
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 22940–22948
November 4-9, 2025 ©2025 Association for Computational Linguistics

R-BPE: Improving BPE-Tokenizers with Token Reuse

Nancy Hamdan1 and Osama Rakan Al Mraikhat1 and Fadi A. Zaraket1,2
1Arab Center for Research and Policy Studies, Doha

2American University of Beirut
{nhamdan,oalmraikhat,fzaraket}@dohainstitute.edu.qa

Abstract

This paper presents R-BPE, a lightweight
framework for adapting existing Byte-Pair En-
coding (BPE) tokenizers to better support a
specified target language. It reuses tokens from
user-excluded languages and creates ID-based
maps to resolve the new tokens of the chosen
language. We evaluate R-BPE on Arabic as a
target language. R-BPE reduced subword fertil-
ity by an average of 24.4% across the LLaMA
3.1 8B, Command R 35B, and Qwen 3 8B mod-
els. Applied to LLaMA 3.1 8B in continued pre-
training mode, R-BPE yields a 7.33% reduction
in training time. On the ArabicMMLU bench-
mark, the resulting model improved by 5.09
points on five in-domain topics and matched
the original model’s overall performance. It
also preserved performance on EnglishMMLU.
R-BPE effectively leverages existing models’
tokenizers, embedding layers, and performance
to better support target languages without in-
curring model size changes. We release an
R-BPE implementation that is compatible with
HuggingFace interfaces and thereby readily ap-
plicable to a wide range of existing models at
https://acr.ps/1L9GPmL.

1 Introduction

Large pretrained language models (PLMs) provide
robust language representations after a single costly
training run (Devlin et al., 2019; Conneau and Lam-
ple, 2019), but their language-specific performance
is often limited by their tokenizers. Multilingual
PLMs prioritize high-resource languages in their
vocabularies, leaving others with poor coverage
(Rust et al., 2021). This leads to over-segmentation
of common words, inflating sequence length and
compute cost, and degrading downstream perfor-
mance (Rust et al., 2021; Petrov et al., 2023).

Prior work addresses this using two main strate-
gies: adding new tokens (Wang et al., 2020) or
rebuilding the vocabulary for continued pretrain-
ing (Minixhofer et al., 2022; Dobler and de Melo,

2023). While both can be effective, they increase
memory usage or require expensive retraining.

A lighter alternative has been proposed for Sen-
tencePiece (Kudo and Richardson, 2018) tokeniz-
ers: vocabulary replacement. By swapping low-
utility tokens with target-language-specific ones,
researchers have improved performance without
increasing vocabulary size (Kajiura et al., 2023; Ki-
ulian et al., 2024). This is possible because Senten-
cePiece unigram tokenizers store tokens explicitly
as strings and scores, enabling controlled substitu-
tions. However, this method is incompatible with
byte-pair encoding (BPE) (Sennrich et al., 2016)
tokenizers, where tokens are defined implicitly via
a merge table. Naive replacements can disrupt
merges and lead to non-deterministic tokenization.

We present R-BPE, a lightweight framework for
BPE-based PLMs that expands a target language
vocabulary. It reuses tokens from user-excluded
languages to support additional tokens from the
target language. Given a representative corpus for
the target language, we construct an expanded vo-
cabulary. We identify tokens from user-excluded
languages in the base vocabulary of the tokenizer
and replace them with the newly learned ones, keep-
ing the overall vocabulary size fixed. We use an
ID-based map to encode and decode the reused to-
kens. Other untouched tokens retain their IDs and
embeddings to preserve original model behavior
and performance.

R-BPE wraps any HuggingFace-compatible
BPE tokenizer and requires no model changes, nor
additional parameters. We evaluate R-BPE on Ara-
bic and show that it shortens sequences, improves
task performance, and preserves English capabili-
ties. We make the following contributions:

1. We propose a vocabulary-replacement method
for BPE-based PLMs. It applies for any target
language where token reuse is possible.

