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Abstract

Large Language Models (LLMs) have ad-
vanced significantly in complex reasoning, of-
ten leveraging external verifiers to improve
multi-step process reliability. However, ex-
isting process verification methods face crit-
ical limitations: discriminative Process Reward
Models (PRMs) often provide overly simplistic
binary feedback and struggle with incomplete
reasoning traces, while sophisticated Genera-
tive Reward Models (GenRMs) can be com-
putationally expensive. Furthermore, curating
quality supervision data for process verifier is
of challenging. Therefore, we present Dyve, a
dynamic process verifier that enhances reason-
ing error detection in LLMs by integrating fast
(System 1) and slow (System 2) thinking, in-
spired by Kahneman’s Systems Theory. Dyve
adaptively applies immediate token-level con-
firmation for straightforward steps and com-
prehensive analysis for complex ones. To ad-
dress data challenges and enable its adaptive
fast and slow thinking, Dyve employs a novel
step-wise consensus-filtered supervision strat-
egy. This strategy leverages Monte Carlo esti-
mation, LLM-as-a-Judge, and specialized rea-
soning models to extract the high-quality train-
ing signals from noisy rollouts. Experimental
results on ProcessBench and the MATH dataset
confirm that Dyve significantly outperforms
existing process-based verifiers and boosts per-
formance in Best-of-N settings, while main-
taining computational efficiency through strate-
gic resource allocation. Our code, data and
model are released at: https://github.com/
staymylove/Dyve

1 Introduction

Large Language Models (LLMs) have significantly
enhanced their reasoning capabilities by shifting
from rapid, intuitive System 1 responses to more

* Equal contribution.
† Corresponding author.

deliberate, extended System 2 thinking (Team et al.,
2025; Arrieta et al., 2025; Guo et al., 2025). While
enabling more complex problem-solving in math
and scientific reasoning, this has also introduced
new challenges in process verification, particularly
in the reliable evaluation of multi-step and poten-
tially incomplete reasoning traces.

Existing process verification methods, while cru-
cial, exhibit notable limitations when applied to
these advanced reasoning tasks. Discriminative
Process Reward Models (PRMs), for example, are
essential for detecting errors but often provide
overly simplistic "System 1-like" binary feedback
(yes/no predictions) for each step (Lightman et al.,
2023b; Zhang et al., 2025). This approach is of-
ten insufficient for capturing nuanced errors in
complex reasoning and can struggle with the re-
liable assessment of incomplete traces. Conversely,
while more sophisticated Generative Reward Mod-
els (GenRMs) can offer deeper, System 2-style an-
alytical feedback, they tend to be computationally
expensive, limiting their practical applicability for
step-wise verification.

Furthermore, a pervasive challenge across all
current verification approaches is the reliance on su-
pervision signals. High-quality human annotations
for process supervision (Lightman et al., 2023b)
are prohibitively expensive, and automatically gen-
erated labels, often derived from Monte Carlo es-
timation methods (Wang et al., 2024; Luo et al.,
2024), can be noisy and weak (Zhang et al., 2025).

Our work introduces Dyve (Dynamic Process
Verifier), a specialized generative process verifica-
tion model that dynamically detects process errors
using fast and slow thinking, inspired by Kahne-
man’s Systems Theory (Kahneman, 2012). For any
given reasoning trace, Dyve adaptively applies ei-
ther System 1 verification, supplying immediate,
single-token confirmation for clearly correct and
straightforward steps, or System 2 analysis, per-
forming a comprehensive, deeper evaluation for
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LM Proposer Step: 

Step 3: The area of the rectangle is A = l × w = 

10cm × 5cm = 50.

Dyve Response:

+

LLM Proposer Step: 

Thus, the total number of people Conor saw at 

the beach that week is $\boxed{400}$.

Dyve Response:

+

Context: 

Minnie mounts 10 horses/day. Mickey mounts 

$2 × Minnie - 6$.

LLM Proposer Step: 

Step 2: Mickey mounts $12-6=<<12-6=6>>6$ 

horses per day.

Dyve Response:

Let's verify Step 2. The problem states Minnie 

mounts 10 horses per day.

...

The correct calculation based on the previous 

correct step (Minnie=10) is 14.

</think>

-

System 1 Example (Correct)

System 1 Example (Correct)

System 2 Example (Incorrect)

Figure 1: Dyve demonstrating its learned adaptability by dynamically selecting its verification strategy. For simple,
correct steps (left), it provides concise System 1 confirmation using a ’+’ token, which signifies the step is correct.
For more complex or incorrect steps (right), it employs detailed System 2 analysis, including an explanatory
refutation, and concludes with a verdict token, such as ’-’ which signifies the step is incorrect.

complex or potentially erroneous ones. This dual-
system approach allows Dyve to strategically allo-
cate computational resources, balancing verifica-
tion depth with efficiency.

Crucially, to enable this adaptive fast and slow
thinking and overcome the limitations of costly or
noisy supervision, we introduce a novel step-wise
consensus-filtered process supervision technique.
This method leverages Monte Carlo estimation to
generate multiple rollouts per query, then uses an
LLM-as-a-Judge (Gu et al., 2024) to assess the
full reasoning trace, and finally employs a power-
ful reasoning LLM for detailed step-by-step analy-
sis to flag steps that require System 2 verification.
Through this pipeline, we curate approximately
117K high-quality training examples from 1.2M
noisy Monte Carlo rollouts. Our findings under-
score that the quality of supervision data, rather
than mere quantity, is paramount for effectively
training a robust and adaptive process-based veri-
fier like Dyve.

