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Abstract

Cross-lingual context retrieval (extracting con-
textual information in one language based
on requests in another) is a fundamental as-
pect of cross-lingual alignment, but the per-
formance and mechanism of it for large lan-
guage models (LLMs) remains unclear. In
this paper, we evaluate the cross-lingual con-
text retrieval of over 40 LLMs across 12 lan-
guages, using cross-lingual machine reading
comprehension (xMRC) as a representative
scenario. Our results show that post-trained
open LLMs show strong cross-lingual context
retrieval ability, comparable to closed-source
LLMs such as GPT-40, and their estimated or-
acle performances greatly improve after post-
training. Our mechanism analysis shows that
the cross-lingual context retrieval process can
be divided into two main phases: question en-
coding and answer retrieval, which are formed
in pre-training and post-training respectively.
The phasing stability correlates with xMRC per-
formance, and the xXMRC bottleneck lies at the
last model layers in the second phase, where
the effect of post-training can be evidently ob-
served. Our results also indicate that larger-
scale pretraining cannot improve the xMRC
performance. Instead, larger LLMs need fur-
ther multilingual post-training to fully unlock
their cross-lingual context retrieval potential. !

1 Introduction

Since the rise of Large language models (LLMs),
many models have demonstrated their strong capa-
bility in various NLP tasks (Chang et al., 2024), e.g.
ChatGPT?, Claude?, Gemini (Gemini Team et al.,
2024), LLaMA (Grattafiori et al., 2024), Qwen
(Qwen et al., 2025), DeepSeek (DeepSeek-Al et al.,
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Context: Peyton Manning became the first quarterback ever to lead two different teams
to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at
age 39. The past record was held by John Elway, who led the Broncos to victory in Super
Bowl XXXIIl at age 38 and is currently Denver's Executive Vice President of Footbal
Operations and General Manager.

Question: Z15- /R 4k H
BIFEE DA sh4EAEA 4
fata?

Question: What role does
John Elway currently have
in the Broncos franchise?

Question: Welche Position
hat John Elway derzeit im
Broncos-Franchise inne?

Answer: Executive Vice President of Football Operations and General Manager

(a). en-x

Context: ...... John Context: ...... John Elway Context: ...... i [id

Elway, ...... is currently gehalten, ...... derzeit R 2SR IR A RRR Y,
Denver's Executive Vice Denvers Executive Vice Ah7E 384 it ity ATUEF 4 A
President of Football President of Football WATFSE 33 LRI, A
Operations and General Operations und General

RIEAEPHER B 2

Manager. Manager ist.

Question: Welche Position  Question: Z18- 3 /R4 H
hat John Elway derzeit im RIZEEF O AR EAEH A
?

Broncos-Franchise inne? At

Answer: B ERIZ EHAT
IS -2 3sts

Question: What role does
John Elway currently have
in the Broncos franchise?

Answer: Executive Vice
President of Football
Operations and General
Manager

Answer: Executive Vice
President of Football
Operations und General
Manager

(b). x-x

Figure 1: Examples of our en-x and x-x testing scenarios.
The figures show examples in English (en), German (de), and
Chinese (zh).

2024b), etc. However, due to the dominance of En-
glish training data, most of these LLMs show their
best performance in English (Lai et al., 2023b). To
improve their performance and efficiency in non-
English languages, cross-lingual alignment has be-
come a major research topic for multilingual LLMs
(Qi et al., 2023; Wang et al., 2024), which encour-
ages LLMs to share capabilities across languages.
For example, given requests with the same seman-
tics but in different languages, LLLMs should give
consistent answers.

Such alignment has been shown challenging
when the task requires recalling trained knowl-
edge (Gao et al., 2024; Hu et al., 2025). Thus,
a follow-up question is that, when the knowledge
is presented in the context in one language (e.g.
English), could LLMs retrieve it when answering
requests in the another language? Note that this
is different from multilingual context retrieval (the
context and the request are in the same language)
and cross-lingual information retrieval (retrieving
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queried text from a database). However, evaluation
and mechanism analysis of this ability in LLMs are
not fully explored.

In this paper, we evaluate cross-lingual context
retrieval of SOTA multilingual LLMs, and analyze
the mechanism of it. We use cross-lingual machine
reading comprehension (xMRC) (Cui et al., 2019)
as a simplified but representative scenario because:
(1) It is a representative NLP task where models
need to retrieve cross-lingual knowledge within the
context; (2) The target knowledge to be retrieved is
entirely within the context, so minimal extra knowl-
edge recall is needed; (3) The model only has to
copy part of the context as the answer, simplify-
ing evaluation and mitigating other factors such as
low-resource language generation errors.

Furthermore, we conduct in-depth analysis of
the performance bottleneck, oracle performance,
and mechanism of LLMs doing the xXMRC task,
using suitable tools and specially designed met-
rics. Specifically, we propose a hypothesis of two-
phased xXMRC process in LLMs, and verify our
hypothesis with experimental evidence.

Our main findings are:

* Post-trained open-source LLMs, especially 7-9B
versions, show strong xMRC ability, catching up
with closed-source models. Larger models show
higher English MRC performance, but larger gap
between English and non-English.

* Post-training significantly improves the estimated
oracle performance to almost saturate in all tested
languages, setting space for improvement of real
performance, while the effect of extended pre-
training is minor.

* The xMRC process can be divided into two phases
within the model: question encoding and answer
retrieval. The former forms in pre-training, and its
stability correlates with the base model capability,
as well as xMRC performance; the latter forms in
post-training, and serves as a bottleneck.

* One reason for the larger language gap observed
on larger post-trained open-source LLMs might
be insufficient and language-biased post training.

2 Methods

2.1 Evaluation methods
2.1.1 Scenarios

We use English to non-English (en-x) as a typical
and common cross-lingual scenario, where the con-
text and answer are in English, and the question is

in non-English, because it avoids the requirement
of non-English generation fluency that is not re-
lated to cross-lingual context retrieval, and keeps
the answers always in English which makes an-
swer verification easier and fairer. Meanwhile, non-
English monolingual (x-x) is used as comparison
to ablate the effect of non-English understanding.
Figure 1 shows examples of the testing scenarios.

2.1.2 Metrics

Performance metrics. We use the F1 score
to evaluate XMRC performance, as adopted by
XQuAD (Artetxe et al., 2020). Exact match (EM)
is not used because it tends to under-estimate the
performance due to unnecessary source text in the
answers (see Appendix A.1).

Cross-lingual performance metrics. To mea-
sure performance alignment between English and
non-English, we calculate the average performance
on all the non-English languages divided by En-
glish (en-x/en-en, x-x/en-en).

2.1.3 Performance bottleneck analysis

Error type ablation. Based on observation of
model responses, we distinguish error types as:
* Language: answering in x instead of en;
* Generation: generation errors including gibber-
ish, refusal and blank answers;
* Content: meaningful but incorrect answers in the
correct language;
For example, the language error rate for test set-
ting en-x is calculated as:

I(Lang(r) = en)I(Lang(a) = x)
[Wen,x|

Elang(en, x) = Z

(7”70,) EWen,x

where 7 is the reference answer, a is the model
prediction, and Lang(+) is a language detector for
given text. Meanwhile, a generation error rate, e.g.
gibberish, will be:

I(Type(r) = Gibberish)
‘Wen,x’

Egib(en,x) = Z

(r,a) EWen,x

where Type(-) is an LLM-based error type clas-
sifier for generation errors.

Oracle performance estimation The xMRC
score can be affected by errors in the generation
process, under-estimating LLMs’ cross-lingual con-
text retrieval ability. To ablate this effect, we es-
timate the oracle retrieval performance of LLMs
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by perturbation-based attribution* on contextual
sentences or spans. If the sentence/span with the
correct answer receives the largest attribution score,
we consider the model’s oracle retrieval on this test-
ing sample correct.

2.2 Mechanism analysis methods

2.2.1 Layer-wise attribution to reflect forward
process

To better understand the forward process of LLMs
performing XMRC, we need layer-wise attribution
to observe information flow from context parts
into the residual stream (Voita et al., 2024) at each
layer. Here we adopt AttentionLRP (Achtibat et al.,
2024), an attribution method based on Taylor De-
composition on attention, FFN and normalization
modules of LLMs, that can calculate the relevance
of token representations in each layer to the output.
Based on the attribution results, we define the
Major Relevance Depth (MRD) to estimate the
maximum depth to which a token representation
x needs to be encoded, by calculating the layer
number corresponding to the 95th percentile of its
attributed relevance to model m’s output:

MRD(m, z) = 1minN n
N

n N
s.t. Z Tout(Z,7) = 0.95 Z Tout(Z, 1)
i=1 i=1

where 7oy (z, 7) refers to the normalized relevance
score of token representation « in layer  to the final
output given by AttentionLRP. A token-MRD of n
indicates that the token information participates in
the context retrieval process only in the first 7-th
layers. Then, for parts of the input, i.e., task de-
scription, demonstrations, question and context, we
take the maximum token-MRD of each to represent
them, and calculate the mean part-MRD.

2.2.2 Hidden state similarity to measure
cross-lingual alignment

To observe the cross-lingual alignment of internal

xMRC process, we collect the hidden states in all

model layers and calculate their cross-lingual sim-

ilarity, and define a cross-lingual similarity ratio

S(en,x) between English and language x:

S(en,x) = Sim(E, X)/Sim(X, X)
_ (K B 1) ZekEE,xkeX Slm(ekﬁxk)

2 Z:vi,achX Slm([L‘l, .’Ej)

*We use Captum to perform the attribution (https://
github.com/pytorch/captum)

where Sim denotes the mean cosine similarity,
Sim(z,y) = = - y/|z||ly|. F and X denotes en-
en and en-x hidden states. K is the total number
of samples, e; and x; are the hidden states from
the k-th parallel sample pair between English and
language X, x;, z; are the hidden states from every
two different samples in language x.

