
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 22452–22475
November 4-9, 2025 ©2025 Association for Computational Linguistics

TCP: a Benchmark for Temporal Constraint-Based Planning

Zifeng Ding*1, Sikuan Yan*2, Zhangdie Yuan*1,
Xianglong Hu3, Fangru Lin4, Andreas Vlachos†1

1University of Cambridge 2LMU Munich
3Amazon 4University of Oxford
{zd320, av308}@cam.ac.uk

Abstract

Temporal reasoning and planning are essential
capabilities for large language models (LLMs),
yet most existing benchmarks evaluate them in
isolation and under limited forms of complexity.
To address this gap, we introduce the Temporal
Constraint-based Planning (TCP) benchmark,
that jointly assesses both capabilities. Each in-
stance in TCP features a naturalistic dialogue
around a collaborative project, where diverse
and interdependent temporal constraints are ex-
plicitly or implicitly expressed, and models
must infer an optimal schedule that satisfies
all constraints. To construct TCP, we generate
abstract problem prototypes that are then paired
with realistic scenarios from various domains
and enriched into dialogues using an LLM. A
human quality check is performed on a sam-
pled subset to confirm the reliability of our
benchmark. We evaluate state-of-the-art LLMs
and find that even the strongest models may
struggle with TCP, highlighting its difficulty
and revealing limitations in LLMs’ temporal
constraint-based planning abilities. We ana-
lyze underlying failure cases, open source our
benchmark1, and hope our findings can inspire
future research.

1 Introduction

With the rise of autoregressive large language mod-
els (LLMs), recent studies have aimed to evaluate
their temporal reasoning abilities. Qiu et al. (2024)
initially found that LLMs lack temporal ground-
ing and struggle with even simple reasoning tasks.
Subsequent benchmarks have aimed to assess tem-
poral reasoning more broadly, and newer models
have demonstrated improved performance on basic
skills such as calculations and comparisons involv-
ing time, suggesting that temporal grounding has
improved over model generations (Wang and Zhao,

*Equal contribution.
†Corresponding author.
1https://huggingface.co/datasets/Beanbagdzf/TCP

2024). Despite this research, it remains unclear
whether LLMs can handle more complex forms of
temporal reasoning, such as understanding and rea-
soning under temporal constraints. Existing bench-
marks often fall short in this regard, and two key
limitations remain. (1) They primarily focus on
simple tasks and do not assess reasoning over mul-
tiple interacting temporal constraints (Chu et al.,
2024; Xiong et al., 2024; Wang and Zhao, 2024;
Fatemi et al., 2025). (2) Many benchmarks rely on
questions from knowledge bases (Chen et al., 2021;
Tan et al., 2023; Islakoglu and Kalo, 2025), which
allows models to rely on memorized pre-training
data rather than demonstrate genuine temporal rea-
soning (Fatemi et al., 2025).

In parallel, recent studies have started to exam-
ine LLMs’ ability to plan under various constraints,
with a growing interest in incorporating tempo-
ral aspects. Some works explore travel planning
(Xie et al., 2024), where time-related constraints
are present, but the focus remains on producing
plausible itineraries rather than testing deeper tem-
poral reasoning. Others investigate calendar or
meeting scheduling (Zheng et al., 2024), often lim-
ited to straightforward calculations involving time.
Further, Asynchow (Lin et al., 2024) introduces
overlapping task execution to evaluate how LLMs
manage asynchronous planning, yet it primarily
involves simple time addition. While these efforts
highlight the relevance of temporal reasoning in
planning, none offers a comprehensive benchmark
specifically for evaluating LLMs’ planning ability
under diverse and interacting temporal constraints.

To this end, we introduce a new benchmark
focused on Temporal Constraint-based Planning
(TCP). Unlike prior benchmarks, TCP requires
LLMs to generate plans under diverse and inter-
dependent temporal constraints. Each instance
is framed as a planning problem over a cooper-
ative project, presented as a dialogue in which par-
ticipants discuss scheduling under temporal con-

22452



Figure 1: Example short (left) and long (right) problems in TCP. Some parts are abbreviated due to limited space.
The red underlined contents correspond to the temporal constraints. The problem on the left belongs to the domain
of Business Administration and involves the dependency type A → B, A → C. The problem on the right falls within
the domain of Communications/Media Studies and involves the dependency type A → B, B → C. See Sec. 3.2 for
the details of involved domains and dependency types in TCP. See Appendix I for more example problems.

straints, followed by a question about the optimal
plan. To evaluate a range of temporal reasoning
skills, we design two categories of problems: short
and long, where the associated projects must be
completed within 1 day and 1 week, respectively.
See Fig. 1 for examples from both categories.

To construct TCP, we adopt a scalable construc-
tion approach that first generates abstract proto-
types and then enriches them using LLMs. We first
generate problem prototypes using a Python script
that samples temporal constraints (constraint types
listed in Table 1) from a predefined pool based on
manually written templates. The script performs an
exhaustive search to ensure logical correctness, and
generates the answer for each instance. To enrich
these abstract prototypes with realistic context and
language, we manually author 30 domain-specific
project scenarios across 10 real-world domains.
These scenarios are then expanded using an LLM,
with human experts reviewing and correcting out-
puts that do not meet quality standards. The final
benchmark instances are created by pairing each
prototype with a matching scenario and prompt-
ing the LLM to produce a dialogue that embeds
the temporal constraints in context. To minimize
the influence of pre-training data memorization, in-

stances are fully anonymized: all task names and
contextual details are generated from scratch and
do not refer to real-world entities or events.

We ensure benchmark quality through a two-
stage verification process: a symbolic consistency
check that validates constraint preservation via
structured metadata, and a semantic check assisted
by an LLM and verified by humans to confirm
alignment between the prototype and the final in-
stance. To further validate the quality of our gener-
ated data, we conduct a final round of human anno-
tation on a randomly sampled subset of the bench-
mark. All answers provided by the benchmark are
verified by annotators, who independently arrive
at the same answers given only the dialogues and
questions, suggesting that our construction pipeline
reliably produces high-quality instances and pro-
vides a practical solution for scaling datasets on
cooperative project planning.

To summarize, we have two key contributions:
(1) We propose TCP, the first temporal constraint-
based planning benchmark that specifically evalu-
ates LLMs’ ability in planning under interdepen-
dent temporal constraints. (2) We evaluate a range
of state-of-the-art LLMs and find that even the most
advanced reasoning models fall short of perfect

22453



Temporal Constraint & Description Example with Abbreviated Task Names in Dialogue

Task Duration: Ben: Yep, Task A should take about 2 days. Task B will be around
specify the duration of a task. 3 days. And Task C is estimated at 2 days.

Task Dependency: Carter: It’s crucial that Task B only starts after Task A is fully completed.
specify dependencies between tasks. And Task C also needs Task A to be finished before we can proceed.

Break Between: David: Plus, I’ll also need a minimum 2-day break between my tasks on
specify a participant’s break between two performing tasks. this project, as I’m managing the final integration testing for...

Break After: Eleanor: And I can manage up to 4 consecutive hours of work, but after
specify a participant’s break after working for a duration. that, I must take at least a 1-hour break to rest my eyes...

General Availability: Sarah: Just a reminder about my availability: I’m on AEST, working
specify the general available time. 11:00 AM to 7:00 PM, with my lunch break from 3:00 PM to 4:00 PM.

Specific Unavailability: Miller: Also, please remember I’m completely unavailable next Wed-
specify the specific unavailablity on top of general availability. nesday – that’s the day of the science fair, and I promised to be there...

Table 1: Temporal constraint types with abbreviated task names for brevity. Each problem category includes all
constraints but varies in expression based on temporal scope. Examples are sampled from different categories.

accuracy, underscoring the difficulty of the bench-
mark and the remaining gap in LLMs’ capabilities
in temporal constraint-based planning. Our analy-
sis reveals key failure modes, including difficulty
with asynchronous scheduling and errors in time
zone reasoning. We hope these findings can guide
and inspire future research.

2 Related Work

Temporal Reasoning with LLMs. A number
of benchmarks have been proposed to evaluate
LLMs’ temporal reasoning abilities. Qiu et al.
(2024) first show that LLMs lack temporal ground-
ing, often struggling even with simple temporal
tasks. Building on this, subsequent work introduce
benchmarks covering broader range of temporal
reasoning skills (Chu et al., 2024; Wang and Zhao,
2024; Islakoglu and Kalo, 2025). However, many
benchmarks partly rely on real-world knowledge,
allowing LLMs to answer by recalling memorized
facts rather than reasoning. To address this, Fatemi
et al. (2025) propose Test of Time, a synthetic
benchmark designed to decouple temporal reason-
ing from factual knowledge. Similarly, TGQA
(Xiong et al., 2024) is constructed from knowledge
graphs (KGs) with anonymized entities, thereby re-
ducing the impact of memorized knowledge from
pre-training. This also addresses a key limitation
of earlier QA benchmarks over temporal KGs (Sax-
ena et al., 2021; Ding et al., 2023), where entities
were not anonymized. While these efforts represent
progress, they primarily focus on isolated or basic
temporal skills and do not evaluate more complex
forms of temporal reasoning, such as reasoning
over multiple interacting temporal constraints as
emphasized in our TCP benchmark.

