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Abstract

Text embeddings are a fundamental component
in many NLP tasks, including classification, re-
gression, clustering, and semantic search. How-
ever, despite their ubiquitous application, chal-
lenges persist in interpreting embeddings and
explaining similarities between them. In this
work, we provide a structured overview of
methods specializing in inherently interpretable
text embeddings and text similarity explanation,
an underexplored research area. We charac-
terize the main ideas, approaches, and trade-
offs. We compare means of evaluation, discuss
overarching lessons learned and finally identify
opportunities and open challenges for future
research.

1 Introduction

Text embedding models (Reimers and Gurevych,
2019; Gao et al., 2021) are ubiquitous in research
and industry, as they promise to map the meaning
or content of sentences and documents to useful
numerical vector representations (“embeddings”),
among which an arithmetic distance (or similarity)
can be calculated. Applications range from seman-
tic search and retrieval (Ye et al., 2016; Guo et al.,
2020; Muennighoff, 2022; Hambarde and Proenca,
2023; Alatrash et al., 2024) to text classification
(Schopf et al., 2023a), topic modeling (Grooten-
dorst, 2022), NLG evaluation (Celikyilmaz et al.,
2020; Sai et al., 2022; Larionov et al., 2023; Chol-
lampatt et al., 2025), graph reasoning (Plenz et al.,
2023), and retrieval-augmented generation (RAG,
Lewis et al., 2020; Gao et al., 2023). Advances
in base models (Günther et al., 2023; Wang et al.,
2024a), context size (Li et al., 2023), instruction
tuning (Su et al., 2023), and scalable infrastruc-
ture (Wang et al., 2022) continuously enhance their
capabilities. Most recently, a trend has been to
build embedding models from large pre-trained
decoders by removing their causal attention mask-
ing and continuing to train them contrastively in a

Siamese setup using annotated, mined or LLM aug-
mented pairs of similar texts (Muennighoff, 2022;
BehnamGhader et al., 2024). The approach is also
widely adopted by the industry (Lee et al., 2025a,
2024, 2025b). While this shows that knowledge
obtained upon generative pretraining can be effec-
tively translated to representation tasks, evidently,
a critical component remains contrastive training.
Thus, the learning of informative text representa-
tions appears to be closely linked to text similarity.

Yet, with the advancement of text embedding
models, a pressing challenge persists: the inter-
pretability of embeddings and the explainability of
similarity derived from them. For instance, when
a document is returned in response to a query, we
would like to articulate why this document was se-
lected as the most similar, or why another was omit-
ted. We find interpretability research with a focus
on text representation and similarity to be under-
represented in the literature. One reason for this
may lie in the pairwise nature of the encountered in-
puts, which introduces additional complexity: Sim-
ilarity depends on interactions between two inputs
rather than on features of a single input—a change
in one input influences the effect of the second on
the prediction (Tversky, 1977; Lin, 1998a)—and
explanations must account for these interactions.

Importantly, such questions are not just theoret-
ical. In light of laws like the EU AI Act (“right
to explanation”; EU, 2024), the demand for trans-
parency is expected to intensify. Thus, there is a
strong and timely need for research, overview, and
clarity in all fields of AI. In this work, we focus on
interpretability and explainability in the context of
similarity and embedding models. We intend this
survey to serve as a resource for researchers inter-
ested in these challenges and to lower the entry bar-
rier into this area positioned at the intersection of
several research domains, including interpretability,
representation learning, and NLP.
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2 Setting the Stage

We investigate interpretability and explainability
in the context of neural text embedding models,
and focus on three closely related aspects: (i) the
interpretability of the models themselves, (ii) the
properties of the text embeddings these models
generate, and (iii) the similarity scores derived from
comparing such embeddings.

Formal framework (Figure 1). Assume two
text encoders F and G. Their backbone typi-
cally consists of a multi-layered neural network.
In most cases, F = G, meaning the networks
share weights, a setup known as a Siamese net-
work (Koch et al., 2015); unless stated otherwise,
we refer only to F . After the Neural Network has
processed and refined the representation of an in-
put text x, a last neural layer typically provides
a final stage of refined representations, often on
the token level basis (encoded tokens). Addition-
ally, in most cases, there is a special last (optional)
layer L+ 1 (project in Figure 1) that projects to a
d-dimensional space where text representation is
independent of text length (standard vectors, Fig-
ure 1). This layer often employs averaging or
max-pooling across individual token embedding
dimensions, or reproduces the embedding from a
specialized token.

Finally, the similarity of two texts x, y can be ef-
ficiently calculated through their embeddings (vec-
tors) ex = F (x), ey = F (y) by calculating a func-
tion sim(ex, ey) ∈ R. In the simplest case, this
can be the dot product sim(ex, ey) = eTx ey, pos-
sibly normalized by length lx,y = |ex|2 · |ey|2 to
obtain cosine similarity.

