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Abstract

Multimodal aspect-based sentiment classifica-
tion (MABSC) requires fine-grained reasoning
over both textual and visual content to infer
sentiments toward specific aspects. However,
existing methods often rely on superficial cor-
relations—particularly between aspect terms
and sentiment labels—Ieading to poor gener-
alization and vulnerability to spurious cues.
To address this limitation, we propose DPCI,
a novel Dual-Path Counterfactual Integration
framework that enhances model robustness by
explicitly modeling counterfactual reasoning
in multimodal contexts. Specifically, we de-
sign a dual counterfactual generation module
that simulates two types of interventions: re-
placing aspect terms and rewriting descriptive
content, thereby disentangling the spurious de-
pendencies from causal sentiment cues. We fur-
ther introduce a sample-aware counterfactual
selection strategy to retain high-quality, diverse
counterfactuals tailored to each generation path.
Finally, a confidence-guided integration mech-
anism adaptively fuses counterfactual signals
into the main prediction stream. Extensive ex-
periments on standard MABSC benchmarks
demonstrate that DPCI not only achieves state-
of-the-art performance but also significantly
improves model robustness.

1 Introduction

Multimodal aspect-based sentiment classification
(MABSC) has attracted increasing attention in re-
cent years. This task aims to determine the sen-
timent polarity of specific aspect terms by jointly
leveraging textual and visual information. As il-
lustrated in Figure 1, the image-text pair contains
two aspects: “man” and “Elijah Jordan Wood” .
By integrating the textual description with the vi-
sual cue of a smiling face, the sentiment polarity
toward “man” is identified as positive. In contrast,
the sentiment polarity for “Elijah Jordan Wood” is

“The corresponding author.

A [man],, is taking

a picture in front of

movie poster. :
[#Elijah Jordan Wood),,.,, '

Figure 1: An example of multimodal aspect-based sen-
timent classification (MABSC).

assessed as neutral. This example highlights the
importance of effectively capturing aspect-related
contextual information within image-text pairs.

Existing research (Xu et al., 2019; Yu and Jiang,
2019a; Khan and Fu, 2021; Ling et al., 2022; Yang
and Li, 2023; Feng et al., 2024) on multimodal
aspect sentiment classification have primarily fo-
cused on designing various strategies to model the
semantic relationship between target aspects and
their context. These include employing attention
mechanisms to capture cross-modal aspect features
and leveraging multi-task learning frameworks.
More recently, large language models (LLMs) have
also been introduced into the MABSC task. While
these approaches have led to performance improve-
ments, they largely overlook dataset bias issues,
which may hinder further advances in model gener-
alization and robustness.

Although MABSC has made significant progress
in recent years, current research rarely focuses on
the causal relationship between aspect terms and
sentiment labels, especially ignoring the spurious
correlation between them. The spurious correlation
between aspect words and sentiment labels refers
to the fact that due to data imbalance and label
bias in the training corpus, the model tends to learn
biased statistical information rather than intrinsic
contextual semantic information when predicting
the sentiment of aspect words, thereby making in-
correct sentiment predictions.
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Figure 2: The sentiment distribution of several aspects.

Figure 2 shows that certain aspects in Twitter-
17 exhibit skewed sentiment distributions. For
example, “harry potter” is predominantly posi-
tive in training dataset. In the test set, the ad-
vanced MABSC models misclassified most neu-
tral “harry potter” samples as positive, consistent
with the dominant training distribution. Similar
trends are observed for other aspects, confirming
that aspect—sentiment imbalance translates into sys-
tematic prediction errors.

To mitigate the impact of spurious correla-
tions between aspect terms and sentiment labels
in multimodal aspect-based sentiment classifica-
tion (MABSC), we propose a novel Dual-Path
Counterfactual Integration (DPCI) framework, as
illustrated in Figure 4. Unlike previous meth-
ods that passively model semantic relationships,
our approach is grounded in a causal perspective.
Specifically, we decompose the causal structure of
MABSC and identify the major sources of spurious
correlations: biased co-occurrence between aspect
terms and sentiment labels. To address this issue,
we design a dual-path counterfactual generation
module that constructs both aspect and descrip-
tion counterfactuals. Aspect counterfactuals are
created by replacing the target aspect while pre-
serving contextual semantics, whereas description
counterfactuals alter the surrounding descriptions
(including image captions generated by LLaVA)
while holding the aspect fixed.

