Exploring the Hidden Capacity of LLLMs for One-Step Text Generation

Gleb Mezentsev
AIRI
Skoltech
mezentsev@airi.net

Abstract

A recent study showed that large language
models (LLMs) can reconstruct surprisingly
long texts — up to thousands of tokens — via
autoregressive generation from just one trained
input embedding. In this work, we explore
whether autoregressive decoding is essential
for such reconstruction. We show that frozen
LLM:s can generate hundreds of accurate tokens
in just one token-parallel forward pass, when
provided with only two learned embeddings.
This reveals a surprising and underexplored
multi-token generation capability of autoregres-
sive LLMs. We examine these embeddings and
characterize the information they encode. We
also empirically show that, although these rep-
resentations are not unique for a given text, they
form connected and local regions in embedding
space — suggesting the potential to train a prac-
tical encoder. The existence of such represen-
tations hints that multi-token generation may
be natively accessible in off-the-shelf LL.Ms
via a learned input encoder, eliminating heavy
retraining and helping to overcome the funda-
mental bottleneck of autoregressive decoding
while reusing already-trained models.

1 Introduction

Large language models are typically trained to gen-
erate text in an autoregressive manner — they predict
one token at a time based on the previously gener-
ated context. Several attempts aim to change this.
However, they either require an additional model
for candidate generation (Leviathan et al., 2023),
substantial additional fine-tuning of autoregressive
LLM (Cai et al., 2024; Stern et al., 2018; Gloeckle
et al., 2024) or full model retraining (Ghazvinine-
jad et al., 2019; Austin et al., 2021; Li et al., 2022).
This leaves an open question — is it possible to
reuse autoregressively pretrained LLM for multi-
token generation with minimal to no additional
training. We discover a previously undocumented
phenomenon, that can help us to achieve this goal.

Ivan Oseledets
AIRI
Skoltech
oseledets@airi.net

Llama-3.1-8B - o
Llama-3.2-3B -
Llama-3.2-1B - ®

Pythia-1.4B -
Pythia-410M -
Pythia-160M - ®

0 150 300 450 600 750
Text length, tokens

Figure 1: One pass, many tokens. Each dot shows
the maximum exact reconstruction length in a single
non-autoregressive forward pass with frozen weights,
conditioned only on two learned embeddings — evidence
of hidden multi-token capabilities.

We found that for any given text of reasonable
length, there exists a latent one-vector representa-
tion of this text, such that, if a frozen pretrained
LLM is conditioned on this representation, it ac-
curately generates the whole text in a single for-
ward pass, without any iterative decoding. In this
work, we demonstrate this phenomenon, investi-
gate what those compressed representations encode
and whether this finding reveals anything about
LLMs’ parallel generation capabilities.

Our contribution is as follows:

1. We show that LLMs can reconstruct arbitrary
sequences of hundreds of tokens from as few as
two learned input embeddings, with one of them
being universal for all texts.

2. We identify key design aspects for such a
setup, that enable this generation, including the
critical importance of input token arrangement.

3. We study how the reconstruction capability
varies with the model size and the nature of the
target sequence (e.g. natural vs synthetic text).

4. We empirically characterize learned repre-
sentations — analyze their information content and
embedding-space geometry.

The code is available at this GitHub page.

22880

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 2288022889
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/Glebzok/OneStepLLMGeneration

2 Related Work

The most direct influence for our work is a
paper by Kuratov et al. (2025), which showed
that frozen LLM can reconstruct an arbitrary
sequence of tokens T' = [t1,...,ty] if given a
sequence of special, so-called memory tokens
[memy,...,memg]|. The embeddings for these
tokens are trained by optimizing a causal language
modeling objective over a concatenated input
sequence Z = [memy,...,memg,t1,...,tN]
passed through a frozen LLM. In the case of
perfect next-token prediction accuracy (which
could be achieved for reasonable text length), this
allows the model to autoregressively predict the
whole text starting from the memory tokens. The
number of memory tokens controls the maximum
text length and can be as low as one.

Although surprisingly long (up to 1568 tokens)
texts could be compressed even into a single mem-
ory token, the authors note that the embeddings
trained from different random initializations for the
same text end up far apart. Moreover, linear inter-
polations between those embeddings produce poor
reconstruction accuracy, suggesting that the solu-
tion space lacks desirable smoothness and locality
qualities, which are important for learning a practi-
cal encoder that could replace direct optimization.