3 Experiment Settings

3.1 Dataset

We use the XQuAD dataset (Artetxe et al., 2020) to
measure the XMRC performance of LLMs, because
its testing samples are parallel in all the 12 included
languages> and thus suitable for cross-lingual trans-
forming. The dataset has 1190 parallel samples for
each language and an average context length of
702.50 words. It also covers diverse language fam-
ilies, scripts, and resource levels.

3.2 Models and tools

We adopt a variety of SOTA open and busi-
ness LLMs, including LLaMA-3.1 (Grattafiori
et al., 2024), Mistral (Jiang et al., 2023), Qwen-
2.5 (Qwen et al., 2025), Gemma-2 (Team et al.,
2024), DeepSeek V2&3 (DeepSeek-Al et al.,
2024a,b), GPT-3.5, and GPT-40, in smaller and
larger sizes. Table 4 in Appendix B.1 shows a
full list of all the tested models. We also tune the
LLaMA-3.1-8B model with the TULU-v3 dataset
(Lambert et al., 2025) into a model called LLaMA-
3.1-Tuned-8B (Appendix C.3 for details) to verify
the effect of post-training.

For language error detection, we use Lingua®
with its high-accuracy mode, the accuracy of which
is satisfactory in our tested languages (see Ap-
pendix A.2). For generation errors detection, we
use Qwen-2.5-72B-Instruct (prompt shown in Ap-
pendix A.3) to identify generation errors. To rule
out the potential bias induced by Qwen judging
itself, we adopt Gemini-2.5-Flash-Lite 7 as another
judge for cross-validation (see Appendix B.4).

3.3 Prompts

In our xXMRC evaluation, we try two different
prompt templates and use the one with higher per-
formance for each model (see Appendix A.3). Our
main evaluation and analysis uses 2-shot for higher

Sen, de, es, vi, zh, hi, ar, el, ro, ru, th, tr
6https: //github.com/pemistahl/lingua
"https://gemini.google.com
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F1 scores

Error rates

en-en mean en-x meanx-x en-x/en-en Xx-x/en-en mean |

mean generation en-en generation

LLaMA-3.1-8B 75.97 49.01 70.28 0.64 0.93 0.32 8.88 5.60
LLaMA-3.1-70B 82.39 58.68 74.73 0.71 0.91 60.21 2.63 1.20
Mistral-V0.3-7B 79.57 58.74 64.92 0.74 0.82 21.24 14.25 0.49
Qwen-2.5-7B 62.42 57.51 66.11 0.92 1.06 0.96 3.29 1.51
Qwen-2.5-72B 86.03 78.92 81.16 0.92 0.94 10.90 2.53 0.00
Gemma-2-9B 80.42 66.82 72.90 0.83 0.91 1.91 4.11 1.02
DeepSeek-V2-Lite-16B 73.81 44.65 57.66 0.61 0.78 12.97 8.45 1.87
LLaMA-3.1-Instruct-8B 77.89 72.13 65.02 0.93 0.83 0.89 2.53 0.85
LLaMA-3.1-Tuned-8B 78.80 70.80 66.84 0.90 0.85 0.80 3.28 0.87
LLaMA-3.1-Instruct-70B  83.29 73.07 74.13 0.88 0.89 0.23 1.87 1.85
Mistral-V0.3-Instruct-7B  62.01 56.63 49.39 091 0.80 2.77 3.30 1.77
Qwen-2.5-Instruct-7B 81.83 76.43 71.61 0.93 0.88 0.67 3.21 2.75
Qwen-2.5-Instruct-72B 77.12 66.04 70.29 0.86 091 4.58 1.62 0.38
Gemma-2-1T-9B 83.69 78.72 75.53 0.94 0.90 0.17 2.47 1.95
DeepSeek-V2-Chat-Lite-16B  70.30 54.03 49.95 0.77 0.71 2.36 5.92 0.58
DeepSeek-V3 82.21 78.55 76.80 0.96 0.93 0.18 1.60 0.00
GPT-3.5-Turbo-0125 81.74 68.75 72.04 0.84 0.88 0.16 2.80 0.00
GPT-40 83.29 78.76 75.68 0.95 0.91 0.10 1.40 0.00

Table 1: 2-shot F1 scores on en-x and x-x tasks, and 2-shot language error and generation error rates (%) on en-x tasks.

performance, and O-shot results can be found in
Appendix B.2.

4 Results

4.1 Evaluation results

Table 1 summarizes the en-x and x-x MRC perfor-
mances of the main-list models (see more results
in Appendix B.2).

4.1.1 Cross-lingual performance

Generally, the English MRC performance of most
models are high (over 70 out of 100), but the en-x
scores ranges (from 45 to 78), showing the per-
formance gap in context retrieval with English
and non-English queries. Down into individual
models, while GPT-40 shows the highest cross-
lingual performance and smallest language gap,
several post-trained open LLMs, such as Gemma-
2-IT, Qwen-2.5-Instruct and LLaMA-3.1-Instruct,
show performance levels and small language gaps
comparable to the commercial models.

An interesting observation is that, for LLaMA-
3.1 and Gemma-2, the en-en performances remains
close after post-training, but en-x greatly improve.
This phenomenon is more prominent in smaller
(7-9B) than larger models, bring the former a
smaller performance gap between English and non-
English, which is also observed on Qwen2.5 with
growing parameter sizes (See Appendix B.3).

4.1.2 Comparison with Monolingual
performance

In general, the performance gaps between en-en
and x-x are much smaller for most models than
en-x, and the Qwen models even show higher

non-English performance than English. This sug-
gests that non-English language fluency is not
the main challenge of xMRC.

Also, for base models and post-trained larger
models (~70B), the x-x performances are al-
ways higher than en-x. A possible explanation to
this may be the cross-lingual task is less frequent
in training, and more difficult because it requires
cross-lingual understanding.

However, for post-trained, smaller models (7-
9B), the pattern flips, where x-x performances be-
come consistently lower than en-x, suggesting that
these models use their English context process-
ing ability to assist non-English retrieval, over-
coming the difficulty and low-frequency of the
cross-lingual task. Also, since larger LLMs tend to
be better at instruction following and understand-
ing, this further highlights that post-training better
elicits the cross-lingual context retrieval ability on
smaller LLMs.

4.2 Performance bottleneck analysis

4.2.1 Error type ablation

The right part of Table 1 shows error rates of dif-
ferent types (see details in Appendix B.4).

Language and generation errors. The language
error rates of post-trained models (lower part of
the table) are significantly lower than base models
(upper part of the table), since the former can better
follow the cross-lingual task format. Meanwhile,
the error rate is low for all the post-trained models,
so it cannot be viewed as a bottleneck of xXMRC.
The generation error rates are minor for most mod-
els, regardless of size and post-training, marking it
not the bottleneck of XMRC either.
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Model Step Sequence
Language en-en en-x en-en en-x
LLaMA-3.1-8B 66.55 67.59 3514  36.39
LLaMA-3.1-70B 4747 5492 4789  56.97
LLaMA-3.1-Instruct-8B 89.86 8342 9375  86.66
LLaMA-3.1-Tuned-8B 8649  81.04 89.53  83.07
LLaMA-3.1-Instruct-70B  92.82  90.67 9544  93.54

Table 2: Oracle performance estimated for LLaMA models
in en-en and en-x (average) scenarios. The estimation is per-
formed with one generation step (left) and with the whole
generated sequence, respectively.

/ Bottom Layers \ f
o o

Top Layers \

Context ‘\ \_./
® _—
® o
o/ >
OT T°7T

Phase 1

Question

T C

Phase 2

\ioooo

Major Relevance Depth on selected samples

0.8 Context
Question

en de es vi zh hi ar el ro ru th tr
Language

(a). balanced samples

Major Relevance Depth on selected samples

0.8 Context
Question

9,0.6 I 1 ! I

en de es vi zh hi ar el ro ru th tr
Language

(b). en-superior samples

Figure 3: Mean MRD of the context and question parts for
LLaMA-3.1-Instruct-8B.

answer, we come up with a two-phase hypothesis
of the xXMRC process (taking en-x as an example):

Figure 2: Illustration of the hypothesized two-phased xMRC 1. Question encoding. The non-English queries will

process. Through layers, the last question token will be trans-
ferred to the first answer token in two phases, between which
is a cross-lingual question representation.

4.2.2 Estimated oracle performance

Table 2 shows the estimated oracle performances of
the LLaMA-3.1 models. “Step” means the attribu-
tion is done when generating the first answer token,
and “Sequence” means the attribution is done on
whole-sequence generation until EOS.

First, the estimated oracle performances of
post-trained models are significantly higher
than the base models, both for en-en and en-x,
suggesting the importance of post-training to im-
proving xXMRC. However, 70B models show no
substantial advantage over 8B, indicating extended
pretraining contributes less to xMRC.

Second, the estimated oracle performance for en-
x 18 close to en-en for all the LLaMA-3.1 models,
and the oracle for post-trained models are basically
over 90%. This is much higher than the actual per-
formance, suggesting the models have the poten-
tial to locate correct answers with high accuracy,
but the ability needs to be further elicited.

5 Two-phased mechanism of xXMRC

Besides evaluation of xMRC performance and bot-
tlenecks, the mechanism of how LLMs do xMRC
also worth exploring. Considering the model for-
ward process from the input prompt to the output

be encoded into a shared semantic space, where
queries in different languages are aligned and un-
derstood in a language-neutral way;

. Answer retrieval. The encoded queries will be
used to match the answer in the English context
according to the task description and format, then
the answer is generated by copying from the orig-
inal context.