To fully exploit the knowledge from the
dual-path counterfactuals, we propose a novel
integration-based fusion mechanism. During
training, we construct augmented samples that
blend both types of counterfactual knowledge into
a unified representation and fine-tune LLaMA
with LoRA. During inference, we introduce a
confidence-aware, training-free fusion strategy that

adaptively integrates predictions from the original
and counterfactual views based on their predictive
confidence. This approach enables flexible and
robust decision-making without additional train-
ing overhead. We evaluate DPCI on two widely
used MABSC benchmarks, Twitter-15 and Twitter-
17. Experimental results show that our framework
consistently outperforms existing state-of-the-art
methods.
Our contributions are as follows:

* We propose a novel Dual-Path Counterfactual
Integration (DPCI) framework that explicitly
models the causal relationships, effectively
mitigating spurious correlations overlooked
by traditional MABSC models in multimodal
aspect-based sentiment classification.

* We develop dual-path counterfactual gener-
ation and selection strategy that constructs
both aspect and context counterfactual sam-
ples, combined with a confidence-based sam-
ple fusion mechanism to enhance the counter-
factual learning ability and reduce noise.

* We conduct extensive experiments on two
multimodal sentiment datasets, demonstrating
that our DPCI framework consistently outper-
forms existing competitive methods.

2 Related Work

2.1 Multimodal Aspect-based Sentiment
Classification

Multimodal aspect-based sentiment classification
(MABSC) (Ling et al., 2022; Yang and Li, 2023;
Wang et al., 2024; Liu et al., 2025) is a new task that
has emerged in recent years. Compared with multi-
modal sentiment analysis (Xu et al., 2018; Truong
and Lauw, 2019; Hazarika et al., 2020; Yang et al.,
2023; Li et al., 2024) and aspect-based sentiment
classification (Xu et al., 2019; Liu et al., 2022;
Chang et al., 2024; Ouyang et al., 2024), this task
focuses on determining the sentiment polarity of
fine-grained aspect terms within text-image pairs,
which poses greater challenges. (Xu et al., 2019)
first proposed a multi-interactive memory network
to capture the relationships between modalities.
(Yu and Jiang, 2019a) proposed two publicly anno-
tated multimodal Twitter datasets and designed a
target attention mechanism to learn the alignment.
(Khan and Fu, 2021) translated the image into text
and then sent it into BERT as an auxiliary sentence
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for MABSC. (Yu et al., 2022) proposed a new multi-
task learning architecture to achieve fine-grained
image-target matching. (Feng et al., 2024) used the
instruction tuning paradigm and leveraged the abil-
ity of large vision-language models to alleviate the
limitation in the fusion stage. Previous works have
achieved impressive results, but they have ignored
the impact of aspect bias. In multimodal data anal-
ysis, especially when processing text and images
from social media, sentiment analysis models are
easily disturbed by this bias, which may affect their
performance.

2.2 Spurious Correlation Mitigation

In recent years, research on mitigating spurious
correlations, such as shortcuts, dataset biases, and
group robustness, has been widely used in vari-
ous fields such as computer vision (Wang et al.,
2021) and natural language processing (Chang
et al., 2024). Spurious correlation refers to a situ-
ation where two variables appear to be correlated,
but this relationship is accidental or confounded
with an external variable (Ye et al., 2024). Such
correlations can mislead the model and may affect
the generalization and robustness of the model. To
address this, some studies (Srivastava et al., 2020;
Wau et al., 2023) modify the input of the model to
enhance the generality and diversity of data dis-
tribution. Other studies focus on improving the
representation within the model through methods
like causal intervention (Wang et al., 2021; Agar-
wal et al., 2020; Yang et al., 2024; Xu et al., 2025;
Yang et al., 2024) and invariant learning (Krueger
et al., 2021; Eastwood et al., 2023), to help the
model better capture the potential relationship be-
tween variables.

