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Abstract
Maintaining mutual understanding is a key
component in human-human conversation to
avoid conversation breakdowns, in which re-
pair, particularly Other-Initiated Repair (OIR,
when one speaker signals trouble and prompts
the other to resolve), plays a vital role. How-
ever, Conversational Agents (CAs) still fail
to recognize user repair initiation, leading to
breakdowns or disengagement. This work pro-
poses a multimodal model to automatically
detect repair initiation in Dutch dialogues by
integrating linguistic and prosodic features
grounded in Conversation Analysis. The results
show that prosodic cues complement linguistic
features and significantly improve the results
of pretrained text and audio embeddings, offer-
ing insights into how different features interact.
Future directions include incorporating visual
cues, exploring multilingual and cross-context
corpora to assess the robustness and generaliz-
ability.

1 Introduction

Conversational agents (CAs), software systems that
interact with users using natural language in writ-
ten or spoken form, are increasingly being used in
multiple domains such as commerce, healthcare,
and education (Allouch et al., 2021). While main-
taining smooth communication is crucial in these
settings, current state-of-the-art (SOTA) CAs still
struggle to handle conversational breakdowns. Un-
like humans, who rely on conversational repair to
resolve issues like mishearing or misunderstand-
ing (Schegloff et al., 1977; Schegloff, 2000), CAs’
repair capabilities remain limited and incomplete.
Repair refers to the interactional effort by which
participants suspend the ongoing talk to address
potential trouble, which can be categorized by who
initiates and who resolves it: the speaker of the trou-
ble (self) or the co-participant (other) (Schegloff,
2000). This work focuses on Other-initiated Self-
repair, in short, Other-initiated Repair (OIR),

where the talk of a speaker is treated as problem-
atic by a co-participant via repair initiation, and
the original speaker resolves it, as illustrated in
Figure 1. Current CAs handle repairs in a lim-
ited fashion that mainly support self-initiated re-
pair by the agent (e.g., the agent asks users to re-
peat what they said) (Li et al., 2020; Cuadra et al.,
2021; Ashktorab et al., 2019) or rely on user self-
correction when users realize troubles and clar-
ify their own intent (e.g., saying "no, I mean. . . ")
(Balaraman et al., 2023). However, CAs strug-
gle to recognize when users signal trouble with
the agent’s utterances (other-initiated) and fail to
provide appropriate repair (self-repaired), while
effective communication requires bidirectional re-
pair capabilities (Moore et al., 2024). Supporting
this, Gehle et al. (2014) found that robots failing
to resolve communication issues quickly caused
user disengagement, while van Arkel et al. (2020)
showed that basic OIR mechanisms improve com-
munication success and reduce computational and
interaction costs compared to relying on pragmatic
reasoning.

uh this is the one with the right- the round disc on the
right side and that and that protruding little spout thing
up on the left → Trouble Source

yes so that disc sits horizontally right?
→ Repair Initiation

yes horizontally → Repair Solution

Figure 1: Other-initiated Repair (OIR) sequence exam-
ple from Rasenberg et al. (2022), English translated:
repair initiation (green) signals trouble of ambiguous
object reference disc with candidate understanding hori-
zontally, confirmed by repair solution yes horizontally.

Modeling OIR strategies on CAs that recognize
user-initiated repair first requires robust automatic
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repair initiation detection in human-human inter-
action. Previous work has established foundations
for text-based approaches, training with English
corpora, and relying on lexical cues (Höhn, 2017;
Purver et al., 2018; Alloatti et al., 2024). However,
prosodic cues tend to be more cross-linguistically
stable than surface forms (Dingemanse and En-
field, 2015; Benjamin, 2013; Walker and Benjamin,
2017), and can provide valuable insight into the
pragmatic functions of expressions like the inter-
jection "huh". Building upon text-based methods,
this work focuses on spoken dialogue interaction,
where prosodic cues provide additional signals for
repair initiation detection that may be missed by
text-only models trained on transcriptions. Finally,
understanding the OIR sequence also requires ex-
amining the local sequential environment of the
surrounding turns, which we term "dialogue mi-
cro context", based on Schegloff (1987)’s work on
local interactional organization.

These gaps motivate our main research question:
What are the verbal and prosodic indicators
of repair initiation in OIR sequences and how
can we model them? To address this, we ana-
lyze OIR sequences in a Dutch task-oriented cor-
pus, focusing on text and audio patterns where one
speaker initiates repair. Drawing on Conversation
Analysis literature, we introduce feature sets and a
computational model to detect such requests. Our
contributions are in two folds: (1) a novel multi-
modal model for detecting repair initiations in OIR
sequences that integrates linguistic and prosodic
features extracted automatically based on the lit-
erature, advancing beyond text- or audio-only ap-
proaches; (2) provide insights into how linguis-
tic and prosodic features interact and contribute
in detection performance, grounded in Conversa-
tion Analysis, and what causes model misclassifi-
cations. The remainings of this paper is structured
as follows: Section 2 reviews SOTA computational
models for OIR detection and related dialogue un-
derstanding tasks. Section 3 provides the used OIR
coding schema and typology, and Section 4 details
our approach, including linguistic and prosodic fea-
ture design. Section 5 presents our experiment
details and results, followed by error analysis in
Section 6.