Figure 2 shows an illustration of the hypothe-
sized process, which aligns with previous studies
(Tang et al., 2024; Wendler et al., 2024; Zhao et al.,
2024). If the hypothesis holds, then we will be
able to extract cross-lingual representations in the
middle layers and steer them to control the model
retrieval behaviors. We test our hypothesis from
attribution and hidden-state views with LLaMA-
3.1-Instruct-8B, which shows high performance
alignment across languages and is widely used. To
further ensure the effect of post-training, we also
conduct finetuning and compare the model behav-
ior before and after it.

5.1 Evidence from attribution view

Figure 3 shows the mean MRD (§2.2.1) of the con-
texts and the questions for the LLaMA-3.1-Instruct-
8B on testing samples that are identified as either
“balanced” or “en-superior” in all tested languages.
We identify a sample as “balanced” if the model
F1 score on it is above 0.5 in all directions; and a
sample as “en-superior” if the F1 score in English
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Figure 4: Question, last token and context hidden state simi-
larity between English and other languages in each layer of the
LLaMA-3.1-Instruct-8B model on the “balanced” samples.

is higher than the average of other languages with
a margin greater than 0.5.

We find that the mean question MRD is signifi-
cantly and substantially lower than the mean con-
text MRD in all tested languages and across the
LLaMA models, especially for the “balanced” sam-
ples (Figure 3), revealing a clear phased behavior.

Also, the MRDs of “balanced” samples (Figures
3a) are more stable than those of “en-superior” sam-
ples (Figure 3b), suggesting correlation between
the higher XMRC performance and clearer phasing.

These patterns are consistent for different
LLaMA models regardless of prompt formats, ex-
cept much weaker for LLaMA-2-Chat-7B, which
has smaller pre-training capacity and weaker multi-
lingual ability (see Appendix C.1 for mode details).

In summary, the attribution results supports
the two-phase hypothesis, and indicates that
the phased behavior is already formed after pre-
training, regardless of model size and prompt for-
mat. The phasing strength correlates with the pre-
training capacity and the xMRC task performance.

5.2 Evidence from hidden states view

The hidden state similarity results also support our
hypothesis. Figure 4 shows the en-x hidden state
similarity of the question, last input token (predict-
ing the start of the answer) and context parts for the
LLaMA-3.1-Instruct-8B model (more results are in
Appendix C.2). The observed trends are consistent:
* For question representations, they all show a
shared arc-shaped trend, where the highest simi-
larity to English appears at the relative depth of
around 1/3;

* For context representations, a consistent double-
peak trend can be observed, with a “turning point”
around the relative depth of 0.4 (matching the
question MRD) and the second, higher peak at
around 0.7 (matching the context MRD);

* For last input token representations, one can see
a consistent “plateau” of similarity starting at
around a relative depth of 0.5, which also matches
the mean question MRD.

It is worth noticing that, though the context parts
are all English, there are 2-shot demonstrations
with non-English questions, making the represen-
tations not identical. The context similarity curves
can represent the degree of semantic encoding com-
pared with formal encoding.

Again, for the less powerful model LLaMA-2-
Chat-7B (Figure 20 in Appendix C.2), the trends
are weaker: its question similarity to English varies
much across languages, and the “plateau” of an-
swer similarity to English starts later than other
models, which is after the mean question and con-
text MRDs.

These results suggest that the hidden states sim-
ilarity through the xXMRC process also undergo
two main phases with evident distinction. This
phased behavior already exists in pre-trained LLMs,
and is preserved in post-training. Also, the phasing
strength correlates with the model capability built
during pre-training.

5.3 Importance of post-training

Our evaluation results show that post-training is
crucial to enhancing XMRC performance. Here,
we show the significance of post-training to XMRC
from the hidden-state view.

The first evidence comes from the last-input-
token similarity results. One can observe from
Figure 5a and 7a that, the last-input-token simi-
larity of base models experience severe and con-
sistent decline in the last few layers, across all

22802



Layerwise Similarity Scores by Language (last)

(a). LLaMA-3.1-8B

Layerwise Similarity Scores by Language (last)
1.61 — de —— zh el —— th

0 5 10 15 20 25 30
Layer

(b). LLaMA-3.1-Instruct-8B

Layerwise Similarity Scores by Language (last)

— de — zh el —— th \\
016 es — hi —r0 —tr
8 1.5] — vi — ar =

(¢). LLaMA-3.1-Tuned-8B

Figure 5: Change in last-input-token hidden state similarity
between English and other languages in each layer of LLaMA-
3.1-8B, LLaMA-3.1-Instruct-8B and LLaMA-3.1-Tuned-8B
on the “balanced” samples.

non-English languages. Since we expect the same
English output for all tested languages, this drop
in cross-lingual similarity can directly affect the
performance and its cross-lingual alignment. How-
ever, after post-training on 8B models (Figure
5b, 5¢ and 7b), the decline significantly narrows,
and even turns into increase for languages with
Latino alphabets, especially on the 8B models (Fig-
ure 5). Since this enhancement in similarity can
directly turn into the narrowing of language per-
formance gap, this indicates that post-training is
especially essential to enhancing the cross-lingual
alignment xMRC ability, by taking effect in the last
few layers and the final calculation steps. Howeyver,
for the 70B model (Figure 7), the decline is still
severe after post-training, partly explaining why
they show larger XMRC gap between English and
non-English.

Another evidence comes from the context sim-
ilarity results. One can see from Figure 6 and
8 that, the context similarity value significantly
decreases after post-training, and the peak value
diverges among languages. Based on our under-
standing of the score, lower context similarity
means its contextual representations become
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Figure 6: Change in context hidden state similarity between
English and other languages in each layer of LLaMA-3.1-8B,
LLaMA-3.1-Instruct-8B and LLaMA-3.1-Tuned-8B on the
“balanced” samples.

more customized for the demonstrations with
non-English questions, which is potentially bene-
ficial for xMRC. This also partly explains the en-
hancement of XMRC after post-training. However,
the divergence among languages means that this
driving effect of demonstrations varies in dif-
ferent languages, contributing to the performance
gap between languages. It is especially evident
for the 70B model (Figure 8) that, better-xMRC-
performing languages (e.g. de, es) tend to show
lower peak values, while worse-xMRC-performing
languages (e.g. ar, th) tend to show higher. This cor-
responds with the reasoning that lower context sim-
ilarity correlates with higher xMRC performance,
and adds to the explanation why 70B models have
larger performance gaps between languages.

Based on these findings, we propose a possi-
ble reason for the larger language gap for 70B
post-trained models that their post-training is
insufficient to reshape the answer retrieving
phase, and is biased to certain languages, which
causes the near-base behavior in last-token simi-
larity and the larger divergence in context similar-
ity. With more sufficient and language-balanced
post-training, we expect the Instruct-70B model
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to reveal similar patterns in last-input-token and
context hidden states similarity as Instruct-8B.
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Figure 7: Change in last-input-toke hidden state similarity
between English and other languages in each layer of LLaMA-
3.1-70B and LLaMA-3.1-Instruct-70B on the “balanced” sam-
ples.
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Figure 8: Change in context hidden state similarity between
English and other languages in each layer of LLaMA-3.1-70B
and LLaMA-3.1-Instruct-70B on the “balanced” samples.

6 Related Work
6.1 Cross-lingual alignment of LLMs

Previous studies have shown a misalignment of
LLMs with English and other languages. With re-
spect to performance, Lai et al. (2023b), Ahuja
et al. (2024) and Wang et al. (2024) demonstrated
that SOTA LLMs performed better in English,
and showed inconsistency when dealing with non-
English queries. Etxaniz et al. (2024) found that
LLMs performed worse with non-English prompts

than with self-translated English prompts. Beyond
performance, Qi et al. (2023) demonstrated the
low cross-lingual consistency of factual knowl-
edge does of LLMs, and Gao et al. (2024) showed
that multilingual pre-training and instruction tun-
ing could only enhance superficial levels of cross-
lingual alignment. Zhao et al. (2024) demon-
strated that multilingual LLMs employ shared and
language-specific circuits to process different lan-
guages when needed. These papers mostly focus
on same-language queries, and our work focuses
on cross-lingual queries.

There have also been many techniques to en-
hance LLMs’ cross-lingual alignment. For exam-
ple, adding parallel data in the pre-training stage
(Lample and Conneau, 2019; Jiang et al., 2022; Wei
et al., 2023; Lu et al., 2024); and the post-training
stage, including instruction tuning (Li et al., 2023b;
Zhang et al., 2025; Li et al., 2023a; Cahyawijaya
etal., 2023; Chai et al., 2024; Kuulmets et al., 2024;
Shaham et al., 2024; Kew et al., 2024) and pref-
erence tuning (Lai et al., 2023a; She et al., 2024).
Especially, extra translation training is commonly
used (Zhang et al., 2023; Yang et al., 2023; Li et al.,
2024; Ranaldi et al., 2024; Zhu et al., 2024; Lu
et al., 2024). In this paper, we examine the effect
of some of these techniques by comparing various
SOTA models.

6.2 Cross-lingual machine reading
comprehension

xMRUC is a relatively new task of natural language
understanding. Cui et al. (2019) proposed the task,
in order to improve non-English MRC performance
by introducing English resources. There are some
representative datasets in this area, such as XQA
(Liu et al., 2019), BiPaR (Jing et al., 2019), MLQA
(Lewis et al., 2020), and XQuAD (Artetxe et al.,
2020). Ushio et al. (2023) also proposes a pipeline
for multilingual QA generation. However, previ-
ous work on the xXMRC task mainly focuses on
enhancing the performance of task-specific mod-
els using techniques such as data augmentation
(Bornea et al., 2021; Xiang et al., 2024), knowledge
injection (Duan et al., 2021), constractive learning
(Chen et al., 2022) and knowledge transfer (Cao
et al., 2023; Xu et al., 2023). In this paper, we study
the xXMRC of multilingual LL.Ms under the larger
topic of cross-lingual alignment.
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7 Conclusion

This paper investigates the performance and mech-
anism of cross-lingual context retrieval of LLMs
within the XMRC scenario. For evaluation, we
demonstrate the strong xMRC abilities of post-
trained models, and study their bottlenecks and
oracle performances. For mechanism, we verify a
two-phased hypothesis of the xXMRC process, iden-
tifying the effect of post-training, and finding a
possible explanation to the language gap for larger
post-trained models. We hope our research will
inspire future study to foster the cross-lingual align-
ment of LLMs in a broader scope.