3 Preliminary

3.1 Task Definition

Given a set of multimodal samples M, each
sample m; € M consists of sentence s;, im-
age v; and aspect words a;. Multimodal aspect-
based sentiment analysis aims to identify the senti-
ment polarity y; € {positive, negative, neutral}
of the given aspect a;, where the sentence s; =
[Wiy ey Watly - -+ Watm, - - -, Wn] 1S @ sequence
consisting of n words. a; = [Wa+1, - .-, Watm] 18
the aspect consisting of m words.

Figure 3: The causal graphs for factual MABSC, coun-
terfactual MABSC and our DPCI. a and a*: original
and replaced aspect term. v and v’: original and coun-
terfactual image information. s and s’: original and
counterfactual sentence. m, m* and m’: multimodal
fusion knowledge of (a,v,s), (a*,v,s) and (a,v’,s’). y:
sentiment label.

3.2 Cause-Effect

We use causal graphs to illustrate the traditional
MABSC method and our DPCI framework as
shown in Figure 3. The causal graph reflects the
causal relationship between variables, where —
represents the direct effect between variables. The
traditional MABSC model indirectly acts on the
sentiment label through the joint action of images,
sentences, and aspects. This usually involves the
intermediate role of the multimodal information
mediator M, that is, (4,V,S) — M — Y. How-
ever, due to the bias of the aspect term, it also
affects the sentiment label through a direct path,
that is, A — Y. Therefore, we can rewrite Y, , s
as a function Z(-) of A, V, S and M:

Yovs=Z(A=a,V=0v,5=sM=m) (1)

where m = M,, s denotes the multimodal fu-
sion knowledge of a, v and s. However, traditional
MABSC methods ignore the causal impact of as-
pect on the results, leading the model to learn spu-
rious correlations between aspect and sentiment
labels, which negatively impacts its performance.
We want to remove the influence of aspect bias,
that is, remove the direct path A — Y, as shown in
Figure 3(b). In our DPCI framework, we propose
two complementary strategies to eliminate aspect
bias. We first replace the value of A to a*, the V/
and S remain unchanged, and M will reach a value
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Figure 4: The proposed dual-path counterfactual integration (DPCI) framework.

of m*. In this case, Yy 4,5 1S represented as:

Yorws =Z(A=a"V=0v,5=s,M=m")
2
Another strategy is to keep A unchanged and
replace the values of V and S with v and s, re-
spectively. In this case, the value of M becomes
m'. Then Yoo s 18 expressed as:

Youws =Z(A=a,V=0,5=5M=m)
3)
This will eliminate the direct impact of aspect
bias on the prediction results, help the model better
learn the intrinsic semantic connection.

4 Methodology

4.1 Overview

Figure 4 shows an overview of our DPCI frame-
work. It consists of three stages. In the dual coun-
terfactual generation stage, we first convert the
image into text descriptions, and then build two
types of prompt templates to feed into a large lan-
guage model, particularly GPT-40, to generate two
types of counterfactual samples: aspect-based and
context-based samples. In the counterfactual sam-
ple selection stage, we design two sample selection
mechanisms based on aspect words and context
to obtain high-quality candidate samples. In the
integration-augmentation fusion stage, we integrate
and enhance the two types of counterfactual candi-
dates based on the original samples, and perform

Counterfactual Aspect Generation

A

User

Based on the provided sentence, aspect, and caption,
generate five diverse alternatives for the aspect word that
are semantically similar and exhibit strong diversity.
Sentence: Millions For Trayvon September 7 - - - - Shut
Down New York City, Aspect: New York City, Caption:
The image features a young man wearing

. D -

LLM ["The Big Apple", "Manhattan”, "NYC", “"Gotham", "Metropolis"

0

-

Figure 5: A counterfactual aspect generation example
of our DPCI on Twitter-15 dataset.

multi-decision fusion on the model inference re-
sults to obtain the final sentiment prediction.

