
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 22485–22508
November 4-9, 2025 ©2025 Association for Computational Linguistics

Follow the Flow: Fine-grained Flowchart Attribution
with Neurosymbolic Agents

Manan Suri , Puneet Mathur *, Nedim Lipka ,
Franck Dernoncourt , Ryan A. Rossi , Vivek Gupta , Dinesh Manocha

University of Maryland Adobe Research ASU
manans@umd.edu, puneetm@adobe.com, vgupt140@asu.edu

Abstract

Flowcharts are a critical tool for visualizing
decision-making processes. However, their
non-linear structure and complex visual-textual
relationships make it challenging to interpret
them using LLMs, as vision-language models
frequently hallucinate nonexistent connections
and decision paths when analyzing these dia-
grams. This leads to compromised reliability
for automated flowchart processing in critical
domains such as logistics, health, and engineer-
ing. We introduce the task of Fine-grained
Flowchart Attribution, which traces spe-
cific components grounding a flowchart refer-
ring LLM response. Flowchart Attribution en-
sures the verifiability of LLM predictions and
improves explainability by linking generated
responses to the flowchart’s structure. We pro-
pose FlowPathAgent, a neurosymbolic agent
that performs fine-grained post hoc attribution
through graph-based reasoning. It first seg-
ments the flowchart, then converts it into a
structured symbolic graph, and then employs
an agentic approach to dynamically interact
with the graph, to generate attribution paths.
Additionally, we present FlowExplainBench,
a novel benchmark for evaluating flowchart at-
tributions across diverse styles, domains, and
question types. Experimental results show
that FlowPathAgent mitigates visual halluci-
nations in LLM answers over flowchart QA,
outperforming strong baselines by 10-14% on
our proposed FlowExplainBench dataset. 1

1 Introduction

Flowcharts are a fundamental tool for represent-
ing structured decision-making processes. Used
across domains such as software engineering, busi-
ness process modeling, and instructional design,
flowcharts provide a visual roadmap of logical
operations, guiding both human users and auto-
mated systems (Charntaweekhun and Wangsiripi-

*Primary Research Mentor
1Code and Data: MananSuri27/FollowTheFlow

Start Preparations for Potential
Vehicle Breakdown

Gather Essential
Items

Pack Essential
Items in Vehicle

Cell Phone
fully

Charged?

Charge Cell
Phone

Notify Trusted Contact
of Travel Plans

Need to
Leave

Vehicle?

Utilize Prepared
Items for Seeking

Help

Stay with Vehicle
and Attempt

Repairs

Readiness for
Potential Vehicle

Breakdown

End Preparedness System

Y
es

N
o

Y
es N

o

Correct Response

Hallucinated Response

The immediate next step is
'Readiness for Potential Vehicle

Breakdown', which follows a 'Yes'
decision at the 'Need to Leave

Vehicle?' node.

Attributed path is logically
consistent. Attribution
validates and visually
grounds the answer.

FlowPathAgentFlowPathAgent

Attributed path is not
logically consistent, and

offers opportunity to
eliminate this response.

The immediate next step is notifying
trusted contact of travel plans, and

this step was motivated by a
positive response to the need to

leave the vehicle

FlowPathAgentFlowPathAgent

What is the immediate next
step after utilizing prepared
items for seeking help, and

what decision led to this step?

Fl
ow

ch
ar
t

Figure 1: Attribution (represented by •−•−•) with
FlowPathAgent ensures logical consistency in
flowchart-based reasoning. FlowPathAgent uses
a neurosymbolic approach to generate attribution
paths (➊ & ➋) in the flowchart. This enhances
interpretability and reliability in flowchart driven
automated decision-making.

tak, 2006; Perols and Perols, 2024; Zimmermann
et al., 2024; Ensmenger, 2016). Their structured
yet visual nature makes them an effective medium
for conveying procedural logic. However, inter-
preting flowcharts accurately is challenging due
to their nonlinear structures (branching and loop-
based control flow), where meaning emerges from
the interplay between textual content, visual ar-
rangement, and logical dependencies. Ambiguities
in flowchart interpretation arise from diverse no-
tational conventions, implicit relationships, and
misinferred steps, making precise attribution of

22485

https://github.com/MananSuri27/FollowTheFlow

information sources difficult (Eppler et al., 2008).
Recent advancements in Vision Language Mod-

els (VLMs) have enabled substantial progress in
flowchart processing (Singh et al., 2024). These
models leverage both textual and visual informa-
tion, allowing them to extract structural relation-
ships, recognize decision nodes, and generate an-
swers based on flowchart content. However, de-
spite their capabilities, VLMs struggle with hallu-
cination: the tendency to generate information that
is not grounded in the input (Huang et al., 2024;
Guan et al., 2024). In the context of flowcharts,
hallucination can manifest as misidentifying deci-
sion nodes, producing incorrect logical pathways,
or fabricating connections that do not exist in the
original structure. This issue severely impacts the
reliability of automated flowchart reasoning, par-
ticularly in high-stakes applications such as health-
care, software verification and process automation.

Although VLMs have made significant progress
in understanding flowcharts, prior work has mainly
concentrated on flowchart parsing (Arbaz et al.,
2024), conversion (Shukla et al., 2023; Liu et al.,
2022), and question-answering (Singh et al., 2024;
Tannert et al., 2023), while overlooking the critical
aspect of fine-grained attribution. While existing
attribution methods (Huo et al., 2023; Chen et al.,
2023) focus on textual grounding, attributing re-
sponses to visual-textual elements like flowcharts
presents unique challenges. It involves not just
text recognition, but also interpreting the intercon-
nected decision nodes, hierarchical structures, and
conditional pathways that define flowchart seman-
tics. Attribution serves as a crucial mechanism
for mitigating hallucination by explicitly tracing
the paths in the flowchart that ground a particu-
lar response, enabling rigorous evaluation of the
model’s fidelity to the flowchart’s logic, as illus-
trated in Fig 1. Such fine-grained attribution is
fundamental for ensuring reliability, particularly
when these systems are deployed in domains where
verifiable decision-making is crucial.
Main Results. We introduce Flowchart Attribution
task aimed at identifying the optimal path within a
flowchart that grounds the model’s response. The
optimal path aims to extract the most relevant se-
quence of nodes and edges that directly support the
model’s reasoning, encompassing all the key deci-
sion points and actions involved in the prediction.
To facilitate the evaluation of this task, we propose
FlowExplainBench, a novel benchmark that fea-
tures a diverse set of flowcharts with varying styles,

domains, and question types.
We introduce FlowPathAgent, a neurosymbolic

agent specifically designed to perform fine-grained
as a post-hoc flowchart attribution. Instead of re-
lying solely on text-based or vision-based cues,
FlowPathAgent integrates symbolic reasoning by
using an agentic interface to interact with the
flowchart as a graph object. FlowPathAgent be-
gins with segmenting flowcharts into distinct com-
ponents, followed by constructing symbolically
operable flowchart representations. These graph-
based representations have direct correspondence
to visual regions of the flowchart, enabling the
model to interoperate between the visual and sym-
bolic representations. We leverage graph tools
to extract and manipulate these representations,
allowing for identification of relevant nodes and
edges. Our methodology facilitates precise attribu-
tion of the model’s reasoning steps to specific de-
cision points within the flowchart, providing accu-
rate and interpretable explanations of the model’s
output. Experimental results demonstrate that
FlowPathAgent significantly outperforms strong
baselines (Lai et al., 2024; Peng et al., 2023; Yuan
et al., 2025) by 10-14% on FlowExplainBench.
Our main contributions2 are:

• We introduce a new task of Fine-grained
Flowchart Attribution where the goal is to
identify the optimal path within a flowchart
diagram that grounds the LLM text response.

• FlowExplainBench - a novel evaluation
benchmark consisting of 1k+ high quality at-
tribution annotations over flowchart QA with
diverse styles, domains, and question types.

• FlowPathAgent - a neurosymbolic agent ca-
pable of performing fine-grained post-hoc at-
tribution for flowchart QA. FlowPathAgent
uses a VLM-based agentic approach to per-
form graph-based reasoning and symbolic ma-
nipulation to accurately trace the decision pro-
cess within flowcharts.

2 Related Work

2.1 Flowchart Understanding
Research in flowchart understanding has evolved
from basic image processing to complex reasoning
tasks. Modern deep learning approaches, such as
FR-DETR (Sun et al., 2022a), have significantly

2Code and data will be released on acceptance.

22486

https://anonymous.4open.science/r/flowpathagent-8E15

improved symbol and edge detection through end-
to-end architectures that combine CNN backbones
with multi-scale transformers. The emergence of
LLMs has led to benchmarks like FlowchartQA
(Tannert et al., 2023), FlowLearn (Pan et al., 2024),
SCI-CQA (Shen et al., 2024), and FlowVQA
(Singh et al., 2024), which assess geometric un-
derstanding, spatial reasoning, and logical capabili-
ties of models for question-answering on flowchart
images . Recent work like (Ye et al., 2024) has
begun exploring alternatives to end-to-end VLMs;
(Ye et al., 2024) introduced intermediate textual
representations between visual processing and rea-
soning steps for Flowchart QA; (Liu et al., 2022;
Shukla et al., 2023) explored code generation from
flowcharts.

