
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 22476–22484
November 4-9, 2025 ©2025 Association for Computational Linguistics

The Role of Outgoing Connection Heterogeneity in Feedforward Layers of
Large Language Models

Felix Stahlberg and Shankar Kumar
Google Research

{fstahlberg,shankarkumar}@google.com

Abstract

We report on investigations into the character-
istics of outgoing connections in feedforward
layers of large language models. Our findings
show that inner neurons with diverse outgo-
ing connection strengths are more critical to
model performance than those with uniform
connections. We propose a new fine-tuning
loss that takes advantage of this observation
by decreasing the outgoing connection entropy
in feedforward layers. Using this loss yields
gains over standard fine-tuning across two dif-
ferent model families (PaLM-2 and Gemma-2)
for downstream tasks in math, coding, and lan-
guage understanding. To further elucidate the
role of outgoing connection heterogeneity, we
develop a data-free structured pruning method,
which uses entropy to identify and remove neu-
rons. This method is considerably more effec-
tive than removing neurons either randomly or
based on their magnitude.

1 Introduction

Neuroscience has long recognized the importance
of neuronal diversity for the brain’s computational
power. However, this principle has largely been
overlooked in the development of artificial neu-
ral networks (Fan et al., 2025). Our research
demonstrates the benefits of increased heterogene-
ity within the outgoing connections of feedforward
layers in large language models (LLMs), mirror-
ing the functional advantages observed in biolog-
ical systems. We propose a new loss called Non-
Uniform Connectivity Loss (NUCL) for fine-tuning
LLMs that biases the outgoing connections of in-
ner neurons in feedforward layers towards a non-
uniform, i.e. low-entropy distribution. The intu-
ition behind NUCL is illustrated in Fig. 1. The neu-
ron j (in red) activates all output neurons equally,
and thus is unlikely to be a sharp representation
of functionality, particularly as the layer is usually
followed by layer normalization (Ba et al., 2016).

Figure 1: A GeGLU (Shazeer, 2020) feedforward layer
in a Transformer-based (Vaswani et al., 2017) LLM like
Gemma (Gemma et al., 2024) with incoming weight
matrices U and V and outgoing weight matrix W . The
neuron i with non-uniform connections is more func-
tional than neuron j with mostly uniform connections.

NUCL explicitly penalizes uniform row vectors in
the outgoing weight matrix W , aiming to boost
the usefulness of each inner neuron. We show that
PaLM-2 and Gemma-2 models in various sizes im-
prove performance on math, coding, and language
understanding tasks when fine-tuned with a loss
function that combines NUCL with standard nega-
tive log-likelihood. NUCL is highly practical due
to its easy implementation, requiring only a few
lines of code.

To better understand the importance of connec-
tion heterogeneity in pre-trained models, we de-
velop a data-free neuron removal procedure based
on the weight matrix W s’ row vector entropies.
When 25% of the neurons are removed from the
Gemma feedforward layers, our entropy-based
method shows the least performance degradation
compared to the no-pruning baseline, outperform-
ing random and magnitude based pruning. Surpris-
ingly, magnitude-based pruning performs worse
than random pruning.

22476

Our fine-tuning experiments and our pruning ex-
periments reveal a crucial insight into how LLMs
function: the performance of a model is fundamen-
tally linked to the neuronal diversity in its feedfor-
ward layers.

2 The non-uniform connectivity loss

LLMs are commonly trained to predict the next
token in a sequence. The standard loss function for
a training example x = 〈x1, . . . xl〉 of length l is
the (text-based) negative log-likelihood:

LNLL(x,Θ) = −
l∑

k=1

logPΘ(xk|x1, . . . , xk−1)