2 Related Work

An early approach to automatic OIR detection was
proposed by Höhn (2017), with a pattern-based

chatbot handling user-initiated repair in text chats
between native and non-native German speakers.
Purver et al. (2018) extended this by training a
supervised classifier using turn-level features in
English, including lexical, syntactic, and seman-
tic parallelism between turns. More recently, Al-
loatti et al. (2024) introduced a hierarchical tag-
based system for annotating repair strategies in Ital-
ian task-oriented dialogue, distinguishing between
utterance-specific and context-dependent functions.
Closely related, Garí Soler et al. (2025)’s recent
work introduced and investigated the task of au-
tomatically detecting word meaning negotiation
indicators, where speakers signal a need to clarify
or challenge word meanings, a phenomenon that
can be seen as a specific form of repair initiation.

Although direct research on OIR detection is
still limited, advances in related dialogue under-
standing tasks provide promising foundations for
our work. Miah et al. (2024) combined pretrained
audio (Wav2Vec2) and text (RoBERTa) embed-
dings to detect dialogue breakdowns in health-
care calls. Similarly, Huang et al. (2023) used
BERT, Wav2Vec2.0, and Faster R-CNN for intent
classification, introducing multimodal fusion with
attention-based gating to balance modality contri-
butions and reduce noise. Saha et al. (2020) pro-
posed a multimodal, multitask network jointly mod-
eling dialogue acts and emotions using attention
mechanisms. More recently, high-performing but
more opaque and resource-intensive approaches
have emerged, such as Mohapatra et al. (2024)
showed that larger LLMs outperform smaller ones
on tasks like repair and anaphora resolution, albeit
with higher computational cost and latency.

Despite robust performance, recent largest mod-
els remain difficult to interpret due to their black-
box nature and multimodal fusion complexity (Jain
et al., 2024). To address this gap, we propose a
computational model for repair initiation detection
in Dutch spoken dialogue that fuses pretrained text
and audio embeddings with linguistic and prosodic
features grounded in Conversation Analysis. The
model also integrates a multihead attention mecha-
nism to weigh and capture nonlinear relationships
across modalities, allowing our model to keep the
strengths of multimodal deep learning while offer-
ing insight from linguistic and prosodic features
to understand their interaction and impact to-
wards model’s decision.
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Figure 2: OIR sequence organization between 2 speakers A (green) and B (red): (a) Minimal; (b) Non-minimal

3 OIR Coding Schema and Typology

We follow Dingemanse and Enfield (2015)’s cod-
ing schema, which structures OIR sequences into
three components: trouble source, repair initiation,
and repair solution segments, with repair initia-
tion categorized as open request (the least specific,
not giving clues of trouble), restricted request (im-
plied trouble source location), or restricted offer
(the most specific, proposing a candidate under-
standing). Throughout this work, repair initiation
refers specifically to this component within OIR se-
quences. We use the corpus and the OIR sequences
annotation from Rasenberg et al. (2022), where di-
alogues were manually transcribed and segmented
into Turn Construction Units (TCUs), the smallest
meaningful elements of speech that can potentially
complete a speaker turn. They align OIR com-
ponent boundaries with these pre-existing TCU
boundaries. Following the conversational analysis
practice, such as in (Mondada, 2018), we adopt
the “segment” as our unit of analysis, defined as:
stretches of talk corresponding to annotated OIR
components (e.g., repair initiation) that may span
one or more TCUs within larger speaker turns (il-
lustrated in Figure 2). This allows us to target only
the stretch of talk relevant to the OIR component,
avoiding the overinclusiveness of full turns. Fig-
ure 2 illustrates two organizational scenarios of
OIR sequences described in Dingemanse and En-
field (2015), including: minimal (repair initiation
produced immediately after the turn containing the
trouble source) and non-minimal (repair initiation
delayed by a few turns).

4 Proposed Approach

4.1 Overview

Task Formulation. We formulate the repair initi-
ation detection task as a binary classification prob-

lem. Given a segment (xi), corresponding to one
or several TCUs within a speaker turn, the task is
to predict whether it is an OIR repair initiation or
a regular dialogue (RD) segment (i.e., not belong-
ing to an OIR sequence). In this initial study, we
limit the scope to detecting repair initiations only,
without classifying other OIR components such as
trouble sources or repair solutions. This simpli-
fication allows us to establish a baseline for the
most critical component in the OIR sequence, the
moment when repair is initiated by another speaker.

Architecture Overview. Figure 3 shows our pro-
posed multimodal approach for repair initiation
detection. We incorporate the handcrafted linguis-
tic and prosodic features, automatically computed
based on literature reviews, with embeddings from
pretrained models (RobBERT for text, Whisper for
audio). For a given segment (xi), we first extract
both handcrafted features and pretrained embed-
dings from text and audio modalities. All features
are then projected to a shared dimensionality to
ensure consistency across modalities. To capture
the complex interactions between text and audio
embeddings with handcrafted features, a multihead
attention mechanism was employed to weigh and
capture nonlinear relationships. Finally, the whole
representation is obtained by concatenating the text
embedding and the fused representation from mul-
tihead attention.