2.2 Attribution in LLMs

Large Language Models (LLMs) are challenged
with factual accuracy (Zhang et al., 2023). While
various solutions have emerged, including citation-
aware training (Gao et al., 2023) and tool augmen-
tation (Ye et al., 2023), ensuring reliable attribu-
tions remains crucial. Three primary attribution
strategies have emerged in literature: (1) Direct
model-driven attribution generates answers and
attributions simultaneously (Peskoff and Stewart,
2023; Sun et al., 2022b). (2) Post-retrieval an-
swering retrieves information before answering
(Ye et al., 2023; Li et al., 2023b; Huo et al., 2023;
Chen et al., 2023). (3) Post-hoc attribution gener-
ates answers first and then searches for supporting
references (Li et al., 2023a). Our work falls in the
scope of Post-hoc attribution, as it serves as a mod-
ular approach integrable with existing system, with-
out accessing the response generation mechanism.
Recent work has expanded attribution capabilities
to handle diverse data formats. While MATSA
(Mathur et al., 2024) explored fine-grained attri-
bution for tables through a multi-agent approach,
VISA (Ma et al., 2024) advanced visual attribution
by leveraging vision-language models to highlight
specific regions in document screenshots. Ours is
the frst work on flowchart QA attribution.

3 Post-hoc Flowchart Attribution

We formalize fine-grained post-hoc Flowchart At-
tribution as follows: Given a dataset D consisting
of a set of flowchart images F , each flowchart im-
age ci ∈ F , ci = Iw×h×3 corresponds to a logical
graph representation Gi = (Vi, Ei), where Vi rep-

resents the set of nodes and Ei represents the edges
between them. Each node corresponds to a logi-
cal operation or directive statement, and the edges
represent the flow between these operations. Ad-
ditionally, the input includes a flowchart-referring
statement si, which is a natural language descrip-
tion of a process or action to be grounded in the
flowchart image. The underlying goal is to find
a path in the image that grounds the statement si.
This path may be disjoint, but it should correspond
to a set of regions in the flowchart image. The re-
gions are the physical abstraction that corresponds
to the logical nodes in the graph. Formally, the task
can be represented as a mapping function:

F : (ci, si) 7→ Rsi ,

where F maps the flowchart image ci and the
statement si to a set of regions Rsi in the image.
Rsi = {ri1, ri2, . . . , rin} represents the sequence
of regions in the image that correspond to a path
of logical nodes, and the edges included between
consecutive nodes vi1, vi2, . . . , vin in the graph Gi,
grounding the statement si. The path may be dis-
joint, but it should satisfy the following criteria:
1. Optimality: The path should be the shortest
sequence of regions that ground the statement s.
2. Contextual Alignment: The path should cor-
respond to the relevant actions and decisions de-
scribed in s, matching the flow of the process.
3. Exclusivity: No additional regions outside of
Rsi are necessary to fully explain the statement s.

4 FlowExplainBench

To enable systematic evaluation of flowchart attri-
bution, we introduce FlowExplainBench, a com-
prehensive benchmark designed with four key cri-
teria: diverse visual styles, varied question types,
multiple flowchart domains, and faithful ground-
truth attributions (see Table 1). Each entry in the
dataset consists of the following components: the
flowchart image c, a statement s (which, in this con-
text, is a Question-Answer pair), a set of attributed
logical nodes v1, v2, . . . , vn, and their correspond-
ing visual regions Rs = {r1, r2, . . . , rn}. These
visual regions represent the physical abstractions
of the logical nodes, which are mapped from the
flowchart image c as discussed in section 3.

4.1 Data Sources

FlowExplainBench is constructed using the test
split of the FlowVQA dataset (Singh et al., 2024).

22487

Code Wiki Instruct Overall
of Flowcharts 189 470 294 953
of Questions 246 610 382 1238

Fact Retrieval 88 163 102 353
Applied Scenario 69 128 90 287
Flow Referential 43 128 87 258
Topological 46 191 103 340

Avg # of Nodes 11.85 24.49 21.59 21.08
Max # of Nodes 29 43 44 44
Avg Attributed Path Length 2.59 3.21 2.88 2.99
Max Attributed Path Length 15 35 21 35
Avg Words (Question) 26.99 26.12 26.56 26.43
Avg Words (Answer) 8.62 8.74 9.50 8.95

Table 1: Detailed overview of distribution and charac-
teristics of constituent splits of FlowExplainBench.

This dataset comprises high-quality flowchart im-
ages sourced from diverse domains, including
the FloCo dataset, which emphasizes code-related
flowcharts (Shukla et al., 2023), as well as widely
recognized DIY platforms such as Wikihow and
Instructables. These sources contribute to three dis-
tinct data splits: Code, Wiki, and Instruct. For each
flowchart, corresponding Mermaid code and meta-
data (e.g., original code and process summaries)
are included. The dataset contains four question
types: Fact retrieval, Applied Scenario, Flow Ref-
erential, and Topological.

4.2 Visual Diversity

To ensure that FlowExplainBench represents a
broader spectrum of flowchart styles encountered
in real-world applications, we introduce four dis-
tinct style types for flowchart generation: 1. Single
Color: Flowcharts that use a single color for all
nodes throughout the chart for simplicity and visual
cohesion. 2. Multi Color: Flowcharts that utilize
multiple colors, sampled from a palette to repre-
sent different nodes. 3. Default Mermaid: The
standard Mermaid styling as found in FlowVQA. 4.
Black and White: Flowcharts designed using only
black and white elements. For the Single Color
style, we incorporate 40 unique colors, while for
the Multi Color style, we use 35 curated color
palettes each containing 4 to 5 colors. We first
generate SVG flowcharts from source Mermaid
code, subsequently injecting templated CSS into
the SVGs to implement the desired styles. Finally,
the SVGs are converted into PNG images, and the
regions of interest (i.e., the flowchart nodes) are
defined using the positional and shape information
derived from the SVG metadata.

4.3 Attribution Annotation

The attribution annotation process is as follows:

Step 1: Automatic Labeling. We use GPT-4 to
perform the initial attribution for corresponding
QA pairs directly in the Mermaid source code. By
analyzing the nature of different question types,
we generalize the attribution patterns and provide
GPT-4 with few-shot examples in the prompt.
Step 2: Human Verification. Two human eval-
uators are involved in the next stage, where they
interact with an attribution platform that allows
them to select nodes in the flowchart to be at-
tributed. The inter-annotator agreement, measured
using Cohen’s Kappa (κ), shows a high level of
agreement both between the two annotators (κ =
0.89) and between the annotators and the initial
GPT-4-generated labels (κ = 0.72, 0.80). More
details on human annotation in Appendix Sec. C.3.
Step 3: Multi-step Question Filtering. We ap-
plied a filtering srategy to get rid of trivial and
low-quality QA pairs. Questions related to node
and edge count were excluded, as they required
trivially attributing the entire graph rather than
reasoning over its fine-grained individual compo-
nents. This excluded 1792 samples from the anno-
tation exercise described above. Subsequently, for
each flowchart image, questions with the highest
agreement among annotators were selected, pri-
oritizing cases where both human annotators con-
curred. This yielded an initial set of 953 samples.
To achieve balance across three domains and four
question types, additional high-agreement samples
were selected from underrepresented categories,
resulting in a final benchmark of 1,238 samples.

5 FlowPathAgent

FlowPathAgent (Fig 2), is a neurosymbolic agent
designed for structured reasoning over flowcharts
for fine-grained flowchart attribution. The ap-
proach consists of three key stages: Chart Com-
ponent Labeling, which segments and labels
chart components; Graph Construction, which
constructs a symbolic graph from the labeled
flowchart; and Neurosymbolic Agent-based Anal-
ysis, which uses graph-based tools to interact with
the symbolic flowchart to generate attributed paths.
Each stage plays a critical role in bridging the gap
between visual representations and symbolic rea-
soning over structured workflows.

5.1 Chart Component Labeling

We identify and label individual flowchart com-
ponents, ensuring an explicit correspondence be-

22488

Chart Component Labeling

Fl
o

w
M

as
k2

Fo
rm

er

M
ar

k
La

b
el

in
g

Graph Construction

Fl
o

w
2M

er
m

ai
d

 V
LM A B

C

E

D

A

B

C

D E

Yes No

FlowPathAgent

Yes No

Exploration Node Selection

Tool Selection

Tool Response Analyis

A: {🪓:(...)},
C: {🗜️:(...)}

Q: What happens if
... after ...?

A: If not ...,

M
ap

 t
o

 F
lo

w
ch

ar
t

Tool Call

Attributed path:
B -> C -> E

Tools
🔨 get_descendants()
🔧 getNext()
🪚 path_between()
🪓 in_degree()

🗜️ BFS()

...

A,C

A: {🪓: “In-degree of node A is 0.” },
C: {🗜️: “If ‘Yes’, C->D, If ‘No’, D->E”}

Flowchart Labeled Flowchart

Symbolic Graph
Representation

Parse

Mermaid Flowchart

Instance
Seg.