Planning with LLMs. Recent works have ex-
plored LLMs’ planning capabilities, beginning

with PlanBench (Valmeekam et al., 2023), which
focuses on goal-directed deterministic planning.
Follow-up studies (Xie et al., 2023; Yuan et al.,
2023; Kambhampati et al., 2024; Stechly et al.,
2025) extend this line towards constraint-based
planning. More recent efforts start to incorpo-
rate temporal constraints, such as travel planning
(Gundawar et al., 2024; Xie et al., 2024), meet-
ing scheduling in NATURAL PLAN (Zheng et al.,
2024), and parallel task coordination (Lin et al.,
2024; Zhang et al., 2024; Wu et al., 2025). While
these works show growing interest in temporal rea-
soning, they lack systematic evaluation of tempo-
ral constraint-based planning. Travel planning fo-
cuses on generating plausible itineraries rather than
reasoning over temporal constraints; NATURAL

PLAN focuses on basic clock-time calculations;
and works for parallel task coordination are often
limited to time addition and task parallelism. In
contrast, TCP requires more comprehensive tempo-
ral understanding, including time zones and dy-
namic unavailability (e.g., Break Between and
Break After in Table 1), making it a more tar-
geted benchmark for evaluating LLMs’ temporal
constraint-based planning abilities.

3 Temporal Constraint-Based Planning

3.1 Problem Design

We aim to evaluate LLMs’ ability in temporal
constraint-based planning by formulating a set of
cooperative project planning problems. Each prob-
lem presents the LLM with a dialogue among par-
ticipants discussing a project, where relevant tem-
poral constraints are implicitly or explicitly men-
tioned. To comprehensively assess temporal rea-
soning, we introduce two categories of problems:
short and long, where short problems involve plan-
ning for projects completed within 1 day, and long

22454



Figure 2: Overview of our benchmark generation pipeline.

problems span up to 7 days. Fig. 1 shows an exam-
ple for each category, and we summarize the types
of involved temporal constraints in Table 1. Al-
though all problems are based on common tempo-
ral constraints, due to the different temporal scope,
the expressions of temporal constraints vary, and
this requires models to comprehend diverse tempo-
ral concepts. Short problems mainly test models’
temporal reasoning abilities including time zone
interpretation and clock-time computation, while
long problems focus on weekday understanding
and calculations involving dates.

3.2 Benchmark Construction

We construct our benchmark using the following
pipeline. First, we generate problem prototypes
based on manually written constraint templates.
Next, we create diverse project scenarios across
different domains. Each prototype is then paired
with a project scene to form a fully concretized
problem. Finally, we perform a quality check on
all concretized problems, manually correcting any
that do not meet quality standards to ensure the
overall reliability of the benchmark. In total, TCP
contains 600 data instances, evenly split between
the short and long categories. See Fig. 2 for an
overview.

Dependency Type Explanation

A → B, A → C Task A should finish before the
start of Task B and C.

A → B, B → C Task B starts after Task A finishes;
Task C starts after Task B finishes.

A → C, B → C Task A and B should finish
before the start of Task C.

Table 2: Dependency types.

Problem Prototype Generation. For each prob-
lem category (short and long), we first manually
implement a Python script, generator.py, to pro-
duce a set of problem prototypes along with their
answers. Each prototype is based on a human-
written natural language template and includes a

sampled set of temporal constraints from Table 1.
To ensure answer correctness, the script incorpo-
rates an exhaustive search algorithm during gen-
eration. Each prototype is then formulated as a
dialogue between participants, a question about the
optimal plan, and a verified ground truth answer.
We generate 300 prototypes for each problem cat-
egory, each involving two participants and three
tasks as part of a cooperative project planning prob-
lem. Motivated by the findings of Lin et al. (2024),
which show that recent LLMs struggle with asyn-
chronous planning, we introduce three distinct de-
pendency types (listed in Table 2) and assign them
evenly across prototypes to better analyze their im-
pact. Fig. 3 shows an example prototype for each
category.

Project Scenario Generation. Since problem
prototypes are generated from predefined tem-
plates, they lack linguistic variety and contextual
richness. Tasks in prototypes are denoted using
generic labels (e.g., Task A) and lack descriptive
content, making the prototypes less reflective of
real-world planning scenarios, which typically fea-
ture concrete task names and detailed descriptions.
To address this, we select 10 common real-world
domains—Computer Science, Business Adminis-
tration, Mechanical Engineering, Biology, Eco-
nomics, Psychology, Political Science, Electrical
Engineering, Communications/Media Studies, and
Nursing/Health Sciences—and manually create 3
distinct project scenarios per domain, each corre-
sponding to a different dependency type. These
domain-specific scenarios introduce both content
diversity and broader topic coverage, while also en-
suring a balanced distribution of dependency types.
In total, this yields 30 initial (round-0) project sce-
narios for each problem category.

Each problem category (e.g., short or long) re-
quires different project scenarios to ensure tempo-
ral feasibility. After creating the initial set of seed
scenarios, we use an LLM, Gemini 2.5 Pro, to ex-
pand the scenario pool through 9 additional rounds

22455



Figure 3: Problem prototype examples. Left: prototype of the short problem in Fig. 1 (left). Right: prototype of the
long problem in Fig. 1 (right). The red underlined contents correspond to the temporal constraints.

of generation. In each round r, 30 new project
scenarios are generated per problem category. For
each new scenario, the LLM is prompted to draw
inspiration from the round r−1 scenario within the
same domain and dependency type, while avoid-
ing close resemblance to those from rounds 0 to
r−2. (see Fig. 14 and 15 in the Appendix for our
prompts). Each generated scenario is reviewed by
a human expert, who requests regeneration if the
scenario is deemed low-quality. This process con-
tinues until all generated scenarios are approved.
As a result, each problem category contains 300
project scenarios evenly distributed across depen-
dency types. Since we apply this process separately
to both short and long categories, our benchmark
includes a total of 600 high-quality, diverse project
scenarios.

Problem Concretization. With both prototypes
and project scenarios prepared, we proceed to con-
cretize the final benchmark problems for TCP. Dur-
ing this process, we associate each prototype with
its corresponding dependency type and retrieve all
project scenarios sharing that type. One scenario
is randomly sampled and paired with the prototype
for concretization. We then prompt Gemini 2.5 Pro
to generate the final problem instance, using the
selected prototype and project scenario as inspira-
tion. The prompt instructs the model to enrich the
dialogue with contextualized project details and
to include logical justifications for each temporal
constraint present in the prototype. Additionally,
we ask the model to replace placeholder participant
names (e.g., Agent 1) with realistic names. Since
the first two stages maintain an even distribution of
dependency types and domains, this balance natu-
rally carries over into the concretized benchmark
data. We provide the prompts in Fig. 16 and 17 in
the Appendix.

Final Quality Check. Since we rely on an LLM
for problem concretization, there remains a risk
of undesired outputs such as altered temporal con-

straints or logical inconsistencies in the imagined
context, even though we guide the model’s behavior
through carefully designed prompts. To mitigate
this, we implement a two-step quality control.

The first step, referred to as the hard check,
is a symbolic verification carried out by a hard-
coded Python script. When generating problem
prototypes, we store their temporal constraints as
structured metadata in a JSON object. During con-
cretization, the LLM is also instructed to rewrite
the placeholder names for participants and tasks in
the metadata alongside the generated dialogue. We
assume that if the model makes errors in metadata
rewriting, it is highly likely to introduce inconsis-
tencies in the dialogue or the question as well. The
hard check ensures that the metadata remains con-
sistent and correctly mapped. In our benchmark
construction, Gemini 2.5 Pro successfully passed
the hard check for all problems, indicating a high
level of reliability in metadata handling. We be-
lieve the success rate is closely tied to the model’s
capability and that this step offers an efficient way
to detect failures in concretization.

Inspired by Miao et al. (2024), the second step,
the soft check, evaluates semantic consistency be-
tween the prototype and its concretized version.
For each instance, we prompt Gemini 2.5 Pro (see
Fig. 18 in the Appendix) to assess whether the pro-
totype and its concretized problem represent the
same scheduling scenario and question. The model
is also asked to provide a justification. In total, we
find 43 out of 600 problems fail the soft check, each
accompanied by a reasonable justification. We re-
view the model’s justifications and revise the failed
cases manually.

To validate the quality of our generated data, we
recruit five human annotators and assign each of
them 10 randomly sampled, non-overlapping TCP
problems. Annotators are given only the dialogues
and questions and are allowed unlimited time to
answer. For all sampled problems, the ground truth
labels in the TCP benchmark match the answers

22456



Models & Methods Short Long Overall

Naive Baseline
Random 4.16 14.29 9.23

Standard LLMs
Gemma 3 12B 0.67 1.00 0.83
Gemma 3 27B 1.33 11.00 6.17
LLaMA 3.1 8B 1.00 6.67 3.83
LLaMA 3.1 70B 1.67 3.67 2.67
LLaMA 3.3 70B 1.67 6.67 4.17
Qwen3 8B 3.67 10.33 7.00
Qwen3 14B 1.67 10.33 6.00
Gemini 2.0 Flash Lite 3.00 10.00 6.50
Gemini 2.0 Flash 2.33 7.33 4.83
GPT-4.1 mini 10.33 9.00 9.67
GPT-4.1 10.00 10.33 10.17

Standard LLMs + Chain-of-Thought
Gemma 3 12B 7.44 7.33 7.39
Gemma 3 27B 2.56 10.22 6.39
LLaMA 3.1 8B 1.78 7.22 4.50
LLaMA 3.1 70B 6.44 11.78 9.11
LLaMA 3.3 70B 13.00 16.11 14.56
Qwen3 8B 7.67 13.67 10.67
Qwen3 14B 14.00 23.00 18.50
Gemini 2.0 Flash Lite 17.33 15.00 16.17
Gemini 2.0 Flash 11.33 20.00 15.67
GPT-4.1 mini 40.33 62.00 51.17
GPT-4.1 50.33 65.00 57.67

Reasoning LLMs
Qwen3 8B 21.56 42.67 32.11
Qwen3 14B 58.89 53.89 56.39
Gemini 2.5 Flash 45.33 78.67 61.98
Gemini 2.5 Pro 57.11 85.63 71.37
o4-mini 76.33 86.44 81.39

Table 3: Benchmark results on TCP. We provide addi-
tional results in Table 4, including more Gemma and
Qwen models of smaller sizes.

provided by human annotators, confirming the reli-
ability of the generated problems and the effective-
ness of our quality assurance pipeline. We provide
details of human annotation in Appendix C, includ-
ing guidelines for annotators and their background.