Limitations

While this study provides insights of the cross-
lingual context retrieval abilities of LLMs, there
are also some limitations.

First, the scope of our empirical evaluation is
constrained by available resources and time. This
necessarily limits the breadth of our testing, pre-
venting us from exhaustively covering the rapidly
expanding landscape of LLMs. Besides, while
we test across 12 diverse languages, a more com-
prehensive analysis would ideally include an even
wider range of languages, as well as grouping them
according to their levels of resource, in order to
improve the generalizability of our findings across
linguistic diversity.

Second, although we identify a two-phased fea-
ture of xMRC and confirm its correlation with pre-
training and post-training, the precise factors within
these training processes that drive this outcome re-
main unclear. Future work could delve deeper into
the data and strategies of these training stages to
locate factors contributing to the emergence and
strength of the phasing.

Finally, within the two major phases we discover,
we observe hints of more fine-grained changes in
model behavior, particularly in the hidden state sim-
ilarity curves. These preliminary observations sug-
gest the potential for a more nuanced understand-
ing of the xMRC process. Future studies could fur-
ther investigate these finer-grained dynamics within
each phase to gain a more detailed and complete
picture of how LLMs achieve cross-lingual context
retrieval.

Beyond these limitations, it is also important to
consider potential risks associated with this work.
While our research is foundational and not directly
tied to specific applications, advancements in cross-

lingual context retrieval, like any technology, could
be misused. For example, improved cross-lingual
capabilities might inadvertently contribute to the
spread of misinformation if models are used to re-
trieve and amplify biased or inaccurate information
across languages. Furthermore, if deployed with-
out careful consideration, these technologies could
exacerbate existing inequalities by favoring lan-
guages and knowledge systems already dominant
in LLM training data, potentially marginalizing
less-represented languages and perspectives. Fu-
ture work should consider these dual-use aspects
and explore mitigation strategies to ensure respon-
sible development and deployment of cross-lingual
NLP technologies, paying special attention to fair-
ness and inclusivity across diverse linguistic com-
munities.
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A Additional experiment information

A.1 Example of unnecessary source text in
outputs

We do not use exact matching (EM) as the main
performance metric because it can be easily
affected by unnecessary source text in the model
outputs. Here is an example:

Context: “The Panthers defense gave up just 308 points,
ranking sixth in the league, while also leading the NFL
in interceptions with 24 and boasting four Pro Bowl
selections. Pro Bowl defensive tackle Kawann Short
led the team in sacks with 11, while also forcing three
fumbles and recovering two. Fellow lineman Mario
Addison added 6Y2 sacks. The Panthers line also featured
veteran defensive end Jared Allen, a 5-time pro bowler
who was the NFL’s active career sack leader with 136,
along with defensive end Kony Ealy, who had 5 sacks
in just 9 starts. Behind them, two of the Panthers three
starting linebackers were also selected to play in the
Pro Bowl: Thomas Davis and Luke Kuechly. Davis
compiled 5%2 sacks, four forced fumbles, and four
interceptions, while Kuechly led the team in tackles
(118) forced two fumbles, and intercepted four passes
of his own. Carolina’s secondary featured Pro Bowl
safety Kurt Coleman, who led the team with a career
high seven interceptions, while also racking up 88
tackles and Pro Bowl cornerback Josh Norman, who
developed into a shutdown corner during the season and
had four interceptions, two of which were returned for
touchdowns.”

Question: How many Panthers defense players were
selected for the Pro Bowl?

Reference: four

Model Answer: four Pro Bowl selections.

The reference is “four”, which is consistent with
the model output, but the “Pro Bowl selections.” in
the model output is unnecessary and will cause the
EM metric to give a O result.

A.2 Accuracy of language detection tool

We use Lingua with its high accuracy mode in this
work to detect the language of model outputs. Ta-
ble 3 shows its reported accuracies on the tested
languages, which is satisfactory to serve in our
experiments.

A.3 Prompt used in evaluation and error type
detection

We use the default system prompt and chat tem-
plates assigned in the tokenizer.config files of
the model repositories. Then, we apply these con-
figurations to two prompt formats which we call v1
and v2.

The v1 prompt format is:

Average Acc

Code  Language (high accuracy mode)
en English 81
de German 89
es Spanish 70
vi Vietnamese 91
zh Chinese 100
hi Hindi 73
ar Arabic 98
el Greek 100
ro Romanian 87
ru Russian 90
th Thai 99
tr Turkish 94

Table 3: Detection accuracies of the tested language with
Lingua in its high-accuracy mode, adapted from their GitHub
page (https://github.com/pemistahl/lingua).

{system prompt}

Below is a reading comprehension task. There will be
paragraphs of context, each followed by a question related
to its content. You should only present your answer to the
last question by strictly copying the corresponding part
of the context. Please provide a direct answer in English
without extra output. Your answer should be in the form
of “Answer: {Your Answer}”

Context: {demo context 1}

Question: {demo question 1}

Answer: {demo answer 1}

Context: {demo context 2}

Question: {demo question 2}

Answer: {demo answer 2}

Your task starts here:

Context: {text context}

Question: {text question}

The v2 prompt format is:
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{system prompt}

Context: {demo context 1}

Question: {demo question 1}

Answer: {demo answer 1}

Context: {demo context 2}

Question: {demo question 2}

Answer: {demo answer 2}

Your task starts here:

Context: {text context}

Question: {text question}

You should only present your answer to the last question
by strictly copying the corresponding part of the context.
Please provide a direct answer in English without extra

output. Your answer should be in the form of “Answer:
{Your Answer}”

The prompt for error type detection is:

<|im_start|>system

You are Qwen, created by Alibaba Cloud. You are a
helpful assistant.<|im_end|>

<|im_start|>user

You are tasked with identifying the type of a given raw
answer. You will be provided with a question and a raw
answer. Your job is to determine whether the raw answer
falls into one of the following categories based on the
given question:

0. Reasonable Answer: The answer seems like some
attempt to answer the question, regardless of whether it is
correct or not.

1. Blank Answer: No response is provided.

2. Gibberish: Incoherent text with no clear meaning or
cannot be seen as some kind of answer to the question,
e.g. “{Your Answer}”.

3. Denial of Answer: A statement indicating inability to
answer, such as “I apologize, but I cannot answer this
question because...”.

You must provide your response as a SINGLE number
representing the category (0, 1, 2, or 3) without extra
output.

B More evaluation results

B.1 Full list of models evaluated

A comprehensive list of all models evaluated during
this study, including older versions and alternative
sizes, is available in Table 4 to supplement the main
list.

B.2 Detailed evaluation results

Table 6 presents the complete evaluation results
from our 0-shot experiments, encompassing both

Name Modes Sizes
LLaMA 2 Base / Chat 7B/ 13B/70B
LLaMA 3 Base / Instruct 8B /70B

LLaMA 3.1 Base / Instruct 8B /70B
LLaMAX-2-Alpaca - 7B
LLaMAX-3-Alpaca - 8B

Mistral V0.1 Base / Instruct 7B

Mistral V0.3 Base / Instruct 7B

Qwen 1.5 Base / Chat 7B/ 14B/72B
Qwen 2 Base / Instruct 7B /72B
Qwen 2.5 Base / Instruct 7B /72B
DeepSeek V2 Base / Chat Lite (16B)
Gemma 2 Base / IT 9B
GPT-3.5-Turbo-0125 - -
GPT-40 - -

Table 4: Full list of models evaluated. This table presents a
complete list of all models tested in this study, encompassing
older versions and alternative sizes.

the English-to-NonEnglish (en-x) and non-English
monolingual (x-x) tasks in all models and lan-
guages tested. Table 7 further presents detailed
F1 scores for en-x and x-x tasks in the 2-shot set-
ting.

B.3 Performance vs. parameter size

To observe the effect of increasing model size on
xMRC performance, we evaluate the Qwen-2.5
models from 1.5B to 72B, showing results in Table
5. The trend is consistent with our findings in
the main body, and an advantage of the 7B model
stands out.

B.4 Detailed language error and generation
error rates

Tables 8 and 9 show detailed language and gener-
ation error rates across all tested languages. Note
that Table 9 contain the results judged by both
Qwen-2.5-Instruct-72B and Gemini-2.5-Flash-Lite,
which are consistent to each other. Meanwhile,
Table 10 provides a more granular view of the gen-
eration errors discussed in the main text.

While Table 9 presents the aggregated rate of
these errors, Table 10 is further subdivided into
three separate tables: Table 10a, Table 10b, and Ta-
ble 10c. These tables individually display the error
rates for gibberish errors, refusal errors, and blank
errors, respectively, across all tested models and
languages in the 2-shot en-x XMRC task setting.
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C Two-phased xMRC Analysis
C.1 Further analysis on MRD

C.1.1 Example of attribution results

Figure 9 shows an example of the attribution out-
come for LLaMA-3.1-Instruct-8B.

