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Abstract

Large language models (LLMs) take sequences
of subwords as input, requiring them to ef-
fective compose subword representations into
meaningful word-level representations. In this
paper, we present a comprehensive set of ex-
periments to probe how LLMs compose sub-
word information, focusing on three key as-
pects: structural similarity, semantic decom-
posability, and form retention. Our analysis of
the experiments suggests that five LLM fami-
lies can be classified into three distinct groups,
likely reflecting difference in their underlying
composition strategies. Specifically, we ob-
serve (i) three distinct patterns in the evolu-
tion of structural similarity between subword
compositions and whole-word representations
across layers; (ii) great performance when prob-
ing layer by layer their sensitivity to semantic
decompositionality; and (iii) three distinct pat-
terns when probing sensitivity to formal fea-
tures, e.g., character sequence length. These
findings provide valuable insights into the com-
positional dynamics of LLMs and highlight dif-
ferent compositional pattens in how LLMs en-
code and integrate subword information.

1 Introduction

Large language models (LLMs) rely heavily on
subword tokenization (Achiam et al., 2023; Dubey
et al., 2024) that processes words into a sequence
of subwords which potentially disrupts morpheme
boundaries (Batsuren et al., 2024). Despite this,
LLMs have demonstrated impressive capability in
comprehending word meanings (Shani et al., 2023;
Xu et al., 2024), suggesting that they effectively
construct meaningful word representations from
subword components. One possible approach to
this is memorization, where models store entire
input-output pairs. This strategy, adopted by Ned
Block’s humongous table program (Block, 1981),
scales only if all input-output pairs have been seen
during training. However, this is computationally

infeasible due to the exponential growth in possi-
ble combinations with increasing input length and
vocabulary size. Given their promising ability on
word meaning understanding, LLMs must be em-
ploying systematic compositional strategies rather
than relying solely on memorization to generalize
beyond seen data. This motivates our investiga-
tion into how LLMs construct word representations
from subword components and uncover potential
consistent and systematic patterns in subword com-
position.

To systematically examine these compositional
strategies, we analyze subword composition from
three key perspectives. First, we examine how the
geometry of composed word representations relates
to that of their subword constituents. Specifically,
we assess whether composed representations main-
tain linear alignment with their constituent rep-
resentations, revealing patterns of structural sim-
ilarity across layers. Prior studies have explored
geometry properties of word and phrase embed-
dings they construct (Gong et al., 2017), and exam-
ined distances between composed subwords and
full-word embeddings in vector space (Chai et al.,
2024a). Our focus here is to identify linear align-
ment patterns that reveal structural similarity and
transformation dynamics between composed repre-
sentations and whole-word representations across
layers.

Second, we probe whether composed represen-
tations encode fundamental aspects of word mean-
ing, particularly the distinction between semanti-
cally decomposable and non-decomposable words.
Building on previous work that assessed embed-
dings for their awareness of syntactic and semantic
properties, such as sentence length, tense, and iden-
tification of semantic roles (Conneau et al., 2018;
Ettinger et al., 2018; Klafka and Ettinger, 2020),
our analysis focuses on whether LLMs preserve rel-
evant information on semantic decompositionality
during composition. Third, we investigate whether
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composed representations retain surface-level fea-
tures, such as word length across models and lay-
ers. While some models exhibit strong retention
of such features, others abstract away form-related
information, which shows variations in how form
and content are preserved. By analyzing LLMs
across these dimensions, our study provides valu-
able insights into how LLMs process subwords and
form word-level representations, contributing to a
broader understanding of compositional dynamics
in LLMs.

Contributions In this work, we present a set of
new experiments designed to probe the composi-
tional dynamics of LLMs around subwords. Our
experiments with six different LLMs across five
LLM families on three types of tasks demonstrate
that: (i) In most models, subword composition is
isometric to simple addition. (ii) Content informa-
tion such as semantic decompositionality is well-
preserved in the composed representation for all
models across all layers. Formal information about
word length, in contrast, is only preserved in some
models. This has direct implications for the deriv-
ability of form and content of the input. (iii) The
six LLMs fall into three groups, relying on three
distinct compositional strategies, i.e., ways of
constructing composed representations from sub-
words.

2 Related Work

Tokenization Current generations of LLMs
(Achiam et al., 2023; Touvron et al., 2023; Team
et al., 2023; Lozhkov et al., 2024), heavily rely
on subword tokenization where an input text is
split into a sequence of subwords derived from
a predefined vocabulary. Such approaches in-
clude frequency-based methods such as Byte-Pair
Encoding (Sennrich et al., 2016) and Byte-level
BPE (Wang et al., 2020), probability-based meth-
ods such as WordPiece (Schuster and Nakajima,
2012) and Unigram (Kudo, 2018). Tokenization
approaches need to balance the trade-off between
vocabulary size and diverse language coverage in
multilingual scenarios. Tokenization-free or pixel-
based approaches have been proposed to side-step
this trade-off (Rust et al., 2023; Tai et al., 2024;
Chai et al., 2024b), and various tasks have been
proposed to better examine the impact and robust-
ness of subword tokenization (Gee et al., 2022;
Cao et al., 2023; Chai et al., 2024a; Wang et al.,
2024a; Batsuren et al., 2024). Our work aims to

understand subword compositionality in LL.Ms.