Our work also relates to efforts in prompt-tuning
and its variants (Lester et al., 2021; Liu et al., 2024,
Li and Liang, 2021). Most similarly, Lester et al.
(2021) train task-specific soft tokens to condition
frozen LLMs to improve their performance on new
tasks. Several speculative (Xia et al., 2023) and
parallel (Santilli et al., 2023) decoding approaches
utilize a similar mechanism for multiple token pre-
diction using decoder architectures. More specif-
ically, they add special [PAD] or [MASK] tokens
at the end of the current context in order to make a
prediction for several tokens into the future at once.
Critically, in these works either special training or
multiple generative iterations are required.

Unlike prior work, we show that a frozen LLM
can generate accurate multi-token sequences in one
forward pass without additional LLM training or
iterative decoding.

3 Method

To adopt the approach from Kuratov et al. (2025)
to the non-autoregressive case, we replace all input
tokens of the LLM with specially trained "proto-
tokens" and predict the target token sequence in

one forward pass. In practice, "proto-tokens" are
just trainable vectors that are not tied to any real
items in the vocabulary. The main difference be-
tween regular tokens and these "proto-tokens" is
that "proto-tokens" encode multiple tokens at once
and only produce human-readable text after pass-
ing through the LLM. Our goal is to identify the
smallest possible number of such "proto-tokens"
needed for accurate reconstruction. Interestingly,
we find that it is essential to have at least two — the
performance drops dramatically when using only
one (see Section 4).

There are many ways to arrange two vectors into
an input sequence of arbitrary length. We report
results for different variants later in the paper, but
here we describe the arrangement that is used in
the majority of the experiments.

Figure 2: Two "proto-tokens" (trainable embeddings)
are fed into frozen, pretrained LLM and optimized
in such a way that LLM predicts an arbitrary token-
sequence in a single forward pass. e; is trained for each
text separately, while m could be shared across texts.

Exact scheme We introduce two "proto-tokens"
e and m with trainable embeddings of dimension
dmodel (model input embedding dimension) and
construct the input sequence as follows:

Z = [e,m,m,...,m] — one copy of token e is
followed by N — 1 copies of token m, where N
is the target text length. We then train the vectors
by optimizing cross-entropy loss between the tar-
get sequence 7' = [ty,t2,...,tN] and the frozen
LLM'’s output for the input sequence:

N

Lo = —ZlogPLM(ti le,m,...,m) (1)
i=1 =1

The prediction is obtained using standard causal
attention masking, so that the predicted probabil-
ities for the token ¢; depend on the first ¢ input
"proto-tokens" (see Figure 2).

22881

Metrics Our main evaluation metric is the num-
ber of correctly reconstructed tokens in a generated
sequence, defined as:

N
Ctokens - Z]]-(LM(Z[ll]) = ti) (2)

i=1

Additionally, we measure the amount of informa-
tion contained in the reconstructed token sequence
from the perspective of causal language modeling
with a given LLM. Specifically, we compute the
cross-entropy between the compressed sequence
and LLM’s autoregressive probability distribution:

N
Hpn ==Y logPra(ti | t<:) 3)
=1

This quantity measures how uncertain a model
is about the compressed text, that is, how much
information it contains.

Solution space connectivity To gain insights
into the structure of the solution space of our prob-
lem, we analyze whether different proto-token em-
beddings obtained for the same text but from differ-
ent random initializations are connected. We adopt
a technique from (Garipov et al., 2018) which is
used to find paths connecting different minima of
the loss function in computer vision tasks. We
optimize the parameters of a degree-two Bezier
curve, connecting two solutions, to maximize re-
construction accuracy along the curve. The curve is
parameterized by a control point 7 in the following
way:

ox(1)=(1— T)2p1 +27(1 —7)m + 2py (4)

Here, p; and p, are the two original solutions that
we aim to connect.

We want to find the value of 7 that minimizes
the cross-entropy loss along the curve. To do that,
we minimize the expectation of the cross-entropy
loss with respect to a uniform distribution of 7:

N

l= E Z*ZOQPLM(U | ox(7)) (5)

T~U[0,1] i—1

To do that, we iteratively sample 7 ~ /[0, 1] and
optimize [with respect to 7 using Adam optimizer.
This optimization under the uniform distribution
over T acts as a more tractable alternative to direct
optimization under the uniform distribution along
the curve itself.

