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Abstract

The Latin script is often used to informally
write languages with non-Latin native scripts.
In many cases (e.g., most languages in India),
the lack of conventional spelling in the Latin
script results in high spelling variability. Such
romanization renders languages that are nor-
mally easily distinguished due to being written
in different scripts — Hindi and Urdu, for ex-
ample — highly confusable. In this work, we
increase language identification (LID) accuracy
for romanized text by improving the methods
used to synthesize training sets. We find that
training on synthetic samples which incorpo-
rate natural spelling variation yields higher LID
system accuracy than including available nat-
urally occurring examples in the training set,
or even training higher capacity models. We
demonstrate new state-of-the-art LID perfor-
mance on romanized text from 20 Indic lan-
guages in the Bhasha-Abhijnaanam evaluation
set (Madhani et al., 2023a), improving test F1
from the reported 74.7% (using a pretrained
neural model) to 85.4% using a linear classi-
fier trained solely on synthetic data and 88.2%
when also training on available harvested text.

1 Introduction

Web crawls are an important source of multilin-
gual training data for natural language modeling,
containing rich and diverse spontaneous language,
albeit alongside less useful content such as boiler-
plate and non-language text. Due to this latter noise,
to reach adequate levels of data quality, aggres-
sive filtering is typically applied, including setting
thresholds on language identification (LID) confi-
dence to retain text (see, e.g., Raffel et al., 2020;
Xue et al., 2021; Abadji et al., 2022; Kudugunta
et al., 2023; Kargaran et al., 2024).

Filtering text by LID confidence places lan-
guages that are less confidently identified at a
higher risk of being filtered out, and, indeed, cer-
tain classes of text are heavily underrepresented

in such collections as a result, such as the roman-
ized text detailed below. This can become a self-
reinforcing status, to the extent that such collec-
tions may be used as sources of training data for
subsequent LID systems. For example, informal
romanization — the use of the Latin script without
orthography to write languages that are natively
written with non-Latin scripts — is both common,
e.g., in the languages of South Asia, and generally
makes the languages much more difficult to iden-
tify. The 22 scheduled languages of India all use
non-Latin scripts in their official writing systems,
but are also commonly written informally in the
Latin script (Brandt, 2020). Even so, romanized
texts in these languages are mostly omitted from
large, multilingual web corpora such as multilin-
gual C4 (mC4, Xue et al. 2021),! and are relatively
sparse in MADLAD-400 (Kudugunta et al., 2023)>
and GlotCC (Kargaran et al., 2024).3

The distinction between LID system perfor-
mance on text in the native scripts of languages
versus romanized text in those languages is strik-
ingly demonstrated in the Bhasha-Abhijnaanam
(denoted B-A) LID benchmark (Madhani et al.,
2023a)* for the 22 scheduled languages of India.
The best systems reported in that paper achieved
nearly 99% accuracy on the native script LID task,
while the best reported performance on the roman-
ized task (covering 20 of the 22 languages) reached
just over 80% accuracy. Further, to achieve this
latter result, they relied on a relatively expensive
BERT model (Devlin et al., 2019); a simple fast-

'mC4 contains romanized text in 6 languages that natively
use other scripts, but only one South Asian language was
included (Hindi), and quality assessments of the romanized
sets in mC4 have been unfavorable (Kreutzer et al., 2022).

2https://huggingface.co/datasets/allenai/
MADLAD-409, data released under CC-BY-4.0 license.

3https://github.com/cisnlp/GlotCC, data released
under CCO-1.0 license. See Table 3 for data sizes.

4https: //huggingface.co/datasets/aidbharat/
Bhasha-Abhijnaanam, data released under CCO license.

2318

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 2318-2336
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://huggingface.co/datasets/allenai/MADLAD-400
https://huggingface.co/datasets/allenai/MADLAD-400
https://github.com/cisnlp/GlotCC
https://huggingface.co/datasets/ai4bharat/Bhasha-Abhijnaanam
https://huggingface.co/datasets/ai4bharat/Bhasha-Abhijnaanam

Text (Joulin et al., 2016, 2017) linear model yielded
the best performance on native script LID, but on
the romanized task its performance fell far behind
the best system at just 71.5% accuracy.

Given the dearth of natural, collected training
data in the Latin script for these languages, the
above romanized LID results were achieved us-
ing synthesized training data created by automati-
cally romanizing native script training sets using a
neural sequence-to-sequence transliteration model
(Madhani et al., 2023b). In this paper, we evalu-
ate methods for improving romanized LID system
performance, including synthesizing training data
in a way that mimics natural spelling variation in
romanized text; and augmenting synthesized data
with distantly supervised datasets (MADLAD-400
and GlotCC). Through careful controlled experi-
mentation, we demonstrate that:

* Synthesizing training data with spelling varia-
tion by sampling from romanization models
provides very large accuracy improvements
for this task, even when using smaller, less
accurate romanization models;

* These improvements are obtained to a larger
extent by lightweight linear models, so that
higher capacity pretrained models are not
needed to reach the best reported results; and

* Augmenting the training data by including
diversely synthesized copies of the training
set and/or some independently harvested data
yields further modest improvements.

Our best system reduces the best previously re-
ported error rate on this task by over 60% relative.’

We also provide extensive analysis of language
confusions, system errors and the kinds of spelling
variation produced by our synthesis methods.

2 Background and preliminaries

2.1 Language identification (LID) systems

LID is a task with a long history, dating from at
least Mustonen (1965). Jauhiainen et al. (2019)’s
survey notes that LID is typically cast as a text clas-
sification task over a closed set of mutually exclu-
sive classes.® They also note the early adoption of

SExplicit system details beyond those provided in
this paper along with any new resources and scripts re-
quired to replicate these results are available at https:
//github.com/google-research/google-research/
tree/master/informally_romanized_lang_id.

®Multilingual text, which would seem to contradict this
idea of mutual exclusivity, is composed of shorter monolingual
text spans for which a single tag per span would suffice.

character n-grams as features in diverse LID classi-
fication approaches (Church, 1986; Beesley, 1988;
Cavnar and Trenkle, 1994), which remains a key
feature set for modern LID (Lui and Baldwin, 2012;
Brown, 2014; Kargaran et al., 2023; Burchell et al.,
2023) and dialect identification systems (Coltekin
et al., 2018; Baimukan et al., 2022).