Compositionality The compositional ability al-
lows models to generalize beyond simple memo-
rization. Previous works have thoroughly exam-
ined compositionality in phrase (Yu and Ettinger,
2020; Bertolini et al., 2021) and sentence embed-
dings (Dasgupta et al., 2018; Xu et al., 2023). Re-
cent studies have also explored general composi-
tional behaviors of LLLMs in reasoning tasks (Dziri
et al., 2024; Li et al., 2024b) and rule following
(Wang et al., 2024b). Our work sets out to inves-
tigate whether subwords, as a result of tokeniza-
tion, exhibit any compositional dynamics through
geometry and probing analysis. Procrustes anal-
ysis, which is a form of statistical shape analysis
(Schonemann, 1966), is widely used to analyze
structural similarity between two language spaces
(Peng and Sggaard, 2024) and modality spaces (Li
et al., 2024a). Additionally, probing analysis is a
standard approach for dissecting syntactic and se-
mantic features in neural models, such as syntactic
depth, tense, and semantic roles (Ettinger et al.,
2018; Conneau et al., 2018; Hewitt and Manning,
2019; Klafka and Ettinger, 2020).

3 Geometry Analysis

We first conduct geometry analysis on the inter-
nal vector space of different LLM, focusing on the
structural similarity between composed representa-
tions and the original whole word representation.

3.1 Dataset

Batsuren et al. (2022) proposed a benchmark on
morpheme segmentation which collected more than
577,374 unique English words with its morpholog-
ical categories. We take advantage of this resource
and pick out words that have both its whole word
form and potential subwords in the model’s vo-
cabulary. In this work, we specifically focus on
two-subword combination (e.g., limit = (li, mit)!).
After going through six different language mod-
els, we end up with a parallel® dataset across these
language models. In total, we have 3,432 words
covering 2,316 root words (words that are free mor-
phemes, such as dog and progress) and 1,116 non-
root words (words that fall into other morphologi-
cal categories such as inflection only, e.g., prepared,
derivation only, e.g., intensive, and compound, e.g.,

imit, li, and mit are all in model’s vocabulary.
It is parallel in the whole word form, while the tokenized
results might be different.
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Figure 1: Illustration of the pipeline of our geometry analysis. All words and subwords exist in models’ vocabulary.
Vector representations are first obtained by feeding them into LLMs. Composed vector space is then constructed by
applying composition operations among subword representations. Procrustes analysis is performed between the
original word vector space and the composed vector space to find the linear alignment.

hotpot). As one word could have multiple sub-
word combinations discovered (e.g., numeric = (n,
umeric), (num, eric), (numer, ic)), we have all com-
binations included. In the following experiments,
we conduct 3 runs where each run with randomly
picked combination to reflect the variation. The
ribbons in the experiment figures demonstrate stan-
dard deviations brought in by such variation. We
randomly split these words into train, test splits.

Root | Non-Root | Total
Train | 1852 893 2745
Test | 464 223 687
Total | 2316 1116 3432

Table 1: The statistics of the dataset.

LLMs and Vector Representation The six
instruction-tuned LLMs we experiment include
Llama3-8B-Instruct, Llama3.1-8B-Instruct (Dubey
et al., 2024), Aya-expanse-8B (Dang et al.,
2024), Gemma2-9B-it (Team, 2024a), Qwen2.5-
7B-Instruct (Team, 2024b), and Falcon-7B-Instruct
(Almazrouei et al., 2023a). All above models adopt
subword tokenization strategy and are instruction-
tuned. The whole word vector representation is de-
rived through feeding the exact word to the model.
Subword representations are obtained separately
through the same pipeline. As all words and sub-
words exist in models’ vocabulary, we can directly
obtain their vector representations without addi-
tional operations. Different composition operations

are then performed on subword representations to
obtain the composed representation, which will
later be compared against the original whole-word
representation to examine structural similarity.