2. We demonstrate efficiency and accuracy im-
provements on Arabic while preserving En-

22940

https://acr.ps/1L9GPmL

tokenizeفي النماذج اللغوية​ rezinekot أهمية الـ

tokenizeفي النماذج اللغوية​ rezinekot أهمية الـ

TNTOTN

= x

S1S2S3 = σ(x)
MN

أهمية

الـ
في

النماذج

اللغوية

567

434

978

678

786

765

765

845

845

556

556

345

345

434

434 479

你好

朋友​

我​

很​

高兴​

765 845 556 345434 479y =

MO

أهمية

الـ
في

النماذج

اللغوية

765

845

556

345

434

567

567

434

434

978

978

678

678

786

786 479

你好

朋友​

我​

很​

高兴​

r1 r2 r3

TN TNTO

567 434 978 678786 479

r1 r2 r3

τ(y) =

(a) (b) (c)

∈ VO

∈ VN

,

Figure 1: R-BPE with lt = Arabic and LP = {Arabic,Latin}. (a) Input is segmented by script; Arabic spans are
encoded with TN and mapped via MN , others with TO; (b) Token IDs are segmented by presence in dom(MO) and
mapped back via MO when applicable; (c) Final decoding uses TN or TO per segment to recover text.

glish performance.
3. We release an open-source implementation

compatible with any HuggingFace BPE tok-
enizer.

2 Related Work
Vocabulary Extension Prior work adapts PLMs
to target languages by expanding the vocabulary
with tokens from a target-language tokenizer and
continuing pretraining. This has been done for
Chinese in LLaMA-2 (Cui et al., 2024), Korean in
SOLAR-10.7B and Phi-2 (Kim et al., 2024), and
Arabic in a bilingual LLaMA-2 model (Bari et al.,
2024).
Vocabulary Replacement Other studies fully re-
place the tokenizer with a new tokenizer trained
specifically for the target language, necessitating
complete embedding reinitialization. Approaches
include replacing English-centric tokenizers en-
tirely and aligning new embeddings using multilin-
gual static embeddings (Minixhofer et al., 2022),
employing shared tokens as anchors between tok-
enizers (Dobler and de Melo, 2023), or training a
bilingual tokenizer with a fixed vocabulary size, re-
taining shared tokens’ embeddings and initializing
new tokens using subword embedding averages or
reinitialization (Nozaki et al., 2025).
BPE Algorithm Improvements PickyBPE
(Chizhov et al., 2024), Scaffold-BPE (Lian et al.,
2025), and Overlap BPE (Patil et al., 2022) propose
improvements to the BPE algorithm. They train a
tokenizer from scratch and modify the vocabulary
generation process to reduce redundant tokens
or improve cross-lingual overlap. They do not
leverage or adapt existing BPE tokenizers. R-BPE

focuses on modifying an existing BPE tokenizer to
better support the target languages.
Vocabulary Reusing Vocabulary reusing re-
cently emerged as a balanced alternative between
extending and fully replacing vocabularies. Meth-
ods include substituting rare or non-subword to-
kens with domain-specific tokens, retaining orig-
inal SentencePiece scores (Kajiura et al., 2023),
and replacing non-English tokens in Mistral (Jiang
et al., 2023) and Gemma 2 (Gemma Team et al.,
2024), keeping original IDs for shared tokens and
assigning new IDs for added tokens (Kiulian et al.,
2024).

Vocabulary reuse efficiently adapts models with-
out increasing parameters or GPU memory require-
ments. Current implementations only support Sen-
tencePiece unigram tokenizers, which store explicit
⟨piece, score⟩ pairs. This allows token substitution
without disrupting tokenization logic. Conversely,
BPE tokenizers implicitly define tokens via ranked
and recursive merges, where prefix tokens might
appear in several merge entries. This results in non-
deterministic, and thus impractical, behavior with
arbitrary token substitutions.

This work extends vocabulary reuse to BPE tok-
enizers, facilitating lightweight, domain-specific
vocabulary augmentation in open-weight BPE-
based LLMs without added memory overhead.

3 Problem Formulation

Let TO be the original BPE tokenizer released with
a PLM, that has vocabulary VO = {vO0 , . . . , vOK−1}.
We want to find a subset SR ⊆ {0, . . . ,K−1} of
reusable token IDs, such that each i ∈ SR corre-
sponds to a token vOi ∈ VO. These are token IDs

22941

Tokenizer |VO| |VN | |SC | |LR| EnTO EnTR-BPE ArTO ArTR-BPE ↓ (%)En ↓ (%)Ar

LLaMA 128,000 16,632 2,790 35 1.32 1.32 2.37 1.87 0.00 21.11
Command R 255,000 60,214 6,494 35 1.34 1.34 2.21 1.67 0.00 24.43
Qwen 151,643 41,752 4,509 40 1.34 1.34 2.38 1.72 0.00 27.73

Table 1: Tokenizer statistics and subword fertility scores for English (En) and Arabic (Ar). |VO|: original vocabulary
size; |VN |: new tokenizer vocabulary size; |SC |: size of the common token set; |LR|: number of reusable languages;
↓ (%) = percentage reduction in fertility scores from TO to TR−BPE .

from the original vocabulary that we consider suit-
able for reuse in representing new vocabulary. Let
TN be the new BPE tokenizer we want to train on
a corpus of our target language lt and that would
have vocabulary VN = {vN0 , . . . , vNP−1}. We re-
quire that |VN | ≤ |SR|, ensuring that every token
in VN can be mapped to a unique reusable token
ID via MN . Let SC ⊆ {0, . . . ,K−1} be the set of
token IDs in VO that match tokens in VN :

SC =
{
i | ∃j, vOi = vNj

}
.