4 Experiments

4.1 Experimental Setting

We benchmark two types of LLMs: (1) stan-
dard LLMs, including open-source models such as
Gemma 3 (Kamath et al., 2025), Llama 3 (Dubey
et al., 2024), and Qwen3 (Team, 2025), as well as

proprietary models such as Gemini 1.5 Pro (Reid
et al., 2024), Gemini 2.0 Flash Lite2, Gemini 2.0
Flash, GPT-4.1 mini3, and GPT-4.1; (2) reason-
ing LLMs, including the open-source Qwen3 with
thinking enabled, and proprietary models such as
Gemini 2.5 Flash, Gemini 2.5 Pro, and o4-mini.
For completeness, we also include a naive baseline
named Random by randomly selecting one answer
from the potential answer candidates (choosing one
of 24 hours and one of 7 days for short and long
problems, respectively). We employ accuracy as
evaluation metric. For standard LLMs, we report
accuracies using greedy decoding, while for reason-
ing models, we run each of them 3 times with de-
fault configuration and report the average numbers4.
We also benchmark standard LLMs when they are
coupled with Chain-of-Thought (CoT) prompting
(Wei et al., 2022). We provide more implementa-
tion details in Appendix A.

4.2 Benchmark Results
We present the benchmark results in Table 3 and
highlight several key findings. (1) Our benchmark
is highly challenging. Even the latest and strongest
reasoning models such as o4-mini and Gemini 2.5
Pro cannot solve TCP problems optimally (with
overall accuracy 81.39 and 71.37, respectively).
Notably, many standard LLMs are outperformed
by a naive random guessing baseline, even when
prompted to produce CoTs. (2) Reasoning models
significantly outperform standard LLMs on TCP.
Generating CoTs also substantially improves the
performance of standard models, indicating that
test-time scaling is beneficial for solving TCP. (3)
The performance gap between reasoning models
and standard models, even with CoTs, suggests
that TCP demands complex reasoning capabilities,
further validating the benchmark’s difficulty. (4)
Within model families evaluated under the same
settings, we observe that larger model sizes gener-
ally lead to better TCP performance, particularly
for reasoning models such as Qwen3.

4.3 Further Analysis and Findings
Performance on Different Dependency Types.
We analyze the influence of dependency types on
the three strongest reasoning models: o4-mini,

2All Gemini models are from: https://ai.google.dev/gemini-
api/docs/models

3All OpenAI models are from: https://platform.openai.com
/docs/overview

4Reasoning models tend to perform worse under greedy
decoding (DeepSeek-AI et al., 2025; Team, 2025).

22457



Figure 4: Performance on different dependency types for short and long problems (left) and on different domains for
reasoning and standard LLMs w. CoT prompting (right). CS = Computer Science, BA = Business Administration,
ME = Mechanical Engineering, BIO = Biology, ECO = Economics, PSY = Psychology, PS = Political Science, EE
= Electrical Engineering, COMM = Communications/Media Studies, HS = Nursing/Health Sciences.

Gemini 2.5 Pro, and Gemini 2.5 Flash, as well as
the two best-performing standard LLMs with CoT
prompting: GPT-4.1 and GPT-4.1 mini (Fig. 4).
Across all models, we observe that sequential
task dependencies are consistently easier to handle.
In contrast, when problems require asynchronous
planning, where tasks can be assigned to both par-
ticipants to be carried out simultaneously, none of
the models perform comparably. This suggests that
even the most advanced models lack the ability to
effectively plan asynchronously.

Performance on Different Domains. We show
domain-wise performance across different model
families in Fig. 4. Among the reasoning models, o4-
mini demonstrates strong overall robustness, with
slightly lower performance in Mechanical Engi-
neering and Communications/Media Studies. Gem-
ini 2.5 Pro also performs well overall, except in
Mechanical Engineering and Business Administra-
tion. Interestingly, Gemini 2.5 Flash and Qwen3
exhibit similar strengths and weaknesses across
various domains, although Gemini consistently out-
performs Qwen3 in the remaining domains. For
standard LLMs with CoT prompting, GPT-4.1 from
OpenAI remains the most robust across domains.
LLaMA 3.3 70B and Gemini 2.0 Flash show vary-
ing performance, each excelling in some domains
while underperforming in others. We conjecture
that these domain-specific discrepancies may stem
from differences in training data distribution and
training strategies. In this regard, models from
OpenAI appear to be the most well-rounded.

Performance on Varied Output Length. We an-
alyze the relationship between output length, mea-
sured by the number of output tokens including the
full output traces, and task accuracy. Specifically,
we compare the output length distributions for cor-
rect and incorrect predictions across both the short

and long problem categories. Fig. 5 shows violin
plots of output token lengths. Incorrect predictions
are strongly skewed towards shorter outputs, often
clustered near zero, while correct predictions dis-
play a broader and more balanced distribution. The
median and upper quartile lengths are substantially
higher for correct responses, indicating that suc-
cessful completions are typically associated with
more extended reasoning. These results suggest
that shorter outputs often reflect insufficient reason-
ing effort and highlight the importance of sustained
reasoning in solving temporally constrained prob-
lems accurately.

Performance on Different Time Zones. We
evaluate time zone-specific performance by se-
lecting o4-mini, Gemini 2.5 Pro/Flash, and GPT-
4.1/4.1 mini, and tracking their errors across time
zones. If a problem references a particular time
zone and a model fails to solve it, the error is at-
tributed to that zone. Although the heatmap in
Fig. 6 reveals some variation in error rates across
time zones, a broader trend emerges: LLMs con-
sistently struggle with time zone reasoning. While
certain zones, such as NZST, exhibit substantially
higher error rates, no single zone consistently
accounts for the most errors across all models.
One possible reason for NZST’s poor performance
might be its relative rarity in training data com-
pared to more frequently referenced zones like PST
or GMT. Overall, many models show notable error
rates across a wide range of time zones. This under-
scores the need for more robust temporal reasoning
capabilities in LLMs. As discussed in Appendix E,
models often rely on shallow heuristics that mis-
interpret time zone differences or overlook global
temporal constraints, leading to persistent and com-
pounding scheduling errors.

22458



(a) Long problems.

(b) Short problems.

Figure 5: Distribution of output lengths (number of
tokens) for correct and incorrect predictions. Longer
outputs tend to lead to correct answers and shorter out-
puts tend to correlate with incorrect predictions.

Reasoning LLMs vs. Standard LLMs + CoT.
As shown in Table 3, reasoning LLMs largely out-
perform standard LLMs prompted with CoT on
TCP problems. To better understand this gap, we
conduct two qualitative case studies. The first case
(Fig. 12) compares Qwen3 14B in thinking (reason-
ing) mode with its standard (non-thinking) mode
on the same TCP problem. We find that the reason-
ing model frequently engages in iterative reflection
(such as rethinking assumptions, exploring alterna-
tives, and comparing outcomes), whereas with non-
thinking mode, even prompted with CoT, model
still tends to follow a fixed, linear path with little
revision or exploration (as pointed out in Table 11).
In the second case (Fig. 13), we contrast Gemini
2.5 Flash and GPT-4.1 mini. We find that Gemini
adopts a structured, hierarchical reasoning layout.
When solving a TCP problem, it typically decom-
poses the problem by task or time and anchors its
reasoning around these subproblems. By contrast,
GPT-4.1 mini + CoT often produces fragmented, ad
hoc reasoning that lacks global consistency, lead-
ing to errors on complex, multi-constraint tasks
(Table 12). Together, these cases suggest that solv-

Figure 6: Error rates across time zones for strongest
models.

ing TCP problems requires not just temporal under-
standing but also the ability to coordinate reason-
ing across multiple interdependent constraints in a
structured and reflective manner.

5 Conclusion

We present TCP, a benchmark for evaluating tem-
poral constraint-based planning in dialogue-based
scenarios. Our results show that even the strongest
LLMs struggle, particularly with asynchronous
planning and time zone reasoning. These chal-
lenges are often linked to shallow or fragmented
reasoning, as evidenced by the correlation between
longer, more structured outputs and higher accu-
racy. Notably, reasoning LLMs consistently out-
perform CoT-prompted standard LLMs on TCP
by adopting more reflective and modular strategies
that better handle complex constraint interactions.
This contrast highlights the importance of not just
surface-level temporal understanding, but also of
structured reasoning processes. TCP thus exposes
critical gaps in current models and offers a focused

22459



testbed for advancing their temporal planning ca-
pabilities in the future.

Acknowledgement

Zifeng Ding, Zhangdie Yuan and Andreas Vlachos
are supported by the ERC grant AVeriTeC (GA
865958). Andreas Vlachos is further supported by
the DARPA program SciFy. Fangru Lin is sup-
ported by Clarendon and Jason Hu studentship.

Limitations

While TCP offers a comprehensive benchmark for
temporal constraint-based planning, it has several
limitations. First, although the scenarios are nat-
uralistic, they are generated by LLMs and may
not fully capture the ambiguity and messiness of
real-world planning dialogues. Second, we fix the
number of agents and tasks (2 agents and 3 tasks)
across all instances. This is a deliberate design
choice to avoid benchmark difficulty being domi-
nated by combinatorial explosion, allowing us to
focus on evaluating planning over temporal con-
straints. However, this simplification limits our
ability to assess model performance on more com-
plex, large-scale planning problems. Third, mod-
els are evaluated without task-specific fine-tuning,
which may underestimate their full potential.