Document level LID assigns labels to entire doc-
uments, within which there is typically redundant
evidence, hence the classification task is easier.
Shorter samples, including sub-sentential strings,
present more of a challenge, but such systems can
be applied in more scenarios than document-level
systems, including, e.g., identifying different lan-
guage spans in multilingual documents.

As stated in the introduction, LID systems are
often used for analyzing or filtering large text col-
lections, hence efficient inference is a key consid-
eration. Generally speaking, feature-based linear
classifiers are practical alternatives to more compu-
tationally expensive neural methods (Toftrup et al.,
2021; Adebara et al., 2022), including those that
might be based on pretrained language models (Mo-
han et al., 2023; Manukonda and Kodali, 2025). For
challenging scenarios, such as when two languages
are highly confusable, more expressive classifiers
can yield accuracy improvements that justify the
extra computational expense.

While modern neural language models have
been shown to perform well on general LID tasks
across a range of world languages, their perfor-
mance depends on the subset of languages the
model is prompted to identify and the scripts these
languages are written in (Chen et al., 2024). More
importantly, such models are extremely compute
and memory-intensive to be deployed at scale, e.g.,
at the corpus filtering stage. In fact, Kargaran et al.
(2023) explicitly cites inference throughput as a
consideration for developing the GlotLID language
identification system, which was used to filter the
GlotCC corpus mentioned earlier.

2.2 LID of romanized language

LID systems based on lightweight linear models
typically rely on features consisting of short col-
locations — character n-grams — to distinguish
between languages. When two languages use dif-
ferent scripts, which are encoded in distinct Uni-
code blocks, even character unigrams can be suffi-
cient to distinguish the two. Written in their native
scripts, Chinese and English are straightforward to
distinguish, hence are unlikely to be confused by

2319


https://github.com/google-research/google-research/tree/master/informally_romanized_lang_id
https://github.com/google-research/google-research/tree/master/informally_romanized_lang_id
https://github.com/google-research/google-research/tree/master/informally_romanized_lang_id

Hindi ‘ Urdu ‘ Attested romanizations

sampoorn, samporan,

? ‘U) > ‘ sampuran, Sumpoorn

Table 1: Human-attested romanizations of a word in Hindi
and Urdu that translates as ‘complete” in English. These
attested romanizations are shared across both Hindi and Urdu.

a classifier; similarly Hindi and Urdu — the former
written in the Devanagari script, the latter in Perso-
Arabic — are quite easy to distinguish given the lack
of character overlap. However, when Hindi and
Urdu are written in the Latin script (romanized),
not only do they share the same characters, but the
character collocations observed in the two highly
mutually-intelligible languages will greatly over-
lap. For example, Table 1 presents an example of a
word shared by Hindi and Urdu with multiple over-
lapping attested romanizations in both languages.
Accurate LID of romanized text is of practical
importance as the Latin script is often used as an in-
formal medium between speakers of languages that
are formally written in a different script, e.g., in text
messages or social media posts (Ahmed et al., 2011;
Irvine et al., 2012; Adouane et al., 2016; Baruah
et al., 2024; Perera et al., 2025). The lack of (or
limited access to) standard spelling conventions for
these languages in the Latin script is due to multiple
confounding sociolinguistic, technological and po-
litical factors at play in South Asia (Choksi, 2020;
Brandt, 2020) and beyond (Bahri, 2022), and poses
yet another challenge for romanized LID. Addi-
tional practical uses of romanized LID include im-
proving romanized text training data coverage for
modern neural language models (Caswell et al.,
2020), LID of romanized text entry in mobile key-
boards (Wolf-Sonkin et al., 2019), extending neural
methods to poorly documented languages (Post and
Burling, 2017; Aji et al., 2022) or languages with-
out orthography (Torwali, 2020), among others.
Several datasets have been released that con-
tain parallel native/Latin script data, which permits,
among other things, training and/or validation of
transliteration models (see Section 2.4). These in-
clude the Dakshina dataset (Roark et al., 2020),
which includes single word native/Latin script pairs
in romanization lexicons as well as native/Latin
script parallel full sentences, in addition to native-
script-only Wikipedia text, for twelve South Asian
languages. The Aksharantar dataset (Madhani
et al., 2023a,b) contains mined single word na-
tive/Latin script pairs in romanization lexicons
for 21 South Asian languages. And, of course,
the benchmark being used for this work, the B-A

dataset, also contains parallel resources of this sort.

Literature on romanized LID per se is relatively
scarce. In one of the earliest works on the sub-
ject, Pavan et al. (2010) propose a string similarity-
based system for identification of romanized docu-
ments in Hindi, Telugu, Tamil, Kannada and Malay-
alam. More recently, Nielsen et al. (2023) proposed
approaches for distinguishing romanized Hindi
from romanized Urdu in the Dakshina dataset. Dey
et al. (2024) compared support vector machines
(SVM, Cortes and Vapnik, 1995) and finetuned
XLM-RoBERTa architecture (Conneau et al., 2020)
for romanized LID using data from 12 South Asian
languages sourced from the B-A and Aksharan-
tar datasets. Beyond South Asia, Adouane et al.
(2016) investigated LID of romanized Arabic and
Berber using SVM classifiers trained on word- and
character-level n-gram features.

2.3 Classifiers

We consider two classes of LID models in this pa-
per: fastText linear models (Joulin et al., 2016,
2017)7 and neural pretrained transformer-based
multilingual TS (mT5) models (Xue et al., 2021).8

While linear classifiers have low inference la-
tency, pretrained mT5 classifiers are more expres-
sive, and may be able to better disambiguate simi-
larly written languages. Since prior results demon-
strated that pretrained neural models outperformed
linear models (Madhani et al., 2023a), we use mT5
to gauge whether lightweight methods can provide
competitive results to such models, and to investi-
gate the interaction between training set and classi-
fier capacity.” See Appendix A for training details.

2.4 Transliteration models

Transliteration of text from one script to another
is typically framed as a sequence-to-sequence task.
While this task can be performed with neural
sequence-to-sequence models, non-neural methods
are also competitive. Kirov et al. (2024) recently
examined romanization (transliteration from na-
tive to Latin script) methods for synthesizing full
sentence parallel text, and evaluated the character
error rate (CER) achieved by multiple model types.