Our contributions include:

• We introduce Dyve, a dynamic process verifi-
cation framework that combines rapid System
1 validation with comprehensive System 2 cor-
rection and context-aware error recovery.

• We propose a novel step-wise consensus-
filtered process supervision technique that
employs Monte Carlo estimation and an LLM-
as-a-Judge to reliably label each reasoning

step.

• We demonstrate empirically that Dyve sub-
stantially outperforms existing PRMs and
LLM-as-judges baselines on the Process-
Bench benchmark and significantly boosts the
performance of Proposer LLMs in Best-of-N
settings on MATH-500.

2 Related Work

2.1 The Spectrum of Process Verification:
Speed vs Depth

Verifying the multi-step reasoning of LLMs is cru-
cial, but current verifiers often trade speed for ana-
lytical depth. At one end, Outcome Reward Models
(ORMs) (Cobbe et al., 2021b; Yang et al., 2024)
evaluate only final answers, offering high speed
but no insight into the reasoning process. Process
Reward Models (PRMs) (Lightman et al., 2023a;
Zhang et al., 2025; Wang et al., 2024) improve
on this by providing rapid, "System 1-like" binary
feedback per step. However, their simplicity can
hinder nuanced error diagnosis and struggle with
incomplete reasoning traces. At the other end of
the spectrum, Generative Reward Models (Gen-
RMs) (Zhang et al., 2024b) offer "System 2-like"
depth with detailed explanatory judgments (Wei
et al., 2022), but are computationally intensive, and
their verbose outputs are not always ideal for effi-
cient, iterative verification.

Dyve aims to overcome this speed-versus-depth
trade-off. Inspired by Kahneman’s dual-process
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Systems Theory (Kahneman, 2012), Dyve dynam-
ically adapts its strategy. It employs rapid, PRM-
like System 1 token-level confirmation for straight-
forward steps and a more comprehensive, GenRM-
like System 2 analysis for complex or potentially er-
roneous ones. This learned adaptability optimizes
both verification accuracy and resource allocation
but necessitates highly specialized supervision sig-
nals.

2.2 Supervision for Process Verifiers

The efficacy of process verifiers, especially adap-
tive ones like Dyve, depends on training data qual-
ity. Human annotations (e.g., PRM800k (Lightman
et al., 2023b)) offer high fidelity but are expen-
sive and slow to scale. Consequently, automated
data generation using Monte Carlo (MC) estima-
tion or MCTS-based exploration is common (Luo
et al., 2024; Wang et al., 2024; Zhang et al., 2024a),
but often yields noisy or misleading labels (Zhang
et al., 2025). Recent efforts use consensus mecha-
nisms or LLM-as-a-Judge filtering (Gu et al., 2024;
Zhang et al., 2025) to improve label quality, typi-
cally at the trace level.

Our step-wise consensus-filtered process super-
vision technique is designed to create the special-
ized data Dyve needs. This multi-stage pipeline
first generates reasoning traces using Monte Carlo
estimation and filters them at the trace level with an
LLM-as-a-Judge. Subsequently, a powerful reason-
ing LLM meticulously analyzes each step, flagging
it to generate distinct training signals for Dyve’s
System 1 (rapid confirmation) and System 2 (de-
tailed analysis) modes. This process is crucial for
enabling Dyve’s unique adaptive verification capa-
bilities without expensive human annotation.

3 Method

Dyve is designed to dynamically adapt its veri-
fication strategy. It distinguishes between rapid,
intuitive checks (System 1) for straightforward rea-
soning steps and more deliberate, analytical evalu-
ations (System 2) for complex or potentially erro-
neous steps.

3.1 Core Principle: Learned Adaptive
Verification via Dual Output Modes

Dyve’s core principle is a learned adaptive verifi-
cation mechanism that employs a dual-output strat-
egy inspired by fast and slow thinking. For straight-
forward reasoning steps, Dyve activates its System

Figure 2: (1) LLM self-reflection is unreliable (2) Bi-
nary verification lacks depth, (3) Chain-of-Thought
(CoT) verification is deeper but more expensive, (4)
GenRM with CoT combines generation and verification
without step-wise assessment, (5) Dyve, our proposed
framework that dynamically combines fast System 1
and deep System 2 verification.

1 Output Mode, providing a rapid, low-latency
confirmation, typically a single predefined token
like “+” to signal correctness. However, when
faced with complex, uncertain, or erroneous steps,
Dyve shifts to its System 2 Output Mode. In this
mode, it generates a comprehensive analytical re-
sponse, offering a detailed natural language expla-
nation enclosed in special <think>...</think>
tags, followed by a final verdict token (“+” or “-”).

Crucially, this dynamic selection between fast
and deep verification isn’t governed by hard-coded
rules or heuristics. Instead, Dyve learns to choose
and generate the appropriate output mode based
on the input reasoning trace entirely through su-
pervised fine-tuning (SFT). This allows Dyve to
strategically allocate computational resources, us-
ing quick checks for simple steps and more inten-
sive analysis for complex ones.

3.2 The Step-wise Consensus-Filtered Process
Supervision Pipeline

Our multi-stage data pipeline is designed to curate
training instances that teach Dyve its adaptive ver-
ification capabilities. Given a problem P and a
sequence of reasoning steps {s1, s2, . . . , sT } gen-
erated by a Proposer LLM, our pipeline associates
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each step st with a target verification output, vt.
This output vt manifests in one of two forms cor-
responding to Dyve’s dual output modes: either a
System 1 (fast) verification (vS1

t ), which is a con-
cise token-level confirmation (e.g., +) for correct
and straightforward steps, or a System 2 (slow) ver-
ification (vS2

t ), which is a detailed natural language
explanation of st’s correctness or error followed by
a final verdict token.

