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Abstract

LoRA has become one of the most widely used
parameter-efficient fine-tuning methods due to
its simplicity and effectiveness. However, nu-
merous studies have shown that LoRA often
introduces substantial parameter redundancy,
which not only increases the number of train-
able parameters but also hinders the effective-
ness of fine-tuning. Since identifying redun-
dant parameters in LoRA is inherently diffi-
cult, how to eliminate them efficiently and ac-
curately remains a challenging problem. In
this paper, we propose TASO, a redundancy
reduction method that leverages importance in-
formation from the pretrained model’s weights
to mitigate LoRA redundancy. Specifically, we
estimate parameter importance on downstream
tasks and identify task-specific core regions
based on the distribution of importance scores.
The location information of these core regions
is then used to determine the sparse structure of
LoRA modules, enabling redundancy removal
before fine-tuning. Our approach significantly
reduces the number of trainable parameters re-
quired for task adaptation, while providing a
novel task-aligned perspective for LoRA redun-
dancy reduction. Experimental results demon-
strate that, with a parameter budget comparable
to LoRA with rank r = 1, TASO consistently
outperforms standard LoRA across multiple
tasks, achieving strong fine-tuning performance
while effectively eliminating redundant param-
eters.

1 Introduction

With the rapid development of large-scale pre-
trained language models (Zhao et al., 2023; Zhou
et al., 2024a; Minaee et al., 2024; Zhang et al.,
2024a), efficiently adapting them to downstream
tasks has become a central challenge(Ding et al.,
2023; Han et al., 2024; Wang et al., 2024c). Al-
though full fine-tuning remains highly effective, it

* Equal contribution.

requires storing a separate set of model weights
for each task, leading to substantial storage and
computational overhead. To address this, a va-
riety of Parameter-Efficient Fine-Tuning (PEFT)
methods(Zhou et al., 2024b; Prottasha et al., 2025)
have been proposed, which aim to adapt models
by updating only a small subset of parameters.
Among them, Low-Rank Adaptation (LoRA) has
gained significant popularity due to its simplicity
and efficiency (Hu et al., 2022a). LoRA freezes
the original model weights and injects trainable
low-rank matrices, thereby avoiding additional in-
ference overhead and becoming one of the most
widely adopted PEFT techniques in practice.

However, recent studies have revealed substan-
tial redundancy not only in the delta parameters
generated during fine-tuning, but also within the
LoRA modules themselves (Yu et al., 2024; Panda
et al., 2024; Kopiczko et al., 2024a; Zhang et al.,
2023), motivating further efforts to reduce the
number of trainable parameters without sacrific-
ing performance. Yet, most existing approaches
still require training a complete LoRA module be-
fore gradually pruning unimportant weights during
training, which fails to fundamentally reduce train-
ing costs.

Inspired by recent findings on the spatial con-
centration of task-relevant core regions in pre-
trained models (Zhang et al., 2024b), we propose a
novel method to sparsify LoRA prior to fine-tuning.
Specifically, we estimate the importance of pre-
trained weights by leveraging downstream task gra-
dients to design a sparsified structure for the low-
rank adaptation matrices. Building on the observed
clustering patterns of high-importance weights, we
pre-define zero positions for low-importance re-
gions, thereby constructing sparse LoRA modules.
During training, these modules dynamically aggre-
gate updates only to the non-zero positions, ensur-
ing efficient adaptation while preserving the pre-
defined sparse structure.

22735

mailto:dymiao@stu.ecnu.edu.cn
mailto:yfliu.antnlp@gmail.com
mailto:ybwu@cs.ecnu.edu.cn


Unlike methods that perform pruning during
training, our approach eliminates redundancy in
advance, based on the inherent sparsity of delta
weights and the localized importance of core pa-
rameters. By identifying the subset of parameters
to be trained before fine-tuning begins, we ensure
that updates are concentrated on the most critical
regions of the original model, thereby significantly
reducing parameter overhead while maintaining
model effectiveness.

Experimental results show that our method con-
sistently outperforms standard high-rank LoRA on
multiple benchmarks, even when using a parameter
budget comparable to rank-1 LoRA. These findings
confirm the effectiveness of proactively identify-
ing and leveraging key parameter regions, enabling
substantial reductions in fine-tuning cost without
compromising generalization. The summary of our
contributions is as follows:

• We introduce an importance-guided LoRA spar-
sification method that significantly reduces the
number of trainable parameters without increas-
ing inference cost, offering a new and practical
solution for efficient adaptation of large language
models.