Token sequences similarity In Section 4, we
aim to measure the similarity between two token
sequences in order to control for this similarity. To
measure token-level similarity we use the cosine
distance between TF-IDF embeddings of two se-
quences. To measure semantic similarity we use
cosine-distance between semantic sequence embed-
dings obtained from a MiniLM model fine-tuned’
for the semantic sentence embedding.

4 Experiments and results

We test the ability of different LLMs of varying
sizes to generate a predefined text from different
sources in a non-autoregressive (parallel) mode.
Moreover, we compare different ways to feed our
trainable "proto-tokens" into LLM. We also try to
understand the structure of the solution space by
examining the relations of solutions for different
problems.

Models We use six models for all experiments:
three Pythia (Biderman et al., 2023) models of
sizes 160M, 410M, and 1.4B, and three Llama-
3 (Grattafiori et al., 2024) models of sizes 1B, 3B,
and 8B.

Data Four text sources are used in the experi-
ments to explore the possible connection between
reconstruction performance and the text nature.

A set of random texts is generated by sampling
from the top 100,000 words of the GloVe vocabu-
lary (Pennington et al., 2014), to evaluate perfor-
mance on unnatural texts.

To assess generation performance on natural but
unseen texts, we use a collection of fanfiction texts
from AO3 library 2, with a publication date cutoff
of October 2024, which is later than the end of
training for all models. For data processing details,
see Kuratov et al. (2025).

The performance on seen natural texts is evalu-
ated using PG-19 dataset (Rae et al., 2019) — a part
of a dataset used for training Pythia models.

Finally, we include a set of model-specific gen-
erated texts. Specifically, for each model and each
context text from PG-19 dataset, a suffix of the
same length is generated as autoregressive contin-
uation. The generation is done via multinomial
sampling with sampling temperature 7' = 1.

1https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2
2https://archiveofourown.org/

22882

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://archiveofourown.org/

Training details The embeddings of the proto-
tokens are initialized from standard normal dis-
tribution and optimized via AdamW optimizer
(Loshchilov and Hutter) with 0.01 learning rate,
B1, B2 set to 0.9 and a weight decay of 0.01. The
embeddings are trained for 5000 iterations with an
early stopping at a perfect reconstruction accuracy.
This number of iterations is often insufficient for
convergence, but due to limited computational re-
sources, we are unable to increase it. Instead, we
aggregate results across multiple sequences and
report the best results. Although, the exact recon-
struction capacity could be under-estimated, we be-
lieve that, given he exploratory nature of this work,
it is more important to demonstrate and character-
ize the phenomenon itself, rather than to achieve
the precise upper bound on reconstruction capacity.
All models are trained using PyTorch framework
and Transformers library. Each experimental run is
done on a single A100 or H100 80GB GPU with
gradient accumulation enabled where necessary.

Proto-token arrangement To select the best way
to arrange two proto-tokens as input for LLM for
the main experiments, we conduct test runs on a
single dataset-model pair for the variety of arrange-
ments. For each arrangement, the same 50 texts
from the PG-19 are selected, and the Llama-3.2-1B
model is trained on prefixes of these texts at lengths
[1,2,4,8, 16, 32, 64, 128, 256, 512, 1024] to as-
sess token-level reconstruction accuracy change
with respect to sequence length N. A representa-
tive selection of results is presented in Table 1.

Arrangement N=1 N=2 N=4 N=256
[C]XN 1'00:{:0.00 0'45:!:0.31 0'17:{:0.18 0'Ol:l:O.Ol

[6]><(N/2) [m}x(N/Z) 1‘0010.00 l'OoiO.OO 0'1210.13 O'Olio.m
[eam 100, g0 1.00 000 1.00. 060 0.17 445,

x(N/2)
[e”m]xN 1.004400 1.00L000 1.00,000 0.97,0,5
[6”m]><(N—l) 1'0010.00 1~00i0.00 1'0010.00 0'99i0.10

Table 1: Reconstruction accuracies for different input
token arrangements across varying sequence lengths.
Subscripts indicate the number of copies for each proto-
token. In the second-to-last scheme the LLM is trained
to predict the first text token ¢; for the proto-token e,
while with the last one, the prediction for proto-token e
is not guided and ¢; is a target for the first copy of m.