The pipeline transforms raw reasoning traces
into structured training data examples. For a com-
plete reasoning trace of T steps that is entirely cor-
rect and composed of straightforward steps, the cu-
rated training example, denoted ES1-complete, takes
the form:

ES1-complete = (P, {s1, vS1
1 , s2, v

S1
2 , . . . , sT , v

S1
T }).

(1)
Conversely, if a trace proceeds with System 1

verifications but encounters an error at step st′ ,
where 1 ≤ t′ ≤ T , the curated training example,
ES2-diverge, is structured as:

ES2-diverge = (P, {s1, vS1
1 , . . . , st′−1, v

S1
t′−1, st′ , v

S2
t′ }).
(2)

In this scenario, the reasoning sequence for training
purposes concludes at step t′.

Initial Rollout Generation. We begin by col-
lecting 15K query-problem pairs from estab-
lished mathematical reasoning datasets, pri-
marily GSM8K (Cobbe et al., 2021a) and
MATH (Hendrycks et al., 2021). To generate di-
verse reasoning traces (rollouts) for each query,
we employ an automated process supervision
technique based on Monte Carlo Tree Search
(MCTS), leveraging OmegaPRM (Luo et al., 2024).
OmegaPRM utilizes a divide-and-conquer MCTS
algorithm to efficiently explore the solution space.
Within this MCTS, partially completed reasoning
paths (states s) are explored, and a selection strat-
egy, such as an Upper Confidence Bound (UCB)
score, guides the search towards promising or
under-explored paths:

U(s) = cpuct

√∑
iN(si)

1 +N(s)
, (3)

where N(s) is the visit count of state s,
∑

iN(si)
represents the total visits to sibling or relevant
nodes, and cpuct is an exploration constant. This
MCTS-driven approach (detailed in Appendix A.3)
allows us to generate approximately 20 rollouts per

query. This corpus is augmented with open-source
PRM data from MathShepherd (Wang et al., 2024)
and RLHFlow, while PRM800k (Lightman et al.,
2023b) is excluded to prevent data leakage. This
stage yields approximately 1.2 million initial roll-
outs, each containing step-by-step reasoning along
with potentially noisy process labels (e.g., initial
error step hypotheses from OmegaPRM).

Consensus Filtering and Rebalancing. To re-
duce noise from the initial rollouts, we employ
DeepSeek V3 as an LLM-as-a-Judge. It verifies the
initial error steps identified by OmegaPRM within
each full rollout. Rollouts where the judge confirms
the error assessment are retained; contradictory are
discarded. This filtering process removes approx-
imately 50% of the noisy rollouts. Subsequently,
the dataset is rebalanced to ensure an appropriate
distribution of positive (correct) and negative (in-
correct) step examples, resulting in a curated set of
approximately 117K high-quality reasoning traces.

System 1 and System 2 Target Output Genera-
tion. This pivotal stage creates the distinct train-
ing signals for Dyve’s dual output modes from
the filtered, high-fidelity traces. For correct steps
(requiring System 1 thinking), Dyve is trained to
provide simple token-level confirmation (e.g., the
+ token), which constitutes vS1

t . For steps identi-
fied as incorrect or requiring deeper analysis (Sys-
tem 2 thinking), Dyve is trained using detailed
error explanations. These detailed System 2 expla-
nations are wrapped within <think>...</think>
tags and a concluding verdict token -, are generated
by the DeepSeek-R1-Distill-Qwen-32B model
and constitute vS2

t . The output of this pipeline is
the final training dataset. The resulting data exam-
ple is illustrated in Appendix A.4.

3.3 Dyve Training
We select DeepSeek-R1-Distill-Qwen-14B as
the base model for Dyve and train it using Super-
vised Fine-Tuning (SFT) on the dataset curated as
described in Section 3.2. For each training exam-
ple, ES1-complete (Eq. 1) or ES2-diverge (Eq. 2), Dyve
is tasked with generating the target verification out-
put (vS1

t or vS2
t ) for a given step st, conditioned on

the problem P and the preceding reasoning context
(e.g., s1, v1, . . . , st−1, vt−1). This is framed as a
standard autoregressive, next-token prediction task,
where we minimize the cross-entropy loss between
the model’s predicted token probabilities and the
target tokens of the verification output vt. For a
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dataset of N such step-level training instances, the
loss is:

L(θ) = − 1

N

N∑

i=1

L(i)∑

k=1

log pθ

(
y
(i)
k | input(i), y(i)<k

)
,

(4)
where θ represents the model parameters. For the
i-th training instance, input(i) is the prompt con-
taining P and the reasoning history up to s

(i)
t , and

y(i) is the target verification sequence v
(i)
t . L(i) is

the length of this target sequence y(i). By training
on examples that require generating either short vS1

t

or longer vS2
t sequences based on the input context,

Dyve learns its adaptive verification strategy.

3.4 Inference with Dyve
During inference, the Dyve model sequentially ver-
ifies a sequence of reasoning steps {s1, . . . , sT }
for a given problem P . For each step st, Dyve pro-
cesses P and the cumulative steps s1:t to generate
a verification response rt:

rt = Dyve(P, s1:t; θ). (5)

This response rt manifests as either a concise Sys-
tem 1 confirmation (e.g., +) or an elaborate System
2 analysis, its token length varying accordingly
from one to 8192 tokens.

A parsing function, Parse(rt), then extracts a bi-
nary outcome (correct/error) from rt; for System 1
outputs, this is direct, while for System 2’s detailed
explanations, the verdict is typically found at the
end. If Parse(rt) indicates an error (e.g., returns
0), verification halts, returning the erroneous step’s
index t and the response rt (which may contain
the System 2 explanation). Otherwise, verification
proceeds to the next step, st+1.