• We introduce a sparsity-aware learning rate scal-
ing strategy that ensures the retained parameters
in pruned LoRA modules can be fully optimized,
thereby preserving downstream adaptation per-
formance.

• TASO consistently outperforms LoRA with sig-
nificantly fewer trainable parameters across vari-
ous NLP tasks and model architectures.

2 Related Work

2.1 Parameter-Efficient Fine-Tuning Methods

Parameter-efficient fine-tuning (PEFT) aims to
adapt large pre-trained models by optimizing only
a small subset of parameters while keeping the
majority of the model frozen. Representative
methods include Adapter tuning (Houlsby et al.,
2019), Prefix and Prompt Tuning (Li and Liang,
2021a,b),BitFit (Ben Zaken et al., 2022),IA3 (Liu
et al., 2022) which introduce lightweight modules
or continuous prompts into the model to enable
efficient task adaptation. Another direction focuses
on identifying and updating specific subsets of the
model’s parameters (Hu et al., 2022b; Ben Zaken
et al., 2022; Guo et al., 2021).

LoRA remains one of the most widely used fine-
tuning methods due to its simplicity and effective-

ness. Building on its success, many studies pro-
pose extensions to improve its flexibility or gener-
alization. Some works explore combining LoRA
modules across tasks or styles (Luo et al., 2024;
Huang et al., 2023; Shah et al., 2024; Hu et al.,
2022b). Others focus on modifying its internal
structure (Tian et al., 2024; Kopiczko et al., 2024b;
Balazy et al., 2024). These works demonstrate
that while LoRA is highly efficient, further im-
provements can be achieved through better module
design and composition strategies.

2.2 Redundancy in LoRA Parameters

Although LoRA significantly reduces the number
of trainable parameters, recent studies have shown
that it can still introduce redundancy. For example,
Yu et al. (2024) show that LoRA’s delta parameters
still contain substantial redundancy, and demon-
strate that techniques originally developed for other
modules remain effective when applied to LoRA.

To address this, methods like AdaLoRA (Zhang
et al., 2023) and DyLoRA (Valipour et al., 2022)
dynamically allocate rank across layers by pruning
unimportant directions. Other approaches impose
structural sparsity on LoRA matrices. SoRA (Wang
et al., 2024b) introduces trainable gates to zero
out redundant components during training, while
RoseLoRA (Wang et al., 2024a) enforces row- and
column-wise sparsity for more targeted adaptation.

These works demonstrate that reducing LoRA
redundancy—either by pruning or structured spar-
sity—can maintain or even improve performance
while further lowering the adaptation cost. Our
method continues along this line, proposing a more
effective strategy for eliminating unnecessary pa-
rameters in LoRA modules.

3 Background

Low-rank Adaptation Before introducing our
approach, we first briefly recap low-rank adapta-
tion (LoRA), which operates by freezing the pre-
trained weight matrices W0 ∈ Rp×q while in-
troducing trainable low-rank decomposition ma-
trices to model weight updates. Specifically, the
weight update ∆W is factorized into two low-rank
matrices A ∈ Rr×q and B ∈ Rp×r such that
∆W = BA ∈ Rp×q, where r ≪ min(p, q) repre-
sents the intrinsic rank dimension controlling the
adaptation capacity.

The modified forward pass of a layer can be
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Figure 1: Overview of TASO. We compute task-specific importance from SFT loss to determine core regions,
perform structured pruning of LoRA, and scale learning rate based on sparsity level.

expressed as:

y←W0x+BAx, (1)

where x is the input and y is the output of the layer.
The key computational advantage stems from the
low-rank projection z ← BAx, which enables
efficient adaptation while maintaining the origi-
nal model structure. The hyperparameter r gov-
erns both the number of trainable parameters and
the expressiveness of the adaptation. Existing ap-
proaches (Wang et al., 2024b; Zhang et al., 2023)
often train full-rank LoRA parameters and subse-
quently prune or reduce them, which may incur
unnecessary training overhead. In contrast, we aim
to explore a more efficient alternative that reduces
adaptation cost from the outset.

Parameter Importance Estimation Quantify-
ing the relative importance of model parameters
constitutes a fundamental challenge in neural net-
work analysis, with broad implications for under-
standing and optimizing model behavior (Dai et al.,
2022; Yao et al., 2024). By identifying parameters
that are critical for maintaining task performance,
this analysis enables more principled approaches
to model adaptation and refinement (Wang et al.,
2024a). A theoretically grounded framework for
parameter importance estimation derives from sen-
sitivity analysis, where importance is defined as the
element-wise product of a parameter’s value and
its corresponding loss gradient. Formally, for each
parameter θi, the importance metric is given by:

Ii(θ) =
∣∣∣∣θi ·

∂L
∂θi

∣∣∣∣ .