4.2 Pretrained Models

Language model. Our proposed approach uti-
lizes BERT (Devlin et al., 2019), a transformer-
based language model, to obtain text embedding
of the current given segment. As our corpus is in
Dutch, we use the pretrained RobBERT (Delobelle
et al., 2020) model, which is based on the BERT
architecture, pretrained with a Dutch tokenizer, and
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Figure 3: Multimodal architecture for repair initiation detection

39 GB of training data. We use the latest release
of RobBERT-v2-base model which pretrained on
the Dutch corpus OSCAR 2023 version, which out-
performs other BERT-based language models for
several different Dutch language tasks.

Audio model. For audio representations, we uti-
lize Whisper (Radford et al., 2023), an encoder-
decoder transformer-based model trained on
680,000 hours of multilingual and multitask speech
data, to extract audio embeddings from our dia-
logue segments. Whisper model stands out for its
robustness in handling diverse and complex lin-
guistic structures, a feature that is crucial when
dealing with Dutch, a language known for its in-
tricate syntax. Besides, Whisper was trained on
large datasets including Dutch and demonstrated
good performance in zero shot learning, making it
ideal serving as a naive baseline for task with small
corpus like ours.

4.3 Dialogue Micro Context

Schegloff (1987) demonstrated that the OIR se-
quence is systematically associated with multiple
organizational aspects of conversation, and under-
standing an OIR repair initiation requires exam-
ining the local sequential environment, which he
terms the micro context, that we adopt in this work.
Therefore, for each given target segment xi, to cap-
ture the micro context, we iteratively concatenate
the previous (xi−j) and following (xi+j) segment
within a window of size (j), using special separator
token of transformers (e.g. [SEP] for BERT-based
models) until reaching the maximum token limit
(excluding [CLS] and [EOS]), inspired by similar
ideas in (Wu et al., 2020). If the sequence exceeds
the limit, we truncate the most recently added seg-
ments. The final sequence is enclosed with [CLS]
and [EOS], as shown in Figure 9 (Appendix D).

4.4 Linguistic Feature Extraction

Figure 4(a) outlines our linguistic feature set for
the representation of the target segment, captur-
ing local properties such as part-of-speech (POS)
tagging patterns, question formats, transcribed non-
verbal actions (target segment features), and fea-
tures, which quantify repetition and coreference
across turns to reflect backward and forward rela-
tions around the repair initiation (cross-segment
feature to capture micro context). The detailed
description is in the Appendix E.

4.4.1 Target Segment Features
We automatically extracted the linguistic features
proposed by (Ngo et al., 2024) at the intra-segment
level to capture grammatical and pragmatic patterns
related to the repair initiation. For instance, (Ngo
et al., 2024) shows that restricted requests often
show a POS tag sequence pattern of interrogative
pronouns followed by verbs, while OIR open re-
quests and regular dialogue segments differ in key
lemmas used of the same tag: modal auxiliary verb
kunnen (“can”) vs. primary auxiliary verb zijn (“to
be”). We also include question mark usage, derived
from original transcription, which is marked with
a question mark if the annotator detected question
prosody. It implicitly reflects prosodic cues as inter-
preted by the human annotators, which are relevant
to repair initiation, as described in Schegloff (2000)
regarding interrogative and polar question formats.
A complete list of features is fully provided in Ap-
pendix E.

4.4.2 Cross-Segment Features
Grounded on the literature (Schegloff, 2000; Ngo
et al., 2024), we define inter-segment features that
capture the sequential dynamics of the repair initi-
ation, including repetitions and the use of corefer-
ences referring to entities in prior turns containing
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Figure 4: Handcrafted linguistic and prosodic features design

the trouble source segment. We also compute self
and other-repetition in the subsequent turn contain-
ing the repair solution segment, to capture how the
trouble source speaker responds. These features
reflect the global dynamics of OIR sequences.

4.5 Prosodic Features Extraction

Prosody plays a crucial role in signaling repair ini-
tiation. Previous studies in Conversation Analy-
sis show that pitch, loudness, and contour shape
can indicate whether repair initiation is perceived
as "normal" or expresses "astonishment"(Selting,
1996), and that Dutch question types differ in pitch
height, final rises, and F0 register (Haan et al.,
1997). Building upon these characteristics, we de-
sign a prosodic feature set that includes both local
features within the target segment, such as pitch,
intensity, pauses, duration, and word-level prosody,
and global features across segments of the OIR
sequence, such as latency between OIR sequence
segments, pitch slope transitions at boundaries, and
comparison to speaker-specific prosodic baselines.
The features are detailed in Figure 4(b) and in the
Appendix F.

4.5.1 Target Segment Features
We use Praat (Boersma, 2000) to extract prosodic
features at the segment level, including: pitch fea-
tures (e.g., min, max, mean, standard deviation,
range, number of peaks) which are computed from
voiced frames after smoothing and outlier removal,
with pitch floor/ceiling set between 60–500 Hz
and adapted to each speaker range (van Bezooi-
jen, 1995; Theelen, 2017; Verhoeven and Connell,
2024); first (mean and variability of pitch slope
change) and second derivatives (pitch accelera-
tion) of pitch contour, capturing pitch dynamics.
Additional features are intensity (e.g., min, max,
mean, range, standard deviation), and voice quality

measures (jitter, shimmer, and harmonics-to-noise
ratio). We also model pause-related features by
detecting silent pauses over 200 ms and catego-
rizing them by duration and position in the utter-
ance, reflecting their conversational function asso-
ciated with repair possibilities (van Donzel and
Beinum, 1996; Hoey, 2018). Inspired by find-
ings about prosody of other-repetition in OIR se-
quences (Dingemanse et al., 2015; Walker and Ben-
jamin, 2017), we extract pitch and intensity fea-
tures for repeated words from the trouble source
segment, and for the specific repair marker "wat"
(what/which/any), as indicators of repair initiation
type and speaker perspective (Huhtamäki, 2015).