4 Experiments

To evaluate the capabilities of Dyve, particularly
its core principle of learned adaptive verification,
we conduct a series of experiments. These exper-
iments are designed to: (1) assess Dyve’s profi-
ciency in identifying errors within multi-step rea-
soning processes, (2) quantify its dynamic alloca-
tion of System 1 (fast) and System 2 (deep) verifi-
cation resources, (3) compare its performance and
efficiency against established baselines, including
other process reward models (PRMs) and LLM-as-
Judge setups, and (4) evaluate its synergy when in-
tegrated with Proposer LLMs in a Best-of-N reason-
ing framework. All experiments were conducted

on 8 × NVIDIA A800-SXM4-80GB GPUs. In-
terested readers may refer to Appendix A.1 for a
detailed experimental setup.

4.1 Benchmarks and Evaluation Protocol
We utilize two primary benchmarks to evaluate
different facets of Dyve’s performance:

ProcessBench (Zheng et al., 2024) comprises
four sets of test data derived from GSM8K (Cobbe
et al., 2021a), MATH (Hendrycks et al., 2021),
OlympiadBench (He et al., 2024), and Omni-
MATH (Gao et al., 2024). It includes 3,400
test cases, covering high-school to Olympiad-level
math problems. Each case provides a step-by-step
solution with error locations annotated by experts.
Models are given s1:t, from the first to the last step,
and must identify the earliest error or confirm that
all steps are correct. For each ProcessBench sub-
set, we calculate the accuracies for erroneous and
correct samples and compute their harmonic mean
as the F1 score.

MATH-500 (Lightman et al., 2023b) evaluates
Dyve’s integration with a Proposer LLM. We mea-
sure performance using maj@k and rm@k metrics
as defined in (Yang et al., 2024) and apply a Best-
of-N decoding strategy. Due to inconsistent results
from different evaluation tools, we manually veri-
fied all reported outcomes.

Evaluation Protocol for Baselines. To ensure
fair and rigorous comparisons, especially against
LLM-as-Judge baselines on ProcessBench, we em-
ployed a standardized evaluation protocol. For each
step st of a given reasoning trace, baseline LLMs
were prompted with the problem context and the
specific step using the format shown in Figure 3.

This step-by-step prompting ensures that base-
lines perform the same sequential verification task
as Dyve. For models marked with an asterisk (*)
in our results table (Table 1), this standardized
prompting and evaluation was conducted using our
custom implementation to maintain consistency.

4.2 ProcessBench Evaluation
We first evaluate Dyve’s core capability in identify-
ing process errors using the ProcessBench bench-
mark. The comprehensive results, including com-
parisons against various baselines, are presented in
Table 1.

Overall Performance. As demonstrated in Ta-
ble 1, Dyve 14B obtains substantial improvement
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Table 1: Performance comparison on ProcessBench (F1 Scores). Dyve 14B leverages a dual reasoning approach
(fast System 1 and deep System 2). Models marked with (∗) are evaluated using our custom implementation aligning
with the standardized protocol. The "Type" column clarifies the model’s nature or the specific training data subset
used.

Model Type / Training Data GSM8K MATH OlympiadBench OmniMATH

Existing Process Reward Models (PRMs) - System 1 Verification
Qwen2.5-Math-7B-PRM System 1 39.4∗ 52.2∗ 39.4∗ 33.1∗

Math-Shepherd-PRM-7B System 1 47.9 29.5 24.8 23.8
RLHFlow-PRM-Mistral-8B System 1 50.4 33.4 13.8 15.8
RLHFlow-PRM-Deepseek-8B System 1 38.8 33.8 16.9 16.9
Skywork-PRM-1.5B System 1 59.0 48.0 19.3 19.2
Skywork-PRM-7B System 1 64.1∗ 43.2∗ 16.2∗ 17.9∗

LLM-as-Judge Baselines (Standard Prompting)
Llama-3.1-8B-Instruct LLM-as-Judge 27.5∗ 26.7∗ 18.5∗ 19.2∗

GPT-4o LLM-as-Judge 61.9∗ 53.9∗ 48.3∗ 44.6∗

QwQ-32B-Preview LLM-as-Judge 62.3∗ 52.7∗ 46.2∗ 43.9∗

Our Models and Ablations
DeepSeek-R1-Distill-Qwen-14B LLM-as-Judge (Base Model) 67.3∗ 38.8∗ 29.9∗ 32.1∗

Qwen2.5-14B-Instruct Trained on System 1+2 Data 51.7∗ 42.3∗ 30.2∗ 23.6∗

DeepSeek-R1-Distill-Qwen-14B Trained on System 2 Data Only 70.0∗ 60.1∗ 50.1∗ 49.6∗

Dyve 14B (Ours) Trained on System 1+2 Data 68.5 58.3 49.0 47.2

Standardized Prompt Format

Problem: [Problem Description]
Step 1: [s_1]
...
Step t: [s_t]

Is Step t correct given the problem and
previous steps?

You must answer with '+'
for correct or '-' for incorrect
at the end of your response.

Figure 3: Standardized prompt format used for evalu-
ating baseline LLMs on each reasoning step st. LLMs
were required to output ’+’ for a correct step or ’-’ for
an incorrect step.

in F1 scores across all four ProcessBench subsets
over other baselines, with 68.5 on GSM8K, 58.3
on MATH, 49.0 on OlympiadBench, and 47.2 on
OmniMATH. This underscores the effectiveness
of its learned adaptive verification strategy, which
combines rapid System 1 checks with deep System
2 analysis. Dyve not only outperforms existing
PRMs that typically rely on simpler System 1 ver-
ification but also surpasses strong LLM-as-Judge
baselines, including powerful models like GPT-4o,
especially on more complex benchmarks such as
OmniBench and OlympiadBench.