"https://fasttext.cc/, MIT license.

8https://github.com/google-research/
multilingual-t5, Apache License 2.0.

°Also, mT5 pretraining is unlikely to be contaminated with
the training or validation data for the current task, since the
model predates the task. Additionally, unlike modern LLMs, it
has not been instruction-tuned. For these reasons, it provides
an informative comparison within our controlled experiments.
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For single, non-ensembled models producing sin-
gle best romanizations, CER!0 ranged from 2.6%
from a fully pretrained TS5 model to 3.7% for a
non-neural pair n-gram method; these results were
slightly improved via further system ensembling. A
more complex evaluation of k-best outputs showed
a similar pattern of relatively narrow ranges of error
rates. In this paper, we use non-neural pair n-gram
methods for automatic romanization, trained fol-
lowing the approach outlined in Kirov et al. (2024).
Briefly, pair n-gram models (Bisani and Ney,
2008) are a class of models used to map between
two sets of discrete token sequences, and are com-
monly used for transliteration (Hellsten et al., 2017;
Kirov et al., 2024). They can be directly encoded as
weighted finite-state transducers (WFSTs), which
permit efficient exact inference. Given a parallel
corpus of input/output strings, expectation maxi-
mization (EM) is used to create strings of aligned
single character input/output pairs, from which n-
gram models are trained. For example, if ABC is
aligned with abc, then the EM alignment algorithm
may produce A:a B:b C:c, and this string (along
with a full corpus of other such alignments) are
used to train an n-gram model. The pair symbols
are then split into input and output symbols, so that
the n-gram model is encoded as a transducer. See
Kirov et al. (2024) for details on training such mod-
els from romanization lexicons in the Dakshina
dataset (Roark et al., 2020), which we also use.'!
The LID benchmark that we investigate in
this paper provided romanized training and de-
velopment data synthesized using IndicXlit (Mad-
hani et al., 2023b), a neural sequence-to-sequence
transliteration model trained on over twenty south
Asian languages from the Aksharantar romaniza-
tion lexicon, a lexicon we also use in this paper.'?

3 Methods

3.1 Evaluation

We evaluate classifiers on the B-A romanized LID
task (Madhani et al., 2023a). The benchmark pro-
vides training/development data for each language
in the native script, and the IndicXlit system, de-
scribed in Section 2.4, was used to romanize the
native script text to also provide synthetic train-

'CER was assessed against the closest match from multiple
references, hence is a minimum CER over that set.

11https ://github.com/google-research-datasets/
dakshina, data released under CC BY-SA 4.0 license.

12https ://huggingface.co/datasets/ai4bharat/
Aksharantar, data released under CC-BY and CCO licenses.

ing/development data in the Latin script for 20 of
the 22 languages.

The B-A romanized test set consists of full sen-
tence examples from Dakshina (Roark et al., 2020)
for the following 11 languages: Bangla, Gujarati,
Hindi, Kannada, Malayalam, Marathi, Punjabi,
Sindhi, Tamil, Telugu, and Urdu. Each of these
languages contains between 4,371 to 4,881 test
examples. The additional languages in the roman-
ized test set (Assamese, Bodo, Kashmiri, Konkani,
Maithili, Manipuri, Nepali, Oriya, and Sanskrit)'3
each contain roughly 10% as many test examples as
the Dakshina set (423 to 512 examples per class).

For all runs, languages in the training set are
oversampled to the plurality class — the language
with the most examples in a given training set —
to ensure a uniform prior distribution over lan-
guages. For instance, if our training set contains
1,000 Hindi, 750 Bangla, and 500 Bodo examples,
we oversample the Bangla and Bodo examples to
yield 3,000 total training examples, by duplicating
250 Bangla and 500 Bodo examples. We train fast-
Text models from scratch on the various training
sets and also use these training sets to finetune the
pretrained public base and large mT5 checkpoints.

3.2 Development set

Note that, while the synthetic dev set provided by
the B-A benchmark can be useful for tuning some
system parameters, it has a critical mismatch with
the test set: the test set consists of human roman-
ized text, with varied romanizations; but the syn-
thetic dev set consists of machine generated roman-
izations without such variation. In particular, the
IndicXlit system romanized each native script word
the same way whenever it was encountered.

In addition to evaluating on real (human) roman-
ized text, Madhani et al. (2023a) also evaluated
their system’s LID performance when applied to
collections of synthesized romanizations, to assess
the importance of the mismatch between romaniza-
tions used for training and evaluation. They show
that LID accuracy improves from 80.4% to 96.0%
when evaluating on human versus synthetic roman-
izations. This is unsurprising, since the distribution
of synthetic romanizations are (for obvious rea-
sons) far more similar to the training/dev sets than
human romanizations are. Thus, rather than use
the provided synthetic dev set, we instead chose to
employ a human romanized dev set for a subset of

3The romanized benchmark omits Dogri and Santali.
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Sentence in the native Devanagari script:

System method 7 33 wa fisd W@ & & W & |
B-A IndicXlit Neural inmein 33 school pichhale saal hii bund hue hain .
Dakshina 2-gram Pair n-gram  inamen 33 scool pichale sal hi bnd hue han .
Dakshina 3-gram Pair n-gram  inmein 33 scool pichle sal hi band hue hain .
Dakshina 4-gram Pair n-gram  inmen 33 school pichhale sal hi band hue han .
Aksharantar 3-gram  Pair n-gram  inmen 33 school pichhle sal hi band huye han .

English translation:

Of these, 33 schools were closed last year alone.

Table 2: Romanizations sampled from different transliteration models.

the B-A languages, which we describe here.

The Dakshina dataset (Roark et al., 2020) con-
sists of three parts for each of the languages in
the collection: single word romanization lexicons,
where native script words are paired with one
or more attested romanizations;'* native script
Wikipedia text samples; and 10k human roman-
ized full sentences sampled from a subset of the
native script Wikipedia text. These latter full sen-
tence romanizations are split into development and
test partitions of 5k sentences each, and the B-A
test set includes the Sk sentences from the test par-
tition. This leaves the 5k development partition for
use as a development set, covering an eleven (out
of twenty) language subset of the B-A task.

All hyperparameters were first tuned on this Dak-
shina development set, restricting the training set
to the eleven languages shared with Dakshina, sam-
pled without replacement to 1,000 examples per
language. See Appendix E for additional discus-
sion and results comparing the synthetic dev set
with this human romanized dev set.