Segmentation Map

Statement

Figure 2: Overview of FlowPathAgent. FlowPathAgent processes a flowchart image through segmentation-based
component labeling, constructs a symbolic graph representation using Mermaid, and employs a neurosymbolic
agent, that treats the flowchart as a symbolic graph to attribute nodes based on an input statement. The agent
interacts with predefined tools to analyze and traverse the flowchart structure, producing attributions as interpretable
mappings of relevant nodes back onto the original flowchart.

tween visual elements and the symbolic represen-
tations generated in subsequent steps.
FlowMask2Former. To achieve flowchart compo-
nent recognition, we construct a synthetic dataset
using the training split of FlowVQA (Singh et al.,
2024), incorporating style diversification tech-
niques similar to those described in Section 4.2,
but with different color schemes. Further the node
content is replaced with randomized text. These
augmentations improve domain generalization and
ensure robust performance across diverse flowchart
styles. We fine-tune Mask2Former (?) on this
dataset for instance segmentation, specifically tar-
geting node recognition. The fine-tuned model,
FlowMask2Transformer, generates segmentation
maps, from which individual nodes are sequentially
labeled using alphabetical identifiers, rendered in
red text on the flowchart image, to serve as vi-
sual anchors for graph construction, reasoning, and
node referencing.

5.2 Graph Construction
Flowcharts inherently encode structured logical
processes, making graph-based representations
ideal for symbolic reasoning. By converting vi-
sual flowcharts into symbolic graph structures, we
eliminate reliance on visual recognition for every
reasoning step, ensuring robust handling of dis-
tant relationships that visual models often misin-
terpret. The symbolic graph facilitates efficient
graph-based operations such as traversal, topologi-

cal analysis, and conditional evaluation. This struc-
tured representation also enhances interpretabil-
ity and enables automated verification of logical
consistency. Moreover, as flowchart complexity in-
creases, our method avoids the compounding errors
seen in purely visual models by explicitly encoding
edge conditions and node relationships, enabling
reliable and scalable path tracing.

Flow2Mermaid VLM. To convert the labeled
flowchart to a symbolic graph representation, we
first convert the visual flowchart to a Mermaid
code, and then parse the Mermaid code to gen-
erate the symbolic graph. For the Flowchart to
Mermaid transformation, we fine-tune Qwen2-
VL(7B) (Wang et al., 2024) using supervised fine-
tuning (SFT) on a style-diversified projection of
the FlowVQA (Singh et al., 2024) training set,
with marked alphabetic node labels sourced from
SVG metadata. Flow2Mermaid VLM is trained
to generate Mermaid flowchart code directly from
flowchart images, using the alphabetical node la-
bels as anchors to maintain consistency between
visual and symbolic representations. We perform
fine-tuning to improve the ability to generate ac-
curate and semantically robust Mermaid syntax,
minimize structural inconsistencies that could af-
fect graph analyses, and adapt to the varied aspect
ratios and visual styles found in flowcharts.

The generated Mermaid representation is then
parsed into a symbolic graph, tailored to capture

22489

the specific properties of flowcharts, including
boolean conditional edges and node-level state-
ment mappings. Additionally, we define a compre-
hensive suite of tools to operate on this symbolic
graph, enabling structured function calls for reason-
ing over the flowchart’s logical structure. The list
of tools and their API is described in the Appendix.

5.3 Neurosymbolic Agent

FlowPathAgent employs a neurosymbolic reason-
ing approach to attribute relevant nodes based on an
input statement. In this context, it combines neural
models i.e. VLMs to plan, reason and attribute in a
discrete token space, based on observations made
via tool use over a symbolic graph representing the
flowchart. The agent operates on a sequence of
interdependent steps:
1. Node Selection: During the initial planning
stage, our agent identifies nodes to be explored
by referencing their corresponding labels in the
flowchart image. Additionally, it clarifies the ex-
pectation and underlying rationale for each node
selection. This is the only step where the labeled
flowchart image is passed to the underlying VLM.
2. Tool Selection: Our agent employs reasoning-
based prompting to determine the necessary sym-
bolic tools and their respective functional parame-
ters for the selected nodes.
3. Tool Execution: The selected tools are executed
on the symbolic graph representation to extract
relevant insights. Multiple sequential cycles of
Tool Selection and Tool Execution may occur, with
each cycle selecting and executing a single tool.
4. Tool Response Analysis: The agent inter-
prets observations from tool-use, in relation to the
given statement, generating a path of nodes in the
flowchart that attribute the statement.
5. Mapping to Original Flowchart: Finally, the
attributed path’s node labels are mapped back onto
the flowchart image using the segmentation regions
obtained during the labeling stage.

6 Experimental Set-up

6.1 Baselines

Zero-shot GPT-4o (OpenAI, 2024) predicts nor-
malized bounding box coordinates for zero-shot
localization (Yang et al., 2023b).
Kosmos-2:(Peng et al., 2023) performs referring
expression grounding and bounding box generation
by linking objects in images with text.

LISA: (Li et al., 2023b) generates segmentation
masks from textual queries with minimal fine-
tuning on task-specific data.
SA2VA(Yuan et al., 2025) combines SAM-2 and
LLaVA for referring segmentation.
VisProg (Gupta and Kembhavi, 2022) agent gener-
ates visual programs by decomposing queries into
executable steps for explainable visual reasoning.
GPT4o + FlowMask2Former SoM Prompting
ablation uses GPT-4o on segmented flowchart gen-
erated by FlowMask2Former and applies Set-of-
Marks (SoM) (Yang et al., 2023a). More details on
baselines in Appendix Sec.A.1.

6.2 Evaluation

To map the segmented regions to the ground truth
nodes, we apply an Intersection over Union (IoU)
threshold of 0.7 to ensure high fidelity between
ground-truth and predicted nodes. The ground-
truth node with the maximum overlap is selected
as the reference for the segmented node. This pro-
cess is crucial for fine-grained attribution, where
accurate identification of individual flowchart com-
ponents is required. For each baseline, we collect
the nodes identified by the model and treat the set
of ordered nodes as the attributed path. We then
compute the micro-averaged Precision, Recall, and
F1 scores to assess the model’s performance.
More extensive experimental details have been pro-
vided in Appendix Sec. A.2.

7 Results and Discussion

Baseline Comparison. FlowPathAgent
demonstrates a significant improvement over
all baseline models when evaluated on the
FlowExplainBench, outperforming them by a
margin of 6-65 percentage points, as shown in
Table 2. Visual grounding models, including
Kosmos-2, LISA, and SA2VA, exhibit suboptimal
performance. This is primarily due to their limited
ability to process visual logic, which is crucial for
fine-grained flowchart attribution. These models
struggle to correctly map logical relationships
between elements in the flowchart, resulting in
less accurate attributions.

Among the baselines, GPT4o Zero Shot Bound-
ing Box shows the poorest performance. This
model lacks inherent capabilities for mask gen-
eration, and instead generates bounding boxes in
the textual token space, which is not well-suited
for the task of flowchart attribution.

22490

Baseline Overall FEBench-Code FEBench-Wiki FEBench-Instruct
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Kosmos-2 (Peng et al., 2023) 37.14 1.76 3.36 41.41 6.45 11.16 20.69 0.31 0.60 38.30 1.64 3.14
LISA (Lai et al., 2024) 18.01 14.34 15.97 35.36 19.18 24.87 14.09 11.74 12.81 18.45 16.18 17.24
SA2VA (Yuan et al., 2025) 66.36 9.88 17.20 79.35 19.34 31.10 58.47 7.40 13.14 65.99 8.82 15.56
VisProg (Gupta and Kembhavi, 2022) 45.95 0.46 0.91 46.88 2.30 4.49 0.00 0.00 0.00 25.00 00.09 0.18
GPT4o Bounding Box 58.82 1.90 3.68 80.00 1.89 3.69 53.19 1.29 2.51 57.89 3.00 5.70
GPT4o SoM 74.10 67.69 70.75 67.32 70.28 68.77 74.55 65.03 69.47 77.84 70.91 74.22
FlowPathAgent 77.19 77.21 77.20 74.18 80.62 77.27 76.29 74.21 75.23 80.28 80.19 80.23

Table 2: Performance comparison of FlowPathAgent with baselines on FlowExplainBench. Best and
second-best results have been highlighted.

FlowPathAgent

GPT4o BB

GPT4o + SoM

Kosmos2

LISA

SA2VA

90 percentileth

of Flowchart Nodes

A
vg

. F
1

S
co

re

FlowPathAgent
outperforms baselines
in the long tail of node

distributions.

Figure 3: Performance comparison of FlowPathAgent
against baselines demonstrates superior effectiveness
across long-tail distribution of node count in flowcharts.

bfs dfs final_answer get_ancestors get_descendants get_statement in_degree

max_in_degree max_out_degree out_degree path_between shortest_path get_neighbours fail

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

Figure 4: Flow diagram of the sequence of tools used
by FlowPathAgent on FlowExplainBench. Each Step
refers to a cycle of Tool Selection + Call.

In contrast, GPT4o SoM achieves a compara-
tively stronger performance. This can be attributed
to the effective segmentation abilities of Flow-
Mask2Former, which ensures that the elements
to be attributed are accurately captured in the can-
didate set available to the model. Additionally, the
reasoning capabilities of GPT4o contribute to im-
proved performance by leveraging these segmented
components in a logical manner. VisProg relies on
weaker visual back-bones which do not understand
images with text, leading to low detection rates,
including none in FEBench-Wiki.