We define a mapping MN : {0, . . . , P−1} → SR

by:

MN (j) =

{
i, if vNj = vOi for some i ∈ SC ,

pick i ∈ SR otherwise.

Conversely, we define MO : SR → {0, . . . , P−1}
as the inverse mapping of MN on its image, so that
MO(MN (j)) = j for all j in the domain of MN .
Our objective is to construct a mapping layer that
enables encoding and decoding of text written in
the target language lt using TN , while all other text
is processed using TO. Figure 1 demonstrates the
overall R-BPE framework, which will be described
in detail in the following sections.

4 Vocabulary Language Classification
We classify tokens in VO by examining their Uni-
code character ranges to infer language associa-
tions. If a token contains multiple scripts, it re-
ceives a composite label representing all detected
languages. This creates a language-based partition
of VO, where each language ℓ ∈ LO corresponds
to a set of token IDs MC(ℓ).

To identify reusable tokens SR, we first define a
preserved set LP ⊆ LO containing the target lan-
guage lt and any other languages the user wishes to
continue supporting. Tokens from these languages
are excluded from reuse. For example, if lt is Ara-
bic but support for English is required, English
must be included in LP to preserve its tokens. The
reusable languages form the set LR = LO \ LP .

We then sort languages in LR by the size of their
token sets MC(ℓ), accumulating token IDs into SR

until reaching the threshold |SR| ≥ h. Threshold h
is the desired size, specified by the user, of the new
vocabulary VN .

5 Target Tokenizer Training
Data Preprocessing Before training TN , we fil-
ter its training corpus to prevent token ID conflicts
in MN . Specifically, cases where a token might be-
long to both SC and SR. To avoid this, we discard
any example containing text from languages in LR.
Only examples composed entirely of text from the
preserved set LP are retained.
Training We train TN using the HuggingFace
tokenizers library on the cleaned dataset. Its vo-
cabulary size is set to |VN | = |SR|.

6 Mapping Layer
Encode Given an input string x = c1 . . . cL,
we segment x into maximal contiguous spans of
identical script type using a function σ(x) =
(s1, . . . , sm), where each segment si either belongs
to the target language lt or not. Whitespace are ap-
pended to the current segment regardless of script,
preserving spacing and simplifying segmentation.
Encoding proceeds as follows:

Enc(x) =
∥∥
s∈σ(x)

{
MN (TN (s)) if s ∈ lt,

TO(s) otherwise.

Decode Given an input sequence of token IDs
y = (y1, . . . , yn), we segment it based on whether
each token ID belongs to the domain of MO. Let
τ(y) = (r1, . . . , rk) be the resulting segmentation,
where each segment ri is either a mapped segment
(all yj ∈ dom(MO)) or an unmapped segment (all
yj /∈ dom(MO)). Decoding is defined as:

Dec(y) =
∥∥
r∈τ(y)

{
TN (MO(r)) if r ⊆ dom(MO),

TO(r) otherwise.
A complication arises with segments containing
byte-level tokens representing incomplete UTF-
8 sequences. Let SU ⊆ {0, . . . ,K−1} denote

22942

LP |LR| |SR| |SC| FrAr FrEn FrKo FrRu FrGr FrTha

Ar + Lat + CJK + Cyr + Gr + Tha 15 1,035 936 2.76 1.24 2.61 2.22 2.54 13.77
Ar + Lat + CJK + Cyr + Gr 17 2,419 1,564 2.34 1.24 2.61 2.22 2.54 –
Ar + Lat + CJK + Cyr 19 3,806 1,870 2.16 1.24 2.61 2.22 – –
Ar + Lat + CJK 21 10,268 2,451 1.85 1.24 2.61 – – –
Ar + Lat 37 18,019 2,857 1.71 1.24 – – – –