(1)
where PΘ(·) is the conditional token-level prob-
ability distribution given by the LLM parameter-
ized with Θ. The model parameters Θ contain
a set WΘ of feedforward outgoing weight ma-
trices, one for each layer in the model (cf. Fig.
1). These matrices have m (inner dimensionality)
rows and n (model dimensionality) columns (i.e.
WΘ ⊂ Rm×n), where m � n in Gemma models
(cf. Appendix A). For a weight matrix W ∈ WΘ

and a row i ∈ [1,m] we define the outgoing weight
distribution rW,i ∈ Rn as the normalized absolute
values in the i-th row of W :

rW,i =(rW,i
1 , . . . , rW,i

n) with

∀j ∈ [1, n] : rW,i
j =

|Wij |∑n
j′=1 |Wij′ |

.
(2)

We propose the Non-Uniform Connectivity Loss
(NUCL) that biases the rW,i vectors towards a non-
uniform distribution. Ideally, we would directly use
the entropy of the outgoing weight distributions,
i.e. – dropping the W, i-superscripts for clarity:

LNUCL-ent(r) = −
n∑

j=1

rj log rj . (3)

In practice, however, we resort to surrogate func-
tions due to numerical instabilities when using
LNUCL-ent(·) for LLM fine-tuning. We experiment
with two loss variants. The first variant (gini), in-
spired by decision tree learning, is based on the
gini impurity (Breiman et al., 1984) in r:

LNUCL-gini(r) = 1−
n∑

j=1

r2
j . (4)

Our second variant (mstd) directly optimizes the
variance by minimizing the negative standard devi-
ation of r:

LNUCL-mstd(r) = −

√∑n
j=1 (rj − 1

n)
2

n
. (5)

Finally, we combine NUCL linearly with the
usual negative log-likelihood using a tunable scal-
ing hyper-parameter α:

L(x,Θ) = LNLL(x,Θ)+α
∑

W∈WΘ

m∑

i=1

LNUCL(rW,i).

(6)
A JAX implementation of NUCL is provided in

Appendix D.

3 Experimental setup

We use publicly available pre-trained LLMs and
evaluate on publicly available benchmarks. We
explore two LLM model families – PaLM 2 (Anil
et al., 2023) and Gemma 2 (Gemma et al., 2024) –
each in three different sizes. For PaLM 2 we use
the three sizes available via the Google Cloud API:
Gecko, Otter, and Bison. Gemma 2 is available in
2B, 9B, and 27B parameter variants (cf. Appendix
A). Training details are summarized in Appendix
C. We use three training datasets:

GSM8K (Cobbe et al., 2021) is a small dataset
of high-quality grade school math word problems
often used to assess LLMs.

SuperGLUE (Wang et al., 2019) is a bench-
mark consisting of eight different language under-
standing tasks. Training set sizes range from 250
to 101K examples which we mix proportionally,
following the super_glue_v102_proportional1

recipe in T5 (Raffel et al., 2020). Like prior work
we report average scores across all tasks, averaging
scores of tasks with multiple scores first.

MBPP (Austin et al., 2021) contains mostly
basic Python problems solvable by entry-level pro-
grammers. We report 3-shot success rates. We
augmented the MBPP training partition by propri-
etary coding data.

22477

Figure 2: Output connection entropy summed over in-
ner neurons in all feedforward layers (Gemma-9B).

Figure 3: Text-based NLL loss curve when training in
combination with NUCL (Gemma-9B).

4 Results

4.1 NUCL

We begin by evaluating the performance of our
mstd and gini variants. The training curves in Fig. 2
and Fig. 3 demonstrate that the training process is
stable across a wide range of α-values (10 to 1000),
with only minor variations in convergence for mstd.
Notably, Fig. 2 reveals that while both variants
reduce output connection entropy, mstd achieves
significantly greater reduction. Fig. 3 indicates that
mstd also results in better Text NLL loss. The supe-
riority of mstd is further substantiated by Table 1,
which shows the relative improvements over stan-
dard fine-tuning on downstream tasks.2 While both
mstd and gini show significant positive gains, mstd
offers a greater relative improvement, achieving
3.45% on downstream tasks, compared to gini’s
3.07%. We will therefore use mstd for the rest of
this paper.