Comparison with Specialized Baselines. To
further understand the contributions of Dyve’s

training methodology and base model choice, we
compare it against two specialized baselines de-
rived from our rebuttal analysis. First, when
the DeepSeek-R1-Distill-Qwen-14B model is
trained only on System 1 type data, it achieves
strong scores on GSM8K (66.3) and MATH
(56.0). However, its performance drops notably
on OlympiadBench (36.1) and OmniMATH (37.7)
compared to the full Dyve model. This indi-
cates that while System 1 training is effective for
problems closer to its training distribution, the
System 2 component, learned from data with de-
tailed reasoning traces, is crucial for generaliza-
tion to more complex, Olympiad-level mathemat-
ics that require deeper error analysis. Second, we
trained Qwen2.5-14B-Instruct using our full Sys-
tem 1+2 data. This model achieved F1 scores of
51.7 (GSM8K), 42.3 (MATH), 30.2 (Olympiad-
Bench), and 23.6 (OmniMATH). These results
are significantly lower than Dyve. This suggests
that DeepSeek-R1-Distill-Qwen-14B is a more
suitable base model for learning Dyve’s adap-
tive verification from our specialized dataset, po-
tentially due to its inherent reasoning capabili-
ties or better alignment with the training data
format that includes metacognitive elements like
<think> tags for System 2 responses. The standard
DeepSeek-R1-Distill-Qwen-14B when used as
an LLM-as-Judge also shows weaker performance
(e.g., 38.8 on MATH, 29.9 on OlympiadBench)
compared to Dyve, highlighting that Dyve’s fine-
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Figure 4: Inference speed comparison on ProcesBench,
time per sample in seconds, for System-1, Dyve, and
DeepSeek-R1-14B.

tuning on our step-wise consensus-filtered data is
key to its superior verification abilities.

4.2.1 Analysis of Dyve’s Adaptive Verification
A core tenet of Dyve is its learned ability to dy-
namically switch between fast, token-level System
1 verification for clear steps and more comprehen-
sive System 2 analysis for ambiguous or erroneous
ones. This adaptive behavior is not rule-based but
emerges from training on curated data as in Fig-
ure 1. To quantify this, we analyzed the proportion
of System 1 and System 2 responses from Dyve
14B on ProcessBench datasets, as shown in Table 2.
Dyve exhibits a clear adaptive strategy.

On GSM8K, System 2 verification is predomi-
nant (System 1 usage: 27.5%). This is likely due
to GSM8K’s condensed reasoning traces where in-
dividual steps can encompass multiple calculations
or implicit assumptions, benefiting from deeper
scrutiny. Strategic System 1 use for clearer sub-
steps still contributes to efficiency (discussed in
Section 4.2.2).

For more complex datasets like MATH,
OlympiadBench, and OmniMATH, which in-
volve longer reasoning chains, Dyve increases its
reliance on System 1 verification (30.7%, 41.0%,
and 32.6% respectively). This allows efficient pro-
cessing of straightforward segments, reserving in-
tensive System 2 analysis for genuinely complex
or erroneous steps.

This dynamic allocation is crucial for maintain-
ing high performance on challenging problems
while managing computational resources. Figure 1
illustrates Dyve’s learned capability, showing a con-
cise System 1 confirmation for a correct arithmetic
step versus a detailed System 2 thought process and
refutation for an incorrect step requiring multi-step
derivation.

4.2.2 Comparison on Inference Time
The adaptive nature of Dyve is designed not only
for accuracy but also for efficiency. Figure 4 com-

pares the average inference time per sample on
ProcessBench for Dyve 14B, a hypothetical Sys-
tem 1-only version, and the base DeepSeek-R1-
14B model when performing detailed System 2-like
analysis for every step.

As illustrated in Figure 4, Dyve 14B is notably
faster than its base model when the latter is forced
to generate detailed step-by-step explanations for
every step. While a pure System 1 verifier is in-
herently the fastest, Dyve strikes a balance. Its
efficiency gains are directly attributable to its dy-
namic allocation of System 1 verification for a sub-
stantial portion of steps as quantified in Table 2.
For instance, on GSM8K, even with 72.5% Sys-
tem 2 usage, the average time per sample for Dyve
(0.47s, from Table 2) is considerably lower than
if all steps required full System 2 analysis. This
demonstrates that Dyve effectively conserves com-
putational resources without unduly sacrificing ver-
ification depth, making it well-suited for applica-
tions requiring both accuracy and reasonable pro-
cessing speed.

4.2.3 Impact of Model Choice and Step-wise
Consensus Filtering

Figure 5: Impact of model choice and step-wise con-
sensus filtering on performance across GSM8K, MATH,
OlympiadBench, and OmniMATH. The figure illus-
trates improvements achieved through consensus fil-
tering and step-wise flagging, highlighting the superior
performance of the 14B reasoning model over the 7B
Llama.

Our step-wise consensus-filtered process super-
vision pipeline is crucial for Dyve’s adaptive veri-
fication strategy. Figure 5 illustrates the impact of
our model and data curation choices.

The left panel of Figure 5 com-
pares Llama-3.1-8B-Instruct and
DeepSeek-R1-Distill-Qwen-14B as Dyve’s
base models, both trained on our System 1+2
dataset. The 14B DeepSeek-R1 consistently
outperformed the 8B Llama, validating our choice
of a more capable architecture for this nuanced
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Table 2: Dyve 14B: Distribution of System 1 vs. System 2 responses and average verification time per sample on
ProcessBench datasets.