Further analysis of performance trends reveals
an interesting behavior when we examine the per-

formance of different models against the number
of nodes in the flowchart, as illustrated in Fig 3.
As the complexity of the flowchart increases (i.e.,
as the number of nodes decreases), a performance
dip is observed across all methods. This is likely
due to the increasing difficulty in processing larger,
more complex flowcharts, especially for models
relying heavily on the visual presentation of the
flowchart. In contrast, FlowPathAgent maintains
a more consistent performance, with a relatively
smaller dip in performance despite the increased
complexity. This can be attributed to the model’s
ability to treat flowchart elements as logical enti-
ties, rather than solely relying on their visual rep-
resentation. By leveraging its neurosymbolic ap-
proach, FlowPathAgent is able to more effectively
process and attribute complex flowchart structures,
providing robust and reliable attributions even in
the long tail of node distributions.

Qualitative Analysis. Fig 5 presents a qualitative
comparison between FlowPathAgent and various
baseline models. The GPT4o Zero Shot Bound-
ing Box baseline fails to generate bounding boxes
that overlap with or match the shape and dimen-
sions of any flowchart nodes. On the other hand,
LISA tends to overgeneralize by attributing the en-
tire flowchart image, producing small, noisy masks
that cover irrelevant areas, which reduces the clar-
ity and precision of its attributions. Kosmos-2
also struggles with segmenting the nodes asso-
ciated with the statement; it segments a single
irrelevant node. SA2VA, while performing bet-
ter than the other visual grounding models, still
exhibits limitations. It generates low IoU masks
around some correct nodes. Additionally, it some-
times produces extraneous masks that are not rel-
evant to the flowchart’s logical structure. GPT4o
with SoM shows some improvement, but tends
to over-attribute by including steps that are fur-
ther ahead in the flowchart than necessary. In
contrast, FlowPathAgent excels by accurately de-
tecting and attributing the entire flowchart path,

22491

A

B

C

D

EF

G
H

I

J K

LM

N

FlowPathAgent

GPT4o BB

GPT4o + SoM

Kosmos2

LISA

SA2VA

Ground
Truth

The Q/A pair involves the process of using an online calculator for
conversion and considering altitude adjustment.
 - **Node B** is where the input of yards is initiated.
 - **Node C** checks the availability of an online calculator.
 - **Node F** involves using the online calculator.
 - **Node G** asks if altitude adjustment is needed.
 - **Node J** indicates continuing without altitude adjustment.
 - **Node M** is where the converted value is obtained.
 - **Node N** marks the end of the process.

Question: A landscape architect, Sophia, is working
on a garden design that was initially measured in
yards. However, the international team she's
collaborating with uses the metric system. Sophia
opts for an online calculator to convert the
measurements but is unsure whether altitude plays
a role in this scenario. Should Sophia make any
adjustments before finalizing the conversion?

Answer: Sophia should continue without altitude
adjustment unless the specific context of her work
requires it.

StatementFlowchart (with attributions)

B -> C -> F -> G -> J -> M ->N

GPT4o + FlowMask2Former Set of Marks

Attributed
Path

Planning: Node Selection

Tool Selection + Tool Call

Attribution

 1. Nodes that need to be explored
C: Is an online calculator available?

2. Facts to look up
- The relationship between using an

online calculator and needing
altitude adjustments.

3. Reasoning
Node C is crucial as it prompts Sophia to choose an

online calculator, which is directly mentioned in the
question.

Ancestors of node C: B (Input
the number of yards ('yd')), A

(Start).

Descendants of node C: N (End), M (Obtain the converted value in
meters ('m')), L (Obtain the converted value in meters ('m') from the
chart), H (Search for the inputted number of yards on the chart), F

(Use the online calculator), G (Is altitude adjustment needed?), I
(Identify the corresponding meters in the adjacent column), J (Continue
without altitude adjustment), K (Enter the altitude adjustment), D (Find
a conversion chart), E (Locate a yard-to-meter conversion chart online)

get_ancestors(“C”,include_statements=True) get_descendants(“C",include_statements=True)

The nodes C and F are relevant as they involve the use of an online calculator, which Sophia opted for. Node G
is crucial because it questions the need for altitude adjustment, directly relating to the question. Node J
supports the answer by advising to continue without altitude adjustment, aligning with the given response.C -> F -> G -> J

FlowPathAgent

Attributed
Path

Tool Observation: Tool Observation:

Legend

Figure 5: Qualitative comparison of FlowPathAgent with baseline methods. The flowchart illustrates attributions
generated by various baselines, highlighting the agentic trace of FlowPathAgent. We contrast its output with the
next strongest baseline, GPT-4o+SoM, to showcase differences in attribution quality and interpretability.

.

identifying all the relevant nodes with high preci-
sion. Figure 4 displays the sequence of tools the
agent employs across tool selection and execution
steps, capped at 8 steps. The frequent use of the
get_statement tool highlights its vital role in ver-
ifying fact retrieval and scenario-based QA pairs
without relying on visual input. Notably, Step 3
emerges as the most common final stage (evident
by final_answer), with nearly half of the penul-
timate tool calls dedicated to analyzing the graph
structure. Additional agent behavior analysis and
qualitative examples are provided in the Appendix.

FlowMask2Former FlowMask2Former Flow2Mermaid VLM Attribution # of
Performance Bucket Avg. IoU (%) Performance (%) F1 (%) Samples

(54.8, 63.2] 59.71 75.75 56.25 8
(63.2, 71.5] 67.83 82.54 82.66 13
(71.5, 79.8] 76.98 86.13 83.64 63
(79.8, 88.1] 84.98 88.86 86.65 364
(88.1, 96.4] 91.56 90.11 84.27 477

Table 3: Binned analysis shows that while segmentation
quality (IoU) marginally influences Word Overlap F1,
the overall task F1 remains relatively stable—indicating
limited error propagation across pipeline stages.

Error Propagation: An inherent limitation in
modular agentic systems is that inaccuracies in
one component can affect downstream results. On
the full benchmark dataset, FlowMask2Former
achieved a high overall Jaccard Similarity (IoU
> 0.5) of 0.98, and Flow2Mermaid VLM obtained
a Word F1 score of 0.89. To better understand
the relationship between segmentation quality and
transcription fidelity, we performed a binned anal-
ysis in Table 3, grouping samples by segmenta-
tion IoU. Complementing this, Fig. 6 visualizes
the correlation between IoU and Word Overlap
F1 for individual data points, colored by overall

Figure 6: Scatter plot of segmentation IoU versus Word
Overlap F1 for individual samples, color-coded by over-
all task F1. Clustering in the high-performance region
indicates minimal error propagation across the pipeline.

task F1. The concentration of points with high
IoU and high Word Overlap F1 alongside consis-
tently strong task performance suggests limited
error propagation across the pipeline. This stabil-
ity likely arises from the high accuracy of Flow-
Mask2Former and Flow2Mermaid VLM, as well
as the neurosymbolic agent’s role in verifying and
correcting errors, enabling the modules to comple-
ment each other and reduce cascading failures.

8 Conclusion

We introduced the task of Flowchart Attribution
and proposed FlowExplainBench for evaluating
fine-grained visual grounding in flowchart QA. We
presented FlowPathAgent, a neurosymbolic agent
that leverages graph-based reasoning to accurately
identify the optimal path underpinning LLM re-
sponses. Experimental results demonstrate signif-
icant improvements over existing baselines, high-
lighting the effectiveness of our approach.

22492

9 Limitations

While our approach demonstrates strong per-
formance, there are areas for further improve-
ment. First, although FlowPathAgent effec-
tively integrates symbolic reasoning, it builds
on FlowMask2Former for segmentation and
Flow2Mermaid VLM for converting visual
flowcharts to mermaid code. As with any mod-
ular system, potential errors in these components
may influence overall performance. However, our
framework remains flexible, allowing for seamless
integration of alternative models better suited to
specific scenarios.

Second, our benchmark, FlowExplainBench,
captures a diverse range of flowchart structures but
does not yet encompass all real-world variations,
such as hand-drawn diagrams. The primary chal-
lenge lies in the availability of high-quality datasets
with comprehensive annotations. While existing
methods address hand-drawn flowchart segmenta-
tion, scaling them for attribution remains an open
area of research. Future work could explore semi-
supervised or automated annotation strategies to
enhance coverage.

Lastly, our approach is designed for static
flowcharts, and extending it to dynamic or inter-
active systems presents an opportunity for further
research. Many real-world applications involve
evolving decision-making processes, which could
benefit from models that handle sequential updates
and conditional dependencies.

Future work could address these limitations by
improving segmentation robustness, expanding the
benchmark to include more diverse flowchart types,
and developing models capable of handling dy-
namic and interactive flowcharts. Additionally, in-
tegrating reinforcement learning or self-supervised
learning techniques could enhance model adapt-
ability and generalization across various flowchart
formats.