3.3 Romanized training set synthesis

The B-A synthesized training set for the romanized
LID task was created by automatically romaniz-
ing the native script training set. In this paper, we
explore other methods for training set synthesis
from the same native script training set, using pair
n-gram models of various Markov orders (2—4),
as described in Section 2.4. These models were
trained on reference input/output word pairs either
from the Dakshina (Roark et al., 2020) or Aksha-
rantar (Madhani et al., 2023b) romanization lexi-
cons. In fact, significant portions of the Dakshina
lexicons are directly included in the Aksharantar
lexicons. However, these Dakshina subsets within
Aksharantar have greater typical fertility than the
rest of Aksharantar, i.e., more attested romaniza-
tions per word. Over the 11 languages for which

“These romanization lexicons and others are used to train
romanization models used for training data synthesis.

there are Dakshina romanization lexicons, the Ak-
sharantar romanization lexicons contain just over
18 million unique native script words, but with
just 1.011 romanizations per word. For these same
languages, the Dakshina training lexicons include
265,000 unique native script words (25k in all but
Sindhi, for which there are 15k), which is less than
1.5% of Aksharantar; however, they contain on av-
erage 2.8 romanizations per word,'> hence provide
many more attested romanizations per word.

Trained transliteration models are used to synthe-
size training sets for romanized LID from the B-A
native script LID training data. Thus the source na-
tive script data is identical across the different syn-
thesis methods, including the synthesized roman-
ized training set released in the B-A benchmark.
Table 2 presents romanizations for a Hindi sentence
sampled from different transliteration models.

We use two different methods to romanize a
word given a model. First, we simply take the best
scoring romanization of the given word, the /-best
decoded romanization. Alternatively, we generate
top-k romanizations and sample over a renormal-
ized distribution of these, conditioned on the native
script string. For this study, we extract the global
8-best romanizations and their probabilities using
the Viterbi algorithm. Such exact global inference
is possible since the romanization models are en-
coded as weighted finite state transducers. In this
sense, we are sampling with temperature 1 over the
set of global 8-best romanizations. Note that, when
sampling from the k-best romanizations, each pass
over the training data yields another distinctly ro-
manized corpus. Hence, we also explore producing
multiple distinctly-romanized copies of the training
data. Functionality for performing such sampling
is built into the transliteration utilities of the Nisaba
library, see the URL in Footnote 5 for details.

Both Dakshina and Aksharantar romanization
lexicons omit some common symbols from their

5The Dakshina lexicons contain between 1.7 and 4.2 ro-
manizations per word on average, depending on the language.
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MADLAD
Language noisy clean | GlotCC
Assamese 2.0K
Bengali 1.3M 12.0K 24K
Gujarati 688.4K 5.4K 285
Hindi 22.6M 1.2M 324K
Kannada 766.0K 10.1K 416
Konkani 8.8K
Malayalam 3.5M 77.3K 3.5K
Manipuri 1.0K
Marathi 1.7K
Nepali 968
Oriya 494
Punjabi 4.7K
Sindhi 30
Tamil 34M  142.7K 4.5K
Telugu 44M  269.1K 16.1K
Urdu 84.6K

Table 3: Number of sentences for each B-A romanized lan-
guage in GlotCC and MADLAD. Where there is no number,
there are no sentences. Bodo, Kashmiri, Maithili and Sanskrit
have no romanized examples in any of these datasets.

training data, including things like native script
digits and punctuation, which are romanized in the
baseline synthesized training data. From this data,
we identified romanized tokens that fell outside
of the coverage of Dakshina or Aksharantar, and
included these tokens in model training to provide
equivalent coverage of the training set.

When generating synthetic training data for all
20 languages in the B-A LID task, we make use of
Dakshina-trained transliteration models for those
languages covered by Dakshina, and Aksharantar-
trained transliteration models for the rest. We find
that the spelling variation induced by drawing sam-
ples from transliteration models does indeed reflect
the kind of natural spelling variation reported in
the literature on informal South Asian romaniza-
tion. Phenomena such as implicit vowel realization,
variation in indicating vowel quality, and gemina-
tion are some of the most frequent variations in
these samples. See Section 4.7 and Appendix D for
analysis of spelling variability in synthetic samples.

3.4 Harvested natural examples

Another source of romanized examples for training
LID systems is already harvested text — which we
have noted is relatively sparse, but is still important
to assess as a source of distant supervision. We con-
sider two potential sources of harvested natural ro-
manized text. The first is MADLAD-400, a filtered
subset of Common Crawl that covers a wider range
of languages than mC4. The release contains text
for 7 of the 20 romanized languages in B-A, with
both ‘noisy’ and ‘clean’ sets for each. The second

Classifier F1
Training set fastText mT5-base mT5-large
B-A training | 814 84.9 85.3
Dakshina ~ 2-g 1-best | 72.5 75.1 79.2
3-g l-best | 80.6 80.4 81.7
4-g 1-best | 83.0 80.9 82.6
Aksharantar 3-g 1-best ‘ 78.3 79.6 78.7

Table 4: Dakshina development set performance as a func-
tion of training set and model class, comparing baseline B-A
synthesized training data with other synthesis methods that
romanize every instance of a word the same (1-best).

is GlotCC, a corpus of web documents whose lan-
guage has been identified with high confidence by
GlotLID, a wide coverage language identification
model. Table 3 lists the number of natural example
sentences in each of these corpora for each of the
B-A evaluation set languages.

4 Results

In this section, we step through results on the Dak-
shina (human romanized) development set as we
change the LID training set by using different train-
ing set synthesis models and different methods for
romanizing with those models. In each trial, we
present the LID F1 score for fastText, mT5-base
and mT5-large classifiers trained on the version of
the training set associated with each trial, always
comparing against training on the baseline training
data that came with the B-A dataset.'®

The results are structured so that the relative con-
tribution of different key methods are demonstrated
on the development set. We begin with results us-
ing 1-best romanizations (Section 4.1), then move
on to demonstrate improvements due to sampling
(Section 4.2). We follow this by examining the im-
pact of combining distinctly synthesized datasets
(Section 4.3), sampling multiple copies of a dataset
with the same synthesis method (Section 4.4), and
making use of distantly supervised corpora (Sec-
tion 4.5). We then present selected system perfor-
mance on the test set, and finish the section with
some discussion and analysis.