Dataset System 1 Resp. System 2 Resp. System 1 % Avg. Time (s)

GSM8K 420 1106 27.5% 0.47
MATH 1263 2849 30.7% 0.51
OlympiadBench 2102 3027 41.0% 1.25
OmniMATH 1336 2766 32.6% 2.05

verification task.
The right panel of Figure 5 highlights the pro-

gressive benefits of our data curation for the
DeepSeek-R1-Distill-Qwen-14B model. While
training on unfiltered Monte Carlo data ("w/o
Consensus") offered some improvement over
raw LLM-as-Judge, Consensus Filtering signif-
icantly boosted performance (e.g., MATH F1
from 34.7 to 56.0). Crucially, the final Step-
wise Flagging stage, where a reasoning LLM
(DeepSeek-R1-Distill-Qwen-32B) created ex-
plicit System 1 (’+’) and System 2 (error expla-
nations) target outputs, led to full Dyve 14B per-
formance (e.g., MATH F1 58.3, GSM8K 68.5).
This final step is vital for enabling Dyve’s adaptive
System 1 / System 2 verification mechanism, un-
derscoring the importance of our data pipeline in
achieving Dyve’s high performance.

4.3 Integrating Dyve with Proposer LLMs
We integrate Dyve as a process verifier to assist
Proposer LLMs (Qwen-Math-7B and Deepseek-
R1-Distill-Qwen-14B) on MATH-500. For fair-
ness, we compare three setups across Best-of-N (N
= 1, 2, 4, 8) decoding settings: Dyve verification,
System 1 only, and Majority Vote (no verification).
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Figure 6: Comparison of Dyve, Dyve System1 and Ma-
jority Vote with different generation budget when inte-
grating with the reasoning model DeepSeek-R1-Distill-
Qwen-14B as Proposer LLMs.

Results and Analysis As shown in Figures 6
and 7, our proposed Dyve framework consistently

demonstrates superior performance across differ-
ent Proposer LLMs, irrespective of their inherent
reasoning capabilities. Specifically, Dyve’s inte-
gration of fast and slow verification mechanisms
outperforms both the Majority Voting and the Sys-
tem 1 only verification baselines when coupled
with Best-of-N decoding.

When integrated with the reasoning model,
DeepSeek-R1-14B (Figure 6), Dyve achieves a
peak accuracy of 95.5% with a generation budget
of N = 8. This significantly surpasses the perfor-
mance of both Majority Vote and relying solely
on System 1 verification with the same underlying
Proposer LLM. Similarly, when Dyve is integrated
with Qwen2.5-MATH-7B-Instruct, a model with
comparatively less emphasis on complex reasoning
(Figure 7), it still reaches an impressive accuracy of
90.4% at N = 8. Notably, Dyve’s performance with
Qwen2.5-MATH-7B-Instruct also exceeds that of
the Majority Vote and System 1 only approaches
using the same Proposer LLM.

These results demonstrate Dyve’s robustness and
generalizability. By combining fast and slow ver-
ification, Dyve effectively guides both strong rea-
soning models and more general language models
towards accurate solutions, highlighting its broad
applicability.
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Figure 7: Comparison of Dyve, Dyve System1 and
Majority Vote with different generation budget when
integrating with the language model Qwen2.5-MATH-
7B-Instruct as Proposer LLMs.
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Table 3: Performance (F1 Score) of various base models before (Base) and after fine-tuning. The results show
consistent improvement across all architectures. ‘OlympiadB.‘ is OlympiadBench.

Model SFT Data GSM8K MATH OlympiadB. OmniMATH

Qwen2.5 14B Base 28.7 27.9 23.7 24.6
Qwen2.5 14B System 1 + System 2 51.7 42.3 30.2 23.6

Qwen3-8B Base 28.3 24.0 13.9 17.3
Qwen3-8B System 1 + System 2 35.5 33.7 21.9 18.9

DeepSeek-R1 14B Base 67.3 38.8 29.9 32.1
DeepSeek-R1 14B System 1 + System 2 (Dyve) 68.5 58.3 49.0 47.2

4.3.1 Ablation on Base Models and Training
Data

To validate that Dyve’s performance gains are at-
tributable to our adaptive verification framework
and specialized data, rather than solely the strength
of the base model, we conducted two key ablation
studies.

Effectiveness of Our Curated Data The results,
presented in Table 3, shows that our System 1 +
System 2 fine-tuning methodology provides sub-
stantial and consistent performance gains across
all models. For instance, Qwen2.5 14B’s F1 score
on GSM8K nearly doubles from 28.7 to 51.7, and
DeepSeek-R1 14B’s MATH score jumps from 38.8
to 58.3. This demonstrates that the performance
gain is attributable to our adaptive verification
framework and specialized training data, not just
the base model’s inherent strength.

Justification for DeepSeek-R1 14B as Base
Model While our method improves all models,
the results also justify our choice of DeepSeek-
R1 14B as the base for Dyve. After fine-tuning,
it achieves the highest performance across all
benchmarks, particularly on the more challeng-
ing ones. Its F1 score of 58.3 on MATH and
49.0 on OlympiadBench significantly surpasses
the other fine-tuned models. This suggests that
while our data provides a strong learning signal for
any model, a more capable reasoning model like
DeepSeek-R1 14B is better able to leverage this
signal for complex verification tasks.