Table 2 expands our evaluation to three Gemma

1https://github.com/google-research/
text-to-text-transfer-transformer/blob/main/
t5/data/mixtures.py

2Relative gains over standard fine-tuning (i.e. α = 0) are
reported to facilitate a more consistent analysis across different
model sizes. For absolute evaluation numbers, please refer to
Appendix B. The results for the Gecko model on GSM8K may
be affected by the low absolute accuracy this small baseline
model achieves on this task, making the relative improvement
scores more volatile.

Relative gain (in %)
Task Model gini mstd
GSM8K Gecko 10.61 11.45
(accuracy) Otter 2.50 2.64

Bison 0.80 1.34
SuperGLUE Gecko 1.61 1.57
(avg. score) Otter 0.26 0.23

Bison 2.64 3.47
Average 3.07 3.45

Table 1: Relative improvements over standard fine-
tuning for the PaLM-2 model family.

Relative gain (in %)
Model size MBPP GSM8K
2B 3.27 2.71
9B -1.43 3.51
27B 1.56 3.78

Table 2: Relative improvements over standard fine-
tuning for the Gemma-2 model family.

model sizes on MBPP and GSM8K. With the ex-
ception of the 9B model on MBPP, NUCL consis-
tently delivers relative gains ranging from 1.56%
to 3.78% compared to standard fine-tuning. What
makes these gains particularly noteworthy is that
NUCL is very simple to implement, requiring min-
imal code changes.

With NUCL’s effectiveness established on outgo-
ing feedforward weight matrices, we investigated
its applicability to other Transformer components.
Specifically, we tested NUCL on both incoming
feedforward weights (U and V in Fig. 1) and atten-
tion layer outgoing weights. However, as shown
in Table 3, the most significant performance gains
are achieved when NUCL is applied to outgoing
feedforward weights.

4.2 Entropy-based data-free neuron removal

Having demonstrated the performance benefits of
increasing outgoing weight heterogeneity during
fine-tuning, we now investigate its role in unmodi-
fied pre-trained models. To that end, we use neu-
ral network pruning as our testbed. The prun-
ing literature is extensive (Blalock et al., 2020),
with many of the most successful techniques em-

Weight matrices Relative gain (in %)
FFN outgoing 2.71
FFN incoming (linear) 0.34
FFN incoming (gated) 0.67
Attention outgoing -0.18

Table 3: Relative improvements over standard fine-
tuning for different Transformer components (GSM8K,
Gemma-2B).

22478

https://github.com/google-research/text-to-text-transfer-transformer/blob/main/t5/data/mixtures.py
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/t5/data/mixtures.py
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/t5/data/mixtures.py

Prun- Method MMLU HellaSwag ARC-e PIQA SIQA TriviaQA NQ Average
ing 5-shot 10-shot 0-shot 0-shot 0-shot 5-shot 5-shot
0% Pre-trained baseline 52.02 73.86 80.72 78.45 51.64 60.24 17.24 59.17
25% Srinivas and Babu (2015) 22.95 26.29 26.64 49.40 39.10 0.00 0.00 23.48

Stahlberg and Byrne (2017) 22.95 26.72 26.05 47.66 38.23 0.00 0.01 23.09
Random 26.86 52.88 62.75 70.24 47.80 8.41 2.71 38.81
Magnitude-based 22.95 26.71 26.30 49.89 37.97 0.00 0.00 23.40
Entropy-based 36.33 59.63 69.95 72.74 47.70 23.51 4.87 44.96

Table 4: Data-free removal of 25% of the neurons in the feedforward layers of Gemma-2B.