Ethic Considerations

This work does not involve human subject data or
sensitive personal information. However, we note
that LLMs’ planning capabilities, while promising,
can be misleading if over-trusted. Poor temporal
reasoning, especially in high-stakes domains such
as healthcare or logistics, could result in harmful
decisions if deployed without oversight. Our bench-
mark is intended for research purposes only and
should not be construed as validating real-world
deployment readiness. We encourage future work
to pair model advances with interpretability and
robustness checks, particularly when applying tem-
poral planning models in safety-critical settings.

References
Wenhu Chen, Xinyi Wang, and William Yang Wang.

2021. A dataset for answering time-sensitive ques-
tions. In Proceedings of the Neural Information Pro-
cessing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, Decem-
ber 2021, virtual.

Zheng Chu, Jingchang Chen, Qianglong Chen, Wei-
jiang Yu, Haotian Wang, Ming Liu, and Bing Qin.
2024. Timebench: A comprehensive evaluation of
temporal reasoning abilities in large language models.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 1204–1228. Association for
Computational Linguistics.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 81 others.
2025. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. CoRR,
abs/2501.12948.

Zifeng Ding, Zongyue Li, Ruoxia Qi, Jingpei Wu,
Bailan He, Yunpu Ma, Zhao Meng, Shuo Chen, Ruo-
tong Liao, Zhen Han, and Volker Tresp. 2023. Fore-
casttkgquestions: A benchmark for temporal ques-
tion answering and forecasting over temporal knowl-
edge graphs. In The Semantic Web - ISWC 2023 -
22nd International Semantic Web Conference, Athens,
Greece, November 6-10, 2023, Proceedings, Part I,
volume 14265 of Lecture Notes in Computer Science,
pages 541–560. Springer.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, and 82
others. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Bahare Fatemi, Mehran Kazemi, Anton Tsitsulin,
Karishma Malkan, Jinyeong Yim, John Palowitch,
Sungyong Seo, Jonathan Halcrow, and Bryan Per-
ozzi. 2025. Test of time: A benchmark for evaluating
llms on temporal reasoning. In The Thirteenth In-
ternational Conference on Learning Representations,
ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net.

Atharva Gundawar, Mudit Verma, Lin Guan, Karthik
Valmeekam, Siddhant Bhambri, and Subbarao Kamb-
hampati. 2024. Robust planning with llm-modulo
framework: Case study in travel planning. CoRR,
abs/2405.20625.

Duygu Sezen Islakoglu and Jan-Christoph Kalo. 2025.
Chronosense: Exploring temporal understanding in
large language models with time intervals of events.
CoRR, abs/2501.03040.

Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino
Vieillard, Ramona Merhej, Sarah Perrin, Tatiana
Matejovicova, Alexandre Ramé, Morgane Rivière,
Louis Rouillard, Thomas Mesnard, Geoffrey Cideron,
Jean-Bastien Grill, Sabela Ramos, Edouard Yvinec,
Michelle Casbon, Etienne Pot, Ivo Penchev, Gaël

22460

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/1f0e3dad99908345f7439f8ffabdffc4-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/1f0e3dad99908345f7439f8ffabdffc4-Abstract-round2.html
https://doi.org/10.18653/V1/2024.ACL-LONG.66
https://doi.org/10.18653/V1/2024.ACL-LONG.66
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.1007/978-3-031-47240-4_29
https://doi.org/10.1007/978-3-031-47240-4_29
https://doi.org/10.1007/978-3-031-47240-4_29
https://doi.org/10.1007/978-3-031-47240-4_29
https://doi.org/10.48550/ARXIV.2407.21783
https://openreview.net/forum?id=44CoQe6VCq
https://openreview.net/forum?id=44CoQe6VCq
https://doi.org/10.48550/ARXIV.2405.20625
https://doi.org/10.48550/ARXIV.2405.20625
https://doi.org/10.48550/ARXIV.2501.03040
https://doi.org/10.48550/ARXIV.2501.03040


Liu, and 79 others. 2025. Gemma 3 technical report.
CoRR, abs/2503.19786.

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Saldyt, and Anil Murthy. 2024. Position:
Llms can’t plan, but can help planning in llm-modulo
frameworks. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, pages 611–
626. ACM.

Fangru Lin, Emanuele La Malfa, Valentin Hofmann,
Elle Michelle Yang, Anthony G. Cohn, and Janet B.
Pierrehumbert. 2024. Graph-enhanced large lan-
guage models in asynchronous plan reasoning. In
Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Ning Miao, Yee Whye Teh, and Tom Rainforth. 2024.
Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
and 2 others. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 8024–8035.

Yifu Qiu, Zheng Zhao, Yftah Ziser, Anna Korhonen,
Edoardo Maria Ponti, and Shay B. Cohen. 2024. Are
large language model temporally grounded? In Pro-
ceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), NAACL 2024, Mexico City, Mexico,
June 16-21, 2024, pages 7064–7083. Association for
Computational Linguistics.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy P. Lillicrap, Jean-Baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan
Firat, Julian Schrittwieser, Ioannis Antonoglou, Ro-
han Anil, Sebastian Borgeaud, Andrew M. Dai, Katie
Millican, Ethan Dyer, Mia Glaese, Thibault Sottiaux,
Benjamin Lee, and 34 others. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. CoRR, abs/2403.05530.

Apoorv Saxena, Soumen Chakrabarti, and Partha P.
Talukdar. 2021. Question answering over temporal
knowledge graphs. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 6663–6676. Association for
Computational Linguistics.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb-
hampati. 2025. On the self-verification limitations
of large language models on reasoning and planning
tasks. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net.

Qingyu Tan, Hwee Tou Ng, and Lidong Bing. 2023.
Towards benchmarking and improving the temporal
reasoning capability of large language models. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 14820–14835. Association for Computa-
tional Linguistics.

Qwen Team. 2025. Qwen3.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo
Hernandez, Sarath Sreedharan, and Subbarao Kamb-
hampati. 2023. Planbench: An extensible benchmark
for evaluating large language models on planning
and reasoning about change. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Yuqing Wang and Yun Zhao. 2024. TRAM: benchmark-
ing temporal reasoning for large language models.
In Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and vir-
tual meeting, August 11-16, 2024, pages 6389–6415.
Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Zirui Wu, Xiao Liu, Jiayi Li, Lingpeng Kong, and Yan-
song Feng. 2025. Haste makes waste: Evaluating
planning abilities of llms for efficient and feasible
multitasking with time constraints between actions.
CoRR, abs/2503.02238.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. 2024.
Travelplanner: A benchmark for real-world planning
with language agents. In Forty-first International
Conference on Machine Learning, ICML 2024, Vi-
enna, Austria, July 21-27, 2024. OpenReview.net.

22461

https://doi.org/10.48550/ARXIV.2503.19786
https://openreview.net/forum?id=Th8JPEmH4z
https://openreview.net/forum?id=Th8JPEmH4z
https://openreview.net/forum?id=Th8JPEmH4z
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://openreview.net/forum?id=eVGpdivOnQ
https://openreview.net/forum?id=eVGpdivOnQ
https://openreview.net/forum?id=pTHfApDakA
https://openreview.net/forum?id=pTHfApDakA
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/V1/2024.NAACL-LONG.391
https://doi.org/10.18653/V1/2024.NAACL-LONG.391
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.18653/V1/2021.ACL-LONG.520
https://doi.org/10.18653/V1/2021.ACL-LONG.520
https://openreview.net/forum?id=4O0v4s3IzY
https://openreview.net/forum?id=4O0v4s3IzY
https://openreview.net/forum?id=4O0v4s3IzY
https://doi.org/10.18653/V1/2023.ACL-LONG.828
https://doi.org/10.18653/V1/2023.ACL-LONG.828
https://qwenlm.github.io/blog/qwen3/
http://papers.nips.cc/paper_files/paper/2023/hash/7a92bcdede88c7afd108072faf5485c8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/7a92bcdede88c7afd108072faf5485c8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/7a92bcdede88c7afd108072faf5485c8-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.382
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.382
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2503.02238
https://doi.org/10.48550/ARXIV.2503.02238
https://doi.org/10.48550/ARXIV.2503.02238
https://openreview.net/forum?id=l5XQzNkAOe
https://openreview.net/forum?id=l5XQzNkAOe


Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,
and Harold Soh. 2023. Translating natural language
to planning goals with large-language models. CoRR,
abs/2302.05128.

Siheng Xiong, Ali Payani, Ramana Kompella, and Fara-
marz Fekri. 2024. Large language models can learn
temporal reasoning. In Proceedings of the 62nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
10452–10470. Association for Computational Lin-
guistics.

Siyu Yuan, Jiangjie Chen, Ziquan Fu, Xuyang Ge, So-
ham Shah, Charles Robert Jankowski, Yanghua Xiao,
and Deqing Yang. 2023. Distilling script knowledge
from large language models for constrained language
planning. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 4303–4325. Association for
Computational Linguistics.

Yikai Zhang, Siyu Yuan, Caiyu Hu, Kyle Richardson,
Yanghua Xiao, and Jiangjie Chen. 2024. Timearena:
Shaping efficient multitasking language agents in a
time-aware simulation. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pages 3894–
3916. Association for Computational Linguistics.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang,
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, and
Denny Zhou. 2024. NATURAL PLAN: bench-
marking llms on natural language planning. CoRR,
abs/2406.04520.