Ar + Lat + Gr 35 16,632 2,790 1.73 1.24 – – 2.54 –

Table 2: Ablation study on adapting the LLaMA tokenizer using R-BPE. Fertility scores (Fr) are reported for
Arabic (Ar), English (En), Korean (Ko), Russian (Ru), Greek (Gr), and Thai (Tha). Fertility scores for TO (constant
across setups) are: Ar=2.28, En=1.24, Ko=2.61, Ru=2.22, Gr=2.54, Tha=13.77. Empty cells indicate that the
corresponding language was not preserved in the resulting tokenizer. Language/script abbreviations: Lat = Latin,
CJK = Chinese/Japanese/Korean, Cyr = Cyrillic, Gr = Greek, Tha = Thai.

token IDs in VO that yield the Unicode replace-
ment character (?) when decoded in isolation.
These problematic tokens include both raw byte
tokens and tokens created through BPE merges
over byte sequences that individually do not form
valid UTF-8 characters. Since GPT-style BPE tok-
enizers (Radford et al., 2019) initially include all
256 byte tokens, all byte tokens are in SC and thus
within dom(MO). Naive segmentation risks isolat-
ing these tokens incorrectly.

We address this by modifying τ(y) so that each
problematic token ID yj ∈ SU is grouped with
up to three subsequent tokens, forming a decoding
window of at most four tokens. If any token ID in
the window lies outside dom(MO), the window is
decoded using TO. Otherwise, we apply MO and
decode with TN . If the decoded result contains no
replacement characters, the window is valid. The
final output concatenates all decoded segments.

7 Experiments
We evaluate R-BPE in the context of adapting
LLMs to better support Arabic as the target lan-
guage, lt = Arabic. We preserve support for Latin
and Greek, LP = {Arabic,Latin,Greek}. Latin
coverage maintains English performance and en-
ables knowledge transfer, and Greek retains accu-
rate tokenization of common mathematical sym-
bols.

7.1 Training Dataset
We curated a 1GB Arabic corpus with contempo-
rary books published in social sciences and human-
ities. These cover society, governance, and pub-
lic policy topics including cultural, economic, and
sociological perspectives. It also includes school
curricula and educational materials from various
grade levels. We applied Unicode normalization to
the corpus as explained in Appendix A to ensure
consistency.

7.2 Tokenizer Efficiency
We evaluate our method on three open-weight BPE-
based LLM tokenizers: LLaMA 3.1 8B1, Com-
mand R 35B2, and Qwen 3 8B3, and refer to them
by these abbreviations throughout the paper. For
each original TO, we construct a corresponding
TR−BPE that combines TO with a TN trained on
the corpus introduced in Section 7.1. We compare
Arabic and English fertility scores, defined as the
average number of subword units per word (Rust
et al., 2021), for TO and TR−BPE . We use the
Aya dataset (Singh et al., 2024) to measure English
and Arabic fertility. For Arabic, we also use the
ANTCorpus (Chouigui et al., 2021). Table 1 re-
ports tokenizer statistics and fertility scores. On av-
erage, TR−BPE reduces Arabic fertility by 24.42%
while maintaining English fertility scores. This is
achieved by the mapping layer that routes Arabic
text to TN and all other text to TO.

7.3 Parity and Continued Words
Since the models we evaluate are English-centric,
we report tokenization parity with respect to En-
glish in Table 3. Specifically, we compute the
premium for Arabic relative to English on the
FLORES-200 dataset (NLLB Team et al., 2024),
following the definition in (Petrov et al., 2023).
To further assess segmentation quality improve-
ments, we also report the proportion of continued
words for Arabic on the Universal Dependencies
v2.7 PADT treebank (Zeman et al., 2020), follow-
ing (Rust et al., 2021). As shown in Table 3, The
Arabic premium relative to English is reduced by
24.6-32%, indicating more balanced segmentation.
Continued words drop by over 50%, reflecting

1https://huggingface.co/meta-llama/Llama-3.1-8B
2https://huggingface.co/CohereLabs/c4ai-command-r-

v01
3https://huggingface.co/Qwen/Qwen3-8B

22943

Tokenizer PAr PCWAr

TO TR-BPE ↓ (%) TO TR-BPE ↓ (%)

LLaMA 1.67 1.26 24.6 0.55 0.27 50.9
Command R 1.50 1.10 26.7 0.46 0.15 67.4
Qwen 1.65 1.12 32.1 0.50 0.18 64.0

Table 3: Premium (PAr) w.r.t. English and proportion of
continued-words (PCWAr) for Arabic (↓% = percent-
age reduction from TO to TR−BPE).

cleaner and more complete Arabic word bound-
aries.