So far, the mechanism of text encoding and sim-
ilarity computation is a standard and ubiquitous
procedure. Importantly, this procedure leads to
non-interpretable vectors, and consequently yields
similarities that escape interpretation or explana-
tion. Next, we elaborate on the parts that allow us
to resolve or at least mitigate this issue. Simultane-
ously, we use these parts in Figure 1 to establish a
scaffold for the structure of this survey.

Paper Structure. Our formal framework in Fig-
ure 1 permits us to distinguish between different
classes of explainability approaches.

On the top level, we distinguish between inter-
pretable embeddings (§3) and post-hoc explana-
tions (§4). We speak of interpretable models if
the structure of their architecture or embeddings
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Figure 1: A schema of a standard text encoder archi-
tecture with the different interpretable embeddings and
explainability approaches, each corresponding to sub-
sections in the text.

inherently enables insights into their predictions
to humans without a need for additional meth-
ods or further processing. Post-hoc explanations,
on the other hand, generate insights into uninter-
pretable black-box models by applying an addi-
tional method that is not part of the original model’s
computation. We divide the former further into
space-shaping approaches (§3.1) structuring the
learned embedding space in interpretable ways,
sparse representations (§3.2) yielding human-
understandable sparse features, structured objects
(§3.3) representing texts as geometric objects in-
stead of simple vectors and set-based embeddings
(§3.4) using not a single but multiple vectors to rep-
resent texts. The latter post-hoc approaches are fur-
ther structured into interaction attribution (§4.1)
tracing a prediction back to feature interactions be-
tween the model’s two inputs, global explanation
verifying the consistency of embeddings for known
text relations on a dataset level and surrogate mod-
eling (§4.3) optimizing a secondary interpretable
model to approximate the original one. We be-
gin every sub-category by introducing the common
idea behind the described methods and conclude
with opportunities they open up as well as remain-
ing challenges. Table 1 in the Appendix visualizes
our taxonomy, links respective sections and points
to code resources. Finally, we examine evaluation
methods and data sets (§5), and conclude with an
extended discussion (§6) highlighting trade-offs,
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lessons learned, challenges and future perspectives.

3 Interpretable Embeddings

These approaches aim at structuring the embedding
space so that it reflects human-understandable fea-
tures. As such they create inherently interpretable
models (Rudin, 2019).

3.1 Shaping interpretable spaces

Idea. An interpretable embedding space can be
explicitly trained to express human-understandable
aspects, thereby bridging the gap between the
power of neural embeddings and the interpretability
of classic methods based on “bag-of-words” repre-
sentations.

QA features. aim to develop interpretable fea-
tures by framing embedding generation as answer-
ing a set of predefined questions about a text and
encoding the answers as features. For this, we first
need to find a suitable set of questions about texts,
and create training data that elicits answers to these
questions. Specifically, Benara et al. (2024) let an
LLM answer “Yes”/“No” questions about a text (Is
the text about sports? Does the text express a com-
mand?), building prompts based on dataset descrip-
tion. For predicting fMRI responses to language
stimuli their method outperforms several baselines.
Sun et al. (2024) propose constructing a concept
space from a dataset by clustering word embed-
dings and then applying two constraints. First, the
QA prompts must be strongly associated with one
of the detected clusters. Second, for positive text
pairs, all questions should be answered with “Yes”
and for negative text pairs with “No”, to sharpen
the boundary between similar and dissimilar texts.
The resulting embeddings are interpretable in the
sense that question answers can be directly inferred
from them.

Sub-embedding features. An embedding space
can be decomposed into multidimensional sub-
spaces, each isolating a specific semantic aspect.
This allows overall similarity to be broken down
into aspect-specific scores. The S3BERT approach
by Opitz and Frank (2022), which requires a user
to define a set of metrics that measure interpretable
similarity aspects of two texts (e.g., Is the focus of
the texts the same?). Since such aspects often are
implicit in the texts, they leverage abstract meaning
representation graphs (Banarescu et al., 2013) that
encode aspects such as number, focus, semantic
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Figure 2: In S3BERT space decomposition, an overall
sim=0.76 for the sentence pair Two men are singing and
Three men are singing emerges from aggregating per-
aspect similarities. (Simplified aspect set used here.)

roles, negation; and use graph matching metrics
(Opitz, 2023) on aspectual subgraphs. They fine-
tune a reference embedding model such that the
similarity of aspectual sub-embeddings regresses
to the aspectual graph metrics. A consistency loss
and residual sub-embedding help tie the overall
similarities to the original reference. In the exam-
ple in Figure 2, the similarity of concepts increases
the value, while the dissimilarity of quantificational
structure correctly lowers it.