Figure 4: Downstream performance relative to the unpruned baseline (first row in Table 4) when applying entropy-
based shrinking to isolated layers. Each data point represents removing 25% of feedforward neurons in two adja-
cent layers at a certain depth.

ploying unstructured pruning, which can result in
sparse networks, and/or relying on training data for
improved performance. To isolate the impact of
outgoing connection heterogeneity in pre-trained
models, we restrict our analysis to data-free (i.e.
without any training data) structured pruning (He
and Xiao, 2024) of entire neurons (as opposed to
weights). An intuitive magnitude-based3 criterion
for removing neurons is to discard those with out-
going weights close to zero as they contribute rela-
tively little to the overall layer output:4

min
i∈[1,m]

n∑

j=1

W 2
ij . (7)

Prior work extended this intuition with a neuron
similarity criterion (Srinivas and Babu, 2015) and
a compensation mechanism for the neuron removal
(Stahlberg and Byrne, 2017) and showed that it is
effective for convolutional and recurrent networks.

In this work, we propose to remove neurons with
high outgoing connection entropies:

max
i∈[1,m]

−
n∑

j=1

rW,i
j log(rW,i

j). (8)

3Not to be confused with magnitude-based weight pruning
(Han et al., 2015) that removes individual weights.

4We reuse the notations from Sec. 2.

We removed 25% of the inner neurons in Gemma
2B feedforward layers (16% of the full model size)
by repeatedly applying the removal criterion, and
then compared the pruned models on the zero- and
few-shot metrics used in the Gemma-2 technical
report (Gemma et al., 2024).

Surprisingly, Table 4 reveals that magnitude-
based pruning and its extensions from Srinivas and
Babu (2015) and Stahlberg and Byrne (2017) per-
form significantly worse than random selection.
This suggests that the intuition behind magnitude-
based pruning fails to apply to gated feedforward
layers in Transformer-based LLMs. The complete
performance breakdown observed on tasks like
TriviaQA and NQ indicates the removal of criti-
cal neurons by these procedures.

Our entropy-based criterion – though still worse
than the unpruned baseline – retains the highest
level of performance among the pruned models.
This underscores the crucial contribution of neu-
rons with high outgoing weight heterogeneity to
model accuracy, even in models not trained with
NUCL. It also confirms prior work that found a
high degree of redundancy in feedforward layers
(Pires et al., 2023).

A practical question is which layers are most
sensitive to pruning. Fig. 4 shows that pruning
isolated layer pairs in the layer stack close to the

22479

Layers Average accuracy
Bottom half of the layers 51.39%
Top half of the layers 52.70%
Even layers (after global attention) 52.46%
Odd layers (after local attention) 51.84%

Table 5: Shrinking only half of the layers with entropy-
based neuron removal. We report average accuracy
across the tasks in Table 4.

input or close to the output has a more negative
effect on certain tasks, such as TriviaQA and NQ.
However, this pattern is not consistent across all
tasks. Table 5 shows the average accuracies when
pruning only half of the feedforward layers. Prun-
ing the top half, bottom half, or alternating layers5

all yield similar accuracies. This suggests that the
pruning sensitivity is not tied to these simple struc-
tural groupings.

5 Related work

Our investigation extends and complements prior
research on understanding the inner workings of
Transformers (Räuker et al., 2023; Ferrando et al.,
2024). Notably, studies have proposed that their
feedforward layers act as key-value memories
(Sukhbaatar et al., 2019; Geva et al., 2021). Build-
ing on this, researchers have identified neurons
with distinct functional specializations within these
layers, including those dedicated to factual knowl-
edge (Dai et al., 2022), tasks (Song et al., 2024),
relations (Liu et al., 2025), and language in multi-
lingual LLMs (Kojima et al., 2024). These studies
reinforce our conclusions, which indicate the bene-
fits of diversity within feedforward layers.

It may be tempting to associate NUCL with spar-
sity, and draw parallels to sparsity inducing losses
like L2 (Zhao et al., 2009) or sparsely connected
neural networks (Han et al., 2015). However, we
wish to emphasize that NUCL focuses on connec-
tion variance, not sparsity. NUCL aims to improve
the functionality of individual neurons, rather than
serving as a form of regularization.