4.1 Best romanizations

Table 4 compares systems trained on the baseline
training set with those synthesized using pair n-
gram transliteration models of various orders, them-
selves trained on either the Dakshina or Aksharan-

1*We also computed accuracy for all trials, but do not report

it for development set results as this metric was very similar
to F1 for those trials.
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Classifier F1 Training set unioned Classifier F1
Training set fastText mT5-base mT5-large with B-A training fastText mT5-base mT5-large
B-A training | 814 84.9 85.3 None (B-A alone) | 814 84.9 85.3
Dakshina ~ 2-g sampled |  87.0 85.4 87.6 Dakshina ~ 2-g sampled |  88.6 86.6 87.7
3-g sampled | 88.0 86.3 87.3 3-gsampled | 88.7 86.5 89.0
4-g sampled |  88.5 87.5 88.4 4-g sampled | 88.8 86.6 88.3
Aksharantar 3-g sampled ‘ 85.6 84.0 84.9 Aksharantar 3-g sampled ‘ 87.2 84.8 85.7

Table 5: Dakshina development set performance as a func-
tion of training set and model class, comparing baseline B-A
synthesized training data with other synthesis methods that
sample romanizations from k-best output, so that words have
variable romanizations in the resulting training corpus.

tar romanization lexicons. Here the romanization
for each word is the highest probability (1-best)
transliteration according to the model.

We can make a couple observations from these
results. First, none of the romanization models
quite reach the performance achieved with the
baseline synthesized corpus, but improvements are
achieved with the Dakshina-trained models as the
order of the pair n-gram models increases. The
Aksharantar 3-gram model resulted in synthesized
training sets that did not quite reach the level of
Dakshina 3-gram model, despite most Dakshina
romanization lexicon entries being included in Ak-
sharantar for all of these languages.!”

4.2 Sampled romanizations

Table 5 compares systems trained on the baseline
training set with those synthesized by sampling
from pair n-gram transliteration models of various
orders when trained on either Dakshina or Aksha-
rantar romanization lexicons.

In contrast to systems reported in Table 4, these
systems achieved large improvements over the
baseline, particularly fastText systems. For these
methods, the pair n-gram model order made less
difference than in Table 4. The Aksharantar trained
model again yielded synthesized training data that
resulted in somewhat less performant LID systems
versus the Dakshina conditions, though that condi-
tion, too, improved on the baseline. Interestingly,
for training data synthesized in this way, the best
fastText system outperformed the best mT5 system.

4.3 Combining synthetic datasets

Another source of variation beyond sampling is to
combine independently synthesized training sets.

"We only show Pair 3-gram results for Aksharantar in the
interest of conciseness, since that is the order that is eventually
selected for both Dakshina and Aksharantar, for reasons that
will become apparent as more results are shared.

Table 6: Dakshina development set performance as a function
of training set and model class, comparing baseline B-A syn-
thesized training data with other sampled synthesis methods
when they are unioned with the baseline training data.

To that end, Table 6 presents conditions within
which our newly created synthetic training sets
were combined with the baseline synthetic train-
ing set, thus yielding twice the amount of text
per language — each sentence repeated twice, typi-
cally romanized distinctly. All conditions improve
from the corresponding systems reported in Ta-
ble 5, though lower-order pair n-gram conditions
achieved larger gains leading to similar perfor-
mance across conditions. In the interest of con-
ciseness, we focus on Pair 3-gram conditions in
future results.

4.4 Sampling multiple copies

If combining two distinctly romanized versions
yielded some improvements, then might training on
several sampled romanizations yield further gains?
Note that, when sampling from the pair n-gram
models, each pass over the provided training set
will yield distinctly romanized training data. Ta-
ble 7 compares the baseline and 3-gram results
from Table 6 (which used one sampled training set
and the B-A baseline training set), with systems
trained on an additional 9 distinctly sampled ro-
manized training sets (for a total of 10 plus the
baseline). This yielded a modest improvement for
the fastText classifier in the Dakshina condition,
resulting in our best result (89.2% F1) using purely
synthetic training data. None of the mT5 model
conditions improved with extra copies, nor did the
Aksharantar conditions. See Appendix B for more
analysis of varying the quantity of synthetic data.

4.5 Adding harvested data

Table 8 presents the addition of harvested text (see
Section 3.4) to earlier reported systems, including
the baseline and the best synthesized training data
condition. The MADLAD-400 harvested data only
degrades the baseline when added to LID training,
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Classifier F1
fastText mT5-base mT5-large

Training set unioned
with B-A training

Classifier F1
fastText mT5-base mT5-large

Training sets unioned
with B-A training

90.5 89.2 89.6

None (B-A alone) | 81.4 84.9 85.3 None (B-A alone) | 814 84.9 85.3

Dakshina x1| 887 86.5 89.0 Dakshina 3g sample x 10 | 89.2 86.4 88.3

3-gsampled x 10| 89.2 86.4 88.3 MADLAD noisy | 803 83.2 84.7

Aksharantar x1| 872 84.8 85.7 MADLAD clean | 807 82.4 83.6

3-gsampled x10| 874 84.9 85.9 GlotCC | 865 85.4 86.7
|

Table 7: Dakshina development set performance as a function
of training set and model class, comparing baseline B-A syn-
thesized training data with other sampled synthesis methods
when they are unioned with the baseline training data. Multi-
ple distinctly sampled versions of the training corpus can be
created; here we compare the use of a single version with the
use of 10 distinct versions.

but the GlotCC data is helpful, though not as much
on its own as the improved synthetic training sets
already presented — perhaps unsurprising given the
sparseness of the collection. Combining the best
harvested data set (GlotCC) with the data used in
the best synthesized condition yields the best ob-
served result by 1.3% absolute F1. See Appendix C
for more analysis of varying the quantity of har-
vested data.