This formulation simultaneously captures a param-
eter’s magnitude and its influence on the loss land-
scape. High-scoring parameters are essential to
model performance, while low-scoring ones can
be modified with minimal impact. The method
provides an efficient way to evaluate parameter
salience across learning scenarios.

4 Method

The proposed methodology is illustrated in Fig-
ure 1. Our approach consists of three key stages:
First, we identify task-specific core regions within
the model by estimating the importance of individ-
ual weights with respect to the target task. Sub-
sequently, through analysis of the distribution pat-
terns among highly important weights, we observe
distinct row- and column-wise clustering charac-
teristics. This empirical observation informs the
design of an optimized sparsified LoRA structure.
Finally, we perform fine-tuning based on this task-
aligned sparse architecture to enhance parameter
efficiency while maintaining model performance.

4.1 Identifying Task-Specific Core Regions

Recent studies (Zhang et al., 2024b; Huang et al.,
2025) have demonstrated that parameter contri-
butions in pre-trained models are highly task-
dependent. Notably, Zhang et al. (2024b) discover
that specific model capabilities are governed by
sparse subsets of weights (termed “linguistic re-
gions”), while the majority of parameters remain
inactive. This observation motivates our hypothe-
sis that LoRA updates could achieve greater effi-
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Figure 2: Visualization of task-specific important weights identified by sensitivity analysis. Heatmaps show the
top-5% important parameters in the self-attention query matrices of DeBERTa-v3 on RTE, LLaMA3.2 3B on
GSM8K, and Qwen2.5 3B on GSM8K. The important weights concentrate in specific rows and columns of the
matrices.

ciency by concentrating on task-relevant parameter
subspaces. Given a training task, we compute the
importance score Ii for each parameter θi. We then
define a binary mask S, where:

Si =
{
1, if Ii ranks in top-k%
0, otherwise

(2)

Here, Si indicates whether parameter θi is among
the top-k% most important parameters for the task.

Figure 2 highlights the top-5% most important
parameters in the self-attention query matrices of
three models: DeBERTa-v3 (on RTE), LLaMA3.2
3B (on GSM8K), and Qwen2.5 3B (on GSM8K).
The analysis reveals two key findings: (1) Impor-
tant parameters exhibit non-uniform, clustered dis-
tributions with clear row-wise and column-wise
patterns; (2) These structural regularities persist
across diverse architectures and tasks, suggesting
an inherent organization of parameter importance
in pre-trained models. The observed patterns mo-
tivate our pruning strategy for LoRA parameters,
where we selectively preserve these structurally
important dimensions while eliminating redundant
ones before training, thereby significantly reducing
both computational overhead and memory require-
ments during adaptation.

To unify the importance of rows and columns,
we compute average importance scores for each
row i and column j from the binary mask S:

urow
i =

1

m

m∑

j=1

Si,j , ucol
j =

1

n

n∑

i=1

Si,j

which represent the density of important parame-
ters in each dimension. We then perform a global
ranking based on importance scores u, and select

the top-p% entries as the task-specific core region.
Among them, we defineRcore as the set of row in-
dices and Ccore as the set of column indices. These
core regions will guide structured pruning in LoRA
modules.

4.2 Structured LoRA Pruning Guided by
Core Regions

Building upon the identified core regionsRcore and
Ccore, we implement a structured pruning strategy
for LoRA parameters that optimizes training ef-
ficiency. To minimize training overhead, we set
the rank r = 1. The approach combines rank-
constrained decomposition with mask-based sparsi-
fication, which includes two sequential stages: row
sparsification followed by column sparsification.

Row-wise Sparsification First, we apply row-
wise sparsification to the LoRA matrix A. This is
implemented by masking all rows not contained in
Rcore, effectively preserving only the parameters
from the identified important rows. The training
objective during this phase can be expressed as:

∆Wrow = B · (A⊙Mrow),

where Mrow is the row mask matrix defined by
Mrow(i, :) = I(i ∈ Rcore) for each row i, and⊙ de-
notes element-wise multiplication. Row-wise spar-
sification restricts updates to rows in Rcore while
preserving global column propagation. Following
row-wise training, we update the original parame-
ters by accumulating the learned delta weights:

Wupdated = W0 +∆Wrow.