3.2 Methods

We utilize Procrustes Analysis (Schénemann,
1966), i.e., the induction of a linear projection be-
tween two subspaces, to quantify the isometry or
structural similarity between whole word represen-
tations and composed representations of subwords.
Assume X and Y are two matrices of size n x d
(n is the number of examples, and d refers to the
embedding dimension). Such that the i-th row of
X is the composed embedding of two subwords,
and ith row of Y is the original embedding of the
whole word. The linear transformation is derived
through singular value decomposition (SVD) of
YXT:

W* = argmin |[|WX - Y|[p =UVT (1)

WeO )

where ULVT = SVD(Y XT'). With the obtained
W*, we transform composed embeddings X into
the original vector space. We then perform co-
sine similarity to retrieve the most similar original
word vector. Following previous works on mea-
suring representation alignment (Li et al., 2024a;
Wau et al., 2024), we use Precision@1 (P@1) as
our performance metric. The overall pipeline of
the method is illustrated in Figure 1. The train split
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is used to find the optimal linear transformation
W* which will then be applied to the test split for
evaluation.

3.3 Results

Main Geometry Results Our first experiment
simply evaluates the structural similarity of LLM
whole word representations and addition of, multi-
plication of, and absolute difference between con-
stituent representations, by measuring their perfor-
mance (P@1) across layers.

N N
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Figure 2: Structural similarity between LLM compo-
sition and simple composition (P@1). Green band is
simple addition. Orange refers to multiplication. Red
is the performance of absolute difference. The colored
bands indicate standard deviation. LLM composition is
significantly more similar to simple addition.

A key takeaway from Figure 2 is that simple
addition consistently outperforms other operations
across all models and layers. This suggests that
summing two subword representations produces a
composed representation with strong structural sim-
ilarity to the original whole-word representation.
However, the degree of similarity varies across
models, revealing three distinct patterns. Aya-
expanse and Gemma?2 exhibit the most impressive
P@1 score, indicating high-level structural simi-
larity between composed vectors and the original
vectors. Unlike other models, the demonstrated

structural similarity is able to maintain across later
layers. The high precision in linear alignment ex-
hibited in early layers of Falcon and Qwen2.5 drops
in later layers. Llama models, on the other hand,
only demonstrate moderate level of structural simi-
larity between composed vectors and word vectors
at the embedding layer. The structural similarity
drops almost immediately.

It is easy to see how the six LLMs can be placed
in three groups with very distinct plots: Llama 3
and Llama 3.1 show very little structural similarity,
and only at the embedding layer, suggesting non-
linear composition or memorization. Aya-expanse
and Gemma show high structural similarity, in par-
ticular at the innermost and outermost layers. Fi-
nally, Falcon and Qwen2.5 show moderate levels
of structural similarity that drop last-minute. We
discuss these differences in detail in Section 5.

subword*subword2
80 = abs(subword-subword2) 80

0 5 10 15 20 25 30 0 0 20 30 a0
Layer Layer
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Figure 3: Structural similarity between LLM compo-
sition (base version, not instruction-tuned) and simple
composition (P@1). Green band is simple addition. Or-
ange refers to multiplication. Red is the performance
of absolute difference. The colored bands indicate stan-
dard deviation. Instruction tuning seems to have little to
no impact on our results; compare with Figure 2.

Impact of Instruction Tuning All models so far
were instruction-tuned. Could differences in in-
struction tuning explain the differences between
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the compositional strategies of the six LLMs? We
investigate this by repeating our experiments on
the base versions of the above models. This allows
us to evaluate the impact on instruction-tuning on
structural similarity of LLM composition and sim-
ple composition.

The patterns in Figure 3 are very similar to those
observed for instruction-tuned models (Figure 2).
Simple addition consistently produces composed
vector spaces that most closely resemble the orig-
inal word vector spaces, with same three distinct
groups emerging. The only small difference lies
in relative performance. Structural similarity is
slightly higher in instruction-tuned models com-
pared to their base versions, while the overall pat-
terns remain unchanged. This suggests that al-
though instruction-tuning enhances general similar-
ity scores, it is not the key factor driving the isom-
etry between LLM composition and simple arith-
metic operations. Instead, the structural similar-
ity is induced during pre-training. Pre-training on
large-scale corpora captures distributional and com-
positional regularities, inducing representations de-
signed to facilitate composition (one way or an-
other). What is perhaps surprising is the degree
to which LLMs differ in how representations are
composed. Instruction tuning improves overall sim-
ilarity, but seems to merely act as a refinement pro-
cess, rather than having impact on compositional
strategies.

Root and Non-Root Words The words in our
dataset can be categorized into root and non-root
words; see §3.1 for details. Since simple addition
gave the best performance in the above, we rely on
this form of composition in the following experi-
ments. We now analyze how structural similarity
varies across root and non-root words. Our hypoth-
esis is that non-root words, which can be broken
down into smaller meaningful units, will exhibit
higher structural similarity, whereas root words,
which cannot and lack obvious internal structure,
will exhibit weaker alignment.