Dyve vs. System-2-Only Verification. To quan-
tify the trade-off between Dyve’s adaptive strat-
egy and a uniformly deep verification approach,
we trained a model exclusively on our "System 2
Only" data. As shown in Table 4, this model can
achieve marginally higher F1 scores.

Table 4: Accuracy trade-off between our adaptive Dyve
model and a model trained exclusively on System 2
data. Dyve achieves comparable performance with sig-
nificantly higher efficiency.

Dataset System 1 + System 2 (Dyve) System 2 Only

GSM8K 68.5 70.0
MATH 58.3 60.1
OlympiadBench 49.0 50.1
OmniMATH 47.2 49.6

However, this minor accuracy gain comes at a
significant efficiency cost. As illustrated previ-
ously in Figure 4, the "System 2 Only" approach
is substantially slower than our model. In contrast,
Dyve’s strength lies in its ability to strategically
allocate its verification resources. It applies fast,
token-level System 1 checks for the of straight-
forward steps and reserves the deep analysis of
System 2 for only the most complex or potentially
erroneous ones. This allows Dyve to achieve highly
competitive accuracy with far greater efficiency.

5 Conclusion

Our study demonstrates Dyve’s, with a dual reason-
ing approach, superior performance in mathemat-
ical reasoning verification. The consensus filter-
ing and step-wise flagging significantly enhanced
model accuracy and robustness. Ablation studies
confirm the 14B model’s advantages over smaller
variants for complex reasoning tasks, establishing
Dyve as an effective solution for precise and effi-
cient error detection.
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7 Broader Ethical Impact

Our method is centered on rigorous verification of
AI reasoning, ensuring each step is systematically
validated for enhanced reliability and transparency.
By exclusively using publicly available datasets
under their proper licenses, we adhere to responsi-
ble research practices. We believe that improving
verification in AI reasoning not only boosts system
robustness but also exemplifies ethical AI develop-
ment.

8 Limitations

While Dyve demonstrates strong performance, it
shares several limitations common to verification-
based systems. Its effectiveness naturally depends
on the complexity of the reasoning tasks, and more
intricate multi-step problems may require further
adaptation or deeper analysis. In addition, although
our consensus-filtered process supervision consid-
erably enhances signal quality, a modest level of
noise remains inherent in any automated estimation
process. Finally, the overall performance is influ-
enced by the quality and diversity of the training
data, suggesting that further efforts in data curation
and filtering could yield even more robust results.
These aspects offer promising directions for future
research.
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A Appendix

A.1 Training Details

Our model processes inputs with a maximum token
length of 2048, ensuring robust contextual under-
standing. To further enhance efficiency, we employ
Low-Rank Adaptation (LoRA) configured with a
rank of 16, an alpha value of 16, and a dropout rate
of 0.1. The training regimen spans three epochs,
using a per-device batch size of 2 and leveraging
gradient accumulation over 8 steps. The learning
rate is set to 2× 10−5 and a weight decay of 0.01
is applied. Training is executed with mixed pre-
cision (fp16), optimizing computational resources
without sacrificing performance.

Inference During inference, our model leverages
a multi-step reasoning process to evaluate each
problem instance. The procedure begins by formu-
lating a sequence of conversational prompts that
encapsulate both the problem statement and its pro-
gressive steps. At each step, the Dyve model is
queried via its custom chat interface, and the gen-
erated response is examined for specific response
patterns — such as the presence of a "+" sym-
bol signaling a correct evaluation. This iterative
mechanism continues until a response fails to meet
the designated correctness criteria, at which point
the process halts. To ensure efficiency, the infer-
ence is executed concurrently using a pool of 32
parallel workers, processing various configurations
from the ProcessBench dataset (including gsm8k,
math, olympiadbench, and omnimath). For every
evaluated problem, all intermediate responses (or
generations) and the final step classification are
recorded. These results are then systematically
saved in JSON Lines format, facilitating subse-
quent analysis and serving as a robust foundation
for further evaluation.

A.2 Benchmark Details

ProcessBench (Zheng et al., 2024) serves as
our main benchmark for evaluating step-wise er-
ror identification. It comprises four challeng-
ing test sets derived from GSM8K (Cobbe et al.,
2021a), MATH (Hendrycks et al., 2021), Olympiad-
Bench (He et al., 2024), and OmniMATH (Gao
et al., 2024). ProcessBench includes 3,400 test
cases that span from high-school to Olympiad-
level mathematical problems. Each case provides
a problem, a step-by-step solution, and expert an-
notations indicating the location of the first error,

if any. For this benchmark, models are tasked
with sequentially verifying a given reasoning trace
{s1, s2, . . . , sT }. For each step st, the model must
determine if an error has occurred in s1:t. If an
error is identified, the process halts, and the index
of the erroneous step is reported; otherwise, the
model confirms the correctness of all steps. Our
primary metric for ProcessBench is the F1 score,
calculated as the harmonic mean of the accuracies
on identifying erroneous samples and correct sam-
ples (Zheng et al., 2024). This metric effectively
balances a model’s ability to detect errors without
being overly critical.

MATH-500 (Lightman et al., 2023b) is em-
ployed to assess Dyve’s effectiveness when inte-
grated as a verifier with Proposer LLMs. This
dataset consists of 500 problems from the MATH
dataset. We measure performance using the
pass@k (maj@k and rm@k) metrics as defined
in (Yang et al., 2024), applying a Best-of-N (BoN)
decoding strategy where N varies (1, 2, 4, 8). Due
to known inconsistencies with automated evalua-
tion tools for complex mathematical reasoning, all
reported outcomes on MATH-500 were manually
verified for accuracy.

A.3 Efficient Estimation of MCTS

In this section, we detail our approach to effi-
ciently utilize Monte Carlo Tree Search (MCTS)
for sampling rollouts, which are crucial for training
process-based verifiers.