4.6 Test set results

Table 9 presents performance on the full B-A test
set of published fastText and pretrained classifier
baselines and systems trained for this paper using
three training sets: (1) the baseline synthesized
training set; (2) the best exclusively synthesized
training set; and (3) the best synthesized training
set combined with GlotCC harvested data. The ob-
served patterns from the development set hold for
this set as well, yielding the best reported results for
this task. One notable difference between the dev
and test results is that the F1 scores are universally
worse than accuracy, indicating that there is some
class imbalance in the predictions — unsurprising
when some of the languages have an order of mag-
nitude less data in the test set. Still, in absolute
terms, the divergence between accuracy and F1 is
reduced in the best systems.

4.7 Analysis and discussion

The best synthetic training data (Dakshina 3-gram
romanizations sampled 10x plus the baseline B-
A synthetic training set) yielded precision, recall
and F1 gains for all languages in the development
set, as shown in Table 10. Languages which were
initially poorly classified, including Hindi, Urdu,
Sindhi and Punjabi, show remarkable improve-
ments: 17.9% absolute F1 score improvement for

GlotCC | Dak 3-g x 10

Table 8: Dakshina development set performance as a func-
tion of training set and model class, comparing baseline B-A
synthesized training data with other sampled synthesis meth-
ods and harvested data sets when they are unioned with the
baseline training data (and each other).

Hindi and 18.0% for Urdu. Figure 1 presents the
baseline fastText system’s confusion matrix on the
development set, as well as a map showing where
the differences fell between the baseline and the
best synthetic training set. Baseline confusions are
evident between (1) Hindi and Urdu; (2) Urdu and
Sindhi; and (3) Punjabi and each of Hindi, Sindhi
and Urdu. All of these cases improved with the up-
dated synthetic training data. Dravidian languages
(Kannada, Malayalam, Tamil, Telugu) had the best
baseline performances of any languages, but still
managed to achieve positive gains from the up-
dated synthetic training data. See Appendix F for
additional qualitative error analysis.

Our hypothesis has been that sampling roman-
izations mimics natural spelling variation in ro-
manized text, and for that reason using such vari-
ations in synthesized training, versus using the
same (albeit likely) romanization for each instance
of a word, results in better identification of the
languages when written in the Latin script. Do
the samples actually mimic natural spelling vari-
ation? In an effort to answer this question, we
extracted frequent alternations resulting from the
sampling and coded them according to their corre-
spondence to known alternations cited in the litera-
ture. Briefly, the most frequent alternation, account-
ing for nearly 50% of the instances, corresponded
to well-known variations in indication of vowel
length or quality—for example, doubling of vow-
els to indicate length. Another 25% of alternations
involved presence/absence of the implicit vowel,
and a further 10% the inclusion/omission of ‘h’ to
indicate aspiration or other consonant property. See
Appendix D for full details of counting and coding,
along with many examples. Overall, this analy-
sis suggests that the romanized samples that we
synthesize in this work do indeed mimic spelling
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fastText Pretrained model
System Accuracy /F1 ~ Accuracy /F1  model type
IndicLID (Madhani et al., 2023a), published baselines \ 71.5/63.3 80.4/74.7 BERT
B-A synthetic training set 80.7/71.6 82.4/73.1 mT5-large
B-A + Dakshina/Aksharantar hybrid sampled x 10 90.5/85.4 89.1/83.3 mT5-large
B-A + Dakshina/Aksharantar hybrid sampled x 10 + GlotCC 92.2/88.2 91.8/87.1 mT5-large
Table 9: Accuracy and macro F1 performance on the B-A test set.
Laneuace Baseline Best Diff 0 200 400 Count 600 800 1000
EU3€  p; R/ FI| P/ R/ Fl| P/ R/ FI
Bangla 77.8/94.5/85.3| 89.1/96.1/92.4|11.3/ 1.6/ 7.1
Gujarati  83.7/89.6/86.5| 89.4/93.2/91.3| 5.8/ 3.6/ 4.8 Ba"g'a
Hindi 72.2/59.9/65.5| 81.2/85.7/83.4| 9.0/25.8/17.9 Gujarati 896 8 12 10 2
Kannada 85.9/96.1/90.7| 91.6/96.7/94.1| 5.7/ 0.6/ 3.4 o
Malayalam 84.3/ 94.3/ 89.0| 87.5/94.6/90.9| 3.2/ 0.3/ 1.9 Hindi [Tet © 43 [ > o (el v o
Marathi ~ 85.5/87.1/86.3| 96.1/87.3/91.510.7/ 0.2/ 5.2 Kannada 961 [RES
Punjabi 71.1/86.5/78.0| 88.6/92.9/90.7|17.6/ 6.4/12.7
Sindhi 77.6/ 69.8/73.5| 86.0/ 86.2/ 86.1| 8.5/16.4/12.6 Malayalam . v
Tamil 93.7/93.9/93.8| 94.4/94.9/94.7| 0.7/ 1.0/ 0.9 Marathi 22 20 17 26 KGN 15 1
Telugu 91.3/90.1/90.7| 92.7/91.2/91.9| 1.4/ 1.1/ 1.2 _
Urdu 82.1/42.8/56.3| 87.4/ 64.6/ 74.3| 5.3/21.8/18.0 Punlabl 2 2t | &7 13 10 0 g v
Sindhi 68 36 10 32 70 10 60
Table 10: Dakshina development set per-language precision, i . v B
recall and F1 when training on (1) the baseline synthetic train-
ing set and (2) the best synthetic training set (adding Dakshina Telugu 16 18 35 901
3-gram sampled 10x), as well as the absolute difference (Best a0 L. Y,
. . . .. rdu 7 1 1 0 12 106 125 428
minus Baseline). All differences are positive.
§ 78 8 §5 5§ 5§ § 87
§ &8s § 8858 gS
variation observed in natural romanizations. R < f g @0
Difference
5 Conclusion and Future Work e ) i 200-
Through careful experimental analysis on the devel- -
. . angla 16
opment set, in this paper we have demonstrated the
importance of training text synthesis in improving oot I h
informally romanized LID. In particular, we show Hindi -4z 1> [l 2 =
that drawing samples from relatively simple roman- Kannada
ization models yields romanizations that capture Malayalam
the lack of Latin orthography and spelling variabil- Marathi
ity in these languages. Independently harvested punjabi . 4 B
text was also shown to yield further improvements, s .
though such datasets are sparse for the languages _
investigated in this paper, so identifying and in- e - b
cluding more such text constitutes a major future Telugy .
direction. The best system — which is the best re- Urdu e &l - R H
ported result for this task by a large margin — is 3 g f?‘ £ ¢ F 25§88
a lightweight linear model, which might further ¢ g g\’; § < ° a

benefit from feature set analysis and augmentation.
Additionally, improving LID for informally roman-
ized text outside of South Asia would be of interest,
e.g., for Arabic or languages natively written using
the Ge‘ez script such as Amharic and Tigrinya.