Figure 4 illustrates that across different mod-
els and layers, non-root words consistently exhibit
higher structural similarity than root words. This
suggests that simple addition more effectively pro-
duces a composed vector representation that aligns
linearly with the original word representation for
non-root words. This was expected and lends sup-
port to our original hypothesis. In contrast, root
words exhibit weaker linear alignment, likely be-
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Figure 4: Structural similarity between LLM composi-
tion and simple composition (P@1) across all layers and
different word types. Green refers to the performance
on non-root words. Orange refers to root words.

cause they function as semantic atoms that are not
easily decomposed into smaller parts in a mean-
ingful way. Since their meanings are not derived
from the interaction of multiple components, their
representations may be shaped more by contextual
factors and usage patterns than by explicit compo-
sitional relationships. This could introduce greater
variability in their spatial organization, leading to
generally lower structural similarity.

Impact of Contextualization Previous experi-
ments have investigated the structural similarity
between composed vectors—formed by combining
two separate static subword representations—and
original word representations. Many recent ap-
proaches using LLMs produce word, phrase, or
sentence embeddings by applying mean pooling
over their contextualized token representations. In
this experiment, we take a similar approach by feed-
ing both subwords into the LLM simultaneously,
allowing their representations to interact and refine
with each other. We then examine whether a sim-
ple addition of these contextualized subword repre-
sentations can effectively reconstruct a composed
representation that maintains structural similarity
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Figure 5: Structural similarity between LLM compo-
sition and simple composition (P@1) across all layers
w/wo contextualization. Green refers to the performance
with contextualization. Orange refers to without contex-
tualization.

to the original word representation.

Figure 5 compares results with and without con-
textualization. When contextualization is applied,
all models exhibit stronger linear alignment across
layers. Notably, Llama models, along with Falcon
and Qwen2.5, display distinct patterns. Instead
of showing minimal structural similarity, Llama
models demonstrate high levels of isometry in their
middle layers. Falcon and Qwen2.5 also achieve
higher P@1 scores in later layers. Meanwhile,
Aya and Gemma models maintain a pattern sim-
ilar to the non-contextualized scenario, but with
generally higher structural similarity. These find-
ings suggest that for some LLMs, e.g., Llama and
Llama3.1, composed representations are only sim-
ilar to simply arithmetic compositions when the
LLM has observed both subwords in the same
context. This highlights two distinct composition
mechanisms. The first, seen in Aya and Gemmaz2,
allows a linearly alignable composed representa-
tion to be directly formed by adding the separate
subword representations. The second, observed in
Llama, requires the model to process the subwords

in the same context before producing a linearly
alignable composed representation, possibly indi-
cating higher degrees of memorization.

4 Probing Analysis

Previous geometry experiments have demonstrated
that there exists a high degree of structural simi-
larity between composed representations and the
whole-word representations. However, this struc-
tural similarity varies across layers and models. In
the following experiments, we investigate whether
some basic aspects of the word understanding, spe-
cially content and form, have been preserved in the
composed representation.

4.1 Root and Non-Root Words

As shown in Table 3.1, words in the dataset can
be classified into root and non-root words. Iden-
tifying whether a given vector representation cor-
responds to a root or non-root word requires cap-
turing content information. Root words are the
smallest meaningful units that cannot be broken
down further, whereas non-root words are decom-
posable in meaning.

Method This word type prediction task is framed
as a binary classification problem. We train a sim-
ple logistic regression model using either the origi-
nal word representations or the composed subword
representations as input. The classifier is trained
for three epochs with a batch size of 8, utilizing the
Adam optimizer with a learning rate of le-3.

Results The experiment results, measured by the
weighted F1 score, are summarized in Figure 6.
The orange line represents the weighted F1 score
across all layers using the original word represen-
tations as input, while the green line shows the
performance when using composed representations
obtained by summing two subword representations.
Preliminary experiments indicate that a random
baseline (black line) would achieve approximately
56% weighted F1 score. In contrast, features ex-
tracted from composed representations enable the
model to achieve over 80% weighted F1 score,
demonstrating that the distinction between root and
non-root words is inherently embedded in the com-
posed representations. The small gap between the
green and original lines further suggests a high
degree of content information preservation.
Despite the variations in structural similarity ob-
served in previous geometry analysis, composed
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Figure 6: Performance (weighted F1) of different LLMs on word type classification across all layers. Orange
indicates the performance of using the original whole words. Green refers to addition-composed performance, and
black is the random baseline. The colored bands indicate standard deviation.

representations maintain consistently high perfor-
mance across different layers in the word type pre-
diction task. This implies that even if a composed
representation does not perfectly align with the
original word representation in vector space, it
could still preserve essential semantic information
about the word.