Latent Relevance Trace (Normalized)

the [task]
a[task]
[task]

308 [demo]
[demo]
[demo]

Tokens

orn [context]
oy e
times [context]
vielen [question]

ten [question]

? [question]

123456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layers

Figure 9: An example output of layer-wise attribution with
LLaMA-3.1-Instruct-8B, where only the top 3 tokens from
each input part are shown.

C.1.2 MRD for other LLaMA models

Figures 10, 11 and 12 provide further illustrative
examples of the mean MRD for context and ques-
tion components, specifically for LLaMA-3.1-8B,
LLaMA-3.1-Instruct-70B and LLaMA-2-Chat-7B.
These figures complement the MRD analysis pre-
sented in the main body of this paper.

Major Relevance Depth on selected samples

0.8 Context
Question

en de es vi zh hi ar el ro ru th tr
Language

(a). balanced samples

Major Relevance Depth on selected samples

0.8 Context
l.
a Question

en de es vi zh hi ar el ro ru th tr
Language

(b). en-superior samples

Figure 10: Mean MRD of the context and question parts for
LLaMA-3.1-Base-8B.

C.1.3 Analysis of task descriptions and
demonstrations

Analyzing the MRD of task descriptions and
demonstrations in our 2-shot setting (Figures 13-
15) reveals a general trend where demonstrations
tend to exhibit a comparable or slightly higher
MRD than task descriptions across the LLaMA

Major Relevance Depth on selected samples

08 . =~ = = = = 24 = = = = =
o7
=
0.6 = Context
=)
Question
I
§05) = _ BB ~ ks
<04
0.3 " -
en de es vi zh hi ar el ro ru th tr
Language

(a). balanced samples

Major Relevance Depth on selected samples
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Context
Question

805 I I (& | I3l

en de es vi zh hi ar el ro ru th tr
Language

(b). en-superior samples

Figure 11: Mean MRD of the context and question parts for
LLaMA-3.1-Instruct-70B.
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Question

en de es vi zh hi ar el ro ru th tr
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(a). balanced samples
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0.3

en de es vi zh hi ar el ro ru th tr
Language

(b). en-superior samples

Figure 12: Mean MRD of the context and question parts for
LLaMA-2-Chat-7B.

model family, suggesting demonstrations are at
least as important as, if not slightly more impactful
than, task descriptions in guiding the models. This
could indicate that providing concrete examples
is a particularly effective way to communicate the
desired behavior for cross-lingual context retrieval
to these models.

However, the precise relationship is not uniform
and varies across models. For example, while
LLaMA-3.1-Instruct-8B shows a relatively bal-
anced MRD between task descriptions and demon-
strations, LLaMA-2-Chat-7B consistently demon-
strates a higher MRD for demonstrations, which
implies that older or smaller models might lean
more heavily on the provided in-context examples.
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In contrast, LLaMA-3.1-Instruct-70B exhibits the
most pronounced difference, with a significantly
elevated MRD for task descriptions across all lan-
guages and sample types, suggesting that larger
models can become highly attuned to and reliant
on user-specified task commands.

Major Relevance Depth on selected samples

0.8 Task
Demo

en de es vi zh hi ar el ro ru th tr
Language

(a). balanced samples

Major Relevance Depth on selected samples

0.8 Task
Demo

ol
g0 IIIIIIIIH[I @l . G

en de e vi zh hi ar el ro ru th tr
Language

(b). en-superior samples

Figure 13: Mean MRD of the task descriptions and demon-
strations parts for LLaMA-3.1-Instruct-8B.
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Figure 14: Mean MRD of the task descriptions and demon-
strations parts for LLaMA-3.1-Instruct-70B.

C.1.4 Influence of prompt format on MRD
pattern

We test the influence of different prompt formats
(vl, v2) on LLaMA-3.1-Instruct-8B, and by com-
paring the results in Figure 16 and Figure 3, which
present results obtained using the prompt format
vl and v2, respectively, it is clear that the funda-
mental pattern observed in the mean MRD is con-

Major Relevance Depth on selected samples

0.8 Task
Demo

. iz

en de es vi zh hi ar el ro ru th tr
Language

(a). balanced samples

Major Relevance Depth on selected samples

0.8 Task
Demo

en de es vi zh hi ar el ro ru th tr
Language

(b). en-superior samples

Figure 15: Mean MRD of the task descriptions and demon-
strations parts for LLaMA-2-Chat-7B.

sistent across both formats. Therefore, the trend
of the mean question MRD being consistently and
substantially lower than the mean context MRD
is maintained regardless of the prompt format em-
ployed.

Major Relevance Depth on selected samples
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g Question
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Figure 16: Mean MRD for LLaMA-3.1-Instruct-8B on both
“balanced” and “en-superior” samples in v1 prompting format.
Only the results of context and question parts of the prompt
are displayed.

C.2 Hidden state similarity results for other
LLaMA models

Figures 17-20 present the hidden state similarity
results for additional LLaMA models, complement-
ing the analysis of the LLaMA-3.1-Instruct-8B
model discussed in the main body of the paper.
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Figure 17: Hidden state similarity between English and other languages on different parts of the selected samples in each layer
of the LLaMA-3.1-8B model.

C.3 Training details and evaluation results of
our finetuned LLaMA-3.1-8B

We tune the LLaMA-3.1-8B base model on TULU-
V3 for 1 epoch with 8 * H800 GPUs for 15 hours
using the LLaMA-Factory repository. The data
cut-off length is 2048, batch size per device is 8,
learning rate is 1.0e-5, and the warm-up ratio is 0.1
with cosine learning rate scheduling.

Regarding evaluation, Table 11 summarizes the
performance of our finetuned model on both en-
x cross-lingual and x-x monolingual MRC tasks.
Furthermore, Figure 21 illustrates the hidden state
similarity between English and other tested lan-
guages across layers, focusing on question, context,
and last-input-token representations derived from
balanced samples.
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Figure 18: Hidden state similarity between English and other languages on different parts of the selected samples in each layer
of the LLaMA-3.1-70B model.