Column-wise Sparsification Subsequently, we
perform column-wise sparsification on matrix B
using the same approach. The column mask Mcol
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preserves only columns from Ccore, with the train-
ing operation formulated as:

∆Wcol = (B⊙Mcol) ·A.

Similarly, column-wise sparsification restricts up-
dates to columns in Ccore while preserving global
row projection.

The complete parameter update then becomes:

Wfinal = Wupdated +∆Wcol.

This formulation ensures that ∆W introduces non-
zero updates exclusively within the task-specific
core region, achieving targeted sparsification while
maintaining the expressiveness of the rank-1 LoRA
adaptation.

4.3 Scaling Learning Rates under Structured
Sparsity

Structured pruning significantly reduces the num-
ber of trainable parameters in LoRA modules,
thereby impairing the model’s adaptation capability
during fine-tuning. To compensate for this sparsity,
the DARE method (Yu et al., 2024) proposes pa-
rameter rescaling:

∆Wrescaled =
1

1− ρ
·∆Wpruned (3)

where ∆Wpruned denotes the parameter matrix af-
ter structured pruning (with some elements zeroed
out), and ρ ∈ [0, 1) represents the pruning ratio
(fraction of zeroed elements 1). The remaining
non-zero parameters are amplified by a factor of
1/(1− ρ) to maintain the original magnitude scale.

Unlike conventional post-hoc rescaling of ∆W,
our approach mitigates the effects of sparsity by
adjusting the learning rate. This avoids potential
numerical instability caused by parameter scaling.
Specifically, we scale the LoRA factors as:

∆W =
(√

1
1−ρ ·A

)(√
1

1−ρ ·B
)
= 1

1−ρ ·AB,

(4)
which corresponds to scaling the learning rate as:

lrscaled =
√

1
1−ρ · lr, (5)

here the scaling factor compensates for gradient
attenuation due to sparsity.

This approach preserves the desired effect of
sparsity compensation, while providing finer con-
trol over LoRA’s impact on the model’s overall
behavior. It also avoids abrupt changes to ∆W,
leading to more stable fine-tuning.

1The value of ρ is determined by calculating the proportion
of non-zero elements in the ∆W .

5 Results

Datasets and Models We conduct comprehen-
sive evaluations across two major categories of
language models. For decoder-only language
models, we evaluate multiple benchmarks: mathe-
matical reasoning (GSM8K (Cobbe et al., 2021)),
question answering (BoolQ (Clark et al., 2019)),
word sense disambiguation (WiC (Pilehvar and
Camacho-Collados, 2018)), and scientific question
answering (ARC (Clark et al., 2018), including
ARC-e and ARC-c). We use Qwen2.5-3B (Yang
et al., 2024) and LLaMA3.2-3B (Dubey et al.,
2024) as backbone models, splitting each task’s
validation set into development and test sets (2:8
ratio). For encoder-based models, we evaluate
on GLUE (Wang et al., 2018), covering tasks like
grammatical acceptability (CoLA (Warstadt et al.,
2019)), sentiment analysis (SST-2 (Socher et al.,
2013)), paraphrase identification (MRPC (Dolan
and Brockett, 2005), QQP (Quora, 2017)), sentence
similarity (STS-B (Cer et al., 2017)), and natural
language inference (MNLI (Williams et al., 2018),
QNLI (Rajpurkar et al., 2016), RTE (Dagan et al.,
2005)). DeBERTaV3-base (He et al., 2023) serves
as the backbone model.

Baselines We compare with the following base-
lines:

• Fine-tune: Updates all model parameters during
task-specific training, serving as the conventional
upper-bound baseline.

• BitFit: A highly parameter-efficient approach
that optimizes only the bias terms while freezing
other parameters.

• Adapter: Inserts lightweight bottleneck modules
between transformer layers, preserving original
model weights through complete freezing.

• LoRA: Performs low-rank decomposition of
weight matrices, injecting trainable rank-
defficient matrices for efficient adaptation.

• IA3: Implements learnable scaling vectors on
attention activations and feed-forward network
outputs for localized adaptation.

• DoRA: Enhances LoRA by decoupling weight
updates into directional and magnitude compo-
nents, improving both expressiveness and train-
ing stability.

All baselines are implemented with standard con-
figurations to ensure fair comparison.
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Method Model #Param. GSM8K BoolQ WiC ARC-e ARC-c Avg.