4.2 Dual Counterfactual Generation

To mitigate the spurious correlation between the
input features and output sentiment labels in the
original dataset, we design dual counterfactual gen-
eration to generate counterfactual samples for the
original training samples. We first input images
into LLaVA based on sentence and aspect compo-
sition prompts to generate corresponding image de-
scriptions. Afterwards, we design dual-path coun-
terfactual generation.

Counterfactual Aspect Generation. To allevi-
ate the spurious correlation between aspect terms
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| Counterfactual Context Generation

Given a sentence, an aspect word, the sentiment of the aspect word in
(—‘ the sentence, and the caption, generate counterfactual and diverse
samples with positive, neutral and negative sentiment. Sentence:
User | Millions For Trayvon September 7 - - - - Shut Down New York City,
Aspect: New York City, Caption: The image features a young man
wearing......, Aspect Sentiment: Negative

Loy Positive Samples:

: H « Sentence: Millions For Trayvon September 7 - - - - Honor New :
| York City's Resilience., Aspect: New York City, Caption: The image | !
I LLM . B . 4 . . i
' depicts a vibrant city skyline with a rainbow above.

« Sentence: Millions For Trayvon September 7 - - - - Experience New f
York City., Aspect: New York City, Caption: The image shows a :
cityscape with various buildings and streets.

Negative Samples:

« Sentence: Millions For Trayvon September 7 - - - - Protest against
New York City's policies., Aspect: New York City, Caption: Image '
of crowded streets with people holding signs, expressing discontent. | |

Figure 6: A counterfactual context generation example
of our DPCI on Twitter-15 dataset.

and sentiment labels in the original dataset, we
use aspect counterfactual generation. By construct-
ing prompts, we let LLM generate five semanti-
cally similar and diverse aspect replacement words
while keeping the original sample sentiment un-
changed, which can be expressed in Eq.(2). As
shown in Figure 5, we generate five aspect replace-
ment words (“The Big Apple”, a well-known nick-
name for New York) (“Manhattan”, one district
of New York) (“NYC”, the abbreviation of New
York) (“Gotham”, another nickname of New York)
(“Metropolis”, the synonym of New York) for the
original aspect “NEW York City”.

Counterfactual Context Generation. As
shown in Figure 3(c), in addition to replacing as-
pect words to obtain counterfactual samples with
the same sentiment to alleviate the spurious correla-
tion, we can also obtain counterfactual samples of
context by replacing sentences and captions, which
can be expressed in Eq.(3). As shown in Figure 6,
we retain the aspect words of the original sample
and use LLLM to generate aspect-level sentiment
samples with positive, neutral, and negative senti-
ments.

4.3 Counterfactual Sample Selection

To filter out counterfactual samples with diversity
and high quality, we first fine-tune BERT using the
training set Dyyrqin. Specifically, for sample m;,
we can get its original sentence s;, the description
information d; generated by the image v;, and the
aspect words a;. We construct the form of "[CLS]
s;. d; [SEP] a; [SEP]" as the input of BERT, and
estimate the sentiment label of the current sample

by obtaining the embedding of the [CLS] position.
To better adapt our aspect-based and context-based
counterfactual samples, we design two counterfac-
tual sample selection schemes.

Aspect-based Counterfactual Selection. One
work (Cao et al., 2022) found that the replace-
ment of aspect words has minimal impact on the
sentiment of the overall ABSA sample. Mean-
while, when generating aspect word counterfac-
tual samples, we require that the generated replace-
ment words are semantically similar to the orig-
inal aspect words, so as to ensure the accuracy
of the sentiment of the aspect words in the coun-
terfactual samples to a large extent. Therefore,
we hope to select samples with strong diversity
from these counterfactual samples to further im-
prove the model effect. Specifically, for the set
of five counterfactual aspect replacement words
Af = {ail, aso, a; 3,05y, afﬁ}, we define a mini-
mum estimated probability threshold p. We select
the sample with the smallest estimated correct prob-
ability greater than p as the expansion sample:

a; = min {a{j S BERT(a;j) > p} @

where a; is the selected high-quality aspect coun-
terfactual candidate, j € [1, 5]. This can ensure di-
versity and improve the performance of the model.