6 Conclusion

Our research establishes the crucial role of het-
erogeneity in the feedforward outgoing weights
of PaLM-2 and Gemma models. We demon-
strated performance improvements in fine-tuning
by promoting non-uniform outgoing weights using

5Pruning alternating layers is motivated by the Gemma 2
architecture, which alternates between local and global atten-
tion layers.

NUCL, our novel loss function. For existing pre-
trained models, we showed that neurons with het-
erogeneous outgoing weights are crucial for zero-
and few-shot performance; preserving them during
data-free pruning minimizes performance degrada-
tion.

Limitations

We acknowledge that restricting NUCL to the fine-
tuning phase is a limitation. Exploring its im-
pact during pre-training, albeit computationally de-
manding, could reveal NUCL’s full potential to
achieve even greater reductions in outgoing weight
entropy.

A further limitation is NUCL’s focus on the het-
erogeneity of a single neuron’s outgoing weights.
To align even more with the principle of neuronal
differentiation in neuroscience, which emphasizes
diversity between neurons, a promising future di-
rection is to expand this work to incorporate inter-
neuron diversity.

Our network pruning experiments focused solely
on data-free removal of entire neurons within feed-
forward layers, limiting our analysis of weight het-
erogeneity to pre-trained models. For optimal real-
world performance, a light fine-tuning step after
pruning would be crucial, as supported by prior
research.

The definition of the outgoing weight distribu-
tion relies on the magnitudes of the weights, which
intentionally disregards sign information. This de-
sign choice was made on the premise that signs
can be easily inverted in subsequent layers. Fu-
ture work could explore other ways to measure the
heterogeneity of the outgoing weight vectors.

Working with LLMs means our research inher-
ently carries the same ethical and societal risks
as these models. This includes concerns like bias
amplification and the potential for misuse, such
as creating deepfakes or spreading misinformation.
Our backbone models, like Gemma-2, are built to
mitigate some of these risks.6

References
Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, and 1 others. 2023. Palm 2 technical report.
arXiv preprint arXiv:2305.10403.

6https://ai.google.dev/responsible/docs

22480

https://ai.google.dev/responsible/docs

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John Guttag. 2020. What is the state of
neural network pruning? In Proceedings of Machine
Learning and Systems, volume 2, pages 129–146.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. 2018. JAX: composable transformations of
Python+NumPy programs.

Leo Breiman, Jerome Friedman, Charles J Stone, and
RA Olshen. 1984. Classification and Regression
Trees. CRC Press.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons
in pretrained transformers. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8493–8502, Dublin, Ireland. Association for Com-
putational Linguistics.

Feng-Lei Fan, Yingxin Li, Tieyong Zeng, Fei Wang,
and Hanchuan Peng. 2025. Towards NeuroAI: intro-
ducing neuronal diversity into artificial neural net-
works. Med-X, 3(1):2.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and
Marta R Costa-Jussà. 2024. A primer on the in-
ner workings of transformer-based language models.
arXiv preprint arXiv:2405.00208.

Team Gemma, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard,
Bobak Shahriari, Alexandre Ramé, and 1 others.
2024. Gemma 2: Improving open language models
at a practical size. arXiv preprint arXiv:2408.00118.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5484–5495, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, volume 28. Curran
Associates, Inc.

Yang He and Lingao Xiao. 2024. Structured pruning
for deep convolutional neural networks: A survey.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(5):2900–2919.

Takeshi Kojima, Itsuki Okimura, Yusuke Iwasawa, Hit-
omi Yanaka, and Yutaka Matsuo. 2024. On the
multilingual ability of decoder-based pre-trained lan-
guage models: Finding and controlling language-
specific neurons. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
6919–6971, Mexico City, Mexico. Association for
Computational Linguistics.

Yihong Liu, Runsheng Chen, Lea Hirlimann, Ah-
mad Dawar Hakimi, Mingyang Wang, Amir Hos-
sein Kargaran, Sascha Rothe, François Yvon, and
Hinrich Schütze. 2025. On relation-specific neu-
rons in large language models. arXiv preprint
arXiv:2502.17355.