Other approaches omit the consistency loss and
aim to induce entirely new decomposed spaces.
For instance, “multi-facet” embeddings are learned
with graph metric ground truth (Risch et al., 2021),
or “specialized-aspect” embeddings with aspect-
specific transformer encoders (Ostendorff et al.,
2022; Schopf et al., 2023b).

A more coarse-grained decomposition is pro-
posed by Ponwitayarat et al. (2024), whose lin-
guistic analysis of the Semantic Textual Similarity
dataset (STS) (Cer et al., 2017) found that a single
continuous similarity range is not sufficient. They
suggest a decomposition into two spaces, one for
loosely similar texts (lower range), and another
to capture finer distinctions among highly similar
texts (higher range).

Anchor features let individual embedding di-
mensions express association (i.e., similarity) to
interpretable anchors in a database, e.g., repre-
sentative prototype texts that have been sampled
(Wang et al., 2025) or pre-computed and aligned
topics (Potthast et al., 2008). Compared to QA fea-
tures, the provided explanation is more indirect but
shows greater accuracy, almost on par with their
non-interpretable embedding counterparts.
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Challenges and opportunities. QA-based ap-
proaches have been evaluated favorably against
bag-of-words baselines (Sun et al., 2024) and in
specific domains (Benara et al., 2024). They still
struggle with matching the performance of refer-
ence embedding models, likely due to the difficulty
of defining a general and complete set of questions.
Similarly, sub-embedding decomposition ap-
proaches require the manual definition of semantic
aspects. However, the resulting dimensions are not
directly interpretable as features—only the similar-
ity values they produce can be linked to the defined
aspects. This reliance on handcrafted features, can
be seen as a limitation on the one hand, but en-
ables the definition of custom embedding spaces
aligned with specific interpretability goals on the
other hand.
All space-shaping approaches pose additional con-
straints on a model risking downstream accuracy
compared with standard embeddings. Interestingly,
sometimes they can induce regulatory effects. The
S3BERT authors e.g. observed a significant perfor-
mance increase for judging argument similarity.

3.2 Sparse representations
Idea. Instead of assigning individual dimensions
of dense embeddings to certain aspects, another
approach towards creating interpretable spaces is
sparsification.

Unsupervised Sparsification. Such sparsity can
be induced without supervision by learning to re-
construct the embedding from sparse latent vari-
ables (Faruqui et al., 2015; Prokhorov et al., 2021;
O’Neill et al., 2024). Trifonov et al. (2018) find that
such sparse embeddings can indeed isolate some
dimensions corresponding to human-interpretable
features, including even spatial object relations
(e.g., physically laying on something). However,
they note that it can be difficult to tell “which fea-
tures a dimension captures”, and that the “increase
in interpretability comes at a cost in reconstruction
quality and, in some cases, utility in downstream
tasks.”

Sparse lexical embeddings map input texts onto
term weight vectors whose dimensionality equals
the length of a predefined vocabulary. Transformer
models naturally provide this capability. Applying
the unembedding matrix to the last layer’s token
representations results in a logit vector over the
model’s vocabulary (the basis for masked or next to-
ken classification during pre-training). Sparse em-

beddings repurpose them by combining the token-
level logits into text-level representations through
pooling along the sequence dimension. A spar-
sification objective is applied during contrastive
learning. In contrast to lexical approaches like tf-
idf, they are not bound to terms in the actual input
but can assign weights to expansion terms that may
additionally be relevant in the given context, e.g.
synonyms. Sparse lexical embeddings are popular
in retrieval scenarios because the term-based repre-
sentation enables deployment via efficient inverted
indices. Dai and Callan (2020) predict lexical term-
weights from contextualized embeddings, Bai et al.
(2020); Zhao et al. (2021) introduce vocabulary
expansion, and Formal et al. (2021b,a) propose an
end-to-end trainable model. Recently, sparse and
dense embeddings have also been combined in uni-
fied models (Kong et al., 2023; Zhang et al., 2024;
Awasthy et al., 2025).

Challenges and opportunities. Unsupervised
sparse features can correspond to intuitive text char-
acteristics but can be difficult to interpret in other
cases. In turn, sparse lexical representations are
trivial to interpret. Their sparsity can be beneficial
in suitable scenarios like building a search index.
However, the need for specialized data structures in
order to handle their high dimensionality efficiently
may be a burden in other contexts.

3.3 Structured Objects
Idea. Certain text relationships are inherently
asymmetric. For instance, a natural relation be-
tween texts is entailment: A given hypothesis fol-
lows from a premise. Geometric embeddings reach
beyond vector representations and utilize structured
objects for representation offering a way to model
these relationships.