Context-based Counterfactual Selection. Un-
like aspect-based counterfactual samples, the accu-
racy of sentiment labels for aspect words in context
counterfactual samples can not be guaranteed. Di-
rectly using MLLM:s to predict on MABSC datasets
does not yield satisfactory results (Zhao et al.,
2024). Therefore, for the set of context-based coun-
terfactual samples C;, we aim to select the most ac-
curate samples possible. To achieve this, we set two
thresholds, ¢; and g2, where g; represents the min-
imum estimated probability and ¢ represents the
maximum difference between the predicted prob-
ability of the current sample e and context-based
counterfactual samples C;. We select the samples
with the highest predicted probability that exceeds
both thresholds as our context counterfactual can-
didates, which can be represented as:

Ci =maz {ci; € Ci|P(ci;) > qu, P(e) — P(cij) < g2}

&)
where C is the selected context counterfactual
candidates. This ensures that the selected samples
have high prediction accuracy and meet the diver-
sity requirements.
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4.4 Integration-Augmentation Fusion

Integration-Augmentation. The aspect counter-
factual candidate serves primarily as an augmenta-
tion. By being exposed to diverse and semantically
similar aspect candidate, the model can more accu-
rately capture actual sentiment information rather
than rely solely on superficial aspect patterns. Be-
sides, we integrate the contextual counterfactual
candidates into the historical context of the original
samples. This integration enhances the ability of
our DPCI to handle complex relationships between
aspects and their surrounding context.

Decision Fusion. We propose an uncertainty-
based decision fusion mechanism to combine
original samples with counterfactual information.
Specifically, we input three types of samples into
the trained LLaMA model: the original sample e,
the new sample e* formed by combining the orig-
inal sample e with the history of the contextual
counterfactual candidates C', and the sample e’ of
the aspect word counterfactual candidate a; to ob-
tain three output logits [}, 2, [3. We first calculate
the uncertainty of each sample. Specifically, we
introduce an uncertainty (Taha et al., 2022), which
is the normalized difference between the logits of
the winner and second winner classes:

Max1(z) — Max2(x)

PO = ezl (@) 5 Maz2@))] O

If the confidence of e* is smaller than e and €/,
we define it as a hard samples:

p(e”) < min(p(e), p(€)) ()

where Max1 is the largest and M ax2 is the second
largest logit value. To better handle these hard sam-
ples, we perform weighted fusion by confidence:

pi = ap(e) - 1i + Bp(e*) - I +yp(e) - ] (8)

where «, 5 and y are hyperparameters. A higher
confidence makes the sample more influential in the
final decision. This decision fusion can effectively
handle samples with counterfactual information
and improve the ability to predict sentiments in
complex and uncertain scenarios.

5 Experiments

5.1 Datasets

We conduct experiments on two publicly available
standard datasets for our MABSC task: Twitter-
15 and Twitter-17, both of which are multimodal

Table 1: Statistics on two datasets of MABSC.

Twitter-15 Twitter-17
Label - .
Train Dev Test Train Dev Test
Positive 928 303 317 1508 515 493
Neutral 1883 670 607 1638 517 573

Negative 368 149 113 416 144 168
Total 3179 1122 1037 3562 1176 1234

datasets from (Yu and Jiang, 2019a). The Twitter-
15 dataset contains user tweets posted during 2014-
2015, while the Twitter-17 dataset includes tweets
from 2016-2017. The statistics for these datasets
are presented in Table 1.

5.2 Implementation Details

During the dual counterfactual generation stage,
each original instance is augmented with five
aspect-based counterfactual samples and nine
context-based counterfactual samples, with three
generated for each sentiment category (positive,
negative, and neutral). In the counterfactual sam-
ple selection stage, we use BERT-base-uncased
English version as the filter, with sample thresh-
olds set to p=0.6, ¢;=0.6 and ¢2=0.1 in Twitter-15.
In Twitter-17, p=0.7, ¢1=0.7 and ¢2=0.2. We ob-
tain counterfactual candidate sets using the same
generation and selection mechanism on both the
training and test sets. In the decision fusion mod-
ule, the weights of the samples are controlled with
a=0.7, $=0.1 and v=0.2 on Twitter-15. In Twitter-
17, a=0.3, $=0.4 and y=0.1. During the training
phase, the LLaMA3 (8B) model is fine-tuned with
LoRA for four epochs to ensure efficient adapta-
tion.