10 Ethics Statement

In this study, we utilize the publicly accessible
FlowVQA dataset, which is distributed under the
MIT License3. We ensure that the identities of
human evaluators remain confidential, and no per-
sonally identifiable information (PII) is used at
any stage of our research. This work is focused

3https://github.com/flowvqa/flowvqa?tab=
MIT-1-ov-file

exclusively on applications for fine-grained vi-
sual flowchart attribution and is not intended for
other use cases. We also recognize the broader
challenges associated with large language models
(LLMs), including potential risks related to misuse
and safety, and we encourage readers to consult the
relevant literature for a more detailed discussion of
these issues (Kumar et al., 2024; Cui et al., 2024;
Luu et al., 2024).

References
Abdul Arbaz, Heng Fan, Junhua Ding, Meikang Qiu,

and Yunhe Feng. 2024. Genflowchart: parsing and
understanding flowchart using generative ai. In In-
ternational Conference on Knowledge Science, Engi-
neering and Management, pages 99–111. Springer.

Martin Bresler, Daniel Průša, and Václav Hlaváč. 2016.
Recognizing off-line flowcharts by reconstructing
strokes and using on-line recognition techniques. In
2016 15th International Conference on Frontiers in
Handwriting Recognition (ICFHR), pages 48–53.

Kanis Charntaweekhun and Somkiat Wangsiripitak.
2006. Visual programming using flowchart. In 2006
International Symposium on Communications and
Information Technologies, pages 1062–1065. IEEE.

Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett,
and Eunsol Choi. 2023. Complex claim verification
with evidence retrieved in the wild. arXiv preprint
arXiv:2305.11859.

Tianyu Cui, Yanling Wang, Chuanpu Fu, Yong Xiao,
Sijia Li, Xinhao Deng, Yunpeng Liu, Qinglin Zhang,
Ziyi Qiu, Peiyang Li, Zhixing Tan, Junwu Xiong,
Xinyu Kong, Zujie Wen, Ke Xu, and Qi Li. 2024.
Risk taxonomy, mitigation, and assessment bench-
marks of large language model systems. Preprint,
arXiv:2401.05778.

Nathan Ensmenger. 2016. The multiple meanings of a
flowchart. Information & Culture, 51(3):321–351.

Martin J Eppler, Jeanne Mengis, and Sabrina Bresciani.
2008. Seven types of visual ambiguity: On the mer-
its and risks of multiple interpretations of collabora-
tive visualizations. In 2008 12th International Con-
ference Information Visualisation, pages 391–396.
IEEE.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023. Enabling large language models to generate
text with citations. arXiv preprint arXiv:2305.14627.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian,
Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen,
Furong Huang, Yaser Yacoob, et al. 2024. Hallu-
sionbench: an advanced diagnostic suite for entan-
gled language hallucination and visual illusion in
large vision-language models. In Proceedings of

22493

https://github.com/flowvqa/flowvqa?tab=MIT-1-ov-file
https://github.com/flowvqa/flowvqa?tab=MIT-1-ov-file
https://doi.org/10.1109/ICFHR.2016.0022
https://doi.org/10.1109/ICFHR.2016.0022
https://arxiv.org/abs/2401.05778
https://arxiv.org/abs/2401.05778

the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14375–14385.

Tanmay Gupta and Aniruddha Kembhavi. 2022. Vi-
sual programming: Compositional visual reasoning
without training. ArXiv, abs/2211.11559.

Wen Huang, Hongbin Liu, Minxin Guo, and Neil Zhen-
qiang Gong. 2024. Visual hallucinations of multi-
modal large language models. arXiv preprint
arXiv:2402.14683.

Siqing Huo, Negar Arabzadeh, and Charles Clarke.
2023. Retrieving supporting evidence for generative
question answering. In Proceedings of the Annual In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval in the Asia
Pacific Region, pages 11–20.

Ashutosh Kumar, Sagarika Singh, Shiv Vignesh Murty,
and Swathy Ragupathy. 2024. The ethics of interac-
tion: Mitigating security threats in llms. Preprint,
arXiv:2401.12273.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui
Yuan, Shu Liu, and Jiaya Jia. 2024. Lisa: Reason-
ing segmentation via large language model. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9579–9589.

Dongfang Li, Zetian Sun, Xinshuo Hu, Zhenyu Liu,
Ziyang Chen, Baotian Hu, Aiguo Wu, and Min
Zhang. 2023a. A survey of large language models
attribution. arXiv preprint arXiv:2311.03731.

Xiaonan Li, Changtai Zhu, Linyang Li, Zhangyue Yin,
Tianxiang Sun, and Xipeng Qiu. 2023b. Llatrieval:
Llm-verified retrieval for verifiable generation. arXiv
preprint arXiv:2311.07838.

Zejie Liu, Xiaoyu Hu, Deyu Zhou, Lin Li, Xu Zhang,
and Yanzheng Xiang. 2022. Code generation from
flowcharts with texts: A benchmark dataset and an
approach. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 6069–
6077, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Quan Khanh Luu, Xiyu Deng, Anh Van Ho, and Yorie
Nakahira. 2024. Context-aware llm-based safe con-
trol against latent risks. Preprint, arXiv:2403.11863.

Xueguang Ma, Shengyao Zhuang, Bevan Koopman,
Guido Zuccon, Wenhu Chen, and Jimmy Lin. 2024.
Visa: Retrieval augmented generation with visual
source attribution. Preprint, arXiv:2412.14457.

Puneet Mathur, Alexa Siu, Nedim Lipka, and Tong Sun.
2024. Matsa: Multi-agent table structure attribution.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 250–258.

OpenAI. 2024. Hello, gpt-4o! https://openai.com/
index/hello-gpt-4o/.

Huitong Pan, Qi Zhang, Cornelia Caragea, Ed-
uard Dragut, and Longin Jan Latecki. 2024.
Flowlearn: Evaluating large vision-language models
on flowchart understanding. In ECAI 2024, pages
73–80. IOS Press.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao,
Shaohan Huang, Shuming Ma, and Furu Wei.
2023. Kosmos-2: Grounding multimodal large
language models to the world. arXiv preprint
arXiv:2306.14824.

Rebecca R Perols and Johan L Perols. 2024. The im-
pact of auditors creating flowcharts on auditors’ un-
derstanding of the flow of transactions and internal
control evaluation. Managerial Auditing Journal,
39(7):779–798.

Denis Peskoff and Brandon M Stewart. 2023. Credi-
ble without credit: Domain experts assess generative
language models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 427–438.

Lingdong Shen, Kun Ding, Gaofeng Meng, Shiming
Xiang, et al. 2024. Rethinking comprehensive bench-
mark for chart understanding: A perspective from sci-
entific literature. arXiv preprint arXiv:2412.12150.

Shreya Shukla, Prajwal Gatti, Yogesh Kumar, Vikash
Yadav, and Anand Mishra. 2023. Towards making
flowchart images machine interpretable. In Interna-
tional Conference on Document Analysis and Recog-
nition, pages 505–521. Springer.

Shubhankar Singh, Purvi Chaurasia, Yerram Varun,
Pranshu Pandya, Vatsal Gupta, Vivek Gupta, and
Dan Roth. 2024. FlowVQA: Mapping multimodal
logic in visual question answering with flowcharts.
In Findings of the Association for Computational
Linguistics ACL 2024, pages 1330–1350, Bangkok,
Thailand and virtual meeting. Association for Com-
putational Linguistics.

Lianshan Sun, Hanchao Du, and Tao Hou. 2022a. Fr-
detr: End-to-end flowchart recognition with preci-
sion and robustness. IEEE Access, 10:64292–64301.

Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang,
and Denny Zhou. 2022b. Recitation-augmented lan-
guage models. arXiv preprint arXiv:2210.01296.

Simon Tannert, Marcelo G. Feighelstein, Jasmina Bogo-
jeska, Joseph Shtok, Assaf Arbelle, Peter W. J. Staar,
Anika Schumann, Jonas Kuhn, and Leonid Karlinsky.
2023. FlowchartQA: The first large-scale benchmark
for reasoning over flowcharts. In Proceedings of
the 1st Workshop on Linguistic Insights from and
for Multimodal Language Processing, pages 34–46,
Ingolstadt, Germany. Association for Computational
Lingustics.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

22494

https://arxiv.org/abs/2401.12273
https://arxiv.org/abs/2401.12273
https://doi.org/10.18653/v1/2022.findings-emnlp.449
https://doi.org/10.18653/v1/2022.findings-emnlp.449
https://doi.org/10.18653/v1/2022.findings-emnlp.449
https://arxiv.org/abs/2403.11863
https://arxiv.org/abs/2403.11863
https://arxiv.org/abs/2412.14457
https://arxiv.org/abs/2412.14457
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.18653/v1/2024.findings-acl.78
https://doi.org/10.18653/v1/2024.findings-acl.78
https://doi.org/10.1109/ACCESS.2022.3183068
https://doi.org/10.1109/ACCESS.2022.3183068
https://doi.org/10.1109/ACCESS.2022.3183068
https://aclanthology.org/2023.limo-1.5/
https://aclanthology.org/2023.limo-1.5/

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chun-
yuan Li, and Jianfeng Gao. 2023a. Set-of-mark
prompting unleashes extraordinary visual grounding
in gpt-4v. arXiv preprint arXiv:2310.11441.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng
Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan
Wang. 2023b. The dawn of lmms: Preliminary
explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421, 9(1):1.

