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Abstract

As AI systems take on collaborative roles,
they must reason about shared goals and be-
liefs—not just generate fluent language. The
Rational Speech Act (RSA) framework offers
a principled approach to pragmatic reasoning,
but existing extensions face challenges in scal-
ing to multi-turn, collaborative scenarios. In
this paper, we introduce Collaborative Rational
Speech Act (CRSA), an information-theoretic
(IT) extension of RSA that models multi-turn
dialog by optimizing a gain function adapted
from rate-distortion theory. This gain is an ex-
tension of the gain model that is maximized in
the original RSA model but takes into account
the scenario in which both agents in a conver-
sation have private information and produce ut-
terances conditioned on the dialog. We demon-
strate the effectiveness of CRSA on referen-
tial games and template-based doctor-patient
dialogs in the medical domain. Empirical re-
sults show that CRSA yields more consistent,
interpretable, and collaborative behavior than
existing baselines, paving the way for more
pragmatically competent language agents.

1 Introduction

Modeling conversations is central to the develop-
ment of grounded and useful agentic AI systems,
which are increasingly characterized by collabo-
rative interactions between humans and machines.
Several applications benefit from dialog systems
capable of natural interactions with users. For
instance, in the medical domain, conversational
agents could support diagnostic interviews (Tu
et al., 2025) or serve as tools for physician training
in controlled environments (Karunanayake, 2025).
In enterprise settings, dialog agents could au-
tonomously handle routine tasks—such as schedul-
ing, data entry, or report generation—freeing hu-
man effort for higher-level decision-making (Tupe
and Thube, 2025; Satav, 2025). In education, they
offer the potential to personalize content delivery,

adapting to learners’ styles and paces (Nabhani
et al., 2025; Vorobyeva et al., 2025). While such
applications are still emerging, a key enabler is the
development of models that can manage collabo-
rative, goal-oriented interactions in a robust and
interpretable manner.

To succeed in real-world settings, dialog
generative-based models must do more than gener-
ate fluent language—they must track shared tasks
to communicate meaningfully in context (Lin et al.,
2024). For example, a physician in a diagnostic
exchange refines hypotheses as the conversation
evolves, requiring interpretable and scalable frame-
works for reliable interaction.

Yet, many existing models prioritize task-
specific response generation (He et al., 2017; Jiang
et al., 2019; Meta Fundamental AI Research Diplo-
macy Team (FAIR) et al., 2022), or optimize for
superficial conversation properties using narrowly
defined objectives (Khani et al., 2018; Dafoe et al.,
2020; Lin et al., 2024; Jeon et al., 2020). While
these methods often yield strong performance, they
typically lack principled foundations, leading to
task-specific solutions that struggle to generalize
or remain robust under shifting conditions.

The Rational Speech Act (RSA) frame-
work (Frank and Goodman, 2012) offers a princi-
pled foundation for modeling pragmatic reasoning
as recursive social inference between speakers and
listeners. Viewed through an information-theoretic
(IT) lens, RSA approximates a rate-distortion so-
lution (Cover and Thomas, 1991), where the lis-
tener reconstructs intended meaning from observed
utterances (Zaslavsky et al., 2021). RSA has
successfully captured phenomena such as refer-
ence (Degen et al., 2020), implicature (Bergen
et al., 2016), and vagueness (Herbstritt and Franke,
2019), and powered applications from grounded
captioning (Cohn-Gordon et al., 2018) to controlled
generation (Wang and Demberg, 2024). Yet, de-
spite this promise, existing RSA extensions remain
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limited in multi-turn, task-oriented dialog: they
struggle to model evolving beliefs or integrate di-
alog history (Carenini et al., 2024; Degen, 2023).
We argue this shortfall stems from the absence of a
unified, theoretically grounded mechanism for be-
lief and task tracking in collaborative interaction.

In this paper, we introduce the Collaborative
Rational Speech Act (CRSA), an IT grounded ex-
tension of the RSA framework designed to model
multi-turn, collaborative dialogs. CRSA optimizes
a gain function that is a generalization of the
one proposed by Zaslavsky et al. (2021) for the
multiple-turns scenario. The resulting model pro-
vides a tool to model an estimation of the target
of the joint task and the belief that each agent has
on their in interlocutor’s private information, and
it can be used with large language models (LLMs).
We evaluate CRSA in referential game settings and
semi-automatic generated conversations between
doctor and patients for extracting a medical diag-
nosis.1

Our main contributions are as follows:
• We introduce Collaborative RSA (CRSA), a

novel, information-theoretically grounded exten-
sion of the RSA framework tailored for multi-
turn, goal-driven dialog.

• A generalized multi-turn gain function: We
extend the rate-distortion to model multi-turn col-
laborative settings of RSA, capturing both task
progression and evolving partner beliefs. CRSA
jointly models the agent’s belief about (i) the
shared task target and (ii) the interlocutor’s pri-
vate knowledge—enabling socially aware and
context-sensitive communication.

• Empirical validation: We evaluate CRSA on
referential games and semi-automatically gener-
ated doctor-patient dialogs, showing that it im-
proves consistency, interpretability, and collabo-
rative alignment compared to existing baselines.