Box embeddings represent inputs as high-
dimensional boxes. For two such boxes a and b
we have their size sa = a1 · a2, sb = b1 · b2,
and their overlap oa,b = min(a1, b1) ·min(a2, b2).
We can define their similarity as mutual contain-
ment, oa,b/(sa + sb − oa,b), and an asymmetric
relationship like the entailment as unidirectional
containment: oa,b/sb is exactly 1 if a is fully con-
tained/entailed in/by b. The challenge is to learn
such objects given the ’curse of dimensionality’, ac-
cording to which box size and overlap tend towards
zero for high-dimensional spaces. To alleviate such
learning problems, Chheda et al. (2021) propose
to adopt a probabilistic soft box overlap formula-
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tion based on Gumbel random variables (Dasgupta
et al., 2020).

Distributional embeddings view a text as a ran-
dom variable (RV). Intuitively, this provides us
with a model of multiple interpretations, which
seems appealing due to natural language ambigu-
ity: A text can have multiple interpretations, and
only some of these interpretations can map to those
of another similar text. But how to build such a
probabilistic space? Shen et al. (2023) model a text
as a Gaussian RV embedding Nd(µ,Σ) by estimat-
ing “Model uncertainty” via Monte Carlo Dropout
(Gal, Yarin and Ghahramani, Zoubin, 2016), and
data uncertainty via smaller linguistic perturbations
(e.g., dropping a word). The covariance matrix (Σ̂)
is then efficiently approximated through a banding
estimator (Bien et al., 2016). For increased effi-
ciency, Yoda et al. (2024) directly predict mean (µ̂)
and covariance (Σ̂).

Operator learning. An approach that works with
standard vector representations but can also ac-
count for asymmetric text relations are the work
by Huang et al. (2023). They propose learning
interpretable operators for text meaning composi-
tion, such as union or fusion. These operators are
modeled using neural networks, and the embedding
space is retrained to accommodate such operations.
Their evaluation shows minimal loss in standard
similarity tasks, but greatly improved performance
for compositional generation tasks.

Challenges and Opportunities. Modeling em-
beddings as geometric objects or learning operators
can account for the long-established argument that
similarity relations need not be symmetric (Tver-
sky, 1977; Lin, 1998a). However, these approaches
introduce additional complexity that may be too
much of an overhead in other applications that do
not have this requirement.

3.4 Set-based Interpretability

Idea. Set-based approaches are based on two sets
of embeddings rather than two points. Often sets
consist of token embeddings (from the last layer of
an encoder), but other approaches go further and
build meta-sets of text embeddings. Aligning such
sets can reveal how different parts of the texts relate
and contribute to the overall similarity score.

Token weight embeddings build text representa-
tions by aggregating token-level embeddings with

Figure 3: An example of a late-interaction matrix be-
tween query and passage token embeddings in the Col-
BERTv2.0 model. The overall sim is 0.965. Red boxes
indicate row-wise maxima (alignment).

explicit weights that reflect each token’s impor-
tance and provides insight into how individual to-
kens contribute to the final text embedding. E.g.,
Wang and Kuo (2020) estimate token importance
and novelty weights by analyzing variance across
transformer layers. Seo et al. (2022), train models
to learn token weights directly, utilizing a recon-
struction loss. Tulkens and van Dongen (2024)
compute static embeddings for all vocabulary to-
kens via a single transformer forward pass per to-
ken, followed by Zipf-informed averaging. As the
final text representations are single vectors, while
interpretability is on the level of individual tokens,
these approaches are at the intersection between
dense and set-based embeddings.

Sequential embeddings compare embeddings
from the final model layer—before any reduction
(“late interaction”). Two prominent techniques are
ColBERT and BERTscore (Khattab and Zaharia,
2020; Santhanam et al., 2022), both of which com-
pute asymmetric max-alignments between tokens
and aggregate the similarities of the aligned pairs.
BERTscore performs this alignment in both direc-
tions to produce a symmetric similarity measure.
In terms of explainability, both approaches derive
the final similarity score from token-level align-
ments, showing approximately which tokens the
model matches between the inputs (Figure 3).

Multi-view Interpretation. Some approaches
extend this idea by generating multiple text-level
embeddings, each reflecting a different view or in-
terpretation of the input text.

Hoyle et al. (2023) use a generative model to pro-
duce alternative hypotheses about a text. (Ravfogel
et al., 2024) decompose the text into smaller state-
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ments or descriptions. Given a decomposition of
a text x into smaller parts {x1, ...xn}, the embed-
ding model is then applied to each part individually,
producing a set of text embeddings {e1, ...en}.