4.5.2 Cross-Segment Features
To model the speaker-specific prosodic variation
(van Bezooijen, 1995; Theelen, 2017; Verhoeven
and Connell, 2024), we normalize pitch and in-
tensity using z-scores, relative percentage change,
and position within the speakers’ range. These fea-
tures capture how far the current segment deviates
from the speaker’s typical behaviour across pre-
vious turns and the normalized range position of
the current segment within the speaker’s baseline.
Inspired by work on prosodic entrainment (Levitan
and Hirschberg, 2011), we also compute pitch and
intensity slope transitions across segment bound-
aries (e.g., TS→OIR, OIR→RS), both within and
across speakers, to assess prosodic alignment. We
normalized slopes to semitones per second for con-
sistency across speakers.

5 Experiments & Results

To answer the main research question mentioned
in Section 1, we design the experiments to answer
the following research sub-questions: i) RQ1: To
what extent do audio-based features complement
text-based features in identifying repair initiation?
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Model Modal & Features Precision Recall F1-score
TextEmb U & T 72.0± 4.0 87.6± 7.5 78.9± 4.7
AudioEmb U & A 72.6± 9.7 76.3± 13.1 70.6± 8.1
MultiEmb M & T+A 79.1± 5.4 82.2± 3.8 82.1± 0.9

TextLing U & L 82.2± 3.6 80.4± 6.1 80.4± 3.8
AudioPros U & P 81.7± 4.2 77.4± 5.4 77.3± 2.7
MultiLingPros M & L+P 81.7± 7.6 82.2± 1.5 81.8± 3.4

MultiOurs M & T+A+L+P 93.2± 2.8 96.1± 2.6 94.6± 2.3

U: Unimodal, M: Multimodal, T: Text, A: Audio, P: Prosodic features, L: Linguistic features

Table 1: Overall results across modalities for repair initiation detection. The table groups models by research
question: RQ1 compares unimodal vs. multimodal combinations of audio and text; RQ2 compares handcrafted
features with pretrained embeddings.

ii) RQ2: Do our proposed linguistic and prosodic
features (see Figures 4(a) and 4(b)) perform better
than pretrained embeddings? iii) RQ3: Which
prosodic and linguistic features contribute the most
to repair initiation detection? iv) RQ4: How does
the involvement of dialogue micro context affect
detection performance?

5.1 Implementation Details

Dataset. Based on (Colman and Healey, 2011)’s
finding that repair occurs more frequently in task-
oriented dialogues, we selected a Dutch multi-
modal task-oriented corpus (Rasenberg et al., 2022;
Eijk et al., 2022), containing 19 dyads collaborating
on referential communication tasks in a standing
face-to-face setting. For each round, participants
alternated roles to describe (Director) or identify
(Matcher) a geometric object (called "Fribbles")
displayed on screens, in which the unconstrained
design encouraged natural modality use and OIR
sequences. Rasenberg et al. (2022) annotated OIR
sequences using Dingemanse and Enfield, 2015’s
schema, resulting in 10 open requests, 31 restricted
requests, and 252 restricted offers. While we ac-
knowledge that OIR sequences are rarer in natural
dialogue, our goal in this paper is to study detec-
tion performance with sufficient examples of both
classes. Therefore, we balanced the dataset with
306 randomly selected regular dialogue segments,
stratified across all dyads, resulting in 712 samples
overall. The data were split 70:15:15 for training,
validation, and testing. Limitations regarding the
generalizability of the artificial balancing are dis-
cussed in Section 7. Examples of Fribbles objects
and repair initiation types are provided in the Ap-
pendix A and B.

Training Details. We fine-tuned our models us-
ing 10-fold cross-validation, in which the optimal
learning rate was 2e-5. We employed AdamW opti-
mizer with weight decay of 0.01 and a learning rate
scheduler with 10% warm-up steps. Training ran
for up to 20 epochs with 3-epoch early stopping
patience, and batch size 16. The source code is
publicly available 1.

Evaluation Metrics. We evaluated model perfor-
mance using binary classification metrics including
precision, recall, and macro F1-score.

5.2 Experiment Scenarios & Results Analysis

RQ1: Audio vs. Text Complementarity. To ad-
dress RQ1, we compare the performance of uni-
modal against multimodal models, including: i)
Single TextEmb or AudioEmb vs. MultiEmb; ii)
Single TextLing or AudioPros vs. MultiLingPros.
We examine whether integrating the audio-based
features, either by pretrained embeddings or by
using handcrafted prosodic features, will im-
prove the performance of the text-based models.
The multimodal models include MultiEmb, which
fuses pretrained text and audio embeddings, and
MultiLingPros, which combines handcrafted linguis-
tic and prosodic features, using cross-attention fu-
sion as illustrated in Figure 3.