7.4 Token Reuse vs. Language Coverage
To examine how the extent of token reuse (i.e.,
the size of SR) affects Arabic fertility while main-
taining support for languages in LP , we adapt
the LLaMA tokenizer with different LP config-
urations, varying the size and composition of SR.
Results in Table 2, computed on the FLORES-200
dataset (NLLB Team et al., 2024), show that R-
BPE enables flexible trade-offs between enhancing
support for lt and preserving multilingual coverage.
The configuration used in our main experiments
corresponds to the table’s last row.

7.5 Language Adaptive Pretraining
To evaluate the effectiveness of our R-BPE
framework for language adaptation (Chau et al.,
2020), we conduct continued pretraining using
the LLaMA 3.1 8B model as our base, denoted
BaseLLaMA. We train two variants on our dataset:
TrainedLLaMA using the original tokenizer TO,
and R-BPELLaMA using our modified tokenizer
TR−BPE . For R-BPELLaMA, embeddings of the
new tokens that are mapped to reused tokens are
initialized by averaging the embeddings of their
constituent subwords from TO. This setup allows us
to assess whether the expanded Arabic vocabulary
in R-BPELLaMA leads to improved performance
on Arabic, while maintaining the same model size
and benefiting from longer sequence lengths.

Following the pretraining setup of the LLaMA
3 models (Grattafiori et al., 2024), we apply sam-
ple packing, with a maximum sequence length of
2048. This yields 49,600 sequences using TR−BPE

and 68,629 using TO, as TR−BPE’s lower fertility
allows more tokens per sequence. Both models
are trained for 8 epochs on 8×H100 SXM5 GPUs.
Model hyperparameters are listed in Appendix B.

We evaluate on ArabicMMLU (Koto et al., 2024)
and EnglishMMLU (Hendrycks et al., 2021), re-
porting average accuracy every two epochs in Table

Model Ep ArMMLU DataMMLU EnMMLU

BaseLLaMA – 35.44 36.12 44.33

TrainedLLaMA

2 36.64 36.84 44.54
4 37.45 36.50 44.80
6 37.69 36.84 44.70
8 37.89 36.72 44.80

R-BPELLaMA

2 29.71 32.73 44.35
4 33.25 38.38 44.22
6 34.61 39.91 44.19
8 35.40 41.21 44.04

Table 4: Comparison with LLaMA models across train-
ing epochs (Ep) on ArabicMMLU and EnglishMMLU
benchmarks. DataMMLU is a subset of ArabicMMLU
with topics aligned with R-BPE’s training dataset.

4. We also report accuracy on ArabicMMLU sub-
sets aligned with our training domain: social sci-
ence, political science, philosophy, law, and civics
which we denote by DataMMLU.

Training TrainedLLaMA took 10 hours, while
R-BPELLaMA took 7 hours and 20 minutes. Us-
ing TR−BPE yields a 7.33% reduction in training
time thanks to the shorter sequences produced.
At the end of training, TrainedLLaMA scored
37.89% on ArabicMMLU, 36.72% on DataMMLU,
and 44.80% on EnglishMMLU. R-BPELLaMA
scored 35.40%, 41.21%, and 44.04%, respectively,
while BaseLLaMA achieved 35.44%, 36.12%, and
44.33%.

Although R-BPELLaMA underperformed
TrainedLLaMA on ArabicMMLU by 2.49%, it
matched the base model and outperformed both
on DataMMLU by 5.09%. English performance
remained stable across all models. For a lower
compute budget, R-BPE provides stronger in-
domain accuracy and shorter sequences. In future
work, we will perform more continued pre-training
steps with more diverse topics to fully adapt the
reused embeddings. We hypothesize that this will
compensate for the remaining 2.5-point gap on the
ArabicMMLU out-of-domain topics.

8 Conclusion
In this paper, we presented R-BPE, a lightweight
vocabulary reuse framework designed specifically
for BPE-based tokenizers. Our experiments demon-
strate that R-BPE can effectively reduce subword
fertility for a specified target language like Arabic
without compromising English performance. Con-
tinued pretraining confirms that R-BPE maintains
baseline capabilities while improving in-domain ac-
curacy and computational efficiency. Future work
should explore scaling the method to larger datasets
to further enhance out-of-domain performance.