A Implementation Details

All experiments of open-source models are run with
PyTorch (Paszke et al., 2019) and vLLM (Kwon
et al., 2023) on a machine with 96 CPU cores and 4
× Nvidia H100 GPU each with 94GB. For Gemini
models, we run them with Google’s python-genai5

API. For OpenAI models, we run with OpenAI’s
openai-python6 API.

We also list the detailed model versions used in
our experiments.

Open-Source Models. We use official reposi-
tories of Gemma 3 family, including Gemma 3
1B it7, Gemma 3 4B it8, Gemma 3 12B it9 and
Gemma 3 27B it10. We use official repositories

5https://github.com/googleapis/python-genai
6https://github.com/openai/openai-python
7https://huggingface.co/google/gemma-3-1b-it
8https://huggingface.co/google/gemma-3-4b-it
9https://huggingface.co/google/gemma-3-12b-it

10https://huggingface.co/google/gemma-3-27b-it

of LLaMA famility, including LLaMA 3.1 8B In-
struct11, LLaMA 3.1 70B Instruct12 and LLaMA
3.3 70B Instruct13 We use official repositories of
Qwen3 family, including Qwen3 4B14, Qwen3
8B15, Qwen3 14B16 and Qwen3 32B17.

Proprietary Models. For Gemini models, we
use: gemini-1.5-pro-002, gemini-2.0-flash-lite-001,
gemini-2.0-flash-001, gemini-2.5-flash-preview-
04-17 and gemini-2.5-pro-preview-05-06. For Ope-
nAI models, we use: gpt-4.1-mini-2025-04-14, gpt-
4.1-2025-04-14 and o4-mini-2025-04-16.

B Complete Benchmark Results

We present the complete performance results across
all models and settings in Table 4.

C Human Annotation Details

We recruit five human annotators to evaluate the
quality of our benchmark. All annotators are PhD
students in Computer Science with at least full
professional proficiency in English. All of them
consent our usage of their data. The annotation
guidelines are provided in Fig. 7.

D Performance on Problem Prototypes

We evaluate model performance on abstract prob-
lem prototypes to isolate their ability to reason over
temporal constraints without the added complexity
of naturalistic language. As shown in Table 5, all
models (Gemini 2.5 Flash, Gemini 2.5 Pro, and
o4-mini) perform notably better on prototypes than
on their concretized counterparts. We focus this
analysis on the strongest models from our main
evaluation to ensure that observed errors reflect
reasoning limitations rather than deficiencies in ba-
sic model capacity. The consistent performance
gap suggests that linguistic surface form introduces
new challenges that disrupt otherwise successful
reasoning. In the following analysis, we examine
two prominent error types to better understand why
concretized instances are harder.

11https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

12https://huggingface.co/meta-llama/Llama-3.1-70B-
Instruct

13https://huggingface.co/meta-llama/Llama-3.3-70B-
Instruct

14https://huggingface.co/Qwen/Qwen3-4B
15https://huggingface.co/Qwen/Qwen3-8B
16https://huggingface.co/Qwen/Qwen3-14B
17https://huggingface.co/Qwen/Qwen3-32B

22462

https://doi.org/10.48550/ARXIV.2302.05128
https://doi.org/10.48550/ARXIV.2302.05128
https://doi.org/10.18653/V1/2024.ACL-LONG.563
https://doi.org/10.18653/V1/2024.ACL-LONG.563
https://doi.org/10.18653/V1/2023.ACL-LONG.236
https://doi.org/10.18653/V1/2023.ACL-LONG.236
https://doi.org/10.18653/V1/2023.ACL-LONG.236
https://doi.org/10.18653/V1/2024.ACL-LONG.215
https://doi.org/10.18653/V1/2024.ACL-LONG.215
https://doi.org/10.18653/V1/2024.ACL-LONG.215
https://doi.org/10.48550/ARXIV.2406.04520
https://doi.org/10.48550/ARXIV.2406.04520


Figure 7: Annotation guideline for quality verification.

Surface Form Impacts Temporal Reasoning.
We explain this type of error with the example
illustrated in Fig. 8 and Table 7. Although the
prototype and concretized dialogues describe the
exact same scenario, only the prototype resulted
in the correct project completion date of Septem-
ber 14. In the prototype, the model correctly an-
chored task scheduling to the explicitly stated kick-
off on Saturday, September 11, assigning Task A
to that date and computing downstream task tim-
ing accordingly. However, in the more naturalistic
version, the model erroneously began scheduling
from September 7, the date of the conversation
despite the same kickoff being mentioned. This
caused it to predict an invalid completion date of
September 9. The shift appears to result from in-
creased surface complexity: while the prototype
used structured, abstract language, the concretized
version contained narrative elements, justifications
for constraints, and conversational phrasing that
likely distracted the model from the global tempo-
ral constraint. This highlights how even when the
semantics are preserved, variation in surface form
can significantly impair temporal reasoning. See
Fig. 8 and Table 7 for details. These results suggest
that models like Gemini 2.5 Flash are sensitive to
surface cues and may deprioritize global temporal
anchors when interpreting more naturalistic input.

Surface Form Reduces Reasoning Length. One
of the most intriguing failure modes we observe
arises from the gap between abstract prototypes
and their concretized natural language counterparts.
While the concretization introduces more realistic
language and richer narrative cues, it paradoxically
leads to shorter reasoning chains. This is coun-
terintuitive: concretized examples contain more
linguistic surface variability, named entities, and
natural phrasing, so we would expect them to re-
quire more, not less, reasoning to reach a correct
answer. Yet, when evaluated with Gemini 2.5 Flash,
we observe a consistent and statistically significant
drop in reasoning length: prototype examples av-
erage 7395.12 tokens in the reasoning trace, while
concretized versions average only 5992.83 tokens.
This reduction in token length is not merely cos-
metic but also correlates with worse performance.
In a representative example, the model correctly
solves the abstract prototype by leveraging paral-
lelism across agents and respecting all constraints,
but fails on the concretized version by redundantly
assigning all tasks to a single agent, resulting in
delayed project completion. This suggests that the
model allocates less cognitive effort to naturalistic
inputs, possibly due to implicit assumptions about
verbosity or prompt familiarity, leading to under-
developed planning in more lifelike scenarios. See
Fig. 9 and Table 8 for example illustration.

22463



Original Dialogue:

Olivia: Great news, Liam! We’re kicking off the RC monster truck shock absorber project this Saturday.
Liam: Sounds good, Olivia. Could you remind me of the main task breakdown we agreed on for this initial concept
phase?
Olivia: Certainly, Liam. We’ll start with "Define Load & Damping for RC Truck", then move to "Sketch
Piston-Cylinder Assembly", and finally "Specify Spring & Damping Fluid".
Liam: ‘Define Load & Damping’ should take 1 day. ‘Sketch Piston-Cylinder Assembly’ takes 1 day, and ‘Specify
Spring & Damping Fluid’ takes 2 days.
Liam: "Sketch" and "Specify" both depend on the completion of "Define Load & Damping".
Liam: I can work any day, but after 2 consecutive days, I need a 1-day rest.
Olivia: I work only on weekdays, need 1 day break between tasks, and will be unavailable next Monday, Sept 13.

Figure 8: Concretized version of the RC shock absorber dialogue, annotated with task descriptions (task names), du-
rations (durations), dependencies (dependencies), Liam’s constraints (work/rest), and Olivia’s constraints (weekday-
only, breaks, unavailability).

Prototype Dialogue Concretized Dialogue
Agent2: The project will start at 2014-12-17 00:00 GMT. Michael: Alright Sarah, let’s get this web series analysis

project rolling. We need to wrap this initial phase up quickly,
aiming to finish within the next two days.

Agent1: How is the project decomposed? I remember we
discussed this before.

Sarah: Sounds good, Michael. Could you remind me how
we’re breaking down these initial steps for the audience recep-
tion part? I know we chatted about it.

Agent2: As discussed before, the whole project consists of
several tasks: Task A, Task B, Task C.

Michael: Sure thing. For this first stage, we have three main
tasks: First, we need to ’Select and Finalize Web Series
Episode for Analysis’, then ’Compile Audience Reactions
from YouTube Comments’, and also ’Compile Audience Re-
actions from Relevant Subreddit’.

Agent1: Task durations are: Task A takes 2 hour(s), Task B
takes 1 hour(s), Task C takes 1 hour(s).

Sarah: Okay, so for ’Select and Finalize Episode’, I’d allocate
2 hours. Then, ’Compile YouTube Comments’ should take
about 1 hour, and similarly ’Compile Subreddit Comments’
will also be about 1 hour.

Agent2: Task B must begin only after Task A is completed.
Task C must begin only after Task A is completed.

Michael: And just to confirm, both the YouTube comment
compilation and the Subreddit compilation can only start after
we’ve finalized the episode selection, right?

Agent1: My working hours are 11:00–19:00 in AEST
(GMT+10). I take a meal break from 15:00 to 16:00. I need a
break of at least 3 hour(s) between any two tasks I perform.

Sarah: Exactly. My working hours are 11:00 to 19:00 AEST,
that’s GMT+10. I usually take my lunch around 15:00 to
16:00. Also, I need a break of at least 3 hours between any
two tasks I perform.

Agent2: My working hours are 9:00–17:00 in EST (GMT-5).
I take a meal break from 13:00 to 15:00. I need a break of at
least 3 hour(s) between any two tasks I perform.

Michael: Understood. I’m on EST, GMT-5, working 9:00 to
17:00. My lunch break is typically from 13:00 to 15:00. I also
need a 3-hour break between tasks.

Figure 9: Line-aligned comparison between the prototype and concretized versions of the same task scheduling
dialogue. While both express identical task structures, durations, dependencies, and constraints, the naturalistic
surface form in the concretized version led models to reduce its reasoning depth and produce a suboptimal schedule.