2 Related work

RSA model and pragmatics. The Rational
Speech Act (RSA) framework (Frank and Good-
man, 2012) serves as a model for pragmatic com-
munication designed to emulate human behavior in
linguistic tasks (Degen et al., 2020; Bergen et al.,
2016; Herbstritt and Franke, 2019; Spinoso-Di Pi-
ano et al., 2025). This framework is both conceptu-
ally intuitive and computationally versatile, making

1Code is available at https://github.com/
LautaroEst/crsa

it readily adaptable for integration with neural lan-
guage models to tackle more intricate challenges,
including machine translation (Cohn-Gordon and
Goodman, 2019), image captioning (Cohn-Gordon
et al., 2018), controllable text generation (Shen
et al., 2019; Wang and Demberg, 2024; Darrin
et al., 2024). Extensions to the original RSA frame-
work have been proposed to accommodate more
complex scenarios. For instance, adaptations have
addressed cases where agents lack shared vocab-
ularies (Bergen et al., 2016) or where common
ground evolves dynamically during interaction (De-
gen et al., 2015). A comprehensive overview of
RSA’s development and its numerous variants is
provided by Degen (2023).

Information-theoretic results for interactive
rate-distortion. Information theory offers a ro-
bust framework for analyzing communication
as the exchange of information between agents.
Within this domain, the rate-distortion prob-
lem (Shannon, 1993) offers a principled way to
balance compression efficiency with the fidelity of
reconstruction. This problem has been pivotal in
exploring the trade-offs between fidelity and com-
pression in message transmission. Kaspi (1985)
investigated scenarios involving two agents engag-
ing in iterative interactions to collaboratively infer
each other’s observations. Building on this founda-
tion, Rey Vega et al. (2017) extended the analysis
to multi-agent contexts, accommodating commu-
nication frameworks with three or more partici-
pants and significantly advancing the understand-
ing of collective information exchange. Focusing
on two-agent systems, Vera et al. (2019) explored
a variation wherein each agent is tasked not merely
with understanding one another but with predicting
a target random variable representing a (possible
stochastic) function of each other’s observations.
This approach highlights the promise of IT meth-
ods in supporting more efficient and collaborative
communication among agents in complex environ-
ments, as shown by Zaslavsky et al. (2021), who
reformulate the standard RSA framework as a rate-
distortion optimization problem.

Collaborative dialog modeling. Multiple works
frame a collaborative or task-oriented dialog as
a Partially Observable Markov Decision Process
(POMDP) (Williams and Young, 2007), which pro-
vide a suitable framework to model end-to-end net-
works on specific tasks (Wen et al., 2017; Jiang
et al., 2019). Reinforcement learning has been
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(a) RSA

(b) YRSA

(c) CRSA

Figure 1: RSA variants proposed in this work (YRSA b,
CRSA c) compared to the original one (RSA a).

widely used in this context in order to provide in-
terpretable and trackable training procedures that
incorporate the structure of the dialog in their pol-
icy training or decoding strategy (Lin et al., 2024;
Li et al., 2016; Xu et al., 2025). Related to this,
game-theoretic perspective has also been used in di-
alog modeling (Jeon et al., 2020; Lin et al., 2022).
In this context, multiple tasks and datasets have
been developed to evaluate dialog modeling (He
et al., 2017; Khani et al., 2018; Macherla et al.,
2023), usually by assessing the task performance
and the similarity with human conversations. The
RSA model has also found applications in dialog
systems, often complementing neural models to en-
hance agent consistency given persona (Kim et al.,
2020) or to improve the interpretation of emotional
subtext (Kim et al., 2021).

3 Review of the RSA Model from the
Lens of Information Theory

Figure 1a presents a schematic view of the classic
RSA model from an information-theoretic perspec-
tive. Here, a meaning m ∈ M is received by the

speaker S : M×U → [0, 1] who uses it to produce
a posterior probability S(u|m) for all possible ut-
terances u ∈ U . The utterance u is then transmitted
to the listener L : U ×M → [0, 1] who produces
a posterior L(m|u) for all possible reconstructions
m ∈ M of the meaning m that the speaker is try-
ing to convey. Additionally, there is a distribution
P : M → [0, 1] that is known by the two agents
and represents the prior of the meanings. Finally,
the function C : U → R assigns a prior cost value
to each utterance produced by the speaker.2

In the classic RSA model, agents update their
values based on the other’s perspective. For sim-
plicity, and without loss of generality, we adopt
the listener’s viewpoint—assuming the speaker up-
dates first3:

Sk+1(u|m) ∝ exp
[
α(logLk(m|u)− C(u))

]
,

Lk+1(m|u) ∝ Sk+1(u|m)P (m).

In this case, the listener is initialized with a pre-
defined lexicon function L : U × M → {0, 1},
which specifies the possible meanings associated
with each utterance:

L0(m|u) ∝ P (m)L(u,m).

Zaslavsky et al. (2021) show that this iteration pro-
cess is equivalent to maximizing the following ob-
jective:

Gα
RSA(L,S)=HS(U |M)+αES [VL(U,M)], (1)

where HS(U |M) is the conditional entropy be-
tween the estimated meanings and the utterances,
VL(u,m) ≜ logL(m|u)−C(u) is called the “lis-
tener value”, and ES [VL] is computed with respect
to the distribution of the speaker. That is,

HS(U |M)=−
∑

∀ (u,m)

PS(u,m)logS(u|m),

ES [VL]=
∑

∀ (u,m)

PS(u,m)VL(u,m),

where PS(u,m) ≜ S(u|m)P (m) represents the
joint probability of the speaker.

2Note that the prior and cost functions are not shown in
Figure 1 for clarity.