Version \ Size en-en  meanen-x meanx-x en-x/en-en  Xx-x/en-en

1.5B 61.26 47.10 54.55 0.77 0.89

3B 71.09 58.75 60.00 0.83 0.84

Base 7B 62.42 57.51 66.11 0.92 1.06
14B 76.71 69.04 74.60 0.90 0.97

32B 80.37 73.23 74.02 0.91 0.92

72B 86.03 78.92 81.16 0.92 0.94

1.5B  70.63 55.21 58.11 0.78 0.82

3B 71.65 64.41 60.39 0.90 0.84

Instruct 7B 81.83 76.43 71.61 0.93 0.88
14B 80.91 67.64 72.95 0.84 0.90

32B 80.97 73.77 71.90 0.91 0.89

72B 77.12 66.04 70.29 0.86 0.91

Table 5: xMRC performances of Qwen-2.5 models with increasing parameter sizes.
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en-en en-de en-es en-vi en-zh en-hi en-ar en-el en-ro en-ru en-th en-tr
LLaMA-3.1-8B 2849 2639  23.70 1697 2176 21.68 19.66 2496 2227 2269 2773 15.71
LLaMA-3.1-70B 4992 3832 3622 4134 4513 2462 2740 3773 3849 3487 4790 3395
Mistral-V0.3-7B 20.50  21.43 19.50 10.84 8.66 11.60 14.87 14.20 12.44 18.32 16.13 10.67
Qwen-2.5-7B 38.66  36.05 3731 4832 4202 3891 4244 3487 3555 38.57 45.63  41.60
Qwen-2.5-72B 63.95 56.55 5672 53.19 5286 5597 5630 5227 5403 5555 5529 51.68
DeepSeek-V2-Lite-16B 12.35 11.26 4.12 4.20 9.58 9.58 4.79 7.73 7.06 10.84 5.80 4.96
Gemma-2-9B 15.21 5.97 14.87 14.87 26.47 7.40 1143 4.62 13.70 20.42 32.27 17.31
LLaMA-2-Chat-7B 3496  26.81 2454 19.50  22.52 19.58  20.00 2050 22.10 25.04 13.95 16.55
LLaMA-3.1-Instruct-8B 4092 2555 28.82 2824 3395 27.65 2487 2042 1924  29.66  29.75 3042
LLaMA-3.1-Instruct-70B 57.82 4723 4723 4588 49.16 3933  42.86 46.772 43.19  41.51 51.93 4420
Mistral-V0.3-Instruct-7B 3.19 2.61 2.69 5.13 2.86 2.02 4.12 3.11 2.35 3.87 4.54 3.36
Qwen-2.5-Instruct-7B 5328  40.17 3597 3613 40.67 3622 3546 3370 3899  35.71 3622  38.24
Qwen-2.5-Instruct-72B 36.89 2798  26.81 2353 2328 2294 2345 23.19 31.01 2437  23.03 2395
DeepSeek-V2-Chat-Lite-16B 16.30 18.24 13.87 8.24 15.13 11.01 11.09 13.95 13.87 12.61 9.75 12.61
Gemma-2-1T-9B 57.06 4630 4277 4286 4235 4437 4025 4185 3924 42,69 4496 4387
GPT-3.5-Turbo-0125 32.18 2412 22.61 21.34 2193 17.48 2244 2370 23.87 2143 2034 2042
GPT-40 51.01 39.58 3697 40.50 41.18 3748 36.05 37.82 3697 3933 39.16  39.66
(a). 0-shot Exact Match (EM) scores (%) on en-x tasks.
en-en  en-de  en-es en-vi en-zh  en-hi en-ar en-el en-ro en-ru  en-th en-tr
LLaMA-3.1-8B 37.60  34.11 3387 21.86 3512 3697  30.11 36.66  30.82  30.37 3943  21.79
LLaMA-3.1-70B 68.03 5829 5622 60.33 5520 50.63 4123 5641 57.13 5587 6287 54.32
Mistral-V0.3-7B 40.07 27.17 3126  19.26 13.19 17.94 2398 19.16 1823 2826  21.86 18.63
Qwen-2.5-7B 59.02 5558  55.61 6437 6026 5632 60.61 53.14 51.21 56.72 6323 5552
Qwen-2.5-72B 80.50 73.73 74.48 72.48 71.37 73.60 73.23 70.59 71.44 73.36 72.78 68.18
DeepSeek-V2-Lite-16B 24.88 25.14 11.07 13.25 18.55 14.01 13.69 15.32 1472 23.10 9.28 13.73
Gemma-2-9B 24.08 11.12 2496  20.17 36.04 10.03 16.04 8.68 21.19 32,67 43.05 2434
LLaMA-2-Chat-7B 56.83 4597 4445 37778 3650  33.65 32.13 3403 39.14 4551 25.18  30.64
LLaMA-3.1-Instruct-8B 64.47 50.69 5341 5233 57.10 50.09 48.61 4536 4346 5414 5388  52.72
LLaMA-3.1-Instruct-70B 78.28 70.13 6839 6443 6891 5620 60.19 67.79 6578 6472  67.69  62.13
Mistral-V0.3-Instruct-7B 3519 3241 32.68 30.23  32.15 2849  30.21 2942 2893 32.51 3148 2923
Qwen-2.5-Instruct-7B 73.03 59.69  56.82 5699 60.64 5699 5554 5393 5827 56.62 57.08 59.22
Qwen-2.5-Instruct-72B 59.84  46.79  46.86 4346 3620 43.82  40.01 4446 5091 4398  44.68  44.28
DeepSeek-V2-Chat-Lite-16B 4324 3599 3246 2634 3820 2790 29.16 3533 29.12 3253 3033 29.19
Gemma-2-IT-9B 76.80 6791 64.91 64.74 6483  65.31 6235 63.89 6129 6494 6584 64.10
GPT-3.5-Turbo-0125 60.08 51.06 5045 4723  49.06 4158 4890 50.57 5090 4932  46.66  46.22
GPT-40 7424 6438 5894 6571 6540 6248  58.81 64.00 62.15 64.82 6460 64.95
(b). 0-shot F1 Scores on en-x tasks.
de-de es-es vi-vi zh-zh hi-hi ar-ar el-el ro-ro ru-ru th-th tr-tr
LLaMA-3.1-8B 24.87 19.16 18.66  33.95 16.05 17.31 10.00  18.15 1790  33.87 14.37
LLaMA-3.1-70B 4294 3723 4286  50.08 30.00 40.17 36.30 40.76  35.13 57.06  37.40
Mistral-v0.3-7B 27.31 25.29 20.17 34.62 7.98 21.09 17.73 22.69 11.93 23.45 12.44
Qwen-2.5-7B 29.50  35.04 3857 57.23  23.11 4294  21.09 31.85 32,18 5395 31.51
Qwen-2.5-72B 46.89 4639 5193 7832 41.18 50.67 36.64 50.67 43.03 63.78 4134
DeepSeek-V2-Lite-16B 4.87 2.44 1.01 7.56 2.02 1.43 4.03 3.19 2.02 5.13 2.94
Gemma-2-9B 2.02 14.03 8.91 12.10 8.66 1.43 1.43 4.62 10.92 9.66 13.28
LLaMA-2-Chat-7B 22.86 18.82 15.55 4.54 1.68 4.79 6.05 22.86 11.93 3.78 10.59
LLaMA-3.1-Instruct-8B 25.71 2697  36.64 4840  27.06  33.03 1370 2832 2622 3563 29.83
LLaMA-3.1-Instruct-70B 4025 3529 4731 57.65 3571 4496 3092 40.76 38.66 59.50  40.84
Mistral-V0.3-Instruct-7B 2.69 2.44 4.29 0.92 0.84 3.70 1.51 3.11 1.43 4.29 2.61
Qwen-2.5-Instruct-7B 32.86 3092 3042 4740 2471 2790 21.68 36.05 27.82 4244  30.67
Qwen-2.5-Instruct-72B 29.41 2445 2697 4571 2042 3218 15.88  32.02 2529 3630 21.51
DeepSeek-V2-Chat-Lite-16B 12.18 7.48 10.08 7.82 7.65 9.24 8.40 7.73 9.41 11.93 7.31
Gemma-2-1T-9B 4294 4092 4697 51.09 4193 43.03 3798 4597 4252 56.13  36.30
GPT-3.5-Turbo-0125 2353 23.19 3050 3832 2571 2874 2403 2731 2580  39.41 2647
GPT-40 4034 34.87 4437 5429 3210 4210 2622 3894 37.82 5279  30.59

(c). 0-shot Exact Match (EM) scores (%) on x-x tasks
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de-de es-es vi-vi zh-zh hi-hi ar-ar el-el ro-ro ru-ru th-th tr-tr
LLaMA-3.1-8B 37.62 3452  36.04 43.66 41.18 3454 3258  34.61 3568  47.33  28.02
LLaMA-3.1-70B 62.66 59.02 61.54 5526 56.81 6343 56.52  59.81 5599 7020  57.39
Mistral-V0.3-7B 4131 4737 3940 4173 2404 4228 3543 3791 29.51 3770 2832
Qwen-2.5-7B 4922 58.04 6282 6832 46.19 63.63 4478 5210 5296 68.59  54.30
Qwen-2.5-72B 70.77  72.81 7495 8433  68.09 7294 6472  73.17 6856 7850  67.79
DeepSeek-V2-Lite-16B 12.56 8.24 7.64 9.73 8.35 6.98 9.59 9.39 7.79 9.03 8.89
Gemma-2-9B 4.16 20.57  13.66 14.74 15.58 2.53 3.07 6.96 18.84 14.14  23.02
LLaMA-2-Chat-7B 40.12 4037  32.22 10.68 13.62 17.59 1883  38.52 2651 10.64 2393
LLaMA-3.1-Instruct-8B 5195 58,67 6255 5415 5286 5645 4521 5502 5299 56.89 5540
LLaMA-3.1-Instruct-70B 68.60 6879 7354 6632 6266 7097 6697 6890 6553 7391 66.35
Mistral-V0.3-Instruct-7B 24.81 2671  26.83 11.22 1557 2021 2281 25.11 2037 3099  21.98
Qwen-2.5-Instruct-7B 57.65 57.89 5671 5729 5026 5338 50.18 59.65 5325 63.81 5585
Qwen-2.5-Instruct-72B 54.08 51.89 5280 5727 4564 57.66 4527 5680 50.74  62.11 4848
DeepSeek-V2-Chat-Lite-16B 3578  34.43  34.37 1575 2536 2923 3321 32.04 3446 2891  28.62
Gemma-2-1T-9B 6838  68.84 71.81 6503 6791 6682 67.78 6948  66.19 73.71  64.21
GPT-3.5-Turbo-0125 53.58 5626 5850  52.01 5036 5777 5848  56.60 5595 5745 54.36
GPT-40 67.90 6779 7145 6572 6133  69.67 62.12  66.61 66.59 7443  62.68
(d). O-shot F1 Scores on x-x tasks.
Table 6: 0-shot evaluation results on en-x and x-x tasks.
en-en en-de en-es en-vi en-zh en-hi en-ar en-el en-ro en-ru en-th en-tr
LLaMA-3.1-8B 7597 4597 4390 5071 47770 4841 5098 5040 4722  49.12  59.77 4494
LLaMA-3.1-70B 8239 6046  60.00 59.57 62.68 57.38 5150 5943 5428 56.15 6654 5748
Mistral-V(.3-7B 7957 6694 6757 59.82 53.66 4836 5256 47.83 67.30 70.62 4856  62.94
Qwen-2.5-7B 6242  56.68 5645 59.15 5884 5585 6294 50.62 5443 5837  61.6] 57.72
Qwen-2.5-72B 86.03 7724 7922 80.16 80.14  79.09 7870  76.72  80.41 80.77 7848  177.16
DeepSeek-V2-Lite-16B 73.81 4634  47.65 52775 4177 3445 4461 4618 5039 5191 3458 4057
Gemma-2-9B 8042 60.13 61.74 6476 7133 6455 6884 7581 6549 7209 7059 59.72
LLaMA-3.1-Instruct-8B 7789  74.81 7350 7329 72778  68.59  69.66  70.41 7224 7340  73.60  71.20
LLaMA-3.1-Instruct-70B 83.29 7358 7298 7397 7379 70.87 7596 7291 71.69 7273 7530  70.00
Mistral-V0.3-Instruct-7B 62.01 59.06  60.98  54.81 58.84  47.16 6051 5749 59.80  60.81 55.63  47.86
Qwen-2.5-Instruct-7B 81.83 7737 77.02 76.06 7882 7370 7611 7470 7680 77.44  77.05  75.69
Qwen-2.5-Instruct-72B 77.12  67.65 68.89 6434 52,67 7035 5959 69.52 69.81 70.19 67.01  66.40
DeepSeek-V2-Chat-Lite-16B  70.30 5596 5896  51.21 62.05 4839 5204 5480 5286 57.04 50.01 51.01
Gemma-2-1T-9B 83.69 7872  78.13 7938 79.17 77.86 7653 79.82 7996 79.80 79.28  77.24
GPT-3.5-Turbo-0125 81.74 7198 7281 7153 68.63 6320 6577 63.05 7086 70.70 6521  72.54
GPT-40 83.29 7831 7451 8029 7940 77.64 7829 80.03 78.10 80.23  79.56  80.00
(a). 2-shot F1 scores on en-x tasks.
de-de es-es vi-vi zh-zh hi-hi ar-ar el-el ro-ro ru-ru th-th tr-tr
LLaMA-3.1-8B 71.67 7417 7319 6496 7191 6820 6935 7465 67.17 7089  66.89
LLaMA-3.1-70B 76.24  78.68 7690  71.67 7585 7643 7241 78.06 6843  76.70  70.67
Mistral-V0.3-7B 71.02 7291 6991 66.65 5673 5825 62.81 7173  63.57 62.08 5844
Qwen-2.5-7B 5874 5736 7229 7338 6374 7274 6724 5882 6412 77.89  60.84
Qwen-2.5-72B 81.29 81.15 8282 89.08 79.12 7953 77.83 82.18 7749 8500 77.29
DeepSeek-V2-Lite-16B 6526  67.33  64.81 63.68 48.64 4698 51.04 6573 56.19 4943 5520
Gemma-2-9B 75.62 7634 7360 6692 7390 7251 71.87 7814 6738 7420 7143
LLaMA-3.1-Instruct-8B 66.22  69.74 6938 6199 66.00 66.19 5881 68.18 61.08 66.18 61.43
LLaMA-3.1-Instruct-70B 7526 7636 7883  71.09 7405 7234 7210 77.23  70.01 76.23 7198
Mistral-V0.3-Instruct-7B 5584 5327 5729 3927 3457 4594 4452  59.13 5233 5519 4597
Qwen-2.5-Instruct-7B 7375 7524 7826  70.21 67.08 7082 67.65 75.61 67.99  73.89 67.23
Qwen-2.5-Instruct-72B 73.09 7126 7336  71.12  64.14 69.76 6470 7514  69.13  73.92  67.60
DeepSeek-V2-Chat-Lite-16B 5624 5933  56.18  50.06 41.19 4246 44.03 5463 56.10 40.71  48.52
Gemma-2-1T-9B 7622 77.12 7986 7225 7547 7444 7489 7732 7264 7857 72.04
GPT-3.5-Turbo-0125 75.68 77.58 73.09 70.49 67.64 70.09 71.03 77.17 71.55 67.00 71.12
GPT-40 7694 7878 7725 7137 72,02 7617 7340 77.66  77.34  80.00 71.58