22944

Limitations

R-BPE uses Unicode-based vocabulary language
classification. As such, when a target language is
specified (e.g., Arabic), all text written in the cor-
responding script is routed to TN to ensure correct
tokenization. Therefore, if support for languages
sharing the same script (e.g., Urdu) is needed using
TO, R-BPE cannot be used, as this may lead to
unexpected tokenization behavior. We leave the ex-
ploration of more fine-grained vocabulary language
classification methods to future work.

R-BPE requires the preserved set LP to omit at
least some pretrained languages, as it is not feasi-
ble to preserve all of them. Thus, trade-offs nat-
urally arise between token reuse and multilingual
support, as demonstrated in the ablation study in
Section 7.4.

Our downstream evaluations are conducted pri-
marily on Arabic, leveraging a corpus focused on
social sciences and humanities, providing robust
results for this domain. However, additional evalu-
ations on languages from diverse domains, scripts,
and typologies would help substantiate the general
applicability of R-BPE. We also evaluate R-BPE
only on BPE-based decoder-only PLMs. In princi-
ple, the token reuse approach could be adapted to
other model types, such as BERT-style encoders,
or to non-BPE tokenization schemes, but we leave
this to future work.

Furthermore, we initialized embeddings of
reused tokens by averaging subword embeddings;
alternative initialization approaches may yield im-
proved performance. Finally, our experiments used
moderately sized models (LLaMA 3.1-8B) and
datasets (1GB), and further work is needed to eval-
uate how R-BPE performs at larger scales.

Ethics Statement

Our method reuses token IDs from PLMs, which
may carry forward biases present in the original
training data. This can potentially lead to model
behavior that does not align with the cultural or
linguistic norms of the target language commu-
nity. We emphasize the importance of conducting
thorough bias evaluations and incorporating human
oversight prior to deploying R-BPE adapted mod-
els in downstream applications.

Acknowledgements

We thank our colleagues Qusai Abu-Obaida for
the initial suggestion to explore token-ID mapping

between new and original tokenizers, and Hadi
Hamoud for assisting with curating the training
dataset used in Section 7.1. We are also grateful
to the anonymous reviewers, whose constructive
feedback helped improve this paper.

References
M Saiful Bari, Yazeed Alnumay, Norah A. Alzahrani,

Nouf M. Alotaibi, Hisham A. Alyahya, Sultan Al-
Rashed, Faisal A. Mirza, Shaykhah Z. Alsubaie, Has-
san A. Alahmed, Ghadah Alabduljabbar, Raghad
Alkhathran, Yousef Almushayqih, Raneem Alnajim,
Salman Alsubaihi, Maryam Al Mansour, Majed Al-
rubaian, Ali Alammari, Zaki Alawami, Abdulmohsen
Al-Thubaity, and 6 others. 2024. Allam: Large
language models for arabic and english. Preprint,
arXiv:2407.15390.

Ethan C. Chau, Lucy H. Lin, and Noah A. Smith. 2020.
Parsing with multilingual BERT, a small corpus, and
a small treebank. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1324–1334, Online. Association for Computational
Linguistics.

Pavel Chizhov, Catherine Arnett, Elizaveta Korotkova,
and Ivan P. Yamshchikov. 2024. BPE gets picky: Effi-
cient vocabulary refinement during tokenizer training.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
16587–16604, Miami, Florida, USA. Association for
Computational Linguistics.

Amina Chouigui, Oussama Ben Khiroun, and Bilel
Elayeb. 2021. An arabic multi-source news corpus:
Experimenting on single-document extractive sum-
marization. Arabian Journal for Science and Engi-
neering, 46(4):3925–3938.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Yiming Cui, Ziqing Yang, and Xin Yao. 2024. Efficient
and effective text encoding for chinese llama and
alpaca. Preprint, arXiv:2304.08177.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Konstantin Dobler and Gerard de Melo. 2023. FOCUS:
Effective embedding initialization for monolingual
specialization of multilingual models. In Proceed-
ings of the 2023 Conference on Empirical Methods in

22945

https://arxiv.org/abs/2407.15390
https://arxiv.org/abs/2407.15390
https://doi.org/10.18653/v1/2020.findings-emnlp.118
https://doi.org/10.18653/v1/2020.findings-emnlp.118
https://doi.org/10.18653/v1/2024.emnlp-main.925
https://doi.org/10.18653/v1/2024.emnlp-main.925
https://doi.org/10.1007/s13369-020-05258-z
https://doi.org/10.1007/s13369-020-05258-z
https://doi.org/10.1007/s13369-020-05258-z
https://proceedings.neurips.cc/paper_files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://arxiv.org/abs/2304.08177
https://arxiv.org/abs/2304.08177
https://arxiv.org/abs/2304.08177
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.18653/v1/2023.emnlp-main.829

Natural Language Processing, pages 13440–13454,
Singapore. Association for Computational Linguis-
tics.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu,
Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela
Ramos, Ravin Kumar, Charline Le Lan, Sammy
Jerome, and 179 others. 2024. Gemma 2: Improving
open language models at a practical size. Preprint,
arXiv:2408.00118.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

HuggingFace. 2021. Tokenizers. https://github.
com/huggingface/tokenizers.