4.2 Word Length Prediction

Having considered semantic classes, we now inves-
tigate whether LLMs retain form-related properties
of subword constituents, specifically whether in-
formation about word length is passed up the net-
work. Similar to our earlier experiment, we assess
whether this information is encoded by predicting
word length from both original and composed rep-
resentations.

Method We formulate word length prediction
as a regression task. Using linear regression, we
predict the word length from a given vector repre-
sentation. The regressor is trained for three epochs
with a batch size of 8, using Adam optimizer with
a learning rate of le-3. Since word length is a dis-
crete value, the predicted outputs are rounded to
the nearest integer before computing accuracy.

Results Figure 7 presents the overall accuracy
across different models and layers. A random base-

line (black line) achieves approximately 3.5% ac-
curacy, reflecting the difficulty of the task with-
out meaningful features. In contrast, both original
word representations and composed subword rep-
resentations result in significantly higher accuracy,
demonstrating that word length information is in-
herently encoded in these embeddings.

Across all six LLMs, a consistent pattern
emerges: the highest accuracy is observed in the
early layers, suggesting that form-related proper-
ties, such as word length, are well-preserved at
lower levels of the representation. However, as
layers deepen, accuracy gradually decreases, likely
due to the increasing abstraction of form informa-
tion. Interestingly, at the final layers, accuracy
improves again, indicating that some form-related
information re-emerges at later processing stages.
This suggests that while middle layers prioritize
semantic abstraction, early and late layers retain
more explicit surface-level features.

Consistent with the geometry analysis, these six
models can be grouped into the same three cate-
gories based on their layer-wise accuracy patterns:
(1) Llama3 and Llama3.1, (2) Aya and Gemmaz2,
and (3) Falcon and Qwen2.5. The similar trends ob-
served across models reinforce the idea that there
are some systematic differences in their internal
composition strategies that lead to systematic differ-
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Figure 7: Performance (Accuracy) of different LLMs on word length prediction across all layers. Orange indicates
the performance of using the original whole words. Green refers to addition-composed performance, and black is
the random baseline. The colored bands indicate standard deviation.

ences in how they encode and retain form-related
properties across layers.

5 Different Composition Strategies

The experimental results strongly indicate that the
six LLMs can be categorized into three distinct
groups. This pattern emerges consistently across
our geometry analysis and probing tasks, suggest-
ing that these differences stem from systematic
variations in composition strategies rather than ran-
dom noise.

The first group, which includes Aya and
Gemma2, demonstrates a strong structural align-
ment between composed representations and orig-
inal word representations across all layers. These
models maintain high precision in geometry ex-
periments, and their word type and length pre-
diction performance remains stable, suggesting
that both relevant information are generally well
preserved. This implies that these models use a
relatively direct and stable composition strategy,
where subword embeddings are combined in a way
that closely resembles the whole-word embedding
throughout all layers. The fact that geometries are
isometric to a very large degree, and both form-
related and content-related attributes are restored,
means the derivation history is implicitly kept, mak-
ing the input more easily derivable from the output.

The second group, represented by Falcon and
Qwen2.5, follows a different trend. In early lay-
ers, their composed representations exhibit good
structural similarity with whole-word representa-
tions, but this alignment weakens in later layers.
The word type semantic information remains rel-
atively stable, but form-related information such
as word length disappears in mid-layers and re-
emerges towards the end. This suggests that these
models initially retain subword structures but shift
towards more abstract representations in deeper lay-
ers. Rather than maintaining a fixed composition
throughout, they seem to undergo a transformation
process where subword-based structure gives way
to more semantic abstraction.

The third group, consisting of Llama3 and
Llama3.1, exhibits a rapid loss of structural sim-
ilarity beyond the embedding layer. While the
word type prediction results indicate that semantic
content is still preserved, form-related features de-
grade much more quickly than in the other groups.
This suggests a more aggressive abstraction process
where subword compositions are quickly absorbed
into high-level representations, losing their original
structural alignment. Unlike the first group, which
retains subword traces throughout, these models
prioritize semantic fusion over maintaining direct
compositional structure.
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As discussed in Section 3.3, such distinct pat-
terns are already established during pre-training
phase. Given the similarities in model architec-
ture and training paradigms across these LLMs, we
hypothesize that the main factor leading to this dis-
tinction is pre-training data and its data mixture.
However, since such information is not fully dis-
closed? for the models we experimented, drawing
a definitive conclusion remains challenging. We
hope our work provides insights for future work on
exploring different composition strategies.

6 Conclusion

In this work, we examine subword compositional-
ity from the perspective of vector spaces, focusing
on three key dimensions: structural similarity, con-
tent, and form understanding. Experimental results
demonstrate that certain composition operations
produce representations that are structurally simi-
lar to the original word representations. Addition-
ally, we conducted two probing tasks to analyze
content and form information. The results show
that content information is consistently preserved
across different models and layers, while the preser-
vation of form information exhibits a more variable
pattern. The performance of six different LLMs
reveals three distinct groups based on their compo-
sition strategies.