22464



Models & Methods Short Long Overall

Naive Baseline
Random 4.16 14.29 9.23

Standard LLMs
Gemma 3 1B 0.00 0.00 0.00
Gemma 3 4B 1.33 4.33 2.83
Gemma 3 12B 0.67 1.00 0.83
Gemma 3 27B 1.33 11.00 6.17
LLaMA 3.1 8B 1.00 6.67 3.83
LLaMA 3.1 70B 1.67 3.67 2.67
LLaMA 3.3 70B 1.67 6.67 4.17
Qwen3 4B 4.33 7.67 6.00
Qwen3 8B 3.67 10.33 7.00
Qwen3 14B 1.67 10.33 6.00
Gemini 1.5 Pro 2.00 8.33 4.67
Gemini 2.0 Flash Lite 3.00 10.00 6.50
Gemini 2.0 Flash 2.33 7.33 4.83
GPT-4.1 mini 10.33 9.00 9.67
GPT-4.1 10.00 10.33 10.17

Standard LLMs + Chain-of-Thought
Gemma 3 1B 0.22 0.89 0.56
Gemma 3 4B 0.11 1.00 0.56
Gemma 3 12B 7.44 7.33 7.39
Gemma 3 27B 2.56 10.22 6.39
LLaMA 3.1 8B 1.78 7.22 4.50
LLaMA 3.1 70B 6.44 11.78 9.11
LLaMA 3.3 70B 13.00 16.11 14.56
Qwen3 4B 8.33 10.67 9.50
Qwen3 8B 7.67 13.67 10.67
Qwen3 14B 14.00 23.00 18.50
Gemini 1.5 Pro 12.33 14.33 13.33
Gemini 2.0 Flash Lite 17.33 15.00 16.17
Gemini 2.0 Flash 11.33 20.00 15.67
GPT-4.1 mini 40.33 62.00 51.17
GPT-4.1 50.33 65.00 57.67

Reasoning LLMs
Qwen3 4B 28.11 36.00 32.06
Qwen3 8B 21.56 42.67 32.11
Qwen3 14B 58.89 53.89 56.39
Gemini 2.5 Flash 45.33 78.67 61.98
Gemini 2.5 Pro 57.11 85.63 71.37
o4-mini 76.33 86.44 81.39

Table 4: Complete benchmark results on TCP.

Models & Methods Short Long Overall

Reasoning LLMs
Gemini 2.5 Flash 53.67 81.33 67.50
Gemini 2.5 Pro 60.89 85.67 73.28
o4-mini 79.78 94.56 87.17

Table 5: Results on problem prototypes.

Models & Methods Short Long Overall

Reasoning LLMs
Gemini 2.5 Flash 47.40 73.50 60.45
Gemini 2.5 Pro 57.78 85.50 71.64
o4-mini 56.78 81.89 69.34

Table 6: Results after providing time-related world
knowledge.

E Time Zone Error Analysis

Time Zone Misinterpretation. We explain this
type of error with the example illustrated in Fig. 10
and Table 9. The model incorrectly interpreted
Sarah’s time zone (marked as CET) as UTC+2,
likely assuming it referred to daylight saving time
(CEST). However, the input explicitly said CET,
which is UTC+1. This led the model to assume
Sarah could begin work at 08:00 UTC instead of
the correct 09:00 UTC. As a result, Task A was
scheduled one hour earlier than valid, allowing
Tasks 2 and 3 to begin prematurely. This propa-
gation caused the model to report a project finish
time of 13:00 GMT, which is an hour earlier than
the actual earliest feasible time of 14:00 GMT.
The misalignment is entirely due to the time zone
conversion error. See Fig. 10 and Table 9 for an
illustration. This error highlights a broader chal-
lenge: models often rely on heuristics or default
assumptions about time zones (which become hal-
lucinations in TCP), making them vulnerable to
subtle but consequential temporal misinterpreta-
tions even when the input is technically correct.

Project Start Time Violation. We explain this
type of error with the example illustrated in Fig. 11
and Table 10. The model violated the project
start time constraint by scheduling Task A at 22:00
GMT on October 20, which is before the allowed
start of 00:00 GMT on October 21. While the
time zone conversion from AEST to GMT was
correctly handled (Sarah’s 8:00 AM AEST avail-
ability does translate to 22:00 GMT), the model

22465



Aspect Prototype Prediction Concretized Prediction

Project kickoff date interpretation Correctly anchored to Saturday, Sept 11 Anchored to dialogue date, Sept 7
Task scheduling Task A on Sept 11; others follow respect-

ing constraints
Task A on Sept 7; subsequent tasks con-
clude by Sept 9

Final predicted completion date Sept 14 (correct) Sept 9 (invalid)
Constraint enforcement Global project start constraint maintained Overwritten by local availability reason-

ing
Possible cause Structured prompt helped retain con-

straints
Natural dialogue introduced distractors

Table 7: Despite identical constraints, the model adhered to the project start date in the abstract prototype but
violated it in the concretized version.

Aspect Prototype Prediction Concretized Prediction

Final predicted completion time 2014-12-17 15:00 GMT (correct) 2014-12-18 02:00 GMT (incorrect)
Task scheduling strategy Assigned Tasks B and C to different

agents to enable parallelism
Assigned all tasks to one agent, resulting
in serial execution

thoughts_token_count 6145 4673
Constraint enforcement All constraints met with minimal delay Ignored agent availability and forced un-

necessary waiting
Failure point N/A Ignored the possibility of parallel task

execution
Reasoning excerpt “Agent1 performs Task A at 01:00 GMT.

Agent2 starts Task C at 14:00 GMT.”
“Sarah performs Task A at 01:00 GMT.
After 3h break and lunch, she performs
Task B and then Task C next day.”

Reasoning summary Used both agents to minimize total time Failed to use second agent, increasing
project duration

Table 8: Despite identical constraints, the model generated correct reasoning in the abstract prototype but failed in
the concretized version. The discrepancy corresponds with a significant drop in reasoning token length.

failed to enforce the global project start constraint.
This early execution allowed subsequent depen-
dent tasks to start and complete earlier than valid.
Specifically, it enabled Ben’s Task C to begin at
07:00 GMT and complete by 08:00 GMT. How-
ever, once Task A is correctly restricted to start
no earlier than 00:00 GMT, all subsequent tasks
are pushed back. Accounting for Sarah’s required
3-hour break, Ben’s availability, and lunch hours,
the actual earliest valid project completion time
becomes 14:00 GMT on October 21. The error
propagated entirely from violating the global time
constraint on project start. See Fig. 11 and Table 10
for illustration. This failure indicates that models
can overlook global constraints even when local
scheduling appears consistent, suggesting a need
for stronger global constraint enforcement mecha-
nisms in temporal planning.

F Output Trace Comparison between
Reasoning LLMs and Standard LLMs
+ CoT

We include illustrations of the qualitative case stud-
ies (Fig. 12 and Fig. 13; Table 11 and Table 12) in
this section.

G Dual Interpretation of Temporal
Reasoning

Many temporal reasoning skills such as time zone
conversion and date–weekday transformation can
be interpreted in two ways: either as independent
temporal reasoning abilities or as a combination of
world knowledge and reasoning. For example, if
a model knows what each time zone represents, it
can apply mathematical reasoning to compute the
relative difference between two zones and thereby
answer time-related questions. In this work, follow-
ing prior studies on temporal reasoning (Wang and
Zhao, 2024), we adopt the first interpretation and
treat temporal reasoning as an independent ability.

As a supplement, drawing on the second inter-
pretation of temporal reasoning, we conduct a sep-
arate analysis in which we provide additional con-
textual information to test whether time-related
world knowledge can assist reasoning LLMs in
time constraint-based planning. For long problems,
the prompt includes the weekday corresponding
to the date mentioned in the question, whereas for
short problems, it includes the relative distances
between time zones. The experimental results in Ta-
ble 6 indicate that even with such additional knowl-

22466



Original Dialogue:

Sarah: Alright Mark, let’s get this initiative for the standardized internal project progress report template underway.
Mark: Great, Sarah! Could you refresh my memory on how we’ve structured the initial tasks for this? I know we
discussed the breakdown.
Sarah: Certainly. We’ve identified three core tasks to start: first, "Brainstorm Key Data Points for Report" to
define what information is crucial. Following that, we have "Draft Report Template Layout in Google Docs" to
create the actual template. And finally, "Develop Submission Guidelines and Review Protocol Document" to
establish the process around it.
Mark: That makes sense. And what are the estimated durations for these specific tasks?
Sarah: Good question. According to our planning, "Brainstorm..." is set for 1 hour. "Draft..." should take about 2
hours, and "Develop..." is allocated 3 hours.
Mark: Okay, and in terms of dependencies, "Draft..." and "Develop..." both depend on "Brainstorm...".
Sarah: Just so you know my schedule, I’m working from 10:00 to 18:00 CET. I have my standard lunch break
between 15:00 and 16:00. I also need at least a 1 hour break between any two distinct tasks.
Mark: Understood. My hours are 8:00 to 16:00 UTC, and I’ll take my lunch from 11:00 to 12:00. I also require at
least 1 hour between my tasks.

Figure 10: Annotated dialogue highlighting time zone (CET/UTC), task descriptions (task names), durations
(durations), and dependencies (dependencies).

Aspect Model’s Assumption Actual Constraint

Sarah’s timezone CET = UTC+2 (interpreted as summer
time)

CET = UTC+1 (as stated)

Sarah’s working hours (UTC) 08:00–16:00 09:00–17:00
Start of Task A 08:00 (Sarah) 09:00
Task B and 3 start eligibility After 09:00 After 10:00 (due to Task A duration =

1h)
Earliest Task C window Sarah: 10:00–13:00 11:00–14:00 (requires 3h block before

lunch)
Project completion time 13:00 UTC 14:00 UTC

Table 9: Comparison of model reasoning vs. actual constraint enforcement. Time zone error leads to premature task
scheduling.