A variation of the multi-text set-based approach
is proposed by Liu et al. (2024). To compute tex-
tual similarity, they sample sets of possible con-
tinuation from an LLM and calculate the average
log-likelihood difference between each input text
and the generated continuations. The continuations
can then be examined to provide an interpretable
basis for the resulting similarity score.

Finally, Liu and Soatto (2024) compute text sim-
ilarity multi-modally by comparing the imagery
evoked by each text, using denoising via Stochastic
Differential Equations (Song et al., 2021). Sim-
ilarity is higher when texts elicit similar images,
enabling visual interpretation of the score.

3.5 Challenges and Opportunities

Set-based approaches enable interpretable align-
ment of token-level embeddings, which can be
valuable for tasks such as identifying semantic dif-
ferences between related documents (Vamvas and
Sennrich, 2023). They also naturally support asym-
metric text relationships via directional matching
or alignment. An important limitation is that sets
of embeddings typically consume more memory
than single vectors. Sequential embeddings also
do not have a fixed size but vary with input length.
While decomposition based approaches can point
out matching sub-statements or hypotheses, they
can require multiple forward passes.

4 Post-hoc Explanation

Different from inherently interpretable models,
post-hoc explanations employ an additional method
to gain insights into the predictions of a black-box
model.

4.1 Interaction Attribution

Idea. Attribution-based approaches aim at assign-
ing importance values to features reflecting their
contribution to a given prediction of a model. A
special characteristic of similarity models is that
their predictions do not depend on individual fea-
tures, due to the multiplicative interaction between
the two inputs’ embeddings in sim. Attributions
must, therefore, be to feature interactions. First-
order methods do not suffice to explain such in-
teraction (Sundararajan et al., 2020; Janizek et al.,
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Figure 4: Interaction attributions between two sentences
computed with the IJ method. The sim is 0.618 and the
measurable attribution error is 0.001.

2021), and second-order methods are required for
attribution in similarity models. Two lines of work
have addressed this issue in text similarity models.

Integrated Jacobians. Integrated gradients (IG)
attributes a scalar model prediction back onto indi-
vidual input features by integrating over a number
of interpolations between the actual input and an
uninformative reference input (Sundararajan et al.,
2017). Moeller et al. (2023) have applied the under-
lying theory of IG to text embedding models and
proposed Integrated Jacobians (IJ) as the equiva-
lent of IG for this model class. For text embedding
models the output takes the form of a token-token
matrix, showing the contribution of all individual
token interactions to the sim (Figure 4). An ap-
proximate version of these attributions is directly
applicable to off-the-shelf models without a need
for tuning (Moeller et al., 2024).

Relevance Propagation. Layer-wise relevance
propagation (LRP) is a framework to propagate
feature-importance values for a model prediction
back through the model in a layer-wise fashion
(Bach et al., 2015; Montavon et al., 2019). Propa-
gation rules are derived for individual layers based
on first-order Taylor expansion of the underlying
function. BiLRP extends the LRP framework to
Siamese similarity models. Similar to IJ, the com-
putation also takes the form of a product between
two Jacobian-like matrices. The method was orig-
inally proposed in the computer vision domain
(Eberle et al., 2020) and has recently also been
applied to Siamese text encoder models (Vasileiou
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and Eberle, 2024).

Challenges and Opportunities. Attribution ap-
proaches need to build Jacobian matrices, com-
ing at a temporal complexity of 2×d independent
backward passes, d being the model’s embedding
dimensionality. The resulting Jacobians have a
quadratic spatial complexity and can require large
GPUs to compute the associated matrix multiplica-
tions efficiently. Despite the computational costs,
attribution methods have the advantage of being
applicable to a wide class of embedding models
as long as they are differentiable. They can pro-
vide certain theoretical guarantees (Sundararajan
et al., 2017; Janizek et al., 2021), but have also
been proven to be subject to other fundamental
limitations (Bilodeau et al., 2024).

4.2 Global explainability

Idea. A common way of differentiating explain-
ability methods is into local and global explanation
(Danilevsky et al., 2020). Local approaches work
on the level of individual examples. Alternatively,
we can globally analyze the geometry of embed-
dings using a dedicated evaluation dataset.

Text relations. Zhu et al. (2018) and Zhu and
de Melo (2020) follow this approach by construct-
ing sets of sentences with known relations based
on linguistic properties. In their initial work, the
authors use triplets of sentences including a pair
known to be similar with regard to a certain prop-
erty and a dissimilar negative. Properties include
negation, passivation, change of syntactic roles and
word-ordering. It is then evaluated how consis-
tently positive pairs are closer to another in the
representation space than to the negative. In the
second publication, the group extends the analysis
to quadruples consisting of two pairs of similar sen-
tences, thus, evaluating the similarity of sentence
relations.