Interestingly, having two proto-tokens is essen-
tial. The one-token scheme fails to reconstruct
even 2-token text, while best two-token schemes
reconstruct 256-token texts almost perfectly.

Moreover, the way these two tokens are arranged
is also important, with the best results obtained
when the first token e is followed by N — 1 copies
of the second token m. This asymmetrical arrange-
ment and critical necessity for two tokens suggest
possible variation in functions of e and m. It is
possible, that while one of them mostly incorpo-
rates language information, the role of the other
one is mainly structural or mechanistic. This could
be related to the phenomenon of "attention sinks" —
Xiao et al. (2023) showed that LLMs strongly at-
tend to the initial tokens in the sequence even when
they are not relevant. So, it is possible, that in order
to successfully decode "information" proto-token,
LLM needs a distinguishable "sink" proto-token,
which can be used as attention sink.

Token sharing In the previous section, we
showed that the quality of reconstruction is very
dependent on having two separate proto-tokens as
an input. This observation led us to hypothesize
that, a second token serves a structural or mech-
anistic purpose and does not contain information
about the sequence itself. In that case, the second
token could be shared between texts, reducing the
number of optimized parameters, and simplifying
the training process of the potential encoder.

To test this hypothesis, we run the same optimiza-
tion process, splitting 256 texts from the PG-19 into
groups of varying sizes S, € [1,4, 16, 64, 256] and
sharing either e or m within each group. We se-
lected the maximum length of the text that can be
losslessly compressed in a non-shared mode - 256.
The results are averaged over 10 random seeds. The
selection of results is presented in Table 2.

Shared Agg S,=1 Sg=16 S, = 256

e max 1.00.,, 0.99,.,, 099,
avg 098, 0.90,,,, 0.86,,,,

m max 1.00,,,, 1.00,,, 1.00.,,,
avg 098.,,, 0.86,,,, 0.83. ¢

Table 2: Reconstruction accuracy with one of proto-
tokens shared within groups for different group sizes.
"max" indicates that for every text, maximum accuracy
across ten random seeds is averaged across texts, while
"avg" denotes averaging across both seeds and texts.

Sharing either token yields comparable perfor-
mance if provided with a sufficiently large number
of restarts (random seeds), but the required number
of restarts increases significantly with group size.

22883

Pythia Llama
Share m
160M 410M 1.4B 3.2-1B 3.2-3B 3.1-8B

o False 90 92 90 256 362 512

tokens Trye 45 22 45 181 256 256
Random

= False 507.5, 0.0 37714 50, 470.7 105, 1551.3, 00, 2193.4, ., 2974.4, .. .

EM True 247.9,.,, 911, 231.0,,,, 947.7,.., 1292.2,,., 1309.4,,.,,

o False 128 128 131 362 512 724

fokens Trye 45 45 45 181 288 362
Fanfics

= False 358.9,.,, 395.4,., 261.0,.,, 1107.6, .., 14084, .. . 1763.3 ...,

EM True 145.0,,,, 82.3,,, 147.9,.,, 576.4,.,, 8359, , 1112.8, ..

o False 128 167 128 362 512 724

tokens
PG-19 True 45 32 64 181 256 362

= False 388.4,,, 408.8,.,, 2984, ., 993.8,,.,, 1346.0,,,, 1659.8,,,,

EM True 156.0,.,, 88.1.,5 156.0,,,, 456.5,... 826.1,,,., 832.3,,..,

o False 128 181 128 362 512 724
PG-19 0kems Trye 45 32 64 181 362 362
(gen) = False 354.1,.,, 379.2,0, 277.6,., . 927.3,,., 1266.6,,,. , 1653.1,,,,,

EM True 153.0,,,, 106.9 ... 197.1.., 478.7... 7886 0% 77170000

Table 3: Maximum reconstruction capacities for different models on different datasets.

Depending on the proto-token being shared, we
can build different intuitions behind the function of
the shared tokens and the method itself.