Junyi Ye, Ankan Dash, Wenpeng Yin, and Guil-
ing Wang. 2024. Beyond end-to-end vlms:
Leveraging intermediate text representations for
superior flowchart understanding. Preprint,
arXiv:2412.16420.

Xi Ye, Ruoxi Sun, Sercan Ö Arik, and Tomas Pfis-
ter. 2023. Effective large language model adap-
tation for improved grounding. arXiv preprint
arXiv:2311.09533.

Haobo Yuan, Xiangtai Li, Tao Zhang, Zilong Huang,
Shilin Xu, Shunping Ji, Yunhai Tong, Lu Qi, Ji-
ashi Feng, and Ming-Hsuan Yang. 2025. Sa2va:
Marrying sam2 with llava for dense grounded
understanding of images and videos. Preprint,
arXiv:2501.04001.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023. Siren’s song in the ai
ocean: a survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219.

Anthony E Zimmermann, Ethan E King, and Dipti-
man D Bose. 2024. Effectiveness and utility of
flowcharts on learning in a classroom setting: A
mixed-methods study. American Journal of Pharma-
ceutical Education, 88(1):100591.

A Further Details

A.1 Baselines
Zero-shot GPT-4o Bounding Box We use GPT-
4o (OpenAI, 2024) to predict normalized bounding
box coordinates for chart components based on text
and the visual chart, following established methods
for zero-shot localization (Yang et al., 2023b).
Kosmos-2:(Peng et al., 2023) is a multimodal
large language model that combines text-to-visual
grounding, supporting tasks like referring expres-
sion interpretation and bounding box generation
by linking objects in images with text.
LISA: (Li et al., 2023b) is a model for generating
segmentation masks from textual queries, extend-
ing VLM capabilities to segmentation tasks, and
excels in zero-shot performance with minimal fine-
tuning on task-specific data.
SA2VA(Yuan et al., 2025) is a unified model for
dense grounded understanding of both images and

videos, combining SAM-2 for segmentation and
LLaVA for vision-language tasks, enabling robust
performance in referring segmentation.
VisProg (Gupta and Kembhavi, 2022) is an agent
that generates interpretable visual programs by de-
composing queries into executable steps, enabling
modular and explainable visual reasoning.
GPT4o + FlowMask2Former SoM Prompting,
as an ablation study, we incorporate this baseline
where GPT-4o utilizes the segmented flowchart
generated by FlowMask2Former, and applies Set-
of-Marks (SoM) (Yang et al., 2023a) prompting to
guide the model’s predictions.

A.2 Implementation Details

The facebook/mask2former-swin-tiny-coco
-instance model is fine-tuned for 20 epochs for
FlowMask2Former, employing a learning rate
of 1 × 10−5 with a cosine annealing scheduler.
A batch size of 4 is used, and gradient accu-
mulation occurs over 4 steps to address mem-
ory constraints. Training is conducted using
16-bit precision to improve computational effi-
ciency. In the case of the Mermaid2Graph Vision-
Language Model (VLM), fine-tuning is performed
on the unsloth/Qwen2-VL-7B-Instruct check-
point, focusing on vision, language, attention,
and MLP layers. This model is trained for 3
epochs with a batch size of 1 and gradient ac-
cumulation over 5 steps. A learning rate of
2 × 10−4 is applied with a linear scheduler. To
optimize memory usage, the model is loaded in
4-bit precision, and AdamW is used as the op-
timizer with a weight decay of 0.01. The base-
line models are initialized as follows: LISA from
xinlai/LISA-13B-llama2-v1, Kosmos-2 from
microsoft/kosmos-2-patch14-22, and Sa2VA
from ByteDance/Sa2VA-8B. Default settings and
parameters are used for all baselines.

A.3 Computational Budget

Table 4 shows the computational budget for this
paper, broken down by associated tasks.

Task Time (hours) # of GPUs GPU Spec
FlowMask2Former Training 14 1 NVIDIA RTX A6000
Flow2Mermaid VLM Training 8 1 NVIDIA RTX A6000
Baseline, Trained Model Inference 3 1 NVIDIA RTX A6000

Table 4: Computational Budget for experiments in the
paper

22495

https://arxiv.org/abs/2412.16420
https://arxiv.org/abs/2412.16420
https://arxiv.org/abs/2412.16420
https://arxiv.org/abs/2501.04001
https://arxiv.org/abs/2501.04001
https://arxiv.org/abs/2501.04001

bfs

ge
t_s

tat
em

en
t

fin
al_

an
sw

er

ge
t_n

eig
hb

ou
rs

ge
t_d

esc
en

da
nts

max
_in

_de
gre

e

ou
t_d

eg
ree

pa
th_

be
tw

ee
n

sho
rte

st_
pa

th

ge
t_a

nce
sto

rs dfs

in_
de

gre
e

max
_ou

t_d
eg

ree

Tool Name

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Du
ra

tio
n

(s
ec

on
ds

)

Figure 7: Box-plot distribution of time taken in each
tool call, in seconds.

bfs

ge
t_s

tat
em

en
t

fin
al_

an
sw

er

ge
t_n

eig
hb

ou
rs

ge
t_d

esc
en

da
nts

max
_in

_de
gre

e

ou
t_d

eg
ree

pa
th_

be
tw

ee
n

sho
rte

st_
pa

th

ge
t_a

nce
sto

rs dfs

in_
de

gre
e

max
_ou

t_d
eg

ree

Tool Name

0

100

200

300

400

500

600

700

800

Co
un

t

Question Type
fact_retrieval
topological
flow_referential
applied_scenario

Figure 8: Distribution of count of tool calls, segregated
by question type.

A.4 Dataset
Fig 9 shows the distribution of nodes in our bench-
mark.

Fig 12 represents examples from the training set
for FlowMask2Former and Flow2Mermaid VLM,
displaying different style types.

Figs 13-15 represent examples from
FlowExplainBench from different domains,
with different styles and question types.

A.5 Qualitative Examples
Fig. 17 and 17 present qualitative comparisons of
the baseline methods. While these examples do
not comprehensively represent the overall perfor-

Figure 9: Distribution of nodes in our benchmark.

Figure 10: Heatmap of time taken by different tools to
execute, binned by number of nodes in the flowchart.

Figure 11: Heatmap of duration of tool call execution,
arranged by agentic step.

mance ranking, they have been deliberately chosen
to highlight specific limitations and failure cases
of each method. This selection aims to provide in-
sights into the scenarios where certain approaches
struggle, offering a clearer understanding of their
weaknesses.

B Agent Analysis

B.1 API Description

Fig. 18 shows the class diagram of the data
structure used to represent Nodes, Edges, and
the Flowchart. The FlowChart class serves as
the primary structure, managing a collection of
Node objects, each identified by a unique ID and
containing a statement. Nodes are interconnected
through Edge objects, which define directed re-
lationships with optional conditions (Yes, No, or
unconditional).

Table 6 summarises the API for the tools
provided to FlowPathAgent. Except for
final_answer which returns the final answer and
reasoning involved, all other tools operate on a
global FlowChart object initiated from mermaid
code generated by Flow2Mermaid VLM.

22496

Name Worst-Case Time Complexity Justification

get_statement O(1) Constant time operation regardless of graph size
get_ancestors O(n2) In a complete graph, could require traversing all edges from all nodes
get_descendants O(n2) Similarly, might need to explore all possible paths in a dense graph
get_neighbours O(n) In worst case, a node could be connected to all other nodes
in_degree O(n) May need to check all nodes to count incoming edges
out_degree O(n) May need to check all nodes to count outgoing edges
max_in_degree O(n) Must examine every node to find maximum
max_out_degree O(n) Must examine every node to find maximum
bfs O(n2) In a complete graph, each node has n− 1 edges, so total is O(n2)
dfs O(n2) Same as BFS in worst case with dense graph
path_between O(n2) May need to explore all possible paths in worst case
shortest_path O(n2) BFS-based shortest path in a dense graph
final_answer O(1) Constant time operation

Table 5: Time Complexity of tools used in our system.

Style 1 Style 2 Style 3 Style 4

Style 1 Color Options:

Style 2 Palette Options:

Derived from FlowVQA Train Split.

FlowMask2Former Train: Randomized text in nodes,
segmentation labels generated from SVG metadata.

Flow2Mermaid VLM Train: Original node statements, nodes
labeled with alphabetic ID using SVG metadata.

Examples

Figure 12: Overview of training split used for FlowMask2Former, and Flow2Mermaid VLM. The figure demon-
strates the style options, color palettes used, and distinction between both training sets.