From Table 1, we observe that multimodal mod-
els consistently outperform unimodal ones across
all metrics. For both pretrained embeddings and
handcrafted features, text-based models outper-
form audio-based ones individually. However, in-
corporating audio improves performance in both
settings. Specifically, in the pretrained setting,

1https://github.com/haanh764/other_initiated_
repair_detection
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the multimodal model MultiEmb achieves an F1-
score of 82.1, improving over TextEmb by 3.2
percentage points (pp) and over AudioEmb by
11.5 pp. Similarly, in the handcrafted feature set-
ting, combining linguistic and prosodic features
MultiLingPros yields an F1 of 81.8, outperform-
ing TextLing by 1.4 pp and AudioPros by 4.5 pp.
Interestingly, the unimodal handcrafted models
TextLing, AudioPros show higher precision than re-
call, whereas MultiLingPros shows slightly higher
recall, suggesting a tendency to favor detection
over omission. This is potentially beneficial in in-
teractive systems where missing an repair initiation
could be more disruptive than a false alarm. For
embedding-based models, recall exceeds precision
in all cases, but the multimodal model shows a
notable gain in precision, indicating a better trade-
off between identifying true repair initiation and
minimizing false positives.

RQ2: Handcrafted Features vs. Pretrained Em-
beddings. To address RQ2, we compare the per-
formance of models using handcrafted features
against the models using embeddings from pre-
trained models. We thus compare: i) Text repre-
sentations: text embeddings (TextEmb) vs. hand-
crafted linguistic features (TextLing); ii) Audio
representations: audio embeddings (AudioEmb)
vs. handcrafted prosodic features (AudioPros); iii)
Combined approaches: multimodal models us-
ing pretrained embeddings (MultiEmb) vs. us-
ing handcrafted linguistic and prosodic features
(MultiLingPros) and vs. our proposed approach
leveraging both of them MultiOurs.

Table 1 shows that handcrafted feature models
are comparable to embedding-based approaches.
In unimodal settings, TextLing achieves higher pre-
cision (+10 pp) with comparable F1-score (+1.5
pp) to TextEmb, despite lower recall (-7.2 pp). Like-
wise, AudioPros outperforms AudioEmb across all
metrics (precision +9.1 pp, recall +1.1 pp, F1-score
+6.7 pp). In multimodal settings, MultiEmb and
MultiLingPros perform nearly identically (F1-score
difference of 0.3 pp). Overall, we observe a general
trend emerges: embedding-based approaches tend
to achieve higher recall but lower precision, likely
because they can learn more complex representa-
tion that captures more subtle patterns, whereas
handcrafted feature models target specific repair
initiation markers, such as question forms, repe-
tition, and pause patterns, resulting in better bal-
anced precision-recall trade-offs. The embedding

models may also overgeneralize in the case of our
small, task-specific corpus.

RQ3: Handcrafted Feature Importance Analy-
sis. Although the linguistic and prosodic features
could not solely outperform pretrained text and au-
dio embeddings, they are useful in interpreting the
model’s behaviours, especially to see if they are
aligned with the Conversation Analysis findings.
To answer RQ3, we used SHAP (SHapley Additive
exPlanations) analysis to analyze the contribution
and behaviours of linguistic and prosodic features
towards the model’s decision. Figure 5 illustrates
the top 10 features by SHAP value, which measures
how much each single feature pushed the model’s
prediction compared to the average prediction. The
pausing behaviours (positions and durations), in-
tensity measures (max, mean, and relative change),
and harmonic-to-noise ratio (HNR) appear particu-
larly important among prosodic features. For lin-
guistic features, the grammatical structure linking
to coreference used, some POS tags, and various
word type ratios rank highly, which align well with
systematic linguistic patterns, as demonstrated by
Ngo et al. (2024). The most important features in-
clude the number of long and medium pauses, the
relative position of the longest pause, and the verb-
followed-by-coref structure, all scoring near 1.0 on
the importance scale, which aligned with the works
in (Hoey, 2018; Ngo et al., 2024) about pauses in
repair initiation and its structure, respectively.
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Figure 5: The top 10 most important handcrafted fea-
tures ranked by SHAP value. Appendix C provides the
full list of the 20 most contributed features.

Figure 6 displays the synergy (Ittner et al., 2021)
between linguistic and prosodic features, com-
puted based on the SHAP interaction values. It
reflects how complementary a pair of linguistic
and prosodic features is in improving model perfor-
mance, in which high synergy means that combin-
ing both features adds more value than what each
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of them contributes individually. These features do
not always need to co-vary, but their combination
brings useful information for the model. Coordi-
nating conjunction ratio (CCONJ ratio) shows the
strongest synergy (0.26) with harmonics-to-noise
ratio (HNR), while other speaker self-repetition
ratio has strong synergy (0.23) with maximum in-
tensity. This suggests that certain grammatical pat-
terns work closely with specific voice qualities,
particularly how conjunctions interact with voice
clarity and how self-repetition correlates with voice
intensity. The results indicate that conversation in-
volves a complex interplay between what we say
(linguistic elements) and how we say it (prosodic
elements), which is aligned with the Conversation
Analysis work.