If the e-token is shared, which is located in the
very beginning of the input sequence, the analogy
that comes to mind is prompt-tuning (Lester et al.,
2021), where a set of prompt embeddings is trained
in order to improve performance in some specific
task. In our case, a shared token e could be viewed
as an "instruction" saying what an LLM should
do with the upcoming embeddings (m-tokens) —
decode different pieces of information for different
positions.

If the m-token is shared, then training and pre-
diction scheme resembles some of the speculative
decoding approaches (Xia et al., 2023), where a
number of special [mask] tokens are appended at
the end of the sequence and the prediction for all
them is then done in parallel. For all other experi-
ments, unless stated otherwise, we use scheme with
sharing m token between texts and random seeds
and e token being unique for each text-seed pair.

Generation capacity We already see that simi-
lar to autoregressive mode (Kuratov et al., 2025),
LLMs can generate fairly long sequences in just
one forward pass. To characterize this capability

and understand how it scales with model size and
changes depending on the nature of the text, we
run the optimization process for text prefixes of the
predefined lengths [4, 5, 8, 11, 16, 22, 32, 45, 64,
90, 128, 181, 256, 362, 512, 724, 1024, 1448]. We
report the maximum values of Ciopens and Hyps
which correspond to the longest prefix for which
at least 0.99 token-level accuracy is achieved — we
treat such sequences as successfully reconstructed.
In addition to a scheme with a shared m token,
we also run a scheme with m not shared, to elimi-
nate the effect of the insufficient number of random
initializations. While our results in Section 4, sug-
gest that m, can in principle, be shared without any
quality drop, we also note that the optimization pro-
cess is highly sensitive to initialization, especially
when the proto-tokens are shared. The results are
presented in Table 3 with the best results across
datasets presented in Figure 1.

Larger models in Llama the family show greater
reconstruction capabilities than the smaller ones,
while the situation with Pythia models is less obvi-
ous, with all the models showing approximately the
same performance. Llama 1B model is also able
to reconstruct almost three times larger sequences
compared to Pythia model of the same size.

22884

One trainable embedding

Model

Two trainable embeddings

: 2
2048 1 . ® Pythia-160M 4096 4 o
F o
v Pythia-410M i A
1024 4 N # ‘ / Pythia-1.4B 2048 4 A AV - y
T ‘ 7 Llama-3.2-1B P, / ’ P
s & T i s L \4 -
c 512 | A Llama-3.2-38 3 1024 » . ,‘,‘;*w JRe
T PR IR o ® Lama3.1-88 T L A
° - L W, S - Lo
© -~ e 5 R s
. ;)) 3
E 256 2 v ,/' Dataset E 512+ . v 2
o ol 1 ®8 Fanfics S e P
. : .
O 18] " > $ PG19 O 561 77 2@ o
5 d 4 @ PG19(gen) § - -~
© ’ w/‘ ol o e
o V¥ Random P
643 Ve 1284 —
. 8 . JE
- - y=x -
_1 7
324 11 | y=s5Xx 644~
Z s
; , . , . . 1 :
128 256 512 1024 2048 4096 —= y=3X 256 512 1024 2048 4096 8192

Autoregressive H.y

Autoregressive H.y

Figure 3: Maximum language information (H 1, for a maximum text prefix that is accurately reconstructed)
compressed for different models and datasets. In the left plot, a single [mem] token is used in the autoregressive
setting, and in the non-autoregressive one, m proto-token is shared between all texts within each model. In the right
plot, two [mem] tokens are used and m proto-tokens are not shared. Each small point on the plots represents a
single text, larger points indicate the average within each (model, dataset) pair.

The natural text source (unseen, seen or gener-

25000

é

ated) does not seem to have any systematic influ-
ence on the quality of reconstruction in terms of
the number of tokens, while for unnatural random
texts the generation capacity is significantly worse.
This suggests that "proto-tokens" do not "store"
tokens directly, but encode some more high-level
representations, using language modeling capabil-
ities of LLM. However, we also can not say that
the compressibility of the text is determined by
its likelihood under the sequential language model.
In fact, we observe the opposite trend — lower to-
tal information content Hy s is compressed for
less information-dense texts, such as generated by
the LLM itself. This difference is highlighted in
Figure 3, where the amount of the information
contained in trainable tokens is compared to au-
toregressive setup. The performance for unnatural
texts is very similar and sometimes even identical,
while for natural texts, the difference in capacity
can be up to five times lower. However, more often
the difference is just two-fold, suggesting that au-
toregressive decoding approximately doubles the
"effective” information density in natural text.