(b). 2-shot F1 scores on x-x tasks
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Table 7: Detailed 2-shot F1 scores on en-x and x-x tasks in each language.



en-de en-es en-vi en-zh en-hi en-ar en-el en-ro en-ru en-th en-tr
LLaMA-3.1-8B 0.68 0.00 1.28 0.00 0.10 0.10 0.00 0.00 0.19 0.10 1.10
LLaMA-3.1-70B 6020 5459 6373 4890 69.09 6686 56.83 67.88 56.69 56.09 61.50
Mistral-V0.3-7B 2.11 1.78 1639 2380 61.82  54.17 6.96 2.65 1.02 46.35 16.63
Qwen-2.5-7B 242 1.01 0.43 043 0.00 0.00 0.00 1.15 0.00 0.00 5.17
Qwen-2.5-72B 7.39 6.35 11.22 0.98 5.74 2.82 19.78 11.36 3.59 27.01  23.64
DeepSeek-V2-Lite-16B 8.90 1.87 1.69 26.75  46.80 4.76 3.68 2.27 0.47 35.17 10.31
Gemma-2-9B 0.00 0.10 9.78 2.37 0.50 0.20 0.34 3.15 0.00 223 2.37
LLaMA-2-Chat-7B 3.07 0.45 0.72 2.25 0.27 0.00 0.32 1.55 0.00 0.12 1.62
LLaMA-3.1-Instruct-8B 1.15 1.87 0.37 0.36 0.59 0.00 0.00 1.75 0.36 0.37 3.01
LLaMA-3.1-Instruct-70B 0.79 0.76 0.00 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.34
Mistral-V0.3-Instruct-7B 4.30 1.73 12.79 0.00 0.35 0.00 0.44 3.12 0.00 0.67 7.03
Qwen-2.5-Instruct-7B 1.89 0.71 0.76 0.38 0.00 0.00 0.00 0.68 0.00 0.00 291
Qwen-2.5-Instruct-72B 6.31 1.13 5.68 9.73 2.46 7.51 2.61 4.41 1.96 0.35 8.18
DeepSeek-V2-Chat-Lite-16B 543 2.35 0.90 0.41 4.47 1.33 0.94 4.09 0.65 0.66 4.74
Gemma-2-1T-9B 0.96 0.00 0.31 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.28
GPT-3.5-Turbo-0125 1.12 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32
GPT-40 0.39 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.00
Table 8: 2-shot language error rates (%) on en-x XMRC tasks.
en-en en-de en-es en-vi en-zh en-hi en-ar en-el en-ro en-ru en-th en-tr
LLaMA-3.1-8B 5.60 6.77 8.55 10.97 5.00 9.59 8.37 10.56 9.64 7.94 9.74 10.52
LLaMA-3.1-70B 1.20 1.98 241 2.19 2.62 4.12 2.33 2.35 1.71 1.57 2.70 4.94
Mistral-V0.3-7B 0.49 4.85 4.93 17.66 10.00  32.00 13.97 18.50 4.86 5.25 26.43 18.33
Qwen-2.5-7B 1.51 2.03 1.30 5.72 1.96 2.26 3.11 6.09 2.10 3.99 2.85 4.77
Qwen-2.5-72B 0.00 1.19 1.35 0.97 1.82 3.69 2.62 3.16 1.91 2.94 4.93 3.29
DeepSeek-V2-Lite-16B 1.87 3.26 2.33 11.97 2.39 20.61 10.10 8.04 4.27 2.76 15.97 11.23
Gemma-2-9B 1.02 1.34 1.38 5.39 2.60 6.51 4.69 4.98 3.68 2.64 5.05 6.98
LLaMA-2-Chat-7B 6.18 9.59 1679 2245 17.69 6033 5546  46.73 10.01 8.93 62.89  21.38
LLaMA-3.1-Instruct-8B 0.85 2.51 1.73 1.36 1.99 1.66 2.58 2.37 6.48 2.67 1.03 3.43
LLaMA-3.1-Tuned-8B 0.87 2.44 2.60 5.07 2.15 2.80 3.77 2.80 4.55 3.44 2.83 3.63
LLaMA-3.1-Instruct-70B 1.85 1.06 0.68 1.78 2.94 1.53 1.54 1.75 291 2.07 2.26 2.10
Mistral-V0.3-Instruct-7B 1.77 2.03 2.18 7.79 2.25 1.81 4.00 1.80 2.71 2.78 5.61 3.37
Qwen-2.5-Instruct-7B 2.75 247 3.20 3.42 4.04 2.78 5.38 3.25 2.36 2.56 2.04 3.80
Qwen-2.5-Instruct-72B 0.38 1.58 1.09 1.19 0.54 1.71 1.68 1.35 2.77 1.65 1.30 3.00
DeepSeek-V2-Chat-Lite-16B 0.58 4.28 2.93 9.77 3.27 6.80 4.98 6.31 6.69 8.60 6.15 5.39
Gemma-2-IT-9B 1.95 2.26 1.76 1.92 3.30 3.03 3.73 1.47 3.43 2.84 0.94 2.52
GPT-3.5-Turbo-0125 0.00 0.65 2.35 1.61 3.49 2.15 2.60 1.44 2.89 3.70 5.17 4.73
GPT-40 0.00 0.45 0.86 1.56 0.50 0.00 0.92 1.00 3.57 2.56 0.00 4.00
DeepSeek-V3 0.00 1.84 0.94 0.43 0.49 1.72 2.29 1.48 1.40 3.09 0.84 3.08
(a). Qwen-judged results
en-en en-de en-es en-vi en-zh en-hi en-ar en-el en-ro en-ru en-th en-tr
LLaMA-3.1-8B 4.80 4.85 7.53 7.61 4.18 6.06 5.88 777 7.70 6.44 5.98 8.31
LLaMA-3.1-70B 0.00 0.22 0.22 0.00 0.72 1.24 0.36 0.64 0.19 0.99 1.08 0.83
Mistral-V0.3-7B 0.49 1.35 0.81 4.86 4.15 9.38 6.43 5.33 1.35 0.00 9.43 7.38
Qwen-2.5-7B 1.08 1.11 0.37 0.84 0.39 0.19 0.24 1.18 0.35 1.00 0.44 1.59
Qwen-2.5-72B 0.00 0.00 0.00 0.00 0.45 0.46 0.00 1.19 0.48 0.49 0.90 0.82
DeepSeek-V2-Lite-16B 1.12 1.46 1.34 3.69 0.30 10.63 4.83 1.93 1.78 2.20 5.89 3.50
Gemma-2-9B 0.00 0.44 0.23 1.88 0.97 1.25 0.29 1.15 1.31 0.00 1.27 1.96
LLaMA-2-Chat-7B 5.67 5.92 1293 20.38 16.46 3495 33.13 3756 7.78 6.40 58.56 7.92
LLaMA-3.1-Instruct-8B 0.85 0.72 1.39 1.02 0.66 0.83 1.14 1.19 2.59 1.34 0.68 1.56
LLaMA-3.1-Tuned-8B 1.85 0.71 0.34 0.36 1.33 0.31 0.78 1.05 0.64 0.34 0.76 1.50
LLaMA-3.1-Instruct-70B 2.43 1.22 1.09 1.82 1.02 0.76 1.56 0.80 3.47 0.85 1.74 2.14
Mistral-V0.3-Instruct-7B 0.55 0.41 0.40 0.38 0.00 0.35 0.38 0.72 0.39 0.85 0.00 0.00
Qwen-2.5-Instruct-7B 0.00 0.00 0.27 0.00 0.00 0.85 0.63 0.54 1.11 0.55 0.52 0.75
Qwen-2.5-Instruct-72B 0.58 2.33 0.84 2.87 0.93 243 1.89 241 4.01 4.21 1.49 1.52
DeepSeek-V2-Chat-Lite-16B 0.65 0.90 0.88 0.48 0.00 0.00 0.82 0.00 1.47 0.95 0.47 1.26
Gemma-2-1T-9B 0.57 0.32 0.78 0.32 0.87 1.20 1.82 0.72 0.00 0.93 0.78 1.69
GPT-3.5-Turbo-0125 0.00 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.00
GPT-40 0.58 0.92 0.47 0.00 0.00 0.43 0.46 0.00 0.47 1.33 0.42 0.44
DeepSeek-V3 0.44 0.70 0.58 1.26 0.61 0.84 0.54 0.28 091 0.62 0.62 0.61