Albert Q Jiang, A Sablayrolles, A Mensch, C Bamford,
D Singh Chaplot, Ddl Casas, F Bressand, G Lengyel,
G Lample, L Saulnier, and 1 others. 2023. Mistral
7b. arxiv. arXiv preprint arXiv:2310.06825, 10.

Teruno Kajiura, Shiho Takano, Tatsuya Hiraoka, and
Kimio Kuramitsu. 2023. Vocabulary replacement in
SentencePiece for domain adaptation. In Proceed-
ings of the 37th Pacific Asia Conference on Language,
Information and Computation, pages 645–652, Hong
Kong, China. Association for Computational Linguis-
tics.

Seungduk Kim, Seungtaek Choi, and Myeongho Jeong.
2024. Efficient and effective vocabulary expan-
sion towards multilingual large language models.
Preprint, arXiv:2402.14714.

Artur Kiulian, Anton Polishko, Mykola Khandoga,
Yevhen Kostiuk, Guillermo Gabrielli, ukasz Gagała,
Fadi Zaraket, Qusai Abu Obaida, Hrishikesh Garud,
Wendy Wing Yee Mak, and 1 others. 2024. From
english-centric to effective bilingual: Llms with
custom tokenizers for underrepresented languages.
arXiv preprint arXiv:2410.18836.

Fajri Koto, Haonan Li, Sara Shatnawi, Jad Doughman,
Abdelrahman Boda Sadallah, Aisha Alraeesi, Khalid
Almubarak, Zaid Alyafeai, Neha Sengupta, Shady
Shehata, Nizar Habash, Preslav Nakov, and Timothy
Baldwin. 2024. Arabicmmlu: Assessing massive
multitask language understanding in arabic. Preprint,
arXiv:2402.12840.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gunjan
Chhablani, Bhavitvya Malik, Simon Brandeis, Teven
Le Scao, Victor Sanh, Canwen Xu, Nicolas Patry,
and 13 others. 2021. Datasets: A community library
for natural language processing. In Proceedings of
the 2021 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 175–184, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Haoran Lian, Yizhe Xiong, Jianwei Niu, Shasha Mo,
Zhenpeng Su, Zijia Lin, Hui Chen, Jungong Han, and
Guiguang Ding. 2025. Scaffold-bpe: Enhancing byte
pair encoding for large language models with simple
and effective scaffold token removal. Proceedings
of the AAAI Conference on Artificial Intelligence,
39(23):24539–24548.

Benjamin Minixhofer, Fabian Paischer, and Navid Rek-
absaz. 2022. WECHSEL: Effective initialization of
subword embeddings for cross-lingual transfer of
monolingual language models. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3992–4006,
Seattle, United States. Association for Computational
Linguistics.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Barrault,
Gabriel Mejia Gonzalez, Prangthip Hansanti, and 20
others. 2024. Scaling neural machine translation to
200 languages. Nature, 630(8018):841–846.

Yuta Nozaki, Dai Nakashima, Ryo Sato, Naoki Asaba,
and Shintaro Kawamura. 2025. VRCP: Vocabulary
replacement continued pretraining for efficient multi-
lingual language models. In Proceedings of the Sec-
ond Workshop on Scaling Up Multilingual & Multi-
Cultural Evaluation, pages 48–59, Abu Dhabi. Asso-
ciation for Computational Linguistics.

Vaidehi Patil, Partha Talukdar, and Sunita Sarawagi.
2022. Overlap-based vocabulary generation im-
proves cross-lingual transfer among related lan-
guages. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 219–233, Dublin,
Ireland. Association for Computational Linguistics.

Aleksandar Petrov, Emanuele La Malfa, Philip H.S.
Torr, and Adel Bibi. 2023. Language model tok-
enizers introduce unfairness between languages. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA. Curran Associates Inc.