Limitations

Our work provides valuable insights into sub-
word composition in LLMs, but several limitations
should be noted. First, the size of our dataset (3,432
words) reflects a trade-off between the number of
models analyzed and the number of words included.
Since different models have varying vocabularies,
selecting words (and subwords) that exist across all
models required balancing dataset size and model
coverage. While carefully selected, the dataset
may not fully capture the full range of word struc-
tures. Expanding it could offer an even more com-
prehensive understanding. Additionally, our work
focuses on two-subword composition. It would
be valuable to extend to compositions with more
subwords. Second, our analysis is focused on En-
glish, and it remains an open question whether the
same composition strategies hold across languages
with different morphological properties. Extend-
ing this study to other languages would provide

3We include all available information on data mixture in
the appendix.

a broader perspective on subword composition in
LLMs. Third, we have identified three distinct com-
position strategies, but the underlying reasons for
these differences remain to be explored. Factors
such as pre-training data and data mixture may play
a role, and further investigation could shed light
on why LLMs adopt these different composition
behaviors.
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are under the Gemma Terms of Use.

Acknowledgement

We would like to thank all anonymous reviewers for
their insightful comments and feedback. This work
was supported by DisAl - Improving scientific ex-
cellence and creativity in combating disinformation
with artificial intelligence and language technolo-
gies, a project funded by European Union under
the Horizon Europe, GA No. 101079164.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023a. Falcon-40B: an open large language model
with state-of-the-art performance.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,

*huggingface.co/tiiuae/falcon-7b-instruct

Shuggingface.co/Qwen/Qwen2.5-7B-Instruct

®huggingface.co/CohereForAl/aya-expanse-8b

"https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

$https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

*https://huggingface.co/google/gemma-2-9b-it

22532


https://doi.org/10.3030/101079164

Mérouane Debbah, Etienne Goffinet, Daniel Hess-
low, Julien Launay, Quentin Malartic, et al. 2023b.
The falcon series of open language models. arXiv
preprint arXiv:2311.16867.

Khuyagbaatar Batsuren, Gdbor Bella, Aryaman Arora,
Viktor Martinovic, Kyle Gorman, Zdenék Zabokrt-
sky, Amarsanaa Ganbold, Sarka Dohnalova, Magda
gevéﬂmvé, Katetina Pelegrinova, Fausto Giunchiglia,
Ryan Cotterell, and Ekaterina Vylomova. 2022. The
SIGMORPHON 2022 shared task on morpheme seg-
mentation. In Proceedings of the 19th SIGMOR-
PHON Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, pages 103—116,
Seattle, Washington. Association for Computational
Linguistics.

Khuyagbaatar Batsuren, Ekaterina Vylomova, Verna
Dankers, Tsetsuukhei Delgerbaatar, Omri Uzan, Yu-
val Pinter, and Gédbor Bella. 2024. Evaluating
subword tokenization: Alien subword composition
and oov generalization challenge. arXiv preprint
arXiv:2404.13292.

Lorenzo Bertolini, Julie Weeds, David Weir, and Qi-
wei Peng. 2021. Representing syntax and composi-
tion with geometric transformations. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 3343-3353, Online. Association
for Computational Linguistics.

Ned Block. 1981. Psychologism and behaviorism.
Philosophical Review, 90(1):5-43.

Qi Cao, Takeshi Kojima, Yutaka Matsuo, and Yusuke
Iwasawa. 2023. Unnatural error correction: GPT-
4 can almost perfectly handle unnatural scrambled
text. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing,
pages 88988913, Singapore. Association for Com-
putational Linguistics.

Yekun Chai, Yewei Fang, Qiwei Peng, and Xuhong Li.
2024a. Tokenization falling short: On subword ro-
bustness in large language models. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 1582-1599, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Yekun Chai, Qingyi Liu, Jingwu Xiao, Shuohuan Wang,
Yu Sun, and Hua Wu. 2024b. Autoregressive pre-
training on pixels and texts. In Proceedings of the
2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3106-3125, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loic Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126-2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