3In the classic RSA literature, the literal listener (speaker)
is usually represented with L0 (S0) and the pragmatic with L1

(S1). Here, we will reserve the subindex notation for the turn
number and denote the level of pragmatism of each agent by
using the super index Lk (Sk) with k = 0, 1, . . . ,K.
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4 Main Theoretical Results

4.1 Modeling private meanings (YRSA)

To extend the RSA model to bidirectional dialog
with explicit task modeling, we first distinguish be-
tween private meanings and shared task outcomes.
In real conversations, each participant holds their
own prior knowledge and worldview, which may
differ from that of their interlocutor. In our exam-
ple of a dialog between a patient and a physician:
the patient must describe their symptoms, which
are not directly observable by the physician, while
the physician brings medical expertise the patient
lacks. Both types of knowledge are essential for
determining the appropriate diagnosis or treatment
plan. Notably, neither the patient’s symptoms nor
the physician’s prior knowledge fully capture the
shared goal of the conversation, i.e. the identifica-
tion of a suitable medical outcome.

In this context, we identify the need of repre-
senting a private set of meanings MA and MB

for each agent, which may or may not match. In
addition, the result y of the shared task is going to
be represented with a separate space Y that con-
tains all the possible outcomes of it. For simplicity,
we will assume that all these are discrete spaces.
Figure 1b represents a schematic of this model. We
will refer to this extension as the YRSA model.

The YRSA model redefines the notion of prior
from the classic RSA framework by conditioning
the dialog on the joint realization of the agents’ pri-
vate meanings (mA, mB) and the shared task target
y, which together define the context in which the
interaction unfolds. Importantly, we assume for the
development of our model that both the realizations
and the joint distribution of these three variables
do not change over time during the conversation.
This implies that the prior is completely defined by
the joint distribution P : MA×MB ×Y → [0, 1]
given to both agents.

We now turn to defining the updated agent pos-
teriors. The new speaker S : MA × U → [0, 1]
produces a posterior S(u|mA) that only depends
on its the private meaning mA. Similarly, the lis-
tener L : MB × U × Y → [0, 1] is represented
by the posterior L(y|mB, u), which is conditional
independent of the private meanings mA. In this
formulation, the representation of task performance
is delegated to the listener, who updates their belief
upon receiving the utterance.

We can now propose the corresponding gain

function to be maximized by this model:

Gα
Y RSA(L, S) = HS(U |MA)

+ αES [VL(U,MB, Y )] (2)

with VL(u,mB, y) = logL(y|u,mB)−C(u) and
HS(U |MA) defined as in the classic RSA. A de-
tailed derivation of the equations used to maximize
this function is provided in Appendix A.

4.2 The CRSA Model
Effective collaboration requires not only modeling
agents’ private meanings and the shared task, but
also supporting multi-turn dialog. In a medical con-
sultation, for instance, the patient shares symptoms
and background, while the physician asks ques-
tions, proposes diagnoses, and recommends treat-
ments. To capture such interactions, we denote the
speaker’s utterance at turn t as Ut, and the dialog
history up to that point as Wt = (U1, . . . , Ut−1),
representing the sequence of prior exchanges.

The attempt of previous approaches to incorpo-
rate the history of the conversation to the RSA
model relies on defining the lexicon (or directly
the literal listener/speaker) as a function of each
turn (Wang and Demberg, 2024; Kim et al., 2020;
Lin et al., 2022). In many cases, this lexicon is
given by the output of a neural language model and
can be very robust to the evolving dialog. However,
that variant of the RSA does not correspond to max-
imizing the gain of Equation (1), but a modified
version of it in which Ut is replaced by (Ut,Wt):

HS(Ut,Wt|M)+αES [VL(Ut,Wt,M,Y )]. (3)

This is equivalent to applying an RSA model
at each turn by initializing it with a lexicon
L(ut,m,wt) depending on wt, the past utterances.

The issue with Equation (3) is that the speaker’s
utterance Ut at turn t is modeled jointly with the
dialog history Wt, rather than being explicitly con-
ditioned on it. To express the gain in terms of the
conditional entropy of the current utterance alone,
we condition it on both the dialog history Wt and
the speaker’s intended meaning M , rather than on
M alone. In Section 4.2.1, we formally introduce
the corresponding expressions of the CRSA model,
which incorporates this notion of multi-turn con-
ditioned to the past utterances, as well as private
meanings and target task.

4.2.1 Equations of the CRSA model
Figure 1c illustrates our extension of the YRSA
model to the collaborative setting. As in the orig-
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inal setup, agents alternate roles—one acting as
the speaker, the other as the listener—to achieve
a shared task. Each agent has access to a pri-
vate meaning space, MA or MB , which remains
hidden from their counterpart. Then, at turn t,
the private meanings of the speaker will corre-
spond to the meanings of the agent playing the
role of the speaker and vice-versa. We refer as
MSt and MLt to the private meanings of the
speaker and the listener at turn t, respectively.
For instance, if speaker A starts the conversation,
MS1 = MA and ML1 = MB . Both agents also
have access to the conversation history, denoted as
wt = (u1, . . . , ut−1) ∈ Wt ≜ U1 × · · · × Ut−1,
where each Ui represents the space of possible ut-
terances at turn i. The shared objective is to jointly
predict a target class y from a finite discrete set Y .

As discussed earlier, the joint distribution
P (mA,mB, y) serves as a fixed prior through-
out the conversation. To maintain consistency as
agents alternate roles, we define the prior at turn t
over the active speaker and listener meanings, i.e.,
P (mSt ,mLt , y), as follows:

Pt(mSt ,mLt , y)=

{
P (mSt ,mLt , y) if St=A

P⊤(mLt ,mSt , y) if St=B

where P⊤ : MB ×MA × Y → [0, 1] is such as
P⊤(b, a, y) = P (a, b, y). This definition simply
represents swapping the arguments corresponding
to agent A and B to reflect the role change.