5.3 Baseline Methods

To comprehensively evaluate our DPCI, we com-
pare it with existing competitive methods. The
image-only methods include Res-Target (Yu and
Jiang, 2019b), Faster R-CNN-Aspect (Ye et al.,
2022) and CLIP (Ye et al., 2022). The text-only
methods include BERT (Devlin et al., 2019), BERT-
Pair-QA (Sun et al., 2019) and Tk-Instruct (Wang
et al., 2022). The text and image methods include
MIMN (Xu et al., 2019), TomBERT (Yu and Jiang,
2019b), EF-CapTrBERT (Khan and Fu, 2021),
FITE (Yang et al., 2022), ITM (Yu et al., 2022),
VLP-MABSA (Ling et al., 2022), VEMP (Yang
and Li, 2023), InstructBLIP (Dai et al., 2023),
AZII (Feng et al., 2024), DeepSeek-V3 (Liu et al.,
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Table 2: Experimental results comparison on two multimodal datasets.

Models Twitter-15 Twitter-17
Acc  Macro-F1  Acc  Macro-F1
Res-Target (Yu and Jiang, 2019b) 59.88 46.48 58.59 53.98
Image Only Faster RCNN-Aspect (Ye et al., 2022) 59.98 37.71 57.94 54.71
CLIP (Ye et al., 2022) 61.23 48.77 52.03 47.83
BERT (Devlin et al., 2019) 74.15 68.86 68.15 65.23
Text Only BERT-Pair-QA (Sun et al., 2019) 74.35 67.70 63.12 59.66
Tk-Instruct (Wang et al., 2022) 77.35 71.88 71.07 69.66
MIMN (Xu et al., 2019) 71.84 65.69 65.88 62.99
TomBERT (Yu and Jiang, 2019b) 77.15 71.75 70.34 68.03
EF-CapTrBERT (Khan and Fu, 2021) 78.01 73.25 69.77 68.42
FITE (Yang et al., 2022) 78.49 73.90 70.90 68.70
Text and Image ITM (Yu et al., 2022) 78.27 74.19 72.61 71.97
VLP-MABSA (Ling et al., 2022) 78.60 73.80 73.80 71.80
VEMP (Yang and Li, 2023) 78.88 75.09 73.01 72.42
AZII (Feng et al., 2024) 79.46 75.16 74.39 72.35
InstructBLIP (Dai et al., 2023) 57.57 59.63 60.37 35.96
DeepSeek-V3 (Liu et al., 2024a) 62.49 62.28 63.29 61.83
LLaMA (Touvron et al., 2023) 78.30 74.10 73.58 73.44
LLaVA-v1.5 (Liu et al., 2024b) 77.90 74.30 74.60 74.30
BERT+DPCI 77.63 73.53 72.04 70.59
LLaMA+DPCI (ours) 80.42 76.39 75.20 74.73

2024a), LLaMA(8B) (Touvron et al., 2023) and
LLaVA-v1.5(13B) (Liu et al., 2024b).

5.4 Comparison Results

We use accuracy and macro-F1 as evaluation met-
rics. We compare our method with the advanced
MABSC methods and the results are shown in
Table 2. It can be seen that our DPCI achieves
the best performance on Twitter-15 and Twitter-17.
Compared to the competitive baselines VEMP and
AZII, where both designed instruction prompts for
instruction-tuning and utilize the rich knowledge of
LLMs, our DPCI still achieves better performance.
This is due to the fact that we generate counterfac-
tual augmentation information and incorporate it
into model learning through integration and aug-
mentation. Besides, we add our method to the
relatively small model BERT and see significant
improvements, demonstrating the effectiveness and
universality of our method. Our method can reduce
the false correlation in the aspect sentiment pre-
diction process and help the model learn the real
sentiment information.