Challenges and opportunities. Analyzing em-
bedding geometry provides a higher-level under-
standing of how consistently relations between
sentences are represented in an embedding space.
However, it requires the manual construction of
suitable evaluation sets targeting specific properties
and insights are limited to the properties covered.

4.3 Surrogate modeling

Idea. Surrogate models approximate a complex
black-box model with a simpler, typically linear

model that is inherently interpretable. We differen-
tiate between two types, models operating on inter-
pretable features approximating the original models
predictions and models operating on the original
model’s embeddings probing them for known prop-
erties.

Interpretable approximation. Nikolaev and
Padó (2023) construct artificial sentence pairs with
known linguistic features. Based on these features,
they then fit surrogate regression models to match
the cosine similarity scores of different sentence
transformers. The linearity of the fitted surrogate
models allows them to analyze the relative impor-
tance of linguistic aspects in sentence pairs through
the weights assigned to respective features.

Probing. A probe is a (often linear) classification
model that is trained on top of pre-trained sentence
embedding for a defined task. It assesses the gener-
alizability of an embedding by testing whether the
associated property is (linearly) separable in the
learned representation space. Conneau et al. (2018)
propose ten tasks around surface-level, syntactic
and semantic information to probe the linguistic
information contained in sentence representations
of different models. In another work the group
tests applicability to downstream applications like
sentiment classification or retrieval (Conneau et al.,
2017). More recently, probing has become an im-
portant evaluation tool in large-scale text embed-
ding benchmarks like MTEB (Muennighoff et al.,
2023). Nikolaev and Padó (2023) investigate which
layers in different models encode semantic infor-
mation through probing. Tehenan et al. (2025),
inspired from ideas of mechanistic interpretabil-
ity (Bricken et al., 2023), use sparse dictionary
learning for investigating token-level linguistic in-
formation that is pooled in a sentence embedding.

Challenges and Opportunities. While conceptu-
ally simple, surrogate models do require additional
objectives and optimization to generate insights
into black-box models. Although limited, they do
have a certain learning capacity, which needs not
necessarily align with what the original model has
learned.

5 Evaluation and Datasets

5.1 Evaluation

The presented approaches differ substantially in
the types of explanations they produce, making it
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difficult—if not impossible—to define a unified
evaluation framework covering them all. In fact,
evaluation often focuses on specific characteristics
of individual approaches. Space-shaping models
can explicitly correlate ground truth values for sim-
ilarity metrics against predictions from respective
sub-spaces (Opitz and Frank, 2022). Aspect en-
coders test in how far nearest neighbors in the em-
bedding space share aspects and assess whether
aspect clusters emerge in dimensionality reduction
plots (Ostendorff et al., 2022; Schopf et al., 2023b).
Specialized and structured objects allow to evaluate
whether the learned representations reflect asym-
metric relations like entailment or noun-hierarchy
in WordNet (Yoda et al., 2024; Chheda et al., 2021).
A typical procedure in the attributions field is it-
erative insertion or deletion of the most attributed
features and simultaneous reevaluation of the pre-
dicted similarity between these perturbed inputs
(Vasileiou and Eberle, 2024). If the most attributed
features are indeed the most important, the pre-
diction should change drastically upon their per-
turbation. Sparse representations that are induced
in an unsupervised way can be assessed through
topic-coherence measures (Trifonov et al., 2018).

A central challenge in evaluating explainability
and interpretability is the absence of ground truth
for what constitutes a correct or valid explanation.
Vasileiou and Eberle (2024) address this by gener-
ating synthetic data using a rule-based similarity
model. More commonly, evaluation focuses on
performance trade-offs between interpretable meth-
ods and their standard counterparts. The explana-
tion quality is often assessed qualitatively through
example-based analysis. Some studies employ hu-
man evaluation to obtain subjective judgements of
explanation quality. However, this introduces ad-
ditional parameters to the evaluation scenario, e.g.,
which target group an explanation method aims at
(Köhl et al., 2019).

5.2 Datasets

Datasets can serve at least two purposes within the
realm of interpretable embeddings and semantic
search explanations. The first purpose is a poten-
tial application to evaluate a method’s explanation
against human explanation. The second purpose is
global explanation through evaluating embedding
models on text pairs with controlled relation.

Human Explanations. Lopez-Gazpio et al.
(2017) release the i(nterpretable)STS data set that

elicits relations and similarities between individual
segments of texts. Deshpande et al. (2023) propose
the C(onditional)STS dataset that elicits similarity
values for specific aspect of interest. The theory
that underlies iSTS aligns with attribution or set-
based approaches, while CSTS is motivated by a
more abstract multi-aspect view akin to what is
sought by feature-based explainability methods.