Formally, we define the distribution of each
agent at turn t. The speaker St : MSt×Ut×Wt →
[0, 1] produces a posterior St(ut|mSt , wt) that de-
pends on its private meaning mSt and the past
utterances wt. On the other hand, the listener
Lt : MLt × Ut ×Wt × Y → [0, 1] is represented
by the posterior Lt(y|mLt , ut, wt) which is inde-
pendent of the private meanings of the speaker.

Building on the gain function in Equation (1),
we extend the joint speaker distribution and listener
utility to incorporate private meanings and multi-
turn dialog:

PS(ut, wt,mSt ,mLt , y) ≜ St(ut|mSt , wt)×
PS(wt|mSt ,mLt)Pt(mSt ,mLt , y),

VL(ut, wt,mLt , y)≜ logLt(y|ut,mLt ,wt)−C(ut).

Then, we define one gain function at each turn to
be maximized:

Gα
CRSA(Lt, St) = HSt(Ut|MSt ,Wt)

+ αESt [VL(Ut,Wt,MSt ,MLt ,Y )], (4)

where the expectation of both terms is over PS . In
all cases, we will model PS(wt|mSt ,mLt) with the
past speakers’ utterances:

PS(wt|mSt ,mLt) =∏

i<t
Si=St

Si(ui|wi,mSt)

︸ ︷︷ ︸
BL,t(mSt )

∏

i<t
Si ̸=St

Si(ui|wi,mLt)

︸ ︷︷ ︸
BS,t(mLt )

. (5)

This formulation naturally leads to interpreting
BL,t(mSt) and BS,t(mLt) as each agent’s belief
about their interlocutor’s private meaning. In Sec-
tion 5, we illustrate why this interpretation is rea-
sonable with a concrete example.

Once modeled the gain, the equations that corre-
spond to its maximization are the following:

Sk+1
t (ut|wt,mSt) ∝
exp

[
α

∑

∀(mLt ,y)

B′
t(mSt ,mLt , y)VL(ut, wt,mLt , y)

]
,

Lk+1
t (y|ut, wt,mLt) ∝∑

∀mSt

BL,t(mSt)Pt(mSt,mLt, y)S
k+1
t (ut|wt,mSt),

where we replace4 B′
t(mS ,mL, y) =

BS,t(mL)P (mL|mS)∑
∀m′

L
BS,t(m′

L)P (m′
L|mS)

P (y|mL,mS). (6)

A complete derivation of these equations is pro-
vided in Appendix B. Finally, there is no single
prescribed method for initializing the iteration at
each turn. In Section 5, we adopt the listener’s
perspective and explore two variants of the initial
lexicon L, initializing the literal listener as:

L0(y|ut,wt,mLt) ∝∑

∀mS

P (mS ,mLt , y)Lut,wt(mSt) (7)

with Lut,wt(mSt) depending on the variant of the
RSA. In contrast, in Section 6 we initialize the
literal speaker directly with a LLM:

S0
t (ut|mSt , wt) ∝ PLM (ut|wt, prompt(mSt)),

(8)
where prompt(mSt) is the text used to prompt the
speaker at that turn. As shown, CRSA retains the
flexibility of the original RSA framework in mod-
eling both the listener’s and speaker’s perspectives.

4For simplify notation, we removed the t subindex.
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Algorithmic complexity. We find that at
turn t, these new set of equations scale as
O (K · |MA| · |MB| · |Y| · |Ut|) where K is the
number of iterations to produce the pragmatic
agents. In contrast, the classic RSA equations
scale as O (K · |M| · |U|).

5 CRSA for Reference Games

To evaluate CRSA, we adapt the reference game
of Khani et al. (2018). In this setting, two agents
are shown the same sequence of N cards, each
labeled with one letter (A or B) and one number
(1 or 2). Agent A sees only the letter on each card,
while Agent B sees only the number. Their goal
is to collaboratively identify the position of the
card labeled A1. At each turn, an agent may utter a
number from 1 to N , indicating a card position. For
simplicity, we assume that each round contains at
most one A1 card and that Agent A always initiates
the exchange.

5.1 Experimental set-up
For this simulation, we consider that the set Ut

of possible utterances at turn t is always (∀t) the
set Ut = {1, . . . , N} representing the messages
of the form “A1 card may be at position n” with
n ∈ Ut. For the set Y of possible classes, the
results can be as well “A1 card may be at posi-
tion n”, with the addition that there is also the
possibility of “There is no A1 card”. That is,
Y = {0, 1, . . . , N} with 0 representing the men-
tioned possibility. Regarding the meaning spaces,
they correspond to the possible sequences of length
N that can be obtained combining without replace-
ment the letters A and B (for agent A) and the
numbers 1 and 2 (for agent B). That is, for instance
if N = 3, MA = {AAA,AAB, . . . ,BBB} and
MB = {111, 112, . . . , 222}. Finally, the prior dis-
tribution P (mA,mB, y) can be defined as follows:

P (mA,mB, y) ∝





1 if mA and mB form
A1 at position y

0 otherwise

Since this is a reference game, we adopt the lis-
tener’s perspective. In all cases, the literal lis-
tener is initialized using Equation (7), and differ-
ent model variants are defined based on the up-
date equations and the specification of the lexicon
Lut,wt(mSt).
• CRSA: We apply the CRSA update equations

and define a lexicon Lut,wt(mSt) = L(ut,mSt)

that do not depend on wt:

L(ut,mSt) =





1 if mSt contains A (or 1) at
position n and ut = n

1 if there is no A (or 1) in mSt

0 otherwise
(9)

• CRSA-Wt: We apply the CRSA update equa-
tions, but with the lexicon Lut,wt(mSt) =
L(ut,mSt , wt) depending on the the past wt. To
define L(ut,mSt , wt), we follow the simple rule:

L(ut,mSt , wt) =





0 if ut ∈ wt−1

∧ ut ̸= ut−1

L(ut,mSt) otherwise
(10)

We expect efficient conversational behavior in
this game to involve repeating an utterance only
to confirm the correct A1 card position. If the
correct position is identified, agents should repeat
the utterance until the round ends; otherwise,
repeating it would be inefficient. The rule in
Equation (10) explicitly encodes this behavior.

• YRSA: We initialize the listener using the YRSA
iterative equations and the lexicon from Equa-
tion (9), effectively applying the RSA iteration
in the setting where each agent holds a private
meaning—that is, the standard YRSA setup.

• YRSA-Wt: The same as the one above but using
Equation (10) as lexicon instead of Equation (9).

• Literal: In this case, there is no iteration and we
simply use Equation (7) to predict the target. We
use lexicon of Equation (9).

• Literal-Wt: This is the same as above but using
Equation (10) as lexicon.

• Prior: In this case, we compute P (y|mLt)
from P (mSt ,mLt , y) for all turns instead of
Lt(y|ut,mLt , wt). This case does not account
for the dialog or the current utterance.

5.2 Numerical results and discussion
Figure 2 presents the performance of the CRSA
model compared to baseline models for α = 2.5.
Each curve corresponds to a different model eval-
uated over 500 rounds of the game. The top plot
displays task accuracy, measured as the proportion
of correct guesses obtained by taking the argmax
of the listener’s posterior probability. As accu-
racy may not be fully representative of the con-
fidence on the decision made by the listener, we
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Figure 2: Average of correct predictions with the lis-
tener value (top) and information gain (bottom) for 500
rounds of the reference game.

also show the Information Gain (in the bottom
plot) for each turn t, computed as the difference
IG(Lt) = HP (Y |MLt) − HL(Y |Ut,MLt ,Wt).
That is, given a set of N rounds (all with the
same number of turns), the listener’s conditional
entropy is defined as HL(Y |Ut,MLt ,Wt) =

−1/N
∑N

i=1 logLt(y
(i)|u(i)t , w

(i)
t ,m

(i)
Lt
), and the

conditional entropy of the prior is defined as
HP (Y |MLt) = −1/N

∑N
i=1 logP (y(i)|m(i)

Lt
),

where the super-index (i) denotes the value at
round i. As P (y|mLt) takes no account for the
interchanged utterances, this metric could be inter-
preted as the amount of information gained by us-
ing the utterances of the dialog up to turn t. For all
models where there is iteration, we run the model
until the gain converged using a tolerance of 1e−3,
so the number of iterations may vary between each
turn. We tried various values of α > 1 and all val-
ues showed best performance of the CRSA model.

Turn 1
SA: Position 1

Turn 2
SB: Position 5

Turn 3
SA: Position 5

Turn 4
SB: Position 5

Turn 5
SA: Position 2

Turn 6
SB: Position 5

111111 AAAAAA 111111 AAAAAA 111111 AAAAAA
111112 AAAAAB 111112 AAAAAB 111112 AAAAAB
111121 AAAABA 111121 AAAABA 111121 AAAABA
111122 AAAABB 111122 AAAABB 111122 AAAABB
111211 AAABAA 111211 AAABAA 111211 AAABAA
111212 AAABAB 111212 AAABAB 111212 AAABAB
111221 AAABBA 111221 AAABBA 111221 AAABBA
111222 AAABBB 111222 AAABBB 111222 AAABBB
112111 AABAAA 112111 AABAAA 112111 AABAAA
112112 AABAAB 112112 AABAAB 112112 AABAAB
112121 AABABA 112121 AABABA 112121 AABABA
112122 AABABB 112122 AABABB 112122 AABABB
112211 AABBAA 112211 AABBAA 112211 AABBAA
112212 AABBAB 112212 AABBAB 112212 AABBAB
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Figure 3: Internal belief of both agents.

For values α ≤ 1, all iterative algorithms always
produced uniform distributions.

As shown in the plots, the CRSA model out-
performs all baselines across both metrics. More-
over, incorporating a lexicon that depends on the
past wt neither improves nor diminishes perfor-
mance, suggesting that the information encoded
in Equation (10) is already effectively captured by
the CRSA model. In contrast, the information in
Equation (10) is not captured by the YRSA-Wt

model, which appears to improve as the conversa-
tion progresses. As expected, models that do not
incorporate dialog history maintain consistent per-
formance across turns, with variations driven only
by role changes. We also observed that the CRSA
model’s variance decreases over time, although this
is not shown in the plots for clarity.