Original Dialogue:

Ben: Alright Sarah, let’s nail down the schedule for our ‘Echoes of Oakwood’ project. We need to get this wrapped
up quickly.
Sarah: Okay, Ben. Could you remind me how we decided to break down the main research tasks for analyzing the
Oakwood rezoning coverage?
Ben: Sure, Sarah. We agreed on three main stages: First, "Pinpoint and Archive Initial Reports on the Oakwood
Rezoning from ‘The Chronicle’ and ‘Channel 7’". Then, we’ll have two parallel analyses: "Deconstruct
Narrative Framing & Source Use in ‘The Oakwood Chronicle’ Rezoning Articles" and "Deconstruct Narrative
Framing & Source Use in ‘Channel 7 Oakwood News’ Rezoning Segments".
Sarah: Right. "Pinpoint..." should take 1 hour. "Deconstruct...Chronicle" takes 2 hours, and "Deconstruct...Channel
7" takes 1 hour.
Sarah: And just to confirm, "Deconstruct...Chronicle" and "Deconstruct...Channel 7" both depend on the
completion of "Pinpoint...".
Sarah: My working hours are 8:00 to 16:00 AEST (GMT+10). I take lunch between 11:00 and 12:00, and I need at
least a 3-hour break between tasks.
Ben: I’m on UTC time, working from 7:00 to 15:00, with lunch from 11:00 to 13:00. I need at least a 1-hour break
between tasks.

Figure 11: Annotated dialogue highlighting time zones (AEST/UTC), task descriptions (task names), durations
(durations), and dependencies (dependencies).

22467



Aspect Model’s Assumption Actual Constraint

Project start time Tasks may start at 2019-10-20 22:00
GMT

Project begins no earlier than 2019-10-21
00:00 GMT

Task A scheduled for Sarah 22:00–23:00 GMT on Oct 20 Must begin on or after 00:00 GMT Oct
21

Impact on downstream tasks Tasks 2 and 3 start earlier due to early
Task A

Tasks 2 and 3 must be delayed accord-
ingly

Final task end time 08:00 GMT 14:00 GMT

Table 10: Comparison of model reasoning vs. actual constraint enforcement. Project start time constraint was
violated, allowing premature scheduling.

Output Trace of Qwen3 14B with Thinking Enabled
<think> Okay, let’s try to figure out the earliest completion
date for their study. First, I need to outline all the tasks...
Alternatively, assign Task A to Dr. Hanson...But let’s try to
find the optimal way. If we assign Task A to Mark Chen...
Wait, but that would be three weekdays, but with a weekend
in between... Alternatively, if he starts Task A on Monday,..
But if Dr. Hanson does Task A, she can work any day,...
</think>
1. Task A – Design Priming Materials and Web Interface
(3 days):
Assign Dr. Hanson to Task A...
2. Task C – Manipulation Check Questions (1 day):
Assign Dr. Hanson to Task C.
3. Task B – Recruitment and Data Collection (3 days):
Assign Mark Chen to Task B.
4. Final Completion Date:
Task A is completed on July 20. Task C is completed on July
20. Task B is completed on July 23.
5. Final Answer:
2014-07-23

Output Trace of Qwen3 14B with Thinking Disabled
1. Identify the Tasks and Their Durations:
From the conversation, the project is divided into three main
tasks...
2. Task Dependencies:
Task B depends on Task A being completed...
3. Work Constraints:
Mark Chen: Works only on weekdays (Monday to Friday)...
4. Determine the Earliest Start Date:
The conversation happens on 2014-07-15. That is a Tuesday...
5. Assign Tasks to People:
We need to assign the tasks to Mark Chen and Dr. Hanson...
Assign Task A to Mark Chen:
Task A is 3 days. Mark Chen can work 3 consecutive week-
days...
After Task A is completed (2014-07-22), Tasks B and C
can start.
Now, we need to assign Task B (3 days) and Task C (1 day) to
Dr. Lena Hanson...
6. Final Project Completion Date
... So, the earliest date that the entire project can be completed
is: 2014-07-27

Figure 12: Comparison of output traces generated by Qwen3 14B with thinking enabled and disabled + CoT
prompting, for solving the same problem.

edge, model performance does not improve. We
attribute this to the fact that the main challenge
in time constraint-based planning lies in manag-
ing multiple interdependent temporal constraints, a
difficulty that cannot be alleviated merely by sup-
plying time-related knowledge.

H Prompts

We provide in this section all the prompts that we
used for data construction and model evaluation.

I Additional Example Problems

We provide additional example problems in Fig. 19.
The top two are long problems, while the bottom
two are short problems. Specifically, the top-left
problem corresponds to Electrical Engineering with
dependency type A → C, B → C, the top-right to
Psychology with dependency type A → B, B → C,
the bottom-left to Biology with dependency type
A → B, A → C, and the bottom-right to Nurs-

ing/Health Sciences with dependency type A → C,
B → C.

22468



Aspect Prototype Prediction Concretized Prediction

Final predicted completion time 2014-07-23 (correct) 2014-07-27 (incorrect)
Reasoning strategy Enumerated an initial solution, then re-

vises for optimal arrangement
Assigned tasks without careful analysis
and no revision

Failure point N/A Assigned task A to Mark Chen on the
dates that are weekends.

Reasoning excerpt “Assign Dr. Hanson to Task A.” “Mark Chen can work 3 consecutive
weekdays (e.g., 2014-07-18, 2014-07-21,
2014-07-22) – that’s 3 days.”

Reasoning summary Activating reasoning mode encourages
iterative reflection, which improves the
chances of reaching the correct solution

Failed to convert temporal information
with limited reasoning ability

Table 11: Comparison of output traces generated by Qwen3 14B with thinking enabled and disabled + CoT
prompting, for solving the same problem.

Reasoning Path Structure of Gemini 2.5 flash
1. Determine the Start Date:
The conversation is on 2014-04-02 (a Wednesday). The
project starts "this Saturday," which is 2014-04-05.
2. Identify Tasks and Durations:
Task A: Identify Potential Crises & Audiences (2 days)
Task B: Draft Response Protocols & Templates (1 day)
Task C: Establish Channels & Monitoring Plan (1 day)
3. Identify Dependencies: Task B depends on Task A. Task
C depends on Task B. The sequence is A -> B -> C.
4. Identify Resource Constraints:
Chloe: Available: Any day (weekdays & weekends)...
David: Available: Weekdays only (Mon-Fri)...
5. Schedule the Tasks
Task A (2 days):
Must start on 2014-04-05 (Saturday). David cannot work
weekends, so Chloe must do Task A...
Task B (1 day):
Depends on Task A. Earliest start is Monday, 2014-04-07...
Task C (1 day):
Depends on Task B. Earliest start is the day after Task B
finishes...
The final answer is 2014-04-08.

Reasoning Path Structure of GPT-4.1 mini
Given: Conversation date: 2014-04-02 (Wednesday)
Project start: This Saturday (2014-04-05)
...
1: Assign tasks to Chloe or David
We have 3 tasks: 2 days, 1 day, 1 day...
2: Consider starting date and constraints
Project starts Saturday, 2014-04-05...
3: Chloe’s sister visit next week (2014-04-07 to 2014-04-13)
Chloe wants a couple of full days off next week (7th to 13th)...
4: Plan the schedule
We want to finish as early as possible.
5: Assign tasks to minimize total duration
Option 1: Chloe does all tasks. Task 1: 2 days, Task 2: 1 day,
Task 3: 1 day, Total: 4 days...
6: Can David help to finish earlier?
David can only work weekdays. If David does Task 1 (2 days)
on Mon (7th) and Tue (8th), then Chloe can do Task 2 and 3
on Wed (9th) and Thu (10th)...
7: Can we finish earlier than Thu (10th)? No, because:
David cannot work weekends (Sat, Sun)...
Final conclusion:
Earliest project completion date is 2014-04-10.

Figure 13: Comparison of output traces generated by a reasoning model Gemini 2.5 Flash and a standard LLM
GPT-4.1 mini prompted with CoT, for solving the same problem.

Aspect Prototype Prediction Concretized Prediction

Final predicted completion time 2014-04-08 (correct) 2014-04-10 (incorrect)
Reasoning strategy Solved task-by-task with a structured

plan
Added information incrementally in an
ad hoc manner

Failure point N/A Unclear subgoal prompts the model to
overfit to local context instead of optimiz-
ing overall schedule.

Reasoning excerpt “5. Schedule the Tasks: Task A (2 days);
Task B (1 day); Task C (1 day)”

“Step 5: Assign tasks to minimize total
duration Step 6: Can David help to finish
earlier? Step 7: Can we finish earlier than
Thu (10th)?”

Reasoning summary Enabled comprehensive consideration via
well-structured reasoning process

Failed to incorporate critical constraints
due to ambiguously named intermediate
steps

Table 12: Comparison of output traces generated by a reasoning model Gemini 2.5 Flash and a standard LLM
GPT-4.1 mini prompted with CoT, for solving the same question.

22469



Prompt for Short Project Scenario Generation:

You are a project designer. Your job is to invent a new, realistic, and creative project in the area of ’{area}’, inspired
by the following example project. Your new project should:
- Have a similar number of tasks (with distinct, concrete names and descriptions).
- Preserve the same dependency structure between tasks (see below).
- Be original, not a copy or trivial rewording of the example or any previously generated project (if provided).
- Be plausible for a real team to execute in this domain.
- Each task in the project must be scheduled to finish within a FEW HOURS (e.g., 2–6 hours per task, all tasks finish
in a single day).