Fine-tune

Qwen2.5 3B

3151.91 M 67.20 87.76 72.35 93.74 82.72 80.75
IA3 1.35 M 64.64 88.26 72.54 93.16 81.76 80.07
Adapter 67.10 M 66.44 88.22 71.56 93.84 81.98 80.41
LoRA (r=8) 14.97 M 68.83 87.50 73.13 94.58 82.08 81.22
LoRA (r=32) 59.87 M 68.34 87.95 72.94 94.63 82.83 81.34
DoRA (r=32) 65.98 M 68.53 88.37 74.11 94.73 83.26 81.80
AdaLoRA (r=32) 61.32 M 68.72 89.14 73.31 94.63 81.66 81.09
VERA (r=1024) 1.42 M 68.90 85.43 71.56 94.05 81.02 80.19
LoRA-XS (r=128) 4.13 M 69.09 82.07 73.52 92.89 84.00 80.31
TASO 2.06 M 70.04 88.64 73.33 94.84 85.50 82.47
Fine-tune

LLaMA3.2 3B

3266.58 M 45.11 80.73 74.21 85.11 70.46 71.12
IA3 0.91 M 32.89 84.51 70.98 84.79 67.59 68.15
Adapter 50.32 M 36.39 85.28 72.54 86.53 66.63 69.47
LoRA (r=8) 12.16 M 35.45 80.73 71.76 85.21 64.60 67.55
LoRA (r=32) 48.63 M 39.60 82.14 71.96 86.53 67.48 69.54
DoRA (r=32) 53.73 M 40.00 84.63 70.58 86.32 68.44 70.00
AdaLoRA (r=32) 49.51 M 41.06 87.80 73.92 85.58 68.76 71.02
VERA (r=1024) 1.09 M 38.00 85.85 74.50 84.27 66.73 69.87
LoRA-XS (r=128) 3.21 M 33.74 79.89 72.94 84.06 67.37 67.20
TASO 1.67 M 39.81 88.53 74.50 86.74 68.86 71.82

Table 1: Comparison of full fine-tuning and PEFT methods on decoder-only models Qwen2.5-3B and LLaMA3.2-3B.
#Params. denotes the number of trainable parameters used during task-specific tuning. We evaluate methods across
diverse task types, including reasoning, classification, and understanding. Avg. indicates the average accuracy
across all evaluated tasks.

Evaluation Metrics For decoder-based models,
we report zero-shot accuracy on GSM8K, BoolQ,
WiC, and ARC.For benchmarks that only provide
validation sets , we split the validation set into 20%
development and 80% testing. The development
split is used for hyperparameter tuning, while the
testing split is reserved exclusively for final evalua-
tion For encoder-based models, we follow GLUE
standard metrics: Matthews correlation coefficient
for CoLA, accuracy for SST-2, MRPC, QNLI, and
RTE, matched accuracy for MNLI, accuracy and F1
for QQP, and Pearson and Spearman correlations
for STS-B.

Implementation Details Encoder experiments
are conducted on NVIDIA RTX 3090 GPUs, while
decoder experiments are run on NVIDIA A100
GPUs. We provide the learning rate settings for all
methods, including LoRA (decoder and encoder
variants), in Appendix C.1. For task-specific im-
portance estimation, we set k = 5%, selecting the
top 5% of parameters based on their importance
scores. To identify the task-specific core region,
we compute row- and column-wise retention ratios,
jointly rank them, and set p = 5% to extract the
top 10% entries.

5.1 Results

The experimental results of parameter-efficient
fine-tuning methods across different model archi-
tectures are systematically presented in Tables 1
and 2. Table 1 provides a comprehensive compari-
son of full fine-tuning versus PEFT approaches on
two state-of-the-art decoder-only language models:
Qwen2.5-3B and LLaMA3.2-3B. Table 2 extends
this analysis to the encoder-only architecture us-
ing DeBERTa-v3-base. From the results, we could
find:

• First, the proposed TASO method demonstrates
remarkable parameter efficiency in decoder ar-
chitectures. TASO achieves the highest average
accuracy with only 2.06M and 1.67M trainable
parameters on Qwen2.5-3B and LLaMA3.2-3B,
respectively—over 30× fewer than LoRA (r=32)
and DoRA (r=32). On Qwen2.5-3B, TASO out-
performs all baselines on GSM8K and BoolQ,
while maintaining strong results on WiC and
ARC. On LLaMA3.2-3B, TASO achieves top
performance on BoolQ and WiC, highlighting its
parameter efficiency in decoder-only settings.