Figure 3 presents an example of a dialog be-
tween the agents, along with their internal belief
states at each turn. This dialog was generated by
sampling the pragmatic speaker distribution at each
turn. Each column displays the value of BS,t(mLt)
for each possible meaning mLt of the listener at
turn t. Notably, as the conversation progresses,
the meanings associated with previously uttered
messages tend to gain higher belief values, reflect-
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ing a refinement in the speaker’s inference about
the listener’s state. We note that speaker at turn
5 produce the "Position 2" utterance, which is a
little uninintuitive. However, since utterances are
sampled from the full pragmatic speaker distribu-
tion rather than chosen greedily and "Position 2"
has non-zero probability, this utterance was drawn
randomly out of other possible utterances. Such de-
coding strategy can be interpreted as an exploratory
strategy. Importantly, Agent B’s return to "Posi-
tion 5" in the following turn is consistent with its
high posterior belief. We also note that the value
that maximizes BS,t(mLt) at turn 6 does not cor-
respond exactly to the correct meaning, but it is a
close approximation since the utterance “Position 6”
never occurred during the round. This supports in-
terpreting BS,t(mLt) as the speaker’s belief about
the listener’s meaning mLt at turn t.

6 Modeling Conversations Using
Pragmatic LLMs

In this section, we present preliminary evidence
that the CRSA model can estimate both utterance
likelihoods and task targets in doctor–patient con-
versations. Specifically, it improves the mean per-
plexity for conversation utterances and of the final
diagnosis prediction, compared to the raw outputs
of the LLM. To this end, we used the MDDial
dataset (Macherla et al., 2023), which consists of
template-based conversations between a doctor and
a patient. In each dialog, the patient is assigned
a subset of predefined symptoms, and the doctor
must determine the correct disease from a set of
possible pathologies.

Methodology As anticipated in Section 4.2.1, in
order to apply the pragmatic models, we compute
the literal speaker with equation (8) using a pre-
trained LLaMA3.2–1B-Instruct5 language model.
In this equation, prompt(mSt) is the text used to
prompt the model with the relevant medical sce-
nario. When St is the doctor, the prompt includes
specific instructions to ask questions and produce a
diagnosis, followed by two example doctor–patient
conversations. When St is the patient, the prompt
instructs the model to play the role of the patient. It
uses the same conversation examples as in the doc-
tor prompt but additionally includes the patient’s
current symptoms at that turn. The full prompts
used can be found in Appendix C. Importantly, we

5https://huggingface.co/meta-llama/Llama-3.2-1B-
Instruct

assume that the set of possible utterances is pre-
defined, and we compute the speaker probability
over this set. We use the literal speaker as lexicon
in Equation (7) for computing the literal listener.

We compute P (mpatient,mdoctor, ydiagnose) by
counting the number of times that symptoms ut-
tered by the patient appear in the context of a cer-
tain diagnosis. Note that for this case, the number
of possible meanings for the doctor is 1, since it is
assumed he/she has allways the same background
on knowledge in the field.

Metrics To evaluate performance, we
compute the speaker perplexity as PPL =
1
N

∑N
i=1 exp

(
−∑Ti

t=1 logSt

(
u
(i)
t | w(i)

t ,m
(i)
St

))
,

where N is the number of rounds and Ti is the
number of turns in round i. For the listener,
we compute the task success rate using the
listener of the last step Ti of each round TSR =
− 1

N

∑N
i=1 1{y(i) =argmaxy∈Y LTi

(
y|uTi

,mLTi
,wTi

)
}

, which is analogous to the method described in
Section 5.

Results The results are presented in Table 1 for
the train split of the dataset (1878 samples) and for
a value of α = 2.5, which is the same as used for
Section 5. We observed the same trend mentioned
in that Section when varying the value of α. The
CRSA model achieves best performance in terms
of both perplexity and accuracy (task sucess rate)
compared to the classic RSA and the Literal models.
We noted however that the difference between the
classic RSA and CRSA is not very large, possibly
due to the fact that for this task the agent playing
the role of the doctor struggles to obtain a good esti-
mation of the patient’s belief. Since this estimation
is close to uniform at all steps, both models con-
verge to nearly identical equations and thus exhibit
similar performance. Still, the low task success rate
suggests that the setting is inherently difficult and
may require more discriminative models. CRSA
provides a useful structure in this direction, and it
is plausible that coupling it with a stronger LLM
could yield a more informative initialization of the
speaker and, in turn, improved task performance.

7 Possible Future Directions of this work

There are many ways in which the CRSA model
can be improved. One of the major limitations of
the model is that there is no systematic way of di-
rectly modeling the meaning spaces MA and MB ,
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Speaker PPL Task success rate
CRSA 15.362 0.085
RSA 15.395 0.085
Literal 60.835 0.079

Table 1: Speaker perplexity (PPL) and Task success rate
for α = 2.5 of the listener and the speaker for each
model, computed for the MDDial dataset.

which are always application-dependent. One pos-
sible way of moving towards a scalable application
of the CRSA model in the large language model
architecture is by modeling these spaces as con-
tinuous. That is, producing an embedding repre-
sentation of each private meaning, eA, eB ∈ Rd,
and incorporating that embedding into the compu-
tation of St(ut|wt,mSt). Although the equations
of the model remain essentially the same in this sce-
nario, this approach opens many challenging points.
For instance, the computation of the sums in the
model’s equations, which now become integrals;
the way of combining the language model with the
embedding eSt in order to compute St(ut|wt,mSt),
which is definitely non-unique; or the modeling of
p(mA,mB, y), which now becomes a mixed prob-
ability function.

In addition to this, there is the problem of model-
ing the space of utterances, which is inherited from
classic RSA. However, since the past utterances are
part of the design of the CRSA, the natural way to
scale this model to more realistic applications in
which generation is done token by token is by di-
rectly replacing utterances with tokens. We expect
that this shift may influence the model’s pragmatic
capabilities, since the reasoning is performed at the
token level, not at the utterance level. We intend
to investigate these trade-offs carefully in future
work.