B.2 Tool-use Analysis

Fig 7 shows the distribution of run-time of tool
cals, called from within the agentic framework.
max_in_degree has the maximum median run-
time, which can be explained by the fact that
the Node data-structure employed by us only
has outgoing edges, meaning all nodes have to
be iterated to find the node with maximum in-
degree. The second highest median run-time be-
longs to shortest_path, which is implemented as
a O(V+E) breadth-first-search based algorithm. Ta-
ble 5 describes the theoretical time complexity of
the tool calls. Fig 10 represents the time of execu-
tion by tool, as a heatmap plotted along the number
of nodes. As seen from this heatmap, in practice,
the constant compute associated with each tool call
often outweighs the cost incurred by increasing the
number of nodes, when the number of nodes is
not large enough. Moreover, fig 11, which plots
the time taken by each tool to execute by agentic

step shows that highest latencies occur for the first
step of the simulation, because of compute cost of
initialization.

We analyze the distribution of tool calls by ques-
tion type in Fig 8. Topological questions show
the most diversity in terms of tool calls, since
they require interpreting structural aspects of the
FlowChart. get_statement is the most common
tool for the other question types. This is because
all the other questions require content from inside
the flowchart, and often involve multiple calls of
get_statement in a single agentic run. For flow-
referential questions, get_neighbours is a pop-
ular tool, since this tool allows downstream flow
analysis from an anchor node.

B.3 Prompts and Implementation

Fig 19 and 20 represent the system prompt
template, and planning prompt template
used by FlowPathAgent. We implemented

22497

Name Description Arguments
get_statement Returns the statement associated with a node. node_id (string): Identifier of the node.
get_ancestors Identifies all nodes that have paths leading to the

specified node.
node_id (string): Identifier of the target node.
levels (integer, optional): Maximum levels to tra-
verse.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

get_descendants Identifies all nodes that can be reached from the
specified node.

node_id (string): Identifier of the starting node.
levels (integer, optional): Maximum levels to tra-
verse.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

get_neighbours Returns all nodes connected to the given node by
outgoing edges.

node_id (string): Identifier of the node.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

in_degree Returns the number of incoming edges to a node. node_id (string): Identifier of the node.
out_degree Returns the number of outgoing edges from a

node.
node_id (string): Identifier of the node.

max_in_degree Identifies nodes with the highest incoming edges. None
max_out_degree Identifies nodes with the highest outgoing edges. None
bfs Performs breadth-first search from a starting node. start_id (string, optional): Identifier of the node.

conditions (object, optional): Dictionary of edge
conditions.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

dfs Performs depth-first search from a starting node. start_id (string, optional): Identifier of the node.
conditions (object, optional): Dictionary of edge
conditions.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

path_between Finds a path between two nodes, considering edge
conditions.

start_id (string): Start node.
end_id (string): End node.
conditions (object, optional): Edge conditions.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

shortest_path Finds the shortest path between two nodes using
BFS.

start_id (string): Start node.
end_id (string): End node.
conditions (object, optional): Edge conditions.
include_statements (boolean, optional): If True,
includes statements. Defaults to False.

final_answer Provides a final answer to the given problem. answer (any): The final answer.

Table 6: Tools provided to FlowPathAgent.

FlowPathAgent using HuggingFace’s smolagents
4 library. We patched the library to ensure that
visual tokens are only used in the planning step
(node selection step), and removed from the
conversation template thereafter.

C Benchmark Construction

C.1 Automatic Labeling

Fig 21 represents the prompt template used to per-
form automatic annotations, in step 1 of our ground
truth annotation process.

C.2 Style Diversity

Fig 22 represents the color schemes used to aug-
ment style diversity in FlowExplainBench. Styles

4https://github.com/huggingface/smolagents

for auxiliary datasets used in this paper are pre-
sented in Fig 12.

C.3 Human Annotation

We employed two graduate student annotators,
aged 22-25. The annotators were proficient in En-
glish, and were exposed to flowchart QA samples
from the training set before the annotation exercise,
to make them comfortable with the flowcharts in-
volved. The annotators were fairly compensated
at the standard Graduate Assistant hourly rate, fol-
lowing their respective graduate school policies.

Fig 23 shows a summary of the annotator guide-
lines, and Fig 24 shows the annotation platform
used.

22498

https://github.com/huggingface/smolagents

Q: Emma is making egg
salad and prefers her

ingredients to be as dry as
possible before mixing to

avoid a watery salad.
After boiling and cooling
the eggs, what should her
next step be according to
the blog post instructions?

A: Pat the eggs dry with
a paper towel.

Applied Scenario
Instruct

Ground Truth
Attributions

Figure 13: Example from
FlowExplainBench–Instruct. This example
represents an Applied Scenario question, and has a
style type 1 (single color).

Q: What is the maximum
allowed length for the new
string after spaces are

replaced?

A: The new string must
not exceed 1000

characters in length.

Fact Retrieval
Code

Ground Truth
Attribution

Figure 14: Example from FlowExplainBench–Code.
This example represents a Fact Retrieval question, and
has a style type 2 (multiple colors).

D Additional analysis on
hand-constructed charts

We conducted a supplemntary case study to an-
alyze FlowPathAgent’s generalization to real-
world handwritten charts. Data: Given the lack of
Question-Answer datasets for hand-drawn charts,
we used the FC_BScan (Bresler et al., 2016)
dataset for hand-drawn flowchart component recog-
nition. We randomly selected 50 samples from the
test set, and used prompted GPT4o with exam-
ple questions from (Singh et al., 2024) to gener-
ate Question-Answer pairs. An annotator man-
ually annotated ground-truth attributions for the
selected samples. We used the train set to train
FlowMask2Former for this domain.

Table 7 compares results from the chosen base-
lines. Fig 25-29 represent qualitative examples of
FlowPathAgent’s performance. We observe, that
due to the neuro-symbolic approach used by our
agent, it is able to generalize across style variations
and is is robust to errors in intermediate steps.

22499

Ground Truth
Attribution

Ground Truth
Attribution

Q: If a parent is currently at
the step of exercising patience,
what decision must have been
made previously regarding the

'How was school?' question, and
what is the expected outcome of

this step?"

A: Previously, the decision
to find alternative

conversation starters was
made, which results in a
less stressful relationship

with the teen.

Q: Is the node "Maintain
Authority and Reinforce Rules"
direct successor of the node

"Acknowledge school may not be
teen's priority"?

A: No, the node 'Maintain
Authority and Reinforce
Rules' does not directly

succeed the node
'Acknowledge school may
not be teen's priority'.

Topological
Wiki

Flow referential

Figure 15: Example from
FlowExplainBench–Instruct. This example
represents Tolopolgical and Flow Referential questions,
and has a style type 3 (mermaid default).

Baseline Precision Recall F1
Kosmos-2 (Peng et al., 2023) 7.34 3.12 4.43
LISA (Lai et al., 2024) 16.52 30.13 21.50
SA2VA (Yuan et al., 2025) 22.12 5.13 8.25
VisProg (Gupta and Kembhavi, 2022) 0.00 0.00 0.00
GPT4o Bounding Box 32.37 32.44 32.41
GPT4o SoM 62.41 64.52 63.45
FlowPathAgent 65.11 68.25 66.64

Table 7: Case Study: Performance comparison on Hand-
written Charts .

22500

FlowPathAgentGPT4o BB GPT4o + SoMKosmos-2LISA SA2VA Ground Truth

0.660.0 0.660.01.0 1.0

1.00.0 0.720.00.0 0.8

1.00.0 0.860.00.79 0.51

F1

F1

F1

Question: A landscape architect, Sophia, is working on a garden design that was initially
measured in yards. However, the international team she's collaborating with uses the

metric system. Sophia opts for an online calculator to convert the measurements but is
unsure whether altitude plays a role in this scenario. Should Sophia make any adjustments

before finalizing the conversion?

Answer: Sophia should continue without altitude
adjustment unless the specific context of her work

requires it.

Question: AImagine you're working on a financial application where users can add
transactions to their accounts. When a user attempts to add a transaction for an existing

item, what initial value is assigned to 'old' before the transaction value is added to it?

Answer: The initial value of 'old' is the value
retrieved using 'UserDict.__getitem__'."

Question: While refactoring the plotting capabilities in a data analysis library, Marissa is
iterating over an array of plotter objects. She comes across an object with a 'psy.plotter'

attribute that is neither nonexistent nor None. What should Marissa do to this plotter
object before moving to the next one?

Answer: Set the object's 'psy.plotter.disabled'
property to True.

Figure 16: Qualitative comparison of FlowPathAgent with baselines via examples.

22501

Question: An indegree of is the number of incoming edges for a node in a flowchart. What is
the maximum indegree for the flowchart?

Answer: The maximum indegree for the flowchart
is 4.

FlowPathAgentGPT4o BB GPT4o + SoMKosmos-2LISA SA2VA Ground Truth

0.50.0 1.00.00.29 0.66F1

0.00.0 0.00.00.15 0.0F1

Question: If the boy's reaction to the rejection is to propose staying friends, and that offer
is accepted, how many steps away is the ending from the current step, not counting the

step where friendship is maintained?

Answer: There is only one more step before the
end

Figure 17: (Continued) Qualitative comparison of FlowPathAgent with baselines via examples.

22502

contains

has

Edge

+str to_node
+Optional condition

+describe() : str

Node

+str id
+str statement
+List edges

+add_edge(to_node: str, condition: Optional)

FlowChart

+Dict nodes

+add_node(id: str, statement: str) : Node
+add_edge(from_id: str, to_id: str, condition: Optional)
+get_statement(node_id: str) : str
+to_mermaid() : str
+from_mermaid(mermaid_code: str) : FlowChart

Figure 18: Class Diagram of the FlowChart data structure representing directed graphs with conditional edges.