RQ4: Dialogue Micro Context Analysis. To
address RQ4, we experimented 4 scenarios of con-
catenating micro context, including: (1) PastContext
- concatenated current input segment with the
segments in the prior turns and cross-segment
handcrafted features (past-related, Figure 4); (2)
FutureContext - concatenated current input segment
with the segments in the subsequent turns and hand-
crafted cross-segment features (future-related, Fig-
ure 4); (3) CurrentContext - no context concatena-
tion and used only current input segment features
(Figure 4); (4) MultiOurs - the full context scenario,
where we concatenate current input segment with
both the prior and subsequent segments and use
full handcrafted feature set. For (1) and (4), we
experimented with window_length of 2 and max
(the micro context are concatenated as much as
possible until it reach maximum token limit) based
on results from corpus analysis; for (3) only max
was used, as repair solutions typically occur imme-
diately within maximum 2 turns in this corpus.

Table 2 highlights the impact of different mi-

Context Win. len Precision Recall F1-score
(1) PastContext 2 86.0± 3.0 78.4± 5.4 82.0± 4.1
(1) PastContext max 86.6± 5.2 81.0± 6.1 83.5± 4.3
(2) CurrentContext - 84.6± 3.8 82.9± 6.0 83.6± 4.4
(3) FutureContext max 84.00± 1.53 78.20± 5.78 80.18± 2.52

(4) MultiOurs 2 93.2± 2.8 96.1± 2.6 94.6± 2.3
(4) MultiOurs max 87.7± 3.5 89.1± 5.3 88.3± 3.7

Table 2: Performance comparison across different micro
context configurations

cro context configurations, in which incorporating
surrounding segments from prior, and subsequent
segments combining with the whole handcrafted
feature set leads to the best overall performance,
as also stated in Table 1. Notably, our full context
setting with smaller window_length=2 achieves the
highest results across all metrics, while concatenat-
ing to the maximum allowed token limits degrades
the performance, with a drop of approximately 6.3
pp of F1-score, 9 pp of precision, and 4.1 pp of
recall. It suggests that while surrounding context
of input segment is helpful, overly long concate-
nation may introduce noise and irrelevant infor-
mation to the model. In addition, integrating past
or solely current segments yields moderate perfor-
mance, with F1-scores ranging from approximately
80.2% to 83.6%, while future context integration
results in the lowest scores, indicating that the up-
coming dialogue can offer informative cues but less
relevant than the prior and current input segments,
which aligned with the nature of OIR sequence.

6 Error Analysis

To better interpret model performance, we analyze
the False Negative (FN) instances, which are re-
pair initiations that were misclassified as regular
dialogue, to identify whether there are common
patterns in these instances that our models strug-
gle to predict, illustrated in Table 3. We compare
these FN instances across our proposed multimodal
model with the unimodal baselines by extracting
representative dialogue samples for each model
from test set and identifying their common linguis-
tic and prosodic characteristics.

Our proposed model shows the lowest FN rate
( 3.8%) of the test set, compared to 15% and 24%
on TextLing and AudioPros, respectively. TextLing
seems to struggle in detecting samples with vague
references, especially in restricted offers, even
when OIR syntactic forms like question mark is
present. Besides, AudioPros tends to over-rely on
pause structure and pitch contour even though im-
portant prosodic cues were presented. Short declar-
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Model %Error Samples Patterns OIR Type

TextLing

(or a) triangle Vague, elliptical reference RO
15% yes uh yes on the right side

right? or ascending yes
Disfluencies, vague interrogative RO

yes the one with the protrusion Referential expression, lacks direct marker RO

AudioPros

with a sunshade Short declarative, flat prosody RO
24% uh but the platform sits that

cuts the
Flat intonation, short pauses in beginning RO

Is it vertical? Question intonation, few short pauses RO
ah and is his arm uh round but
also a bit with angles?

High pitch, question intonation, pauses
mid-turn

RO

but what did you say at the be-
ginning?

Rising intonation, wide pitch range RR

MultiOurs

with a sunshade Short, declarative structure RO
3.8% oh who so Declarative, high but flat pitch RO

sorry again? Clear OIR but subtle prosodic signal OR

Table 3: Samples of False Negative (FN) instances from unimodal and multimodal models with qualitative patterns.
OR: open request; RR: restricted request; RO: restricted offer. The Dutch samples are translated to English by
DeepL.

atives with flat intonation were often misclassi-
fied, suggesting the impact of missing syntactic
form information in this model. Finally, our pro-
posed multimodal failed with mostly short phrases
and subtle prosodic signals, which are not strongly
marked as an repair initiation. Considering the
error across 3 types of repair initiations, it seems
that only AudioPros struggled with various types of
repair initiations; the other 2 models misclassified
on restricted offer and open request instances only.
However, as this corpus is imbalanced between
the 3 types of repair initiation, with a majority of
restricted offers, it could be the potential reason.

7 Conclusion & Future Works

This work presents a novel approach for detect-
ing repair initiation in Other-Initiated Repair (OIR)
sequences within human-human conversation. It
leverages automatically extracted linguistic and
prosodic features grounded in Conversation Analy-
sis theories. Our results demonstrate that incorpo-
rating handcrafted features significantly enhances
detection performance compared to using only pre-
trained embedding models. Additionally, audio
modality complements textual modality, improv-
ing detection performance across both pretrained
embeddings and handcrafted features. Handcrafted
feature analysis revealed both individual impact
and complementary contributions between modali-
ties. Key prosodic indicators include pause-related
features, intensity, and harmonic-to-noise ratio
(HNR), while important linguistic features involve
grammatical patterns, POS tags, and lemma ratios.