John Dang, Shivalika Singh, Daniel D’souza, Arash
Ahmadian, Alejandro Salamanca, Madeline Smith,
Aidan Peppin, Sungjin Hong, Manoj Govindassamy,
Terrence Zhao, Sandra Kublik, Meor Amer, Viraat
Aryabumi, Jon Ander Campos, Yi-Chern Tan, Tom
Kocmi, Florian Strub, Nathan Grinsztajn, Yannis
Flet-Berliac, Acyr Locatelli, Hangyu Lin, Dwarak
Talupuru, Bharat Venkitesh, David Cairuz, Bowen
Yang, Tim Chung, Wei-Yin Ko, Sylvie Shang Shi,
Amir Shukayev, Sammie Bae, Aleksandra Piktus, Ro-
man Castagné, Felipe Cruz-Salinas, Eddie Kim, Lu-
cas Crawhall-Stein, Adrien Morisot, Sudip Roy, Phil
Blunsom, Ivan Zhang, Aidan Gomez, Nick Frosst,
Marzieh Fadaee, Beyza Ermis, Ahmet Ustiin, and
Sara Hooker. 2024. Aya expanse: Combining re-
search breakthroughs for a new multilingual frontier.
Preprint, arXiv:2412.04261.

Ishita Dasgupta, Demi Guo, Andreas Stuhlmiiller,
Samuel J Gershman, and Noah D Goodman. 2018.
Evaluating compositionality in sentence embeddings.
arXiv preprint arXiv:1802.04302.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lor-
raine Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck,
Peter West, Chandra Bhagavatula, Ronan Le Bras,
et al. 2024. Faith and fate: Limits of transformers on
compositionality. Advances in Neural Information
Processing Systems, 36.

Allyson Ettinger, Ahmed Elgohary, Colin Phillips, and
Philip Resnik. 2018. Assessing composition in sen-
tence vector representations. In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 1790-1801, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Leonidas Gee, Andrea Zugarini, Leonardo Rigutini, and
Paolo Torroni. 2022. Fast vocabulary transfer for
language model compression. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pages 409—
416, Abu Dhabi, UAE. Association for Computa-
tional Linguistics.

Hongyu Gong, Suma Bhat, and Pramod Viswanath.
2017. Geometry of compositionality. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 31.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129-4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

22533


https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://doi.org/10.18653/v1/2021.findings-acl.296
https://doi.org/10.18653/v1/2021.findings-acl.296
https://doi.org/10.2307/2184371
https://doi.org/10.18653/v1/2023.emnlp-main.550
https://doi.org/10.18653/v1/2023.emnlp-main.550
https://doi.org/10.18653/v1/2023.emnlp-main.550
https://doi.org/10.18653/v1/2024.findings-emnlp.86
https://doi.org/10.18653/v1/2024.findings-emnlp.86
https://doi.org/10.18653/v1/2024.emnlp-main.182
https://doi.org/10.18653/v1/2024.emnlp-main.182
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://arxiv.org/abs/2412.04261
https://arxiv.org/abs/2412.04261
https://aclanthology.org/C18-1152/
https://aclanthology.org/C18-1152/
https://doi.org/10.18653/v1/2022.emnlp-industry.41
https://doi.org/10.18653/v1/2022.emnlp-industry.41
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419

Josef Klafka and Allyson Ettinger. 2020. Spying on
your neighbors: Fine-grained probing of contex-
tual embeddings for information about surrounding
words. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
48014811, Online. Association for Computational
Linguistics.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6675,
Melbourne, Australia. Association for Computational
Linguistics.

Jiaang Li, Yova Kementchedjhieva, Constanza Fierro,
and Anders Sggaard. 2024a. Do vision and language
models share concepts? a vector space alignment
study. Transactions of the Association for Computa-
tional Linguistics, 12:1232-1249.

Zhaoyi Li, Gangwei Jiang, Hong Xie, Lingi Song, Defu
Lian, and Ying Wei. 2024b. Understanding and
patching compositional reasoning in LLMs. In Find-
ings of the Association for Computational Linguistics:
ACL 2024, pages 9668-9688, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Qiwei Peng and Anders Sggaard. 2024. Concept space
alignment in multilingual LLMs. In Proceedings of
the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5511-5526, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Phillip Rust, Jonas F. Lotz, Emanuele Bugliarello, Eliz-
abeth Salesky, Miryam de Lhoneux, and Desmond
Elliott. 2023. Language modelling with pixels. In
The Eleventh International Conference on Learning
Representations.

Peter H Schonemann. 1966. A generalized solution of
the orthogonal procrustes problem. Psychometrika,
31(1):1-10.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE international
conference on acoustics, speech and signal process-

ing (ICASSP), pages 5149-5152. IEEE.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Chen Shani, Jilles Vreeken, and Dafna Shahaf. 2023.
Towards concept-aware large language models. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 13158-13170, Singa-
pore. Association for Computational Linguistics.

Yintao Tai, Xiyang Liao, Alessandro Suglia, and Anto-
nio Vergari. 2024. PIXAR: Auto-regressive language
modeling in pixel space. In Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pages
1467314695, Bangkok, Thailand. Association for
Computational Linguistics.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Gemma Team. 2024a. Gemma.