6 Limitations

This work examines a closed-class classification
task with a fixed number of labels, which would
need to be modified to be applicable to a broader

Figure 1: Confusion matrix for a fastText model trained on
the baseline B-A synthetic training set (top), and improvement
from training on 10X additional samples from a Dakshina-
trained pair n-gram transliteration model (bottom). Large,
positive values on the diagonal indicate more correctly classi-
fied examples, and large, negative values in the off-diagonal
entries indicate fewer confusions.

set of languages in real use scenarios. Addition-
ally, the experiments examine performance on a
relatively small number of languages (20) from
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just three language families (Indo-Aryan, Dravid-
ian and Tibeto-Burman), and hence do not capture
the diversity of languages — including, e.g., Semitic
languages — for which informal romanization is
also common.

The work focuses on dedicated LID systems
with a general goal of low computational cost and
latency, and does not examine the performance of
commercial large language models such as Chat-
GPT or Gemini.

In this study we investigated LID systems in a
scenario where the Latin script is used as an in-
formal common script across various South Asian
languages. It has not been established whether ap-
proaches that were demonstrated to be effective in
this work would yield similar system improvements
in scenarios where different scripts (e.g., Perso-
Arabic or Devanagari) were being informally used
instead of the Latin script.

7 Ethics statement

The goal of this work is to provide methods that
advance the field’s collective ability to create bal-
anced and inclusive data sets, i.e., that include rep-
resentative data from typically under-represented
languages as well as from common yet chronically
under-represented non-standard use scenarios, in
addition to well-represented languages and condi-
tions. Such non-standard use scenarios may in-
clude writing in informal registers and/or with non-
standard scripts or spellings, which are important
forms of written communication worldwide.
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A LID Training details

All neural models were finetuned with a constant
learning rate of 10~3 for 50,000 iterations of batch
size 64, with an input sequence length of 256 Sen-
tencePiece tokens (Kudo and Richardson, 2018).
This matches the finetuning described in Xue et al.
(2021), and took 164.3 TensorCore-hours on a

Char n-gram order

No Punct Min Max Accuracy  Macro F1
X 1 3 81.1 80.4
v 1 3 81.5 80.9
v 2 4 81.3 80.5
v 3 4 81.0 80.1
v 1 5 81.9 81.1
v 2 5 81.6 80.7
v 3 5 81.8 80.9
v 1 6 82.1 81.2
v 2 6 81.9 81.1
v 3 6 81.9 81.0
v 3 7 82.2 81.4
v 3 8 82.1 81.3
v 3 9 82.3 81.5
v 4 7 82.0 81.3
v 4 8 82.1 81.5
v 4 9 82.0 81.3

Table 11: fastText Dakshina development set % performance
as a function of hyperparameters. Models are trained on the
released B-A romanized training set restricted to the Dakshina
languages, with hidden layer dimension 16. We selected char-
acter n-grams in [3, 7], since we found that setting performed
well, with further increase to the min/max character n-gram
value yielding marginal performance gain.

Cloud TPU v3'® for an mT5-large model. Fast-
Text models were trained directly on the supervised
training set (no unsupervised pretraining), with hid-
den dimension 16, and all character n-grams in the
range [3, 7].

Table 11 presents development set accuracy and
F1 as these metaparameters were varied. We re-
moved all non-alphanumeric characters as part of
our preprocessing, as we found that these features
did not generalize well on the development set. Ini-
tially we found that the fastText models picked up
on punctuation as being indicative of Kashmiri —
possibly an artifact of the domain from which the
Kashmiri examples were sourced. FastText train-
ing is cheap, on the order of minutes purely using
CPU.

B Varying the number of synthetic
training examples

For all orders of pair n-gram models, synthesizing
more sampled training data tended to improve de-
velopment set performance, however these gains
were marginal relative to the gain from training
on just a single synthesized version of the training
data, e.g., 81.4 — 88.0 F1 vs. 88.0 — 89.0 F1.
Figure 2 shows how F1 varies as the number of
synthetic copies of the training data is increased for
arange of models.

Bhttps://cloud.google.com/tpu/docs/v3
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Figure 2: Macro F1 for various synthetic training sets as a
function of number of samples to train a fastText LID model
on. Solid lines indicate that the LID model was also trained
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training on synthesized samples from the pair n-gram model.
Baseline performance is indicated by the dotted black line at
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Figure 3: Macro F1 for various synthetic training sets, when
decoding the 1-best candidate for each native word under
the pair n-gram transliteration model, rather than sampling
from the 8-best candidate list. The dotted black line indicates
baseline performance of training on the original synthetic
training set.

While LID models trained on Dakshina pair n-
gram model derived training data tend to perform
well, irrespective of the order of the pair n-gram
model, the samples from the Aksharantar-trained
pair n-gram models are strictly worse. This gap
persists even when also training on the original B-A
training set. While the 1-best candidate generated
from these pair n-gram models are complementary
to the released training set, by themselves, the 1-
best candidate can be quite poor (Figure 3). For
example, training only on samples from the 2-gram
pair LM yields 72.5 F1, far worse than the baseline
of 81.4. But combining that data with the baseline
training set yields strong improvements.
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Figure 4: Macro development set F1 as a function of training
corpus and number of examples added to each class. The
original B-A training set is included in all runs. The dashed
line corresponds to the performance of training only on the
original B-A synthetic training set.

C Varying the number of harvested
training examples

Figure 4 presents development set F1 as the number
of sampled examples added to the B-A training set
is varied in {1, 2, 5, 10, 20, 50, 100, 200} thousand
examples. A fastText model was retrained in each
case, and evaluated on the development set. We
replicated each of these runs 5 times, averaging
performance over the runs. Note that the original
training set contains 100k examples per class, so
adding up to 1k examples per class resulted in at
most a 1% increase in the training set size.