5.5 Ablation Study

To better understand the role of each module, we
conduct ablation study and the results are shown

in Table 3. "only LLaMA" indicates the result of
fine-tuning the original dataset using only LLaMA3
(8B), where the same image descriptions are used
as the image information. "w/o AG" and "w/o CG"
represent the generation of aspect counterfactual
samples removed and context counterfactual sam-
ples removed respectively. The results show a de-
crease in model performance when only one type of
counterfactual data is generated. The performance
drop is more significant when the context counter-
factual samples are removed. “w/o fusion-original”,
“w/o fusion-aspect” and “w/o fusion-context” rep-
resent the effects of the model on original samples,
augmented aspect counterfactual candidate and in-
tegrated context counterfactual candidates respec-
tively, without decision fusion in the integration-
augmentation fusion stage. The ablation results
confirm the effectiveness of each proposed part.

5.6 Analysis of Sample Selection

The selection of counterfactual samples plays a
critical role in the performance. To further inves-
tigate its impact, we conduct a detailed analysis
on the effects of ¢; and ¢ (as defined in Eq.(3) in
the context counterfactual sample selection. The
results, as shown in the Figure 7, illustrate the per-
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Table 3: Ablation experiments of each module of DPCI.

Twitter-17  Taple 4: The performance of DPCI with different num-

Models Twitter-15
Acc F1 Acc F1

only LLaMA 78.30 74.10 73.58 73.44
w/o AG 80.33 76.20 7496 74.54
w/o CG 79.94 7597 7472 74.37
w/o fusion-original 79.75 75.76 74.47 74.42
w/o fusion-aspect 78.01 73.60 73.50 73.07
w/o fusion-context 79.84 75.31 74.15 73.98
our DPCI 80.42 76.39 75.20 74.73

is crucial for achieving optimal performance.

bers of augmented samples.

Twitter-15 Twitter-17

sss
o

sss8
[

Figure 7: Effect of different ¢; and ¢, on two datasets.

formance of our DPCI under various combinations
of ¢; and ¢o for both the Twitter-15 and Twitter-
17. From the analysis, we observe that the perfor-
mance fluctuates to some extent depending on the
selected threshold values for ¢; and ¢s. Specifi-
cally, in Twitter-15 dataset, the best performance is
achieved when ¢;=0.6 and ¢2=0.1, indicating that
this combination of thresholds enables the model
to better capture high-quality context counterfac-
tual samples. For Twitter-17 dataset, the optimal
combination occurs when ¢1= 0.7 and ¢»=0.2. This
suggests that a slightly higher threshold for ¢; and
a more moderate value for ¢» lead to the best model
performance in this context.

In addition, we conduct experiments with dif-
ferent numbers of augmented samples, which can
be shown in Table 4. Specifically, on the Twitter-
15 dataset, the model attain the highest accuracy
of 80.42% when 6290 augmented samples (total
9469 samples). Similarly, on the Twitter-17 dataset,
the accuracy peak at 75.20% with 6969 augmented
samples (total 10531 samples). These results sug-
gest that introducing an appropriate amount of aug-
mentation can enhance model robustness and gen-
eralization, whereas excessive augmentation may
introduce redundant or noisy information that off-
sets these benefits. Hence, striking a balance be-
tween the quantity and quality of augmented data

Dataset Augmented Accuracy (%)
1258 79.75
3145 80.13

Twitter-15 4403 80.23
6290 80.42
7548 80.33
1394 74.72
3485 74.95

Twitter-17 4878 75.04
6969 75.20
8363 75.12

5.7 Case Study

To better analyze the effectiveness of our DPCI, we
further conduct case analysis as shown in Figure
8. TomBERT is a representative relatively small
model, and LLaMA is a fine-tuned model with the
same parameter scale as our DPCI to ensure fair
comparison. Neg, Neu and Pos represent negative,
neutral and positive sentiments respectively. The
aspect in the sentence have been bolded. "Label"
represents the true sentiment of aspect. We can see
that aspect words such as "Justin Bieber" and "Don-
ald Trump" (which have been counted in Figure 2),
TomBERT and LLaMA models are easily affected
by statistical bias and lack sufficient counterfactual
modeling capabilities, resulting in sentiment pre-
diction errors. In contrast, our DPCI effectively
alleviates the spurious correlation through effective
counterfactual learning, thereby more accurately
identifying their sentiment polarities.