Qwen Team. 2024b. Qwen2. 5 technical report. arXiv
preprint arXiv:2412.15115.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Changhan Wang, Kyunghyun Cho, and Jiatao Gu. 2020.
Neural machine translation with byte-level subwords.
In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 9154-9160.

Dixuan Wang, Yanda Li, Junyuan Jiang, Zepeng Ding,
Guochao Jiang, Jiaqing Liang, and Deqing Yang.
2024a. Tokenization matters! degrading large lan-
guage models through challenging their tokenization.
arXiv preprint arXiv:2405.17067.

Siyuan Wang, Zhongyu Wei, Yejin Choi, and Xiang
Ren. 2024b. Can LLMs reason with rules? logic
scaffolding for stress-testing and improving LLMs.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 7523-7543, Bangkok, Thailand.
Association for Computational Linguistics.

Di Wu, Yibin Lei, Andrew Yates, and Christof Monz.
2024. Representational isomorphism and alignment
of multilingual large language models. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, pages 14074-14085, Miami, Florida,
USA. Association for Computational Linguistics.

Ningyu Xu, Qi Zhang, Menghan Zhang, Peng Qian, and
Xuanjing Huang. 2024. On the tip of the tongue: An-
alyzing conceptual representation in large language
models with reverse-dictionary probe. arXiv preprint
arXiv:2402.14404.

22534


https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/2024.findings-acl.576
https://doi.org/10.18653/v1/2024.findings-acl.576
https://doi.org/10.18653/v1/2024.emnlp-main.315
https://doi.org/10.18653/v1/2024.emnlp-main.315
https://openreview.net/forum?id=FkSp8VW8RjH
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2023.findings-emnlp.877
https://doi.org/10.18653/v1/2024.findings-acl.874
https://doi.org/10.18653/v1/2024.findings-acl.874
https://doi.org/10.34740/KAGGLE/M/3301
https://doi.org/10.18653/v1/2024.acl-long.406
https://doi.org/10.18653/v1/2024.acl-long.406
https://doi.org/10.18653/v1/2024.findings-emnlp.823
https://doi.org/10.18653/v1/2024.findings-emnlp.823

Zhaozhen Xu, Zhijin Guo, and Nello Cristianini. 2023.
On compositionality in data embedding. In Interna-
tional Symposium on Intelligent Data Analysis, pages
484-496. Springer.

Lang Yu and Allyson Ettinger. 2020. Assessing phrasal
representation and composition in transformers. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4896—4907, Online. Association for Computa-
tional Linguistics.

A Data Mixture for Different L1L.Ms

Llama3 and Llama3.1 As revealed in Dubey
et al. (2024), the final data mix for Llama3 pretrain-
ing contains roughly 50% of tokens corresponding
to general knowledge, 25% of mathematical and
reasoning tokens, 17% code tokens, and 8% multi-
lingual tokens.

Falcon The pre-training data mixture for Falcon
is summarized in Figure 8.

Pretraining
Fraction  Used

2,700B

Corpora
Name Source Stock

RefinedWeb-English  Filtered and deduplicated Common- ~5,000B 16%
Crawl, see Penedo et al. (2023)
Filtered and deduplicated multi-
lingual (Europe-focused) Common-
Crawl, see Penedo et al. (2023)

RefinedWeb-Euro ~2,000B 8% 400B

Books Project Gutenberg 215B 6% 214B

Conversations Reddit, StackOverflow, Hack- 170B 5% 168B
erNews, IRC, YouTube Subtitles

Code GitHub ~1,000B 3% 115B

Technical arXiv, PubMed, USPTO, Wikipedia 60B 2% 57B

Figure 8: The figure taken from Almazrouei et al.
(2023Db) that illustrates pre-training data mixture in Fal-
con models.

Gemma2 Gemma 2 models (9B) are pre-trained
on 8 trillion tokens. These tokens come from a
variety of data sources, including web documents,
code, and science articles. However, exact propor-
tions of these data types are not disclosed. Instead,
it is noted that the final data mixture was deter-
mined through ablations similar to the approach in
Gemini 1.0 (Team et al., 2023).

Aya-expanse The details of pre-training data
mixture is not mentioned or discussed in Dang et al.
(2024).

Qwen2.5 The fraction of data mixture for
Qwen2.5 models are not revealed. Team (2024b)
mentions that they employ Qwen2-Instruct models
to optimize the pre-training data distribution across
different domains and results in a pre-training data
of 18 trillion tokens.

Tokenizers Tokenizers of these different LLMs
all adopt the BPE algorithm and give quite similar
results for tokenization. This is also why we choose
these six models as they give the highest overlap in
words, ensuring enough data to experiment with.

22535


https://doi.org/10.18653/v1/2020.emnlp-main.397
https://doi.org/10.18653/v1/2020.emnlp-main.397