Although less information-dense, our one-
forward method achieves significantly higher de-
coding throughput in the context of text reconstruc-
tion — outperforming its autoregressive counterpart
by a factor of 279 on average (Figure 4). This dra-
matic difference is due to the number of forward
passes. While an obvious downstream task is still
to be found, such speed could matter in many set-

20000 1

DS

\4

15000

tokens per sec

10000

®
@
Q

<Cl“<

oo

Dataset
Fanfics
PG-19
PG-19(gen)
Random

Model
Pythia-160M
Pythia-410M
Pythia-1.4B
Llama-3.2-1B

5000 4 v
T T T T
20 50 80 110 140
Autoregressive reconstruction throughtput,
tokens per sec

Llama-3.2-3B
Llama-3.1-8B

One-forward reconstruction throughput,

Figure 4: Reconstruction throughput for autoregressive
and non-autoregressive setups. For each model-dataset
pair, the throughput equals to a maximum losslessly
compressible length divided by the reconstruction time.

tings where fast decoding is particularly important.
While we do not introduce the method as a
practical way of compressing or generating texts,
but rather as a demonstration of interesting phe-
nomenon, we still measure the training time across
models and text lengths to demonstrate the full pic-
ture. Training time (Table 4) scales roughly linearly
with sequence length, with around 10 seconds for
length 32 and around 200 seconds for length 512.

Model IN 32 64 128 256 512

Pythia-160M
Pythia-410M
Pythia-1.4B
Llama-3.2-1B
Llama-3.2-3B
Llama-3.1-8B

6
10
10
11
14
16

25
21
66
15
18
20

68
106
129

27

28

29

87
78
60

26
215

Table 4: Proto-token training time in seconds for differ-
ent models and sequence lengths averaged over datasets.

22885

¥ Same Context

@ Different Contexts

-
=}
N}
v
L

1.000 4

0.975 4

0.950 -

0.925 4

0.900 A

0.875 A

0.850 1

Distance between Proto-token Embeddings

o
o
N
o
|

016 0?7 018 0?9
Token-level Distance between Texts

I
5

T

1.0 0.2 0?4 016 0?8 1.0
Semantic Distance between Texts

Figure 5: We compare proto-token embedding distances for same context text pairs and different-context text pairs.
Token-level distance is measured as cosine distance between TF-IDF embeddings. Semantic distance is measured
as cosine distance between semantic text embeddings (see Section 3 for details).

Proto-tokens interpretation We examine the in-
formation encoded in proto-tokens and the impli-
cations this has for potential practical applications.
In worst case scenario, they directly encode target
tokens (imagine a vector containing token_ids). If
so, the entire "language generation" effort happens
during encoding, making decoding irrelevant for
accelerated inference — though the approach could
still be useful as a context-compression tool. The al-
ternative is that proto-tokens encode a compressed
representation of a prefix which, when the model
generates from it, produces the observed suffix. In
that case, the hard work of text generation is done
during decoding, which is more promising from
the point of view of accelerated inference. All the
intermediate options are also possible.

17.51 Same text
Same context
Different contexts

Density

-
0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Cosine distance

Figure 6: Cosine embedding distances for different pair-
ings of proto-tokens. We select 50 contexts from PG19
and for each context, generate 10 continuation texts. We
find one solution for each of the first 9 generations and
10 different-seed solutions for the last generation.

We start by measuring the distances between
three types of proto-token embedding pairs: 1) cor-
responding to the same generated sequence, but
different random seeds, 2) corresponding to the dif-
ferent texts but generated from the same context, 3)
corresponding to the different texts generated from
different contexts. As shown in Figure 6, the same-
text solutions are almost always located closer to
each other than different-texts solutions, which sug-
gests locality in the learned representations. At the
same time, same-context solutions are noticeably
closer to each other than different-context ones.
This may indicate that the encoded information at
least partially reflects the potential context of the
text. However, we should be careful to account for
the texts generated from the same context being
more similar in general.