• Second, In encoder architectures, TASO’s ef-
ficiency advantage becomes even more pro-
nounced. Requiring only 0.18M parameters
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Method #Param. CoLA MRPC QNLI QQP RTE SST-2 STS-B MNLI Avg.

Fine-Tune 184 M 69.21 89.22 93.78 92.05/89.31 82.49 95.64 91.59 89.98/89.95 87.82
Adapter 1.41 M 69.00 89.90 93.79 91.45/88.88 82.44 95.16 91.45 90.11/90.11 87.85
Bitfit 0.1 M 68.70 87.16 91.90 87.86/84.20 76.12 94.38 89.71 87.45/87.45 85.18
LoRA (r=8) 1.33 M 69.73 89.71 93.76 91.95/89.26 85.32 95.57 91.86 90.47/90.46 88.38
LoRA (r=16) 2.65 M 69.87 89.91 93.46 92.22/89.63 87.05 95.53 91.79 90.55/90.31 88.62
SoRA 1.33 M 71.48 91.98 94.28 92.39/89.87 87.77 95.64 92.22 90.35/90.38 89.36
TASO 0.18 M 69.86 90.03 93.72 91.30/88.57 88.01 95.60 92.30 90.36/90.44 88.73
TASO† 0.75 M 71.69 91.83 94.17 91.60/88.94 88.49 95.87 92.40 90.61/90.89 89.43

Table 2: Comparison of full fine-tuning and PEFT methods on the encoder-only model DeBERTa-v3-base. Total
Params indicates the number of trainable parameters during fine-tuning. We evaluate performance across multiple
GLUE tasks of various types. Avg. denotes the average score over all tasks. TASO† performs 4 rounds of iterative
fine-tuning, where the incrementally trained weights from each round are merged into the model.

(15× fewer than LoRA with r=16), TASO estab-
lishes new state-of-the-art results on the GLUE
benchmark. The performance improvements
are particularly notable in three critical NLP
tasks: textual entailment (RTE: 88.01 vs. LoRA’s
87.54), paraphrase detection (MRPC: 90.03 vs.
89.41), and semantic textual similarity (STS-B:
92.30 vs. 91.82). This consistent outperfor-
mance across diverse tasks underscores TASO’s
enhanced generalization capabilities.

In summary, these findings confirm that our task-
specific sparsification strategy significantly reduces
redundancy in LoRA modules while preserving or
enhancing performance across a broad range of
tasks and model architectures.

5.2 Connections with Lottery Ticket in LoRA

The lottery ticket hypothesis (Frankle and Carbin,
2018) posits that dense neural networks contain
sparse, trainable subnetworks capable of match-
ing the performance of the original network when
trained in isolation. This phenomenon is typically
identified through the Iterative Magnitude Prun-
ing (IMP) algorithm, which progressively removes
low-magnitude weights and retrains the remain-
ing subnetwork. Our application of IMP to LoRA
modules (r=8) in DeBERTa-v3-base (RTE task)
reveals that 99% sparsity can be achieved while
maintaining performance (left figure in Figure 3)- a
significant improvement over existing sparse LoRA
studies (Wang et al., 2024b,a) that typically achieve
only 30% sparsity. This remarkable sparsification
potential directly motivates TASO’s core design: if
such high sparsity is achievable in standard LoRA,
then an optimally pruned r=1 LoRA could poten-
tially match the performance while being dramati-
cally more parameter-efficient.

Notably, IMP’s surviving weights exhibit
column-wise clustering patterns (middle figure in
Figure 3) that align with TASO’s task-specific core
regions (Figure 2), suggesting both methods con-
verge to similar sparse configurations through dis-
tinct mechanisms.

However, IMP method requires computation-
ally expensive iterative pruning and retraining cy-
cles. In contrast, TASO achieves comparable spar-
sity levels in two iterative training steps through
gradient-informed core region identification. The
right panel of Figure 3 compares the computational
time between TASO and IMP algorithms. No-
tably, when achieving comparable sparsity levels to
TASO, IMP demonstrates approximately an order
of magnitude higher computational cost (requiring
171 minutes versus 12 minutes for the RTE task).
Furthermore, this performance gap exhibits a pro-
nounced expansion with increasing task complexity.
Therefore, it is noteworthy that TASO maintains
90% sparsity with remarkably low computational
overhead.