Overview

Our method leverages MCTS to construct a state-
action tree representing detailed reasoning paths
for a given question. This approach allows us to
collect Process-based Reward Model (PRM) train-
ing examples by exploring various reasoning paths
and identifying errors efficiently.

State-Action Tree Construction

Each state s in the tree corresponds to a ques-
tion and its preceding reasoning steps, with the
root state being the question without any reason-
ing steps. An action a is a potential next step,
and the state transition function is defined as s′ =
Concatenate(s, a). Each node s stores the visit
count N(s), Monte Carlo estimation MC(s), and
rollout value function Q(s, r).
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Table 5: Cost Comparison of the Automated Pipeline vs. Manual Annotation.

Cost Component Our Automated Pipeline Manual Annotation Path

Rollout Generation 1,344 A800-hrs 1,344 A800-hrs
Label Generation Method DS-32B Model Inferencing Human Expert Labeling
API / Labeling Cost $2,500 (DeepSeek V3) $585,000 (5 dollar each)

MCTS Process
Selection We maintain a pool of rollouts with
0 < MC(s) < 1. During selection, a rollout is
chosen based on tree statistics using a variant of
the PUCT algorithm:

U(s) = cpuct

√∑
iN(si)

1 +N(s)

This strategy initially favors rollouts with low visit
counts, gradually shifting preference towards those
with high rollout values.

Binary Search A binary search identifies the first
error location in the selected rollout. Rollouts with
0 < MC(s) < 1 are added to the selection pool.
The search process divides and examines rollouts to
pinpoint errors, updating the tree with new states.

Maintenance After binary search, update the
statistics N(s), MC(s), and Q(s, r). Increment
N(s) for the selected state-action pair and update
MC(s) and Q(s, r) based on the binary search
results.

Tree Construction Repeat the above process to
construct the state-action tree. The process ends
when the search count reaches a predetermined
limit or no additional rollouts are available.

A.4 Training Data Example
A.5 On the Computational Overhead of the

Supervision Pipeline
The computational cost is a one-time, offline in-
vestment to create a reusable dataset. Crucially, the
expensive "Rollout Generation" step is a prereq-
uisite for both automated and manual annotation.
Our method provides a >99% cost reduction by
replacing the slow, expensive manual labeling with
an efficient inference step.

Table 5 clarifies this comparison.

A.6 Examples of “non-trivially correct” steps
triggering System 2

A System 2 response can be triggered for steps that
are correct but logically complex, such as verifying

the correctness of a multi-step plan. In these cases,
a simple “correct” token is insufficient; the model
must reason through the logic of the plan itself:

As shown in 9, Dyve uses its System 2 thinking
process to analyze the logical flow of the proposed
plan before concluding that it is correct. This is
distinct from a simple arithmetic check and high-
lights the deeper verification our model learns to
perform.

A.7 How is the S1/S2 determination made
during data processing?

Thank you for the opportunity to clarify. The de-
cision is not made by a hard-coded rule, but is an
emergent property of our data pipeline that Dyve
learns.

In our pipeline (Section 3.2, "System 1 and Sys-
tem 2 Target Output Generation"), we use a pow-
erful teacher model (DeepSeek-R1-Distill-Qwen-
32B) to analyze each step of a filtered reasoning
trace.

• If this teacher model deems a step to be
straightforward and correct, we generate a
simple + token as the target output (System 1
signal).

• If the teacher model identifies an error or
a complex step that requires explanation, it
generates a detailed thought process within
<think> tags followed by a verdict (System
2 signal).

Dyve is then trained via SFT on this data. It learns
to associate different kinds of reasoning steps with
either a short, confirmatory output or a longer, ana-
lytical one. The choice at inference time is there-
fore a learned behavior of the model, not a prede-
fined rule.
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Example Data Sample

LLM Proposer:
Step: Cowboy Mickey and cowgirl Minnie train horses. Mickey mounts six less than twice as
many horses per day as Minnie, while Minnie mounts three more horses per day than there are days in
a week. How many horses does Mickey mount per week?
Step 1: Minnie mounts 7+3=<<7+3=10>>10 horses per day.
Is this step correct? Answer with '+' for correct or '-' for incorrect.

Dyver:
<think>
</think> +

LLM Proposer:
Step 2: Mickey mounts 12-6=<<12-6=6>>6 horses per day.
Is this step correct? Answer with '+' for correct or '-' for incorrect.

Dyver:
<think>
Let's verify Step 2 ....
Mickey mounts six less than twice Minnie's count. Minnie mounts 10 horses, so Mickey should mount
2*10 - 6 = 14. Step 2 is incorrect.
</think>
Answer: -

Figure 8: A example of the training data.

Standardized Prompt Format

step: To determine how much James made from selling the cars, we need to f
ollow these steps: First, calculate the total cost of the cars James sold.
Second, determine the total amount the company paid for the cars. Third, f
ind the profit from selling the cars. Fourth, calculate the commission Jam
es received based on his profit.

response: <think>Okay, so I need to figure out if the steps provided are c
orrect for determining how much James made from selling the cars. Let me b
reak it down step by step.

The steps given are:
1. Calculate the total cost of the cars James sold.
2. Determine the total amount the company paid for the cars.
3. Find the profit from selling the cars.
4. Calculate the commission James received based on his profit.

Let me analyze each step to see if they make sense.

[omitted for brevity.....]
</think>

The steps provided are correct as they accurately follow the necessary cal
culations to determine James's earnings.
+

Figure 9: An example of “non-trivially correct” steps triggering System 2.
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