To do that, we measure pairwise distances be-
tween generated texts, and examine whether the
distance between learned proto-token embeddings
differ for a fixed distance between the texts. We use
token-level measure of text similarity and semantic-
level measure (see Section 3). For both measures,
(Figure 5) we observe that, given the same dis-
tances between texts, the proto-token embeddings
are on average closer when the texts originate from
the same context. We conclude that learned proto-
tokens contain information beyond the informa-
tion about the target sequence itself — they some-
how partially describe the potential context of the
sequence. However, we should note that, the ef-

22886

fect of having the same context on the distance be-
tween proto-tokens is small, and the distributions
for same-context distances and different-context
distances heavily overlap. Our results suggest that
proto-tokens still mostly contain information about
the text itself with only a fraction of the information
about the context preserved.

We also conducted a preliminary experiment
on accessing the information contained in proro-
tokens without first decoding them into text. We
took 50 128-token context sequences from PG-19
dataset, generated 256-token continuations with
Llama3.2-1B model and trained (e, m) pairs only
for the first 128 tokens of the model continuations.
Then we started the autoregressive generation of
the same model from different combinations of
proto-tokens and (BOS)-token and visually com-
pared the contents of the resulting token sequences
with both contexts and model-continuations. In all
cases, the resulting sequences either contain mean-
ingless token-combinations or meaningful texts
that are not related to either context or continua-
tion. We conclude that the information from proto-
tokens could not be accessed without decoding at
least when they are used directly as an autoregres-
sive generation context.

Proto-tokens embedding space structure Kura-
tov et al. (2025) raised the following concern about
the structure of the solution space in the autore-
gressive setup. Even though the same-text token
embeddings are on average closer to each other
than different-text token embeddings, they seem to
be disconnected — a linear interpolation between
two solutions does not yield a valid reconstruc-
tion. This could mean that the potential encoding
to this space could be problematic as the same ob-
ject could be mapped to disconnected regions. We
find that in our non-autoregressive case, the linear
interpolation between same-text solutions also does
not produce a solution (Figure 7).

4
@

Connection
—— Linear
—— Bezier curve

Accuracy
°
>

o
=

o
o

0.0
0.0 0.2 0.4 0.6 0.8 1.0

+

Figure 7: Pairwise interpolation accuracies between 10
solutions for 5 texts (5 X 10 x 9/2 pairs in total).

However, the solutions could be connected using
quadratic Bezier curves (parabolic segments) lying
inside "solution set". This means that even though
same-text solutions do not form a convex set, they
form a connected set. In fact, our experiments
show that the maximum ratio between Bezier curve
length and the corresponding linear connection is
only 1.2, indicating that the paths are nearly linear.
These results demonstrate that the solution space
is fairly well behaved, providing reasonable hope
that an encoder model could be built to map into
that space.

5 Discussion and Conclusions

In this paper, we demonstrate that frozen LLMs
have a surprising ability to generate hundreds of
accurate tokens in a single forward pass — without
any iterative decoding — when provided with just
two specially trained "proto-tokens".

We find that both the number and the arrange-
ment of such tokens is crucial for enabling this
generation capacity. Interestingly, with only one
proto-token, LLMs are unable to generate more
than a single token of text. In contrast, two properly
arranged proto-tokens can enable the generation of
sequences hundreds of tokens long. This signifi-
cant leap in the performance, along the observation
that one of the vectors can (in principle) be shared
across many texts, suggests that proto-tokens play
different functional roles during generation.

We find that bigger model size does not univer-
sally imply better generation capacity. While larger
models in Llama-3 family demonstrate improved
reconstruction capacity, Pythia models show no
such trend — larger models do not perform better.

Additionally, we do not observe any consistent
relationship between the source of the natural text
and the reconstruction ability of LLMs. Surpris-
ingly, even for the texts generated by the LLM
itself, the number of successfully reconstructed to-
kens is the same as for any other natural text. How-
ever, with random-token sequences, performance
drops noticeably. This suggests that our reconstruc-
tion process does not fully leverage the language
modeling capabilities of LLMs, and may instead
mostly rely on low-level token patterns.

Although the reconstructed sequences in the non-
autoregressive setting are, on average, two times
shorter than those in the autoregressive case, the
efficiency of single-forward approach allows to
achieve up to 279x greater generation throughput.

22887

We also observe that proto-tokens encode more
than just the target sequence. Embeddings of the
"proto-tokens" corresponding to the different texts
generated from the same context are, on average,
closer to each other than those from unrelated se-
quences. This indicates that learned representations
capture some potential contextual information.