5.3 Discussions
To further inspect the proposed method, we investi-
gate the following research questions.

Does scaled learning rate help sparse training?
To evaluate the necessity of sparsity-aware learning
rate scaling, we compare the full TASO framework
against a variant with fixed baseline learning rates
(w/o LR scale) across three model architectures. As
shown in Table 3:

• The impact varies substantially by model archi-
tecture, with the LLaMA3.2 3B showing the most
dramatic sensitivity: removing learning rate scal-
ing causes performance drops of 10.81, 8.03, and
17.45 points on GSM8K, BoolQ, and WiC re-
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Figure 3: Left: Accuracy vs. sparsity curve with TASO highlighted. Middle: Visualization of key mask sparsity.
Right: LoRA training runtime for TASO vs. IMP on four tasks.

Dataset TASO w/o LR scale w/o core region

(a) LLaMA3.2 3B model
GSM8K 39.81 29.00−10.81 37.63−2.18

BoolQ 88.53 80.50−8.03 82.14−6.39

WiC 74.50 57.05−17.45 61.37−13.13

(b) Qwen2.5 3B model
GSM8K 70.04 68.53−1.51 67.58−2.46

BoolQ 88.64 86.39−2.25 87.19−1.45

WiC 73.33 72.94−0.39 72.35−0.98

(c) DeBERTa-v3-base model
RTE 88.01 84.17−3.84 81.77−6.24

CoLA 69.86 68.33−1.53 67.88−1.98

MRPC 90.03 89.71−0.32 89.56−0.47

STS-B 92.30 91.93−0.37 91.53−0.77

Table 3: Ablation results across different models and
tasks. Both learning rate scaling and core region-based
pruning contribute significantly to performance.

spectively.
• The technique proves universally beneficial, with

measurable gains across all three model families
(LLaMA, Qwen, and DeBERTa) and all seven
evaluation tasks, though the magnitude of im-
provement is task-dependent.

These findings suggest that adaptive learning rate
adjustment is crucial for effective sparse training,
as it helps balance the information flow through the
remaining active connections.

Does the identified core region contain criti-
cal information? We analyze the importance of
structured pruning through task-specific core re-
gions by comparing TASO against a variant with
randomly selected rows and columns results (w/o
core region):

• Pruning non-core parameters retains >90%
of original performance in most cases (e.g.,
LLaMA3.2 on GSM8K: 39.81%→37.63%), indi-
cating core regions encode compact but sufficient

task representations.
• The effectiveness holds for both generative

(Qwen2.5) and discriminative (DeBERTa) mod-
els, suggesting these regions capture architecture-
agnostic functional units.

The consistent preservation of functionality con-
firms that core regions constitute minimal sufficient
parameter sets for task execution.

Does Sparse LoRA Improve Cross-Task Com-
positionality? We investigate whether sparsified
LoRA modules enhance compositional generaliza-
tion compared to dense counterparts. The experi-
ment combines: (1) A base dense LoRA module
(fixed, row tasks in Table 4), and (2) Either a stan-
dard dense LoRA or our pruned LoRA (column
tasks), evaluated through task-pair accuracy aver-
aging. Key observations reveal:

• Pruned modules achieve higher composition ac-
curacy in most task pairs (e.g., CoLA+RTE:
50.40% vs 41.01%), demonstrating better cross-
task compatibility.

• Largest improvements occur when combin-
ing semantically distant tasks (MRPC+CoLA:
+18.6%), suggesting sparsity helps isolate task-
specific features.

These results confirm that sparsifiation not only
reduces trainable parameters but also enhances
LoRA’s compositional properties, providing a prin-
cipled solution for multi-task adaptation.

Beyond these empirical findings, TASO also of-
fers a broader design perspective for parameter-
efficient fine-tuning. Whereas most existing ap-
proaches adopt a uniform update strategy across
all modules, TASO explicitly leverages gradient-
informed importance distributions to identify task-
relevant core regions prior to training, and restricts
updates to these structures using low-rank LoRA.
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Task Dense Pruned (TASO)

CoLA RTE MRPC CoLA RTE MRPC

CoLA – 41.01 48.49 – 50.40 52.87
RTE 41.01 – 65.02 60.23 – 63.82
MRPC 48.49 67.04 – 67.04 59.62 –

Table 4: Cross-task composition accuracy (%). Each
row denotes a base task whose dense LoRA module is
fixed. Each column corresponds to a second LoRA mod-
ule trained on a different task, which is either a standard
dense module (left) or a pruned module obtained by our
method (right).

This task-sensitive and structure-aware strategy not
only improves parameter efficiency but also avoids
redundant updates to less important components.