Synergy analysis demonstrates that features do not
act independently; for example, coordinating con-
junction usage shows strong synergy with HNR,
and trouble source speaker self-repetition leads sig-
nificantly to maximum intensity presence. These
patterns highlight the nature of OIR sequences, in
which how something is said modulates what is
being said.

Our results also highlight the importance of dia-
logue micro context in repair initiation detection:
models using both prior and subsequent segments
outperform those relying only on the target seg-
ment, reflecting the interactional structure crucial
for OIR interpretation. However, overusing context
can add noise and degrade performance.

Finally, error analysis revealed that while the
text-based model failed with vague references and
disfluencies, the audio-based model was prone to
misclassifying flat or subtle prosodic cues, which
raised the need for a multimodal model. The pro-
posed multimodal model mitigates these weak-
nesses, but it still struggles with short, minimally
marked repair initiation that lacks both strong syn-
tactic and prosodic cues. This work establishes
foundations for conversational agents capable of
detecting human repair initiation to avoid commu-
nication breakdowns.

Building on these insights, future work will ex-
plore the integration of visual features to more ac-
curately model the embodied aspects of OIR se-
quences, as well as the development of multilingual
and cross-context corpora to assess the robustness
and generalizability of the detection approach.
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Limitations

Dataset Limitations and Generalizability. Due
to the limited multimodal OIR-labeled corpora, our
study utilized the only available multimodal OIR-
labeled corpus, which is specific to Dutch language
and referential object matching tasks. This speci-
ficity could limit the generalizability of our model
across different OIR categories, languages, and
conversation settings. Future works should test
the model on more diverse datasets to validate its
robustness and establish broader applicability.

Dataset Balancing and Class Distribution. In
natural conversation, repair initiation instances are
much less frequent than regular dialogue. To en-
able robust model training and evaluation, we bal-
anced repair initiation and regular dialogue samples
across dyads. However, this balancing approach
may affect the model’s performance in real-world
settings where OIR sequences are rare, and there-
fore, the results should be interpreted with caution.
Future work should evaluate the performance of
models while maintaining the natural class distri-
bution to assess practical applicability.

Adaptability in Real-time Processing. Despite
the computational efficiency of our approach using
handcrafted features compared to Large Language
Models, several limitations remain for real-time
adaptation. The feature extraction of some lin-
guistic and prosodic features, such as coreference
chains, requires additional computation with pre-
trained models, potentially introducing latency. Fu-
ture work should explore real-time feature extrac-
tion pipelines and incremental processing architec-
tures, while evaluating potential trade-offs between
model complexity and real-time performance to
make the system practical for CA systems.
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A Dataset Details

Figure 7 presents samples of 16 geometrical ob-
jects called "Fribbles" displayed on the participants’
screens. Each dyad completed 6 rounds per session,
resulting in 96 trials total. In each trial, participants
alternated between Director and Matcher roles: the
Director described a highlighted Fribble while the
Matcher identified and confirmed the correspond-
ing object by naming it loudly before proceeding
to the next trial.

Figure 7: 16 "Fribbles" were used in the object matching
task (Rasenberg et al., 2022; Eijk et al., 2022).

B OIR Types Examples

Example 1. Open request sample

TS SPEAKER: op dat driehoek (TS)
(on that triangle)

REPAIR INITIATOR: wat zei je? (RI)
(what did you say?)

TS SPEAKER: op die driehoek (RS)
(on that triangle)

Example 2. Restricted request sample

TS SPEAKER: deze heeft twee oren die
aan de onderkant breder worden en een
soort hanekam op zijn hoofd een kleintje
(TS)
(this one has two ears that widen at the
bottom and a sort of cock’s comb on its
head a little one)

REPAIR INITIATOR: maar wat zei wat
zei je in het begin? (RI)
(but what did you say at the beginning?)

TS SPEAKER: een soort oren die aan de
onderkant breder worden (RS)
(a kind of ears that widen at the bottom)

Example 3. Restricted offer sample

TS SPEAKER: waarbij je dus op de
bovenkant zo’n zo’n mini uh kegeltje
hebt (TS)
(where you have one of those mini uh
cones on the top)

REPAIR INITIATOR: oh ja die zo scheef
naar achter staat? (RI)
(oh yes which is so slanted backwards?)

TS SPEAKER: ja precies (RS)
(yes exactly)
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C Top 20 Important Features
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Figure 8: Top 20 most contributed features by SHAP
values.

D Dialogue Micro Context

B: Um, this actually looks a bit like a face. You have that cup and then you
have this kind of oval ball sticking out on the right,

B: And then you have a square which is a rectangular rod going straight up, 

B: Then you have a triangular rod coming out on the left.

A: Something like a little V-shape?

B: Um, yes, it mostly resembles a face, so if you have the bucket, then you
have like a ball that sticks out a bit on the right, and then that triangular rod
comes out on the left, 

A: Yes, yes, I think I get it, 

B: Then you have like a ball that sticks out a bit on the right, and then that
triangular rod comes out on the left, 

A: And are there two things on top? 