(b). Gemini-judged results

Table 9: 2-shot generation error rates (%) on en-x XMRC tasks judged by Qwen and Gemini.
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en-en  en-de  en-es en-vi en-zh  en-hi en-ar en-el en-ro en-ru  en-th en-tr

LLaMA-3.1-8B 4.80 4.03 1.83 7.08 2.83 5.38 3.56 2.99 2.45 2.70 6.42 7.81
LLaMA-3.1-70B 0.60 1.32 2.19 1.31 2.14 3.50 2.15 1.93 1.33 1.18 243 4.12
Mistral-V0.3-7B 0.00 3.77 4.11 16.78 9.62 31.16 1250  18.17 4.32 4.94 26.43 16.90
Qwen-2.5-7B 1.29 1.11 1.11 4.45 1.57 1.69 2.63 5.41 1.75 3.59 2.63 4.17
Qwen-2.5-72B 0.00 1.19 1.35 0.97 1.82 3.69 2.62 3.16 1.91 2.45 4.93 2.88
DeepSeek-V2-Lite-16B 1.87 2.77 2.00 10.31 2.24 19.72 8.24 6.27 3.20 2.02 15.84 10.79
Gemma-2-9B 1.02 1.12 0.92 5.16 1.95 5.51 3.52 3.83 2.89 2.31 3.79 6.54
LLaMA-2-Chat-7B 5.41 8.78 16.60 3.98 3.23 60.21 55.46  45.03 3.28 8.74 6.37 20.64
LLaMA-3.1-Instruct-8B 0.00 2.15 0.69 1.02 1.99 0.83 2.01 1.78 5.83 2.34 1.03 3.43
LLaMA-3.1-Instruct-70B 0.00 0.35 0.34 1.42 2.67 1.22 0.77 0.70 1.94 1.38 1.51 0.90
Mistral-V0.3-Instruct-7B 0.00 1.22 1.09 7.07 1.02 1.36 2.67 1.20 0.39 1.93 4.84 1.53
Qwen-2.5-Instruct-7B 1.65 1.65 2.80 3.04 3.14 1.74 3.85 3.25 1.97 2.13 2.04 3.80
Qwen-2.5-Instruct-72B 0.00 1.05 0.82 0.95 0.54 0.57 1.26 0.81 1.66 1.10 0.78 2.00
DeepSeek-V2-Chat-Lite-16B 0.58 3.70 2.30 8.25 2.80 5.67 4.81 5.75 6.19 7.89 5.65 4.72
Gemma-2-1T-9B 0.65 1.36 0.88 0.96 2.83 3.03 2.90 0.98 2.45 1.90 0.47 0.84
GPT-3.5-Turbo-0125 0.00 0.65 2.35 1.61 291 1.67 2.60 1.44 2.89 3.70 4.65 4.05
GPT-40 0.00 0.45 0.86 1.56 0.50 0.00 0.92 1.00 3.57 2.56 0.00 4.00

(a). Gibberish error.

en-en en-de en-es en-vi en-zh en-hi en-ar  en-el en-ro en-ru en-th en-tr

LLaMA-3.1-8B 0.00 0.16 0.00 0.00 0.00 0.34 0.18 0.18 0.00 0.00 0.22 0.00
LLaMA-3.1-70B 0.00 0.00 0.00 0.22 0.00 0.00 0.18 0.21 0.00 0.00 0.27 0.41
Mistral-V0.3-7B 0.00 0.00 0.00 0.00 0.19 0.17 1.10 0.00 0.00 0.31 0.00 0.00
Qwen-2.5-7B 0.22 0.92 0.19 0.21 0.39 0.38 0.48 0.34 0.35 0.40 0.22 0.20
Qwen-2.5-72B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DeepSeek-V2-Lite-16B 0.00 0.00 0.00 0.37 0.00 0.38 0.62 0.16 0.00 0.37 0.13 0.00
Gemma-2-9B 0.00 0.00 0.00 0.00 0.65 0.25 0.88 0.38 0.00 0.33 0.63 0.00
LLaMA-2-Chat-7B 0.77 0.61 0.19 18.31 14.31 0.12 0.00 1.70 6.56 0.19 56.42 0.59
LLaMA-3.1-Instruct-8B 0.85 0.36 1.04 0.00 0.00 0.55 0.57 0.59 0.65 0.00 0.00 0.00
LLaMA-3.1-Instruct-70B 1.23 0.00 0.00 0.00 0.27 0.00 0.00 0.35 0.32 0.00 0.00 0.60
Mistral-V0.3-Instruct-7B 1L.77 0.61 0.65 0.54 0.82 0.45 1.33 0.60 2.13 0.64 0.00 1.84
Qwen-2.5-Instruct-7B 0.55 0.41 0.40 0.38 0.45 0.35 1.15 0.00 0.00 0.43 0.00 0.00
Qwen-2.5-Instruct-72B 0.38 0.53 0.27 0.24 0.00 1.14 0.21 0.54 0.83 0.55 0.52 1.00
DeepSeek-V2-Chat-Lite-16B 0.00 0.19 0.21 1.01 0.47 0.81 0.17 0.56 0.33 0.53 0.33 0.67
Gemma-2-IT-9B 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.47 0.00 0.84
GPT-3.5-Turbo-0125 0.00 0.00 0.00 0.00 0.29 0.24 0.00 0.00 0.00 0.00 0.26 0.00
GPT-40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b). Refusal error.

en-en en-de en-es en-vi en-zh en-hi en-ar  en-el en-ro en-ru en-th en-tr

LLaMA-3.1-8B 0.80 2.58 6.72 3.89 2.17 3.87 4.63 7.39 7.19 5.24 3.10 2.71
LLaMA-3.1-70B 0.60 0.66 0.22 0.66 0.48 0.62 0.00 0.21 0.38 0.39 0.00 0.41
Mistral-V0.3-7B 0.49 1.08 0.82 0.88 0.19 0.67 0.37 0.33 0.54 0.00 0.00 1.43
Qwen-2.5-7B 0.00 0.00 0.00 1.06 0.00 0.19 0.00 0.34 0.00 0.00 0.00 0.40
Qwen-2.5-72B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.00 0.41
DeepSeek-V2-Lite-16B 0.00 0.49 0.33 1.29 0.15 0.51 1.24 1.61 1.07 0.37 0.00 0.44
Gemma-2-9B 0.00 0.22 0.46 0.23 0.00 0.75 0.29 0.77 0.79 0.00 0.63 0.44
LLaMA-2-Chat-7B 0.00 0.20 0.00 0.16 0.15 0.00 0.00 0.00 0.17 0.00 0.10 0.15
LLaMA-3.1-Instruct-8B 0.00 0.00 0.00 0.34 0.00 0.28 0.00 0.00 0.00 0.33 0.00 0.00
LLaMA-3.1-Instruct-70B 0.62 0.71 0.34 0.36 0.00 0.31 0.77 0.70 0.65 0.69 0.75 0.60
Mistral-V0.3-Instruct-7B 0.00 0.20 0.44 0.18 0.41 0.00 0.00 0.00 0.19 0.21 0.77 0.00
Qwen-2.5-Instruct-7B 0.55 0.41 0.00 0.00 0.45 0.69 0.38 0.00 0.39 0.00 0.00 0.00
Qwen-2.5-Instruct-72B 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.28 0.00 0.00 0.00
DeepSeek-V2-Chat-Lite-16B 0.00 0.39 0.42 0.51 0.00 0.32 0.00 0.00 0.17 0.18 0.17 0.00
Gemma-2-IT-9B 1.30 0.45 0.88 0.96 0.47 0.00 0.83 0.49 0.49 0.47 0.47 0.84
GPT-3.5-Turbo-0125 0.00 0.00 0.00 0.00 0.29 0.24 0.00 0.00 0.00 0.00 0.26 0.68
GPT-40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(c). Blank error.

Table 10: Detailed percentages (%) of generation error types (gibberish error, refusal error, and blank error) on 2-shot en-x tasks.

en-en en-de en-es en-vi en-zh en-hi en-ar en-el en-ro en-ru en-th en-tr

LLaMA-3.1-Tuned-8B  78.80  74.07 69.85 7212 71.03 69.23 67.57 6935 7154 7186 71.12 71.02

(a). en-x

de-de es-es vi-vi zh-zh hi-hi ar-ar el-el ro-ro ru-ru th-th tr-tr

LLaMA-3.1-Tuned-8B  69.28  71.16 7373  63.71 6748 6435 61.84 73.03 6566 6234  62.63

(b). x-x

Table 11: 2-shot F1 scores on en-x and x-x tasks for our finetuned LLaMA-3.1-8B.
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(f). Last-input-token hidden state similarity for en-
superior samples.

Figure 19: Hidden state similarity between English and other languages on different parts of the selected samples in each layer

of the LLaMA-3.1-Instruct-70B model.
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Figure 20: Hidden state similarity between English and other languages on different parts of the selected samples in each layer

of the LLaMA-2-Chat-7B model.
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Figure 21: Hidden state similarity between English and other languages on different parts of the balanced samples in each layer

for our finetuned LLaMA-3.1-8B model.