Telmo Pires, António Vilarinho Lopes, Yannick As-
sogba, and Hendra Setiawan. 2023. One wide feed-
forward is all you need. In Proceedings of the
Eighth Conference on Machine Translation, pages
1031–1044, Singapore. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Tilman Räuker, Anson Ho, Stephen Casper, and Dylan
Hadfield-Menell. 2023. Toward transparent ai: A
survey on interpreting the inner structures of deep
neural networks. In 2023 IEEE Conference on Se-
cure and Trustworthy Machine Learning (SaTML),
pages 464–483.

Noam Shazeer. 2020. Glu variants improve trans-
former. arXiv preprint arXiv:2002.05202.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Ran Song, Shizhu He, Shuting Jiang, Yantuan Xian,
Shengxiang Gao, Kang Liu, and Zhengtao Yu. 2024.
Does large language model contain task-specific
neurons? In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7101–7113, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

22481

https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://doi.org/10.1109/TPAMI.2023.3334614
https://doi.org/10.1109/TPAMI.2023.3334614
https://doi.org/10.18653/v1/2024.naacl-long.384
https://doi.org/10.18653/v1/2024.naacl-long.384
https://doi.org/10.18653/v1/2024.naacl-long.384
https://doi.org/10.18653/v1/2024.naacl-long.384
https://doi.org/10.18653/v1/2023.wmt-1.98
https://doi.org/10.18653/v1/2023.wmt-1.98
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.18653/v1/2024.emnlp-main.403
https://doi.org/10.18653/v1/2024.emnlp-main.403

Suraj Srinivas and R Venkatesh Babu. 2015. Data-free
parameter pruning for deep neural networks. arXiv
preprint arXiv:1507.06149.

Felix Stahlberg and Bill Byrne. 2017. Unfolding and
shrinking neural machine translation ensembles. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1946–1956, Copenhagen, Denmark. Association for
Computational Linguistics.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume
Lample, Herve Jegou, and Armand Joulin. 2019.
Augmenting self-attention with persistent memory.
arXiv preprint arXiv:1907.01470.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. Advances in neural informa-
tion processing systems, 32.

Peng Zhao, Guilherme Rocha, and Bin Yu. 2009. The
composite absolute penalties family for grouped and
hierarchical variable selection. The Annals of Statis-
tics, 37(6A):3468 – 3497.

22482

https://doi.org/10.18653/v1/D17-1208
https://doi.org/10.18653/v1/D17-1208
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1214/07-AOS584
https://doi.org/10.1214/07-AOS584
https://doi.org/10.1214/07-AOS584

Gemma-2B Gemma-9B Gemma-27B
Model dimensionality (n) 2,304 3,584 4,608
Number of layers (|WΘ|) 26 42 46
Feedforward dimensionality (m) 9,216 14,336 36,864
Number of feedforward parameters 1.656B (64%) 6.474B (70%) 23.441B (86%)
Number of feedforward outgoing weight parameters 552M (21%) 2.158B (23%) 7.814B (29%)

Table 6: Hyper-parameters of the Gemma-2 model family related to the feedforward layers. Note that the feedfor-
ward dimensionality is half of what is reported in Table 1 in the Gemma-2 technical report (Gemma et al., 2024)
due to a difference in nomenclature.

Task Method Gecko Otter Bison
GSM8K Standard fine-tuning 17.82 57.54 67.85
(accuracy in %) NUCL fine-tuning 19.86 59.06 68.76
SuperGLUE Standard fine-tuning 75.96 89.45 87.00
(average score in %) NUCL fine-tuning 77.15 89.66 90.02

Table 7: Absolute scores on GSM8K and SuperGLUE of models in the PaLM-2 model family.

Task Method Gemma-2B Gemma-9B Gemma-27B
GSM8K Pre-trained baseline 28.43 75.97 81.58
(accuracy in %) Standard fine-tuning 44.66 77.79 81.96

NUCL fine-tuning 45.87 80.52 85.06
MBPP Pre-trained baseline 30.2 52.4 62.0
(3-shot success rate in %) Standard fine-tuning 30.6 56.0 64.0

NUCL fine-tuning 31.6 55.2 65.0

Table 8: Absolute scores on GSM8K and MBPP of models in the Gemma-2 model family.

