actually necessary? Does it
offer a significant, tangible improvement in
the potential audio output, or is it a trivial,
pedantic alteration?

Output: For each sound event where the Gen-
erator proposed a replacement, you must pro-
vide:

- Original_Designer_Label: Your initial label.
- Generator_Suggested_Label: The Genera-
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tor’s proposed label. - Decision: Choose one:
- ACCEPT SUGGESTION

- REJECT SUGGESTION

- MODIFY SUGGESTION (If modifying,
also provide Modified Labels)

- KEEP ORIGINAL

- Justification: A brief, direct explanation for
your decision

- Final_Label_For_Synthesis: The definitive
label to be used.

This prompt defines how the Generator agent re-
trieves refined audio labels from a reference source
based on video context.

Generator: Retrieval Audio Label

Your task is to retrieve the most appropriate
and specific audio labels from a predefined
reference document based on the provided
video descriptions and original audio descrip-
tions.

Guidelines for Retrieval & Labeling:

1. Strict Compatibility: The retrieved audio
label must be highly compatible with both
the video description and the original audio
description. If no suitable label is found, do
not provide a replacement.

2. Replacement Strategy:

- Prioritize semantic similarity when suggest-
ing replacements. - If no exact match is found,
focus on the type of sound produced, disre-
garding the sound source. Example adjust-
ments: - Searching for building explosion,
but only volcanic explosion is available —
Output explosion - Searching for tank firing,
but no exact match exists — Find related ar-
tillery firing labels - Searching for airplane en-
gine roar, but no exact match exists — Look
for airplane-related sounds, as airplane noise
originates from its engine

3. Context Awareness: Consider both video
captions and raw audio descriptions for accu-
rate label selection.

4. Strict Label Set Adherence: Stay strictly
within the available labels in the reference
document.

5. Handling ’None’ Labels: If the raw au-
dio description is ["None"], retain ["None"]

without suggesting alternatives.
N J
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