Interpretable Text Relations. For their analysis
Zhu et al. (2018) and Zhu and de Melo (2020) con-
struct two datasets of sentence triplets and quadru-
ples consisting of a negative and positive pairs with
a shared linguistic property. Li et al. (2025) pro-
pose a neuro-symbolic tool for automatically creat-
ing such sets and use the resulting data for ranking
text embedding models in interpretable linguistic
categories. The STS3k data set (Fodor et al., 2025)
contains sentence pairs with systematic word com-
binations, rated for semantic similarity by human
participants. Nastase and Merlo (2024) propose
specialized sentence sets to study the grammatical
information that resides in an embedding.

6 Discussion

Method trade-offs. The surveyed methods differ
in their conceptualization of interpretability, com-
putational cost, fidelity to input tokens, and depen-
dence on specific model architectures. All variants
of interpretable embeddings produce inherently
interpretable models, offering transparency into
their decision-making processes by design (Rudin,
2019). However, they often pose additional con-
straints on models which can lead to compromises
in predictive performance. In contrast, post-hoc
methods do not constrain models upon training but
rely on additional computation, surrogate optimiza-
tion and specialized datasets to generate insights.

What is the “right” explanation? Given the
above trade-offs none of the presented approaches
should be seen as to provide true, unique and faith-
ful explanations (Murdoch et al., 2019). At the
same time, all of them provide insights into text
embedding models going beyond a black-box em-
bedding or single scalar similarity score. Each ap-
proach may lead to hypotheses about where these
models fail and how they can be improved (Wiegr-
effe and Pinter, 2019). Rather than competing for
a single best explanation, therefore, we suggest to
consider individual methods as independent pieces
of evidence.
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Lessons learned. Following the above argumen-
tation, we can already draw a number of overar-
ching conclusions about text embedding models:
They encode a wide range of linguistic knowl-
edge, including syntax and semantic information
like tense (Conneau and Kiela, 2018; Huang et al.,
2021), learn to match synonyms well (Moeller
et al., 2024; Zhu et al., 2018) (cf. Fig. 4) and suc-
cessfully ignore irrelevant parts of sentences (Niko-
laev and Padó, 2023). But they often do not suffi-
ciently account for negation or random word dele-
tion (Weller et al., 2024; Zhu and de Melo, 2020).
They largely rely on nouns and verbs (Vasileiou
and Eberle, 2024; Nikolaev and Padó, 2023) as
well as subjects, predicates and objects (Moeller
et al., 2024). Nevertheless, they do require the full
contexts of sentences for their predictions to be
reliable (Moeller et al., 2023) and are sensitive to
word order (Zhu et al., 2018).
With space-shaping methods, we have the ability
to actively manipulate encoded information (Sun
et al., 2024; Shen et al., 2023; Schopf et al., 2023b)
and can e.g. correct embeddings to account for
negation (Opitz and Frank, 2022). Finally, struc-
tured embeddings have proven to successfully ac-
count for non-symmetric text relations (Yoda et al.,
2024; Dasgupta et al., 2020).

Upcoming challenges. As models become capa-
ble of ingesting longer context (Zhang et al., 2024;
Xiong et al., 2024), we may wonder if interpretabil-
ity approaches transfer to explaining the similar-
ity of long documents. Fine-grained explanations
such as token attributions or alignments may re-
quire an aggregation step to a sentence or para-
graph level balancing higher-level interpretability
and compute scaling.

The embedding research landscape has also
found another recent focus in multilinguality
(Wang et al., 2024b). It will be interesting to inves-
tigate cross-lingual text similarity and we see an
interesting tension here between capturing univer-
sal and language specific or cultural patterns.

Embedding models are also increasingly used as
parts in more complex models like Retrieval Aug-
mented Generation (RAG, Lewis et al., 2020). The
approaches presented here may be used to explain
the retrieval step and interpretability approaches
for generative models may be utilized to under-
stand the compilation of responses ((Achtibat et al.,
2024)). However, it is an open question how to
combine explanations for the two steps.

The social-sciences and sensitive fields like legal
text processing often work with text representa-
tions but come with explainability requirements.
A lack of interpretability can be a reason not to
use state-of-the-art approaches in these fields, but
to fall back onto outdated alternatives like simple
dictionary-based approaches. Interdisciplinary
efforts should focus more on understanding and
addressing these requirements.