Here are the previously generated projects. The new project MUST NOT copy or trivially reword any of
them. Use them as negative examples to ensure originality:
{prev_refs}

Example project (format):
{example_json}

—

Please output a new project as a JSON object in the EXACT SAME FORMAT as the example above, with all the
following fields:
- project_name: (str) The new project name
- tasks: (list of dict) Each with ’task_name’ and ’possible_contents’
- dependencies: (list of [from_task, to_task])
- task_name_map: (dict) Mapping new task names to generic names (e.g., ’Task A’, ’Task B’, ...)
- dependencies_map: (list of [from_task_generic_name, to_task_generic_name]), mapping each new task name to its
corresponding generic task name (e.g., ’Task A’, ’Task B’, ...) from dependencies

IMPORTANT: Only output the JSON object, no commentary or markdown. Maintain the same field names and
structure as the example.

Figure 14: Complete prompt for project scenario generation for short problems. {area} denotes a domain, e.g.,
Computer Science. {prev_refs} represents the generated project scenarios within the same domain and dependency
type from rounds 0 to r − 2. {example_json} is the project scenario within the same domain and dependency type
generated from the previous round r − 1.

22470



Prompt for Long Project Scenario Generation:

You are a project designer. Your job is to invent a new, realistic, and creative project in the area of ’{area}’, inspired
by the following example project. Your new project should:
- Have a similar number of tasks (with distinct, concrete names and descriptions).
- Preserve the same dependency structure between tasks (see below).
- Be original, not a copy or trivial rewording of the example or any previously generated project (if provided).
- Be plausible for a real team to execute in this domain.
- Each task in the project must be scheduled to finish within 1-3 days.

Here are the previously generated projects. The new project MUST NOT copy or trivially reword any of
them. Use them as negative examples to ensure originality:
{prev_refs}

Example project (format):
{example_json}

—

Please output a new project as a JSON object in the EXACT SAME FORMAT as the example above, with all the
following fields:
- project_name: (str) The new project name
- tasks: (list of dict) Each with ’task_name’ and ’possible_contents’
- dependencies: (list of [from_task, to_task])
- task_name_map: (dict) Mapping new task names to generic names (e.g., ’Task A’, ’Task B’, ...)
- dependencies_map: (list of [from_task_generic_name, to_task_generic_name]), mapping each new task name to its
corresponding generic task name (e.g., ’Task A’, ’Task B’, ...) from dependencies

IMPORTANT: Only output the JSON object, no commentary or markdown. Maintain the same field
names and structure as the example.

Figure 15: Complete prompt for project scenario generation for long problems. {area} denotes a domain, e.g.,
Computer Science. {prev_refs} represents the generated project scenarios within the same domain and dependency
type from rounds 0 to r − 2. {example_json} is the project scenario within the same domain and dependency type
generated from the previous round r − 1.

22471



Prompt for Concretizing Short Problems:

You are given a scheduling problem in a JSON structure. Your task is to rewrite ("evolve") the scenario to make it
realistic, concrete, and vivid, following these rules:

1. Invent a specific project scenario and ensure all tasks and dialogue are consistent with this scenario. Use the
following project as inspiration: [{area} - {project_name}]. The main tasks are:
{task_descriptions}
Make the dialogue and scenario sound like a real project, using your imagination for context.
2. Make sure the person who asks the task durations will not be the same one who answers this question. Similarly,
make sure the person who asks the project decomposition will not be the same one who answers this question.
3. Replace generic agent names (e.g., ’Agent1’, ’Agent2’) with realistic, human names. Use your imagination to
invent suitable names; do not use a predefined list.
4. Replace generic task names (e.g., ’Task A’, ’Task B’, ’Task C’) with highly specific, concrete real-world tasks that
clearly belong to the invented scenario. Avoid vague or generic task names. The workload of each task should be
consistent with the duration. The dependencies between concretized tasks should be consistent with the original
dependencies between generic tasks. The dependencies between concretized tasks should be logical.
5. When changing the task and agent names, make sure to update the corresponding fields in the JSON: "tasks",
"agents", "dependencies", and "dependency_graph" so that the structure is consistent and all references match the
new names.
6. For every agent’s availability constraint mentioned in the dialogue (such as "I can work up to 3 consecutive hours,
then must rest at least 1 hour(s) before working again." or "I need a break of at least 1 hour(s) between any two tasks
I perform."), add a natural-sounding reason or justification. For example: "because I need to spend some time with
my newly-born baby". The reason should be plausible and detailed and fit the context of the scenario. Note that the
reason should be logical to happen in the period of rest time.
7. Except changing the generic names (e.g., ’Agent1’, ’Agent2’) to the real names in "agent_constraints" and
"agent_constraints_gmt", do not change the numbers in "agent_constraints" and "agent_constraints_gmt".
8. You may freely paraphrase any sentence in the dialogue, as long as you do not alter the logic or the facts in the
original sentence. You can also paraphrase the question, but do not change the core meaning.
9. Do NOT change any numbers, constraints, durations, or logic in the data. Use "hour" or "hours" to substitute
"hour(s)".
10. The entire project must be scheduled to finish within a day. Make sure all dialogue and constraints are consistent
with this total project duration.
11. Output the result as a JSON object with the same structure as the input, but with the scenario, dialogue, names,
and relevant fields concretized.

IMPORTANT: Do not include “‘json at the beginning and “‘ at the end of the output. Do not generate any comment.

Here is the original data:

{problem_prototype}

Figure 16: Complete prompt for concretizing short problems. {area} denotes a domain, e.g., Computer Science.
{project_name} is the name of the sampled project scenario. {task_descriptions} denotes the descriptions of
different tasks in the sampled project scenario. Descriptions are generated together with each project scenario.
{project_prototype} represents project prototype.

22472



Prompt for Concretizing long Problems:

You are given a scheduling problem in a JSON structure. Your task is to rewrite ("evolve") the scenario to make it
realistic, concrete, and vivid, following these rules:

1. Invent a specific project scenario and ensure all tasks and dialogue are consistent with this scenario. Use the
following project as inspiration: [{area} - {project_name}]. The main tasks are:
{task_descriptions}
Make the dialogue and scenario sound like a real project, using your imagination for context.
2. Make sure the person who asks the task durations will not be the same one who answers this question. Similarly,
make sure the person who asks the project decomposition will not be the same one who answers this question.
3. Replace generic agent names (e.g., ’Agent1’, ’Agent2’) with realistic, human names. Use your imagination to
invent suitable names; do not use a predefined list.
4. Replace generic task names (e.g., ’Task A’, ’Task B’, ’Task C’) with highly specific, concrete real-world tasks that
clearly belong to the invented scenario. Avoid vague or generic task names. The workload of each task should be
consistent with the duration. The dependencies between concretized tasks should be consistent with the original
dependencies between generic tasks. The dependencies between concretized tasks should be logical.
5. When changing the task and agent names, make sure to update the corresponding fields in the JSON: "tasks",
"agents", "dependencies", and "dependency_graph" so that the structure is consistent and all references match the
new names.
6. For every agent’s availability constraint mentioned in the dialogue (such as "I can work up to 3 consecutive days,
then must rest at least 1 day(s) before working again." or "I need a break of at least 1 day(s) between any two tasks I
perform."), add a natural-sounding reason or justification. For example: "because I need to spend some time with
my newly-born baby". The reason should be plausible and detailed and fit the context of the scenario. Note that the
reason should be logical to happen in the period of rest time.
7. Except changing the generic names (e.g., ’Agent1’, ’Agent2’) to the real names in "agent_unavailable_dates", do
not change the numbers in "agent_unavailable_dates".
8. You may freely paraphrase any sentence in the dialogue, as long as you do not alter the logic or the facts in the
original sentence. You can also paraphrase the question, but do not change the core meaning.
9. Do NOT change any numbers, constraints, durations, or logic in the data. Use "day" or "days" to substitute
"day(s)".
10. The entire project must be scheduled to finish within 7 days. Make sure all dialogue and constraints are
consistent with this total project duration.
11. Output the result as a JSON object with the same structure as the input, but with the scenario, dialogue, names,
and relevant fields concretized.

IMPORTANT: Do not include “‘json at the beginning and “‘ at the end of the output. Do not generate any comment.

Here is the original data:

{problem_prototype}

Figure 17: Complete prompt for concretizing long problems. {area} denotes a domain, e.g., Computer Science.
{project_name} is the name of the sampled project scenario. {task_descriptions} denotes the descriptions of
different tasks in the sampled project scenario. Descriptions are generated together with each project scenario.
{project_prototype} represents project prototype.

22473



Prompt for LLM-Based Soft Check:

You are given two scheduling problems. Your job is to judge whether they represent the same scheduling scenario
and question in essence.

Pay special attention to:
- Whether the dialogues are representing the same scenario (project structure, dependencies, constraints, etc.)
- Whether the questions are generally the same (even if task contents are different)

If they are essentially the same, answer YES and briefly explain why. If not, answer NO and explain the main
differences. Wrap YES or NO in \boxed{}. Always provide your answer before giving explanation.

—

[Evolved/Seed Dialogue]:
{problem_dialogue}

[Evolved/Seed Question]: {problem_question}

[Original Dialogue]:
{prototype_dialogue}

[Original Question]: {prototype_question}

—

Figure 18: Complete prompt for the LLM-based soft check. {problem_dialogue}/{problem_question} and {proto-
type_dialogue}/{prototype_question} denote the dialogue/question of a concretized problem and its corresponding
project prototype, respectively.

22474



Figure 19: Additional example short (bottom) and long (top) problems in TCP.

22475