5.8 Evaluation under Imbalanced Data

We further evaluate the performance of the DPCI
model under imbalanced data distribution followed
by (Chang et al., 2024). As shown in Table 5, we
conduct experiments on Twitter-15 and Twitter-17
to compare the performance of BERT, LLaMA and
our DPCI on different sentiment labels. On the
Twitter-15 dataset, the DPCI model achieves per-
formance improvements over BERT and LLaMA
in all three categories, especially in the Positive and
Negative categories, reaching 75.39% and 69.03%,
respectively, which are 6.0% and 1.77% higher
than the LLaMA model. On the Twitter-17 dataset,
the DPCI model also shows excellent performance
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Image

RT @ HitDaBoogieZ : RT @ RandiLawson : [Oscar] Meta Theory : [Donald Tell me why the guy who
Text [Vigga] said I look fact : [JK Simmons] is the Trump)] will win the election  sings [Despacito] with

like I bark at people . voice of the yellow m amp WITH THE POWER OF THE [Justin Bieber] looks like

m . [MIND BLOWN)] CHAOS EMERALDS ?'! [Rufus Humphrey] @

Label (1-Neu ) (1-Neu, 2-Pos, 3-Neu ) (1-Neu ) (1-Neu, 2-Neu, 3-Pos )
TomBERT (1-Negy) (1-Posy, 2-Pos, 3-Posy) (1-Negy) (1-Neu,/, 2-Posy, 3-Neuy)
LLaMA (1-Negy) (1-Posy, 2-Pos, 3-Posy) (1-Negy) (1-Neuy, 2-Posy, 3-Neu,)
DPCI (ours)  (1-Neu,) (1-Neuy, 2-Pos, 3-Posy) (1-Neu,) (1-Neu, 2-Neuy, 3-Neu,)

Figure 8: Case studies of our DPCI and other baselines.

Table 5: The performance of the MABSC models on
two datasets with imbalanced data distributions.

Models  Positive Neutral Negative

Twitter-15

BERT 70.98 83.20 66.37

LLaMA 69.40 85.01 67.26

our DPCI  75.39 85.17 69.03
Twitter-17

BERT 70.99 74.69 66.07

LLaMA 70.39 78.71 65.48

our DPCI  72.82 79.41 67.86

in all categories. These results verify the effective-
ness of DPCI under imbalanced data distribution.
By reducing the spurious correlation, DPCI not
only outperforms on majority classes (positive and
neutral), but also has more obvious improvements
on the minority class (negative), proving the ro-
bustness and generalization ability of our DPCI in
scenarios with imbalanced data distribution.

6 Conclusion

In this paper, we present DPCI, a dual-path counter-
factual integration framework that introduces coun-
terfactual reasoning into MABSC. Our DPCI in-
troduces dual-path counterfactual generation with
sample-aware selection, and integrates the resulting
samples through confidence-guided fusion to en-
hance its robustness. Experimental results show its
effectiveness. In future work, we aim to refine coun-
terfactual generation and selection with stronger
semantic constraints and causal priors, further en-
hancing the interpretability and generalization of

our framework.

Limitations

While the proposed approach shows promising re-
sults in MABSC through counterfactual learning,
it still has some limitations:

* Dependence on quality of counterfactual sam-
ples: The effectiveness of the model heavily
relies on the generation of high-quality coun-
terfactual samples. Although aspect and con-
text counterfactual generation are designed to
capture diverse expressions, their generation
process can still be prone to inaccuracies or
inconsistencies, especially when the model’s
underlying knowledge is limited.

* Limited dataset diversity: Our experiments
are conducted on two publicly available
datasets (Twitter-15 and Twitter-17). While
widely used, they may not fully capture the
diversity of real-world sentiment expressions
across different domains. Expanding the eval-
uation to include more diverse and complex
datasets would provide a more comprehensive
assessment of the generalization capabilities
of models.
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