22946

https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://aclanthology.org/2023.paclic-1.64/
https://aclanthology.org/2023.paclic-1.64/
https://arxiv.org/abs/2402.14714
https://arxiv.org/abs/2402.14714
https://arxiv.org/abs/2402.12840
https://arxiv.org/abs/2402.12840
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.1609/aaai.v39i23.34633
https://doi.org/10.1609/aaai.v39i23.34633
https://doi.org/10.1609/aaai.v39i23.34633
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.1038/s41586-024-07335-x
https://doi.org/10.1038/s41586-024-07335-x
https://aclanthology.org/2025.sumeval-2.5/
https://aclanthology.org/2025.sumeval-2.5/
https://aclanthology.org/2025.sumeval-2.5/
https://doi.org/10.18653/v1/2022.acl-long.18
https://doi.org/10.18653/v1/2022.acl-long.18
https://doi.org/10.18653/v1/2022.acl-long.18

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder,
and Iryna Gurevych. 2021. How good is your tok-
enizer? on the monolingual performance of multilin-
gual language models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3118–3135, Online. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Shivalika Singh, Freddie Vargus, Daniel D’souza,
Börje Karlsson, Abinaya Mahendiran, Wei-Yin Ko,
Herumb Shandilya, Jay Patel, Deividas Mataciu-
nas, Laura O’Mahony, Mike Zhang, Ramith Het-
tiarachchi, Joseph Wilson, Marina Machado, Luisa
Moura, Dominik Krzemiński, Hakimeh Fadaei, Irem
Ergun, Ifeoma Okoh, and 14 others. 2024. Aya
dataset: An open-access collection for multilingual
instruction tuning. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11521–
11567, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Zihan Wang, Karthikeyan K, Stephen Mayhew, and Dan
Roth. 2020. Extending multilingual BERT to low-
resource languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2649–2656, Online. Association for Computational
Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Elia
Ackermann, Noëmi Aepli, Hamid Aghaei, Željko
Agić, Amir Ahmadi, Lars Ahrenberg, Chika Kennedy
Ajede, Gabrielė Aleksandravičiūtė, Ika Alfina, Lene
Antonsen, Katya Aplonova, Angelina Aquino, Car-
olina Aragon, Maria Jesus Aranzabe, �Hórunn
Arnardóttir, Gashaw Arutie, and 397 others. 2020.
Universal dependencies 2.7. LINDAT/CLARIAH-
CZ digital library at the Institute of Formal and Ap-
plied Linguistics (ÚFAL).

22947

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2024.acl-long.620
https://doi.org/10.18653/v1/2024.acl-long.620
https://doi.org/10.18653/v1/2024.acl-long.620
https://doi.org/10.18653/v1/2020.findings-emnlp.240
https://doi.org/10.18653/v1/2020.findings-emnlp.240
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://hdl.handle.net/11234/1-3424

A Arabic Unicode Normalization

We applied a custom text normalization procedure to our Arabic training corpus introduced in Section 7.1.
We began by extracting all characters in the Arabic Unicode range, along with their frequencies and the
top 10 words in which they appeared. Characters were sorted by code point to distinguish base forms
from homoglyphs. For each character, we assigned a normalized form, either the character itself or its
base form, based on its usage patterns. If replacing a character with its base form altered the visual or
orthographic integrity of common words, we preserved the original character; otherwise, we adopted the
base form. We also corrected cases where visually similar non-Arabic characters were used in Arabic
contexts, replacing them with their appropriate Arabic equivalents.

Although such replacements may introduce errors in non-Arabic contexts, our focus is on maximizing
consistency within Arabic text. To evaluate the quality of our normalization, we compared it against
Unicode normalization forms NFC, NFD, NFKC, and NFKD. Our method aligned most closely with
NFKC. In cases of disagreement, we manually reviewed the affected characters, prioritizing linguistic and
visual consistency in Arabic usage, especially where NFKC failed to collapse characters to a canonical
base form.

B Model Training Hyperparameters

We conducted all experiments on 8 Nvidia H100 SXM5 GPUs. We used the HuggingFace transformers
(Wolf et al., 2020), tokenizers (HuggingFace, 2021), and datasets (Lhoest et al., 2021) libraries. We used
the same hyperparameters for all experiments as detailed in Table 5.

Hyper-parameter Value

Model precision bfloat16 (bf16)
Optimizer AdamW
Peak learning rate 2.0× 10−5

LR scheduler Cosine decay
Warm-up ratio 10%
Gradient accumulation steps 64
Gradient checkpointing Enabled (non-reentrant)
Sequence length 2048 tokens
Train batch size (per device) 4

Table 5: Key training hyper-parameters for the continued-pretraining of Llama-3.1-8B.

22948