B: Yes, 

Trouble Source

Repair Initiation

Repair Solution

A: Something like a little V-shape?

Sample Dialogue with OIR Sequence

Current Target Segment xi

Dialogue Micro Context Concatenation
Step 1: Initial sequence with special separator tokens

[SEP]A: Something like a little V-shape?[SEP]

Step 2: Prepend previous TCU (i=1)

B: Then you have a triangular rod coming out on the left.[SEP]A:
Something like a little V-shape?[SEP]

Step 3: Append next TCU (i=1)

B: Then you have a triangular rod coming out on the left.[SEP]A:
Something like a little V-shape?[SEP]B: Um, yes, it mostly
resembles a face, so if you have the bucket, then you have like a
ball that sticks out a bit on the right, and then that triangular
rod comes out on the left, 

... continue until reach maximum number of tokens

Final sequence after concatenation with [CLS] and [EOS] tokens

[CLS].....B: Then you have a triangular rod coming out on the left.[SEP]A:
Something like a little V-shape?[SEP]B: Um, yes, it mostly resembles a face,
so if you have the bucket, then you have like a ball that sticks out a bit on the
right, and then that triangular rod comes out on the left, .....[EOS]

Repair Initiation

Figure 9: Dialogue micro context concatenation ap-
proach. Micro context refers to the immediate conver-
sational environment, including the prior and the subse-
quent segments of the current target segment in dialogue
(Schegloff, 1987).

E Detailed Linguistic Features

Table 4 summarizes the handcrafted feature set that
were automatically extracted using the approach
proposed in Ngo et al. (2024)’s work.
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Level Feature Group Feature Type(s) Description

Segment-level
POS tags sequence POS tag bigrams, POS tag

ratios
Binary features for frequent POS
tag bigrams (e.g., PRON_Prs→VERB,
VERB→COREF); POS tags frequency ratios
computed per segment.

Lemma contains_lemma (e.g., nog,
kunnen)

Binary indicators for presence of high-
frequency lemmas relevant to different
type of repair initiation.

Question form ends_with_question_mark Binary feature indicating whether the seg-
ment ends with a question mark.

Non-verbal action contains_laugh, contains_sigh,
etc.

Binary features for transcribed non-verbal
actions like #laugh#, #sigh#, etc.

Cross-segment level
(prior turns related)

Repetition from pre-
vious turn

other_repetition_ratio Ratio of tokens in the current segment that
are repeated from the other speaker’s pre-
vious turn relative to total segment length.

Coreference from
previous turn

coref_used_ratio Ratio of coreference phrases (e.g., pro-
nouns or noun phrases referring to previ-
ous turn) relative to total segment length.

Cross-segment level
(subsequent turns related)

Repair solution TSS
self-repetition

other_speaker_self_rep_ratio Ratio of self-repetition in the turn follow-
ing the repair initiation.

Repair solution TSS
other-repetition

other_speaker_other_rep_ratio Ratio of other-repetition in the turn fol-
lowing the repair initiation

Table 4: Summary of linguistic feature set used for modeling repair initiation. The full POS tag list includes:
ADJ (adjectives), ADP (prepositions and postpositions), ADV (adverbs), AUX (auxiliaries, including perfect tense
auxiliaries "hebben" (to have), "zijn" (to be); passive tense auxiliaries "worden" (to become), "zijn" (to be), "krijgen"
(to get); and modal verbs "kunnen" (to be able, can), "zullen" (shall), "moeten" (must), "mogen" (to be allow)),
CCONJ (coordinating conjunctions such as "en" (and), "of" (or)), DET (determiners), INTJ (interjections), NOUN
(nouns), PRON_Dem (demonstrative pronouns), PRON_Int (interrogative pronouns), PRON_Prs (personal pro-
nouns), PUNCT (punctuation), SYM (symbols), and VERB (verbs). The considered common lemma includes: wat
(what), kunnen (can), zitten (to sit/set), zijn (to be), nog (yet/still), wachten (to wait), aan (on/to/at/in/by/beside/upon).
And the transcribed non-verbal actions includes: laughs, sighs, breath, and mouth noise.

F Detailed Prosodic Features

Level Feature Group Feature Type Description

Segment-level

Pitch features min, max, mean, std, range,
num_peaks

Extracted from voiced frames; outliers removed;
peaks from smoothed contour

Pitch dynamics slope Captures pitch variation within segment.
Intensity features min, max, mean, std, range Computed from nonzero intensity frames; reflects

loudness.
Voice quality jitter, shimmer, hnr Reflects vocal fold irregularity and breathiness.
Pause features num, durations,

short/med/long,
positional counts,
rel_longest

Pause detection using adaptive thresholds; catego-
rized by duration and position.

Speech timing rate,
articulation_rate,
duration

Segment length and estimated speech rate (e.g., syl-
lables/sec).

Cross-segment level
(both prior and

subsequent related)

Transition features end_slope, start_slope,
transition

Pitch slope difference across segment boundaries
(prev→cur, cur→next); in semitones/sec.

Baseline comparison z_score, rel_change,
range_pos

Comparison to speaker’s pitch/intensity baseline.

Latency TS→RI, RI→RS Silence duration between trouble source and repair
initiation, repair initiation and repair solution.

Table 5: Summary of prosodic feature set used for modeling repair initiation.
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