22503

You are an expert assistant who can solve any task using tool calls. You will be given a task to solve
as best you can. The task you have been asked to solve is performing flowchart attribution. This tasks

takes as input a flowchart image, and some text (like question-answer pair), and finds out which
flowchart nodes explain, and are relevant to the text. You need to find the minimum set of nodes, that

are directly associated with the statements.

To do so, you have been given access to some tools.

The tool call you write is an action: after the tool is executed, you will get the result of the tool call as
an "observation".

This Action/Observation can repeat N = 8 times, you should take several steps when needed.

Here are the rules you should always follow to solve your task:

1. ALWAYS provide a tool call, else you will fail. You need to call tools even if you think you know the
answer already.

2. Always use the right arguments for the tools. Never use variable names as the action arguments, use
the value instead.

3. Never re-do a tool call that you previously did with the exact same parameters.

Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.

How to use tools:

Tools available to you:

The final answer needs to have the following
format:

\### Attributed Nodes: [list of nodes]
\### Reason: The final concluding reason

The final answer needs to have the following format:

eg.
\### Attributed Nodes: C, G
\### Reason: C represents ...

⛏️ get_neighbours
Returns all nodes connected to the given node by outgoing edges.

node_id (string): Identifier of the node.
include_statements (boolean, optional): If True,
includes statements. Defaults to False

...

Task: "What is the
result of the following

operation: 5 + 3 +
1294.678?"

{
"name": "python_interpreter",

"arguments": {"code": "5 + 3 + 1294.678"}
}

1302.678

ACTION OBSERVATION

Examples:

Figure 19: System prompt template provided to
FlowPathAgent.

Yes No

Your task is to attribute nodes in the flowchart, which are relevant to the provided statements.
To do this, you will need to perform some graph operations, using the tools provided for you. These tools

mostly operate on a node level, by referencing nodes with their identifiers, such as 'A', 'G' or 'AF'
(letter based, labeled on the flowchart).

You will now decide a plan for this task.
To do so, you will have to read the task and identify things that must be discovered in order to successfully complete it.

Don't make any assumptions. For each item, provide a thorough reasoning. Here is how you will structure this survey:

1. Nodes that need to be explored List the specific nodes you want to explore with
different tools.

 2. Facts to look up List here any facts that we may need to look up.
Also list how to find these: which tools, what nodes and
arguments you will call on these tools.

3. Reasoning The reasons for picking the specific tools, and
choosing the nodes to explore. Note that some
functions do not need you to explore nodes.

Question:

Answer:

labeled_flowchart.png

Figure 20: Planning prompt template provided to
FlowPathAgent.

Mermaid Code Attributed NodesStatement

...
Domain, Question Type Specific Few Shot Examples

Your task is to attribute nodes, representing a path in the flowchart, which are
relevant to the provided statements.

...

General Instructions

Output Format

Example response:
ATTRIBUTION: A,B,D
REASON: Node A contains ...

ATTRIBUTION: [List of node letters, e.g. A,B,C]
REASON: [Detailed explanation of why these nodes
were chosen]

Domain Specific Instructions

You are given a flowchart, represented as a mermaid code.
The flow chart has nodes labelled (A,B,C…), with each node
having relevant statements. You are given a question,
answer pair, and based on that information, tasked with
identifying the relevant nodes.
If the question asks for max-outdegree/in degree, mention
all nodes that have the maxiumim in/out degree.
If the question talks about a pair of nodes, (eg.
predecessor/ successor relationship), mention both those
nodes in your answer.

You are given a flowchart, represented as a mermaid
code. The flow chart has nodes labelled (A,B,C…),
with each node having relevant statements. You are
given a question, answer pair, and based on that
information, tasked with identifying the relevant
nodes.
Each question can be uniquely answered by 1-2 nodes.
Find the nodes, and return their alphabet value.

You are given a flowchart, represented as a mermaid code. The flow chart has nodes labelled
(A,B,C…), with each node having relevant statements. You are given a question, answer pair, and
based on that information, tasked with identifying the minimal set of nodes that are relevant
to the QA pair.
The questions are based on the logic flow in the flowchart, and you must trace the logic
involved.
1. If the question or answer refers to any specific node, it MUST be included.
2. If the question asks for steps after a node, include the node, and the required subsequent
nodes.
3. If the answer mentions x steps, include all x corresponding nodes, but don't extend it to
x+1th node.
4. Attribute a node if its value is used in the answer or referred to by the question.
5. If the question asks about retrospective steps, given a scenario, include the node, and the
relevant previous nodes described in the answer.
6. If the question also additionally asks information not about the current step, but other
steps too (eg last step), and such nodes are referred by the answer, include those nodes.
7. Consider all conditions mentioned in the QA, when making node selection.
8. Do not include nodes if they are not referred to by the answer itself.

You are given a flowchart, represented as a mermaid code. The flow chart
has nodes labelled (A,B,C…), with each node having relevant statements.
You are given a question, answer pair, and based on that information,
tasked with identifying the minimal set of nodes that are relevant to the
QA pair.
The questions are based on scenarios, where the flowchart is concerned.
1. Consider the conditions mentioned in the QA, and include relevant
nodes that ground those conditions in the flowchart.
2. Attribute the nodes that are needed to solve the question. Include
decision nodes, statements, and relevant outcomes, only if they are
mentioned in the question or the answer.
3. Do not anticipate steps outside the question or the answer. We want to
build a minimal set.
4. Only consider steps associated with the scenario and the answer. Do
not include initialization nodes, or nodes preceding the scenario. You have
to locally think of what happens in the particular circumstance.

Fact RetrievalTopological

Applied Scenario

Flow Referential

Inputs

Mermaid Code Statement

Figure 21: Prompt Template used for initial automatic
ground truth annotation using GPT4.

Style 1 Color Options:

Style 2 Palette Options:

Figure 22: Diversity of color schemes used to augment
FlowExplainBench flowchart styles

22504

Annotator Guidelines: Flowchart Attribution

1. Task Overview

Flowchart attribution involves identifying and selecting the relevant nodes in a flowchart that correspond to a given
natural language statement. Annotators will interact with an attribution platform to highlight the appropriate nodes that
form a logical path grounding the statement in the flowchart.

2. Annotation Process

Step 1: Understanding the Statement

●​ Carefully read the natural language statement provided.
●​ Identify key actions, decisions, or processes described in the statement.

Step 2: Examining the Flowchart

●​ Analyze the structure of the flowchart to understand the logical flow.
●​ Identify nodes that contain relevant operations or directives that match the statement.

Step 3: Selecting the Attributed Nodes

●​ Highlight nodes that directly contribute to fulfilling the statement’s described process.
●​ Ensure the selected nodes follow a logical sequence, even if they are not directly connected.
●​ Use the following criteria to determine node inclusion:

○​ Optimality: Select the minimal set of nodes required to fully attribute the statement.
○​ Contextual Alignment: Ensure the selected nodes accurately represent the described actions or

decisions.
○​ Exclusivity: Avoid selecting unnecessary nodes that do not contribute to the statement’s meaning.

Rubric for Flowchart Attribution

Criterion Description Score (0-2)

Optimality The minimal set of nodes required to ground
the statement is selected.

0 = Excessive or missing nodes,
1 = Some unnecessary nodes,
2 = Only essential nodes chosen

Contextual Alignment The selected nodes logically represent the
statement’s described actions or decisions.

0 = Poor alignment,
1 = Partial alignment,
 2 = Complete alignment

Exclusivity No extra, irrelevant nodes are included. 0 = Many irrelevant nodes,
1 = Some irrelevant nodes,
 2 = No irrelevant nodes

Scoring Interpretation:

●​ 5-6 points: Excellent annotation
●​ 3-4 points: Acceptable but may require minor adjustments
●​ 0-2 points: Needs review and refinement

Figure 23: Summary of instructions given to human annotators.

22505

Question-Answer Pair

What is compared with 'self.mode' to find a
match in the 'MODES' dictionary?

The 'id' from each item is compared with
'self mode'

Node Annotation

A B C

Selected Nodes

A B C

Instructions:

1. Select node types from the dropdown (you can select
multiple)

2. Selected nodes will appear as pills. You can change
your selection.

3. Refer to the annotator guidelines to attribute and
score samples.

Flowchart Visualization

Question

Answer

Select nodes

Figure 24: Human annotation platform for attribution annotation.

22506

Figure 25: FlowPathAgent attributed D and F correctly.
The blocks and labels represent FlowMask2Former an-
notations.

Figure 26: FlowPathAgent attributed E correctly. The
blocks and labels represent FlowMask2Former annota-
tions.

Figure 27: FlowPathAgent attributed D correctly. The
blocks and labels represent FlowMask2Former annota-
tions.

Figure 28: FlowPathAgent attributed B, and E correctly.
The blocks and labels represent FlowMask2Former an-
notations.

22507

Figure 29: FlowPathAgent attributed A, B, C, E. The
blocks and labels represent FlowMask2Former annota-
tions.

22508