Finally, the evident link between text similar-
ity and embedding models motivates a closer look
at the notion of similarity. Similarity is known
to be context-dependent (Gärdenfors, 2000; Bär
et al., 2011), possibly asymmetric (Tversky, 1977),
and even intransitive (Lin, 1998b). However,
common datasets and benchmarks assume a one-
dimensional scale and unification across various
tasks and objectives (Cer et al., 2017; Khashabi
et al., 2021; Muennighoff et al., 2023), which has
enabled scalability but may be overly simplifying.
Evidence for this can be seen in the fact that suc-
cessful attempts now often use instructions (Su
et al., 2023) or specialized adapters (Günther et al.,
2024) to condition a model for specific tasks (i.e.
contexts). This calls for interpretability research to
better understand relevant text aspects in different
contexts.

Perspective. Despite the additional challenges
associated with the explainability of similarity,
this survey has shown that there have been sub-
stantial efforts towards better understanding text
embeddings and text similarity models. Most of
these approaches are directly applicable to the next
generation embedding models derived from de-
coders, since after removing causal attention mask-
ing, adding pooling and contrastive training, their
architecture is identical to the previous encoder-
based generation. This holds true for inherently
interpretable embeddings, e.g. space-shaping and
also post-hoc explanations, e.g. attribution whose
only requirement is for models to be differentiable.
Challenges are not fundamental but on the level
of implementation details and computational costs
due to the larger number of parameters and embed-
ding dimensions. We believe an increased attention
towards explainability research in this area can help
not only understand and explain their outputs, but
also mitigate biases and errors in these models,
yielding improvement towards accuracy and safety.
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Limitations

Capturing the full breadth of the area of inter-
pretable text embeddings and their similarity cost
us some depth and exactness. For instance, in Sec-
tion 2, we suggest to speak of interpretable models
when their predictions are inherently understand-
able by humans and define explanation as a post-
hoc process in contrast. However, throughout the
paper, we also use these terms interchangeably.

While we have put a lot of effort into identify-
ing relevant publications for the scope of this sur-
vey, there is a chance that we missed some works.
Hence we suggest viewing our survey as a guide
and introduction to this field that is representative,
but possibly not fully exhaustive.

Finally, interpretability research tends to lag be-
hind the rapid evolution of state-of-the-art models.
Most of the approaches we survey here built up
on, or were applied to now outdated text embed-
ding models. Nevertheless, these methods are often
general enough to be transferred to state-of-the-art
models.
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Table 1: A summary of our taxonomy with links to respective sections, publications and their code if available. The
table is split into the two families of methods that are further divided into Types, corresponding to subsections and
Subtypes corresponding to paragraphs in the main text. Train is whether the method requires training and Approx.
refers to whether a method approximates the similarity score of a reference embedding model. When code is labeled
as ‘NA’, this means that we were not able to find a public code repository.

Type Subtype Paper Train Approx. code

Interpretable Embeddings (§3)

space-shaping (§3.1)

QA-features
Sun et al. (2024) yes no github
Benara et al. (2024) yes no github

sub-embedding

Opitz and Frank (2022) yes yes github
Risch et al. (2021) yes no github
Ostendorff et al. (2022) yes no github
Schopf et al. (2023b) yes no NA
Ponwitayarat et al. (2024) yes no github

anchors
Potthast et al. (2008) yes no NA
Wang et al. (2025) no no github

sparsification (§3.2)

unsupervised
Trifonov et al. (2018) yes yes NA
Prokhorov et al. (2021) yes yes github

lexical

Dai and Callan (2020) yes no github
Bai et al. (2020) yes no NA
Zhao et al. (2021) yes no NA
Formal et al. (2021b,a) yes no github

structured objects (§3.3)

box embeddings
Chheda et al. (2021) yes no github
Dasgupta et al. (2020) yes no github

gaussian embeddings
Shen et al. (2023) no yes NA
Yoda et al. (2024) yes no github

operator learning Huang et al. (2023) yes yes github

set-based (§3.4)

token-weights
Wang and Kuo (2020) no no github
Seo et al. (2022) yes no NA
Tulkens and van Dongen (2024) no yes github

sequential
Khattab and Zaharia (2020) yes yes github
Santhanam et al. (2022) no yes github

multi-view
Hoyle et al. (2023) no no github
Ravfogel et al. (2024) no no github
Liu et al. (2024) no no github

image-set Liu and Soatto (2024) yes no NA

Post-hoc Explanation (§4)

attribution (§4.1) integrated Jacobians Moeller et al. (2023, 2024) no yes github

relevance propagation Vasileiou and Eberle (2024) no yes github

global explanation (§4.2) text relations
Zhu et al. (2018) no no NA
Zhu and de Melo (2020) no no NA

surrogate modeling (§4.3)

interpretable approximation Nikolaev and Padó (2023) yes yes NA

probing

Conneau et al. (2017) yes no github
Conneau et al. (2018) yes no github
Nikolaev and Padó (2023) yes yes github
Tehenan et al. (2025) yes yes github
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