Finally, there are many ways in which the origi-
nal gain function from which the equations of the
model are derived could be modified depending on
the application scenario. For instance, situations in
which the meanings are not fixed in time, or where
more than two agents participate in the dialog, can
also fit within a similar procedure to that used in
this work. This allows for the introduction of prag-
matic reasoning in more realistic scenarios in the
same mathematically grounded way as was done
in the current work.

8 Summary and Concluding Remarks

In this work, we introduced the Collaborative
Rational Speech Act (CRSA) framework, an
information-theoretic extension of RSA tailored
for principled pragmatic reasoning in multi-turn,
task-oriented dialogs. By integrating a novel multi-
turn gain function grounded in interactive rate-
distortion theory, CRSA effectively models the
evolving belief dynamics of both interlocutors,
overcoming key limitations of traditional RSA in
collaborative contexts. Our preliminary results
demonstrate that CRSA successfully captures the
progression of shared understanding, partner be-
liefs, and utterance generation, providing the way
for more natural and efficient communication in
complex conversational settings.

CRSA lays the foundation for developing conver-
sational agents driven by mathematically grounded
principles of pragmatic reasoning. This principled
formulation enhances both the interpretability and
controllability of agent behavior, enabling the con-
struction of language models that move beyond
surface-level fluency to demonstrate structured, so-
cially coherent, and contextually appropriate dialog.
In this way, CRSA represents a significant step to-
ward building pragmatic agents whose interactions
are not only effective but also firmly rooted in the
formal theory of communication.

Limitations

This work focuses on simulated referential games
and template-based doctor–patient dialogs, which,
while controlled and insightful, do not capture the
full variability and complexity of real-world conver-
sations. Additionally, the CRSA framework relies
on a fixed, predefined set of possible utterances at
each turn, limiting its applicability to open-ended
or generative dialog scenarios involving variable-
length token sequences. These factors currently
restrict the scalability of our approach to more natu-
ralistic domains. Future work will aim to overcome
these limitations by extending CRSA to handle dy-
namically generated utterance spaces and by evalu-
ating its effectiveness in less structured, real-world
conversational settings.

Ethical considerations

This work presents a theoretically grounded frame-
work for pragmatic reasoning in multi-turn di-
alogs. It is primarily methodological and does
not involve direct deployment or interaction with
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real users. The datasets employed—simulated
referential games and template-based medical di-
alogs—are synthetic and contain no personal or
sensitive data.

However, since CRSA aims to inform the devel-
opment of more interpretable, goal-driven conver-
sational agents, potential applications in sensitive
domains like automatic medical diagnosis raise im-
portant ethical considerations. In such contexts,
errors in belief tracking or task inference could
result in incorrect recommendations, especially if
users overestimate the system’s understanding or
authority. While our medical domain experiments
are purely illustrative and not intended for clinical
use, they underscore the critical need for caution
when adapting theoretical models to real-world di-
agnostic settings. Future deployments must involve
rigorous domain-specific validation, proper over-
sight, and human supervision to ensure safety and
reliability.

A final potential ethical concern is the risk of
anthropomorphizing AI systems when they are de-
scribed as communicative agents. While the agent
metaphor is useful for modeling and analysis, it
may inadvertently suggest that such systems pos-
sess autonomy, intentionality, or even conscious-
ness. We stress that this is not the case: our use
of agent-like terminology is strictly metaphorical
and does not imply any deep philosophical claims
about the nature of AI systems.
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A Detailed Expressions of the YRSA
Model

In Zaslavsky et al. (2021), the authors propose
to use the alternation maximization (AM) algo-
rithm (Csiszár and Shields, 2004) to maximize the
gain function of expession 1:

Sk+1 = argmax
S

G(S,Lk),

Lk+1 = argmax
L

G(Sk+1, L).

If the same procedure is applied to the gain of
Equation (2) (the one corresponding to the YRSA
model), then the following equations are obtained:

Sk+1(u|mA) ∝
exp

[
α(

∑

∀(mB ,y)

P (mB, y|mA)

(log(Lk(y|mB, u))− C(u))
]
, (11)

Lk+1(y|mB, u) ∝∑

∀mA

P (mA,mB, y) · Sk+1(u|mA). (12)

Additionally, if a lexicon L(u,mA) is given, the
listener is initialized as

L0(y|mB, u) ∝
∑

∀mA

P (mA,mB, y) · L(u,mA).

(13)

The proof of how to arrive to these equations is
very similar to the ones to obtain the CRSA, which
is presented in appendix B so we suggest to read
that Section instead.