Finally, we discover that the embedding space of
proto-tokens has very desirable structural proper-
ties — proto-tokens corresponding to the same text,
form localized and connected regions with smooth
transitions via quadratic interpolation. These find-
ings suggest that it may be feasible to build an
encoder capable of mapping into this space, open-
ing the door to future work on non-autoregressive
inference and representation learning.

We view this work as an existence proof: certain
text representations can elicit multi-token behav-
ior in frozen, single-token LLMs. Making them
practical requires training an encoder that maps
text into these representations. As a future work,
we plan to study decoders that either generate a
suffix from an encoded prefix or reconstruct the
entire text. Depending on the setup, such systems
could enable multi-token or chunk-wise genera-
tion, learned compression or RAG (potentially by
extracting information directly without decoding).

6 Limitations

1. Lack of immediate practical application: Most
importantly, this work highlights an interesting
quirk of LLMs and does not suggest any imme-
diate practical implications or real-life usages for
the method yet, as direct proto-token optimization
should be replaced with parametrized encoder for
any practical application.

2. Architectural dependence: The method
demonstrates different behavior across model fami-
lies, suggesting some architectural dependence. As
a result, our method may potentially not generalize
to other model architectures.

3. Limited domain coverage: While we evaluate
four different text sources, the results may not gen-
eralize beyond those explored in our experiments.

4. Evidence, not bounds: Our 5k-step optimiza-
tion budget may not always reach full convergence.
Thus, our results should be read as evidence of
feasibility (existence of one-pass decoding) rather
than a precise capacity bound.

Acknowledgments

The work was supported by the grant for re-
search centers in the field of Al provided by the
Ministry of Economic Development of the Rus-
sian Federation in accordance with the agreement
000000C313925P4F0002 and the agreement with
Skoltech Ne139-10-2025-033.

References

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel
Tarlow, and Rianne Van Den Berg. 2021. Structured
denoising diffusion models in discrete state-spaces.
Advances in neural information processing systems,
34:17981-17993.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, and 1 others.
2023. Pythia: A suite for analyzing large language
models across training and scaling. In International
Conference on Machine Learning, pages 2397-2430.
PMLR.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv:2401.10774.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin,
Dmitry P Vetrov, and Andrew G Wilson. 2018. Loss
surfaces, mode connectivity, and fast ensembling of
dnns. Advances in neural information processing
systems, 31.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel
decoding of conditional masked language models.
arXiv preprint arXiv:1904.09324.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere,
David Lopez-Paz, and Gabriel Synnaeve. 2024. Bet-
ter & faster large language models via multi-token
prediction. arXiv preprint arXiv:2404.19737.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Yuri Kuratov, Mikhail Arkhipov, Aydar Bulatov, and
Mikhail Burtsev. 2025. Cramming 1568 tokens into
a single vector and back again: Exploring the lim-
its of embedding space capacity. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 19323-19339, Vienna, Austria. Association
for Computational Linguistics.

22888

https://doi.org/10.18653/v1/2025.acl-long.948
https://doi.org/10.18653/v1/2025.acl-long.948
https://doi.org/10.18653/v1/2025.acl-long.948

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274-19286. PMLR.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S
Liang, and Tatsunori B Hashimoto. 2022. Diffusion-
Im improves controllable text generation. Advances
in neural information processing systems, 35:4328—
4343.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2024. Gpt
understands, too. AI Open, 5:208-215.

Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532-1543, Doha, Qatar.
Association for Computational Linguistics.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
and Timothy P Lillicrap. 2019. Compressive trans-
formers for long-range sequence modelling. arXiv
preprint arXiv:1911.05507.

Andrea Santilli, Silvio Severino, Emilian Postolache,
Valentino Maiorca, Michele Mancusi, Riccardo
Marin, and Emanuele Rodola. 2023. Accelerating
transformer inference for translation via parallel de-
coding. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1233612355, Toronto,
Canada. Association for Computational Linguistics.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information
Processing Systems, 31.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu
Wei, and Zhifang Sui. 2023. Speculative decod-
ing: Exploiting speculative execution for accelerat-
ing seq2seq generation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,

pages 3909-3925, Singapore. Association for Com-
putational Linguistics.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

22889

https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257