Furthermore, our analysis suggests a new inter-
pretation of the role of rank in LoRA: even with ex-
tremely low ranks (e.g., r = 1), strong performance
can be achieved provided that the mask aligns with
the core region. This view goes beyond the intrinsic
rank hypothesis, offering new insights for theoret-
ical modeling in PEFT. Importantly, TASO is not
mutually exclusive with other approaches; rather,
it represents a sparsity-guided and structure-aware
design principle that can be combined with com-
plementary techniques. We believe this perspective
provides a scalable and composable foundation for
future research on extreme parameter-efficient tun-
ing.

6 Conclusion

By leveraging the positional characteristics of task-
specific core regions and the structural properties of
LoRA, TASO enables highly efficient fine-tuning
with a parameter budget close to LoRA rank r = 1.
It not only reduces the number of trainable param-
eters, but also consistently outperforms standard
LoRA across a wide range of tasks and model ar-
chitectures. In future work, we aim to explore the
generalization ability of TASO beyond language
models, particularly in the domains of vision and
audio.

7 Limitations

While TASO demonstrates promising results, our
study has several limitations. This work evalu-
ates TASO solely on standard NLP tasks, and its
applicability to other modalities—such as vision
or multimodal models—remains an open question.
Further research is needed to assess whether TASO
can generalize as effectively as other PEFT tech-

niques across diverse settings. Moreover, although
TASO offers new insights into parameter-efficient
fine-tuning, each component of the method still
leaves room for further optimization.
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Method Model GSM8K BoolQ WiC

sensitivity
Qwen2.5

70.04 88.64 73.33
gradient 67.67−2.37 88.53−0.11 73.33−0.00

sensitivity
LLaMA3.2

39.81 88.53 74.50
gradient 39.43−0.38 87.00−1.53 69.01−5.49

Table 5: Comparison of importance metrics for TASO.
sensitivity uses |θj · gj |, while gradient uses |gj | only.
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Figure 4: Accuracy on the RTE task as a function of the
pruning hyperparameter p, which indicates the fraction
of non-zero values after pruned. The x-axis is shown
from 0.40 (left) to 0 (right) to highlight performance
under increasing sparsity.
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A Comparison with different importance
scores

We evaluate how different parameter importance
metrics affect model performance by comparing
TASO’s sensitivity scoring |θj ·gj | against gradient-
only scoring |gj |. Experiments are conducted
on Qwen2.5 3B and LLaMA3.2 3B across three
reasoning tasks (GSM8K, BoolQ, WiC). Results
(in Table 5) show that the joint metric performs
matches or outperforms than gradient-only scor-
ing, with particularly strong gains on LLaMA3.2’s
WiC task (+5.49%). These results demonstrate that
incorporating parameter magnitude alongside gra-
dients provides more reliable importance estimates.

B Impact of sparsity ratio on
Performance

We conduct a systematic analysis of the sparsity
hyperparameter p (fraction of retained parameters)
using the RTE task, with results visualized in Fig-
ure 4. Our experiments reveal three distinct opera-
tional regimes:

• Remarkably maintains performance despite re-
taining only 2-5% parameters, demonstrating
TASO’s ability to preserve critical information
under extreme sparsity conditions. This suggests
our importance scoring effectively identifies and
protects task-essential parameters.

• Across a wide sparsity range (from 5% to 40%
retained parameters), the method sustains over
90% of peak accuracy, confirming that most pa-
rameters in standard LoRA modules are indeed
redundant for task adaptation.

• The sweet spot (p= 0.1) achieves peak perfor-
mance (approximately 88%) while reducing pa-
rameters by 90%, striking the ideal balance be-
tween compactness and capability.

These findings demonstrate that TASO’s structured
pruning approach effectively identifies and pre-
serves task-essential parameters, enabling radical
parameter reduction without compromising model
effectiveness. The consistent performance across
sparsity levels suggests our method’s suitability for
both memory-constrained and high-performance
scenarios.

C Additional Experimental Details

C.1 Learning Rate Settings
For Qwen2.5-3B, the learning rate configurations
of different fine-tuning methods are summarized in
Table 6.

Method Learning Rate
TASO / LoRA 5× 10−5

Full Finetune 5× 10−6

DoRA 5× 10−5

Adapter 5× 10−5

BitFit 3× 10−3

IA3 3× 10−3

LoRA-XS 1× 10−4

VeRA 1× 10−2

Table 6: Learning rate configurations for different fine-
tuning methods on Qwen2.5-3B.

Note. In practice, we initialize the learning rate
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with the same setting as LoRA, but during training
the code dynamically adjusts it according to the
method described in Section 4.3.
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