B Derivation of the CRSA Model
Expressions

For the following derivation we have assumed that
the speaker is agent A and the listener is agent B
in order to simplify notation. In addition, since
every variable depends on the turn, we will omit
the subindex t for the same reason. We start by
representing the speaker, the listener, the prior and
the cost as matrices:

sawu = S(u|mA, w) = [S]awu

S ∈ [0, 1]MA×W×U

lbuwy = L(y|mB, u, w) = [L]buwy

L ∈ [0, 1]MB×U×W×Y

Pabyw = PS(mA,mb, y, w) = [P]abyw

P ∈ [0, 1]MA×MB×Y×W

cu = C(u) = [C]u

C ∈ RU

with the restrictions
∑

u

sawu = 1,
∑

y

lbuwy = 1. (14)
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The gain function at the turn t as a function of the
matrices S and L can be written as

G(S,L) = −
∑

abywu

sawuPabyw(log sawu+

α(log lbuwy − cu))

= −
∑

awu

sawuPaw log sawu+

α
∑

abywu

sawuPabyw log lbuwy − cu

=
∑

w

Gw(S,L), (15)

where

Gw(S,L) = −
∑

au

sawuPaw log sawu

+α
∑

abyu

sawuPabyw log lbuwy − cu. (16)

Since the overall gain is a sum of the gain for a
specific utterance history w, taking the derivative
with respect to a different value of w cancels out
the other terms in the sum, so we can abbreviate
the notation by omitting the w subindex. Then,
the problem reduces to maximize the following
Lagrangian:

L(S,L) = −
∑

au

sauPa log sau

+ α


∑

abyu

sauPaby log lbuy − cu




−
∑

a

λaga(S)−
∑

bu

λbugbu(L)

with

ga(S) = 1−
∑

u

sau = 0,

gbu(L) = 1−
∑

y

lbuy = 0.

Taking the gradient w.r.t sâû and lb̂ûŷ, we get

∂L
∂sâû

= −Pa(log sâû + 1)

+ α
∑

by

Paby(log lbûy − cû)− λâ = 0,

∂L
∂lb̂ûŷ

=
α

lb̂ûŷ

∑

a

saûPab̂ŷ − λb̂û = 0.

So it is straightforward to see that

lb̂ûŷ ∝
∑

a

saûPab̂ŷ

sâû ∝ exp


α

∑

by

Pâby

Pâ
(log lbûy − cû)


 .

We can rewrite these equations in terms of the the
original probabilities adding the past w and the turn
t subindex:

L(y|mB, ut, wt) ∝∑

∀mA

S(ut|mA, wt)PS(mA,mB, y, wt)

S(ut|mA, wt) ∝
exp(α

∑

∀(mB ,y)

PS(mB, y|mA, wt)

(logL(y|mB, ut, wt)− C(ut)).

Then, by applying equations 5 and 6 of Section 4.2
we can directly obtain

St(ut|wt,mSt) ∝ (17)

exp(α
∑

∀(mLt ,y)

B′
t(mSt ,mLt , y)VL(ut, wt,mLt , y),

Lt(y|ut, wt,mLt) ∝ (18)
∑

∀mSt

BS,t(mSt)Pt(mSt ,mLt , y)St(ut|wt,mSt).

These are the equations that maximize the gain
G(S,L) subject to the restrictions 14. Then, by
applying again the alternation maximization algo-
rithm we obtain the CRSA algorithm.

C Prompts used in the MDDial dataset

We prompt two different models for generating
the lexicons defined in Section 6. The first one
(the one for the patient) contained the following
instructions:

You are an assistant that simulates to be
a patient who has a disease and describes
the symptoms to the user, which is a
medical doctor.

Here is an example of a conversation
between the assitant (i.e., the patient)
and the user (i.e., the doctor). You are
experiencing the following symptoms:
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Acid reflux, Stomach ache, Bloating
Assistant: Hi Doctor, I am having Acid
reflux
User: In that case, do you have any
Stomach ache?
Assistant: Yes most of the times
User: In that case, do you have any
Bloating?
Assistant: Yes most of the times
User: This could probably be Esophagitis.

Here is an example of a conversation
between the assitant (i.e., the patient)
and the user (i.e., the doctor). You are
experiencing the following symptoms:
Eye swelling
Assistant: Recently, I am experiencing
Eye swelling
User: Is it? Then do you experience Cry?
Assistant: No, I never had anything like
that.
User: Oh, do you have any Fever?
Assistant: No, I never had anything like
that.
User: Oh, do you have any Photophobia?
Assistant: No, I don't have that
User: Ok, this means you might be having
Conjunctivitis.

Now, participate in a real conversation
with the user. You are experiencing the
following symptoms:
{patient symptoms}

The prompt used for the doctor contained the
following instructions:

You are an assistant that simulates to be
a doctor who is diagnosing a patient based
on the symptoms that he or she describes.
You can ask questions to the patient, but
ultimately, you have to provide a diagnosis
based on the symptoms described by the
patient.

Here is an example of a conversation
between the assitant (i.e., the doctor)
and the user (i.e., the patient). The
patient is experiencing the following
symptoms:
User: Hi Doctor, I am having Acid reflux
Assistant: In that case, do you have
any Stomach ache?

User: Yes most of the times
Assistant: In that case, do you have
any Bloating?
User: Yes most of the times
Assistant: This could probably be
Esophagitis.

Here is an example of a conversation
between the assitant (i.e., the doctor)
and the user (i.e., the patient). The
patient is experiencing the following
symptoms:
User: Recently, I am experiencing Eye
swelling
Assistant: Is it? Then do you
experience Cry?
User: No, I never had anything like
that.
Assistant: Oh, do you have any Fever?
User: No, I never had anything like
that.
Assistant: Oh, do you have any
Photophobia?
User: No, I don't have that
Assistant: Ok, this means you might
be having Conjunctivitis.

Now, participate in a real conversation
with the user. You can ask questions to
the patient, but ultimately, you have
to provide a diagnosis based on the
symptoms described by the patient.

D Errors intervals in the reference game

Figure 4 shows the same results as Figure 2 but
with the standard deviation of each model. We did
not include this plot in the main text for readability,
but it can also be noted that the CRSA reduces the
variance of the results in comparison with the other
models.
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