Dataset Size
MBPP 1K
GSM8K 7.5K
SuperGLUE BoolQ 9.4K

CB 250
COPA 400
MultiRC 5.1K
ReCoRD 101K
RTE 2.5K
WiC 6K
WSC 554

Table 9: Number of examples in the fine-tuning corpora.

A Gemma model sizes

Gemma-27 models employ very wide feedforward layers, which account for a substantial portion of the
model’s parameters. As shown in Table 6, the feedforward dimensionality significantly exceeds the model
dimensionality, resulting in 64%-86% of the total parameters residing in the feedforward layer, with
21%-29% specifically within its outgoing weight matrices.

B Absolute evaluation scores

In the main paper we report the improvements of using NUCL (α > 0) over standard fine-tuning (α = 0).
The absolute scores are listed in Table 7 for the PaLM-2 family and in Table 8 for the Gemma-2 family.

C Training hyper-parameters

We train our PaLM-2 models in the JAX (Bradbury et al., 2018) framework PAXML8 on TPU v4 chips
with AdaFactor (Shazeer and Stern, 2018) with a batch size of 32. Dropout rates (0.0 or 0.1) and learning
rates (0.0001-0.000001) are tuned for standard fine-tuning on the development sets, and then reused for

7Terms of use: https://ai.google.dev/gemma/terms
8https://github.com/google/paxml

22483

https://ai.google.dev/gemma/terms
https://github.com/google/paxml

the NUCL runs. NUCL’s α-values range between 10−2 and 104 (depending on the model size and batch
size) and are tuned in powers of 10. To reduce hallucinations in the PaLM 2 models we append the string
“\n[eod]” to all training examples and truncate predictions after these tokens.

Our Gemma models are fine-tuned in JAX with a dropout rate of 0.1 on TPU v5e chips (8x8 for 2B
models, 16x16 for 9B and 27B models). We use a batch size of 16 and a learning rate of 10−6 linearly
warmed up over 100 steps.

The sizes of the datasets we used for fine-tuning are listed in Table 9.

D Python implementation

Listing 1 shows the JAX-implementation of our three NUCL loss variants ent, gini, and mstd. We simplify
the computation of mstd in Eq. 5 as follows to improve numerical stability:

LNUCL-mstd(r) = −

√∑n
j=1 (rj − 1

n)
2

n

= −

√√√√ 1

n

n∑

j=1

(r2
j +

1

n2
− 2rj

n
)

= −
√√√√√√

1

n
(

n∑

j=1

r2
j +

1

n
− 2

n

n∑

j=1

rj

︸ ︷︷ ︸
=1

)

= −

√√√√ 1

n
(

n∑

j=1

r2
j −

1

n
)

(9)

import jax
import jax.numpy as jnp

def compute_nucl(w_param):
w_param is an mxn matrix (m: inner dim., n: model dim.)
w_abs = jnp.abs(w_param)
w_z = jnp.sum(w_abs , axis =1)
w_p = w_abs / jnp.expand_dims(w_z , axis =1)
r2sum = jnp.sum(jnp.square(w_p), axis =1)

NUCL -ent (Eq. 3)
nucl_ent = jnp.log(w_z) + jnp.sum(jax.scipy.special.entr(w_abs), axis =1) / w_z

NUCL -gini (Eq. 4)
nucl_gini = 1.0 - r2sum

NUCL -mstd (Eq. 5)
dim_z = 1.0 / w_p.shape [1]
nucl_mstd = -jnp.sqrt(dim_z * (r2sum - dim_z))

return jnp.sum(nucl_ent), jnp.sum(nucl_gini), jnp.sum(nucl_mstd)

Listing 1: Python implementation of NUCL

22484