While the addition of more MADLAD data ac-
tively hurt the performance, the addition of the
“noisy” subset harms the LID model more than the
“clean” subset as the number of added examples in-
creases. GlotCC is shown to be useful, even though
this data also contains noisy labels, and does not
cover all of the Dakshina classes. See Table 15 for
some illustrative examples from the GlotCC dataset.
Label quality is paramount in training romanized
LID models. Harvested text has little value, or can
even be actively harmful, if it is unlikely to actually
be the language of interest.

D Spelling variation in synthetic
romanized samples

We find that training on synthetic samples of ro-
manized text improves LID classification perfor-
mance. Do these synthetic samples actually reflect
natural spelling variation? In this section, we com-
pare the variation resulting from sampling versus
1-best decoding from the pair 3-gram transliter-
ation models trained on Dakshina romanization
lexicons. Because each decoded/sampled token
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was derived from the same native script string, we
are able to directly compare spelling variation be-
tween romanized words generated by each method,
token-by-token.

Over all Dakshina languages, 31% of syntheti-
cally romanized tokens differ between the 1-best
decoded and sampled romanizations. To find com-
mon patterns of these differences, we collected
counts of character 5-gram minimum Levenshtein
distance edits between the 1-best decode vs. sam-
pled tokens within each language’s synthetic train-
ing set. For example, we counted all instances
where a substring “arne” in the 1-best romanization
was sampled as “arane” by the FST romanization
model, or “attu” was sampled as “atthu”. From
these counts we can identify common surface edit
patterns.

How nasals, implicit vowels, aspiration, vowel
quality, and voicing are rendered in romanizations
can vary in a language — sometimes these phenom-
ena are clearly indicated in the Latin script, some-
times not (Roark et al., 2020; Demirsahin et al.,
2022; Kirov et al., 2024). We coded each of the
20 most frequent 5-gram edit patterns within a lan-
guage by surface pattern type (Table 12). Each of
these patterns are representative of natural roman-
ization variation attested in the literature and we
share the full set of annotated patterns in Table 13.

Of these surface patterns, inserting vowels next
to an existing one to indicate quality or length (la-
bel L, 49%) was the most common. This includes
alternation between “u” <+ “00” and “i” <+ “ee” to
indicate IPA /u/, /i/ respectively, along with dou-
bling of vowels to explicitly indicate vowel quality
(e.g., to distinguish from schwa), “a”
+ “ee”, and “i” <> “iy”.

The second most common pattern (label I, 25.5%
of patterns) was addition/deletion of a lone vowel
following a consonant. This is indicative of
whether the implicit vowel (e.g., schwa) was ex-
plicitly written in the romanization. For the surface
patterns we see here, this vowel is “a” (e.g., in
Hindi “yojan” — “yojn”).

The addition of an “h” following a consonant
often indicates aspiration (label H, 9.5%), but may
also clarify some other property of the consonant.
For instance, in Tamil, “th” and “dh” respectively
indicate unvoiced and voiced dental stops — the
voicing property depends on the context and is not
indicated in native Tamil orthography (Schiffman,
1999; Annamalai and Steever, 2015). Both of these
correspond to unaspirated consonants, where the

99 6690

<> “aa”, “e

presence of “h” instead distinguishes them from
their retroflex counterparts.

The final most frequent pattern was doubling of
a consonant at the same place of articulation, e.g.,
“tha” — “ththa” (label G, 7% of patterns). This
pattern occurred frequently in Tamil and Punjabi
edit strings. In Tamil, a Dravidian language with
agglutinative morphology, gemination is often due
to the sandhi effect, a set of phonological changes
occurring at the location where morphemes com-
bine (Ciotti, 2017). Gemination is typical for Pun-
jabi as well, unlike other Indo-Aryan languages
(Bhatia, 2010).

Other patterns occurring in less than 5% of ed-
its were alternation in the choice of a back/mid
vowel (e.g., frequent a/o alternation in Bangla),
changing the voicing of a consonant perhaps due
to coarticulation effects with a neighboring vowel
(e.g., “aigal” — “aikal”), and the addition/deletion
of a syllable-final nasal due to transliterating the
anusvara character explicitly (‘“nahin” — “nahi”).

Out of these 200 frequent 5-gram edit patterns,
we were only unable to classify three instances
as one of the given classes. Of these, “dwara”
— “dvara” in Hindi indicates a plausible varia-
tion, as v/w are allophones of each other in Hindus-
tani (Pierrehumbert and Nair, 1996). In Marathi,
“madhy” — “madh” and “adhye” — “adhe” indi-
cates Latin spelling variation in a common mor-
pheme, He2, meaning “in” or “amid”.

E Evaluation on a synthetic development
set

We chose to develop LID models on natural roman-
ized examples from the Dakshina development set,
restricting ourselves to the subset of Dakshina lan-
guages where we had natural examples to evaluate
on. Table 14 displays the performance of these
models on the synthetic development set for the
same subset of languages.

We find that model performance is higher than
what we found in Tables 5 to 8. This agrees with
the observation in Table 5 of Madhani et al. (2023a)
that LID performance on automatically transliter-
ated data is clearly inflated over naturally-generated
text. The variation in performance across different
training sets is also narrowed, potentially making
training set selection more difficult: between 82.2%
and 90.5% accuracy for the natural development
set vs. 87.2% to 93.1% for the synthetic.
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Label Count (%) Description

A 9(4.5) Change a low/mid vowel (A/e/o). Indicative of variation in pronunciation.

G 14 (7.0) Inserting an additional consonant at the same place of articulation. Indicative of
Gemination.

H 19 (9.5) Addition of H following a consonant. Indicative of aspiration.

I 51 (25.5) Inserting/deleting a vowel after a consonant. Indicative of Implicit vowel representa-

tion.

L 98 (49.0) Addition/deletion of a vowel next to existing vowel. Indicative of vowel
Length/quality.

N 2(1.0) Addition of syllable-final Nasal. Indicative of variation in representing anusvara.

A\ 5(2.5) Consonant change at same place of articulation. Indicative of alternation in Voicing

Table 12: Description of spelling variation labels in Table 13. Counts are over a total of 200 5-gram edit patterns,
the 20 most frequent per language. Counts do not sum to 200 as one edit pattern was labeled as both A and L, and
three patterns fell outside of this coding scheme.

F Error analysis

Comparing individual development set predictions
from the baseline fastText model trained on B-A
synthetic training data with the model trained on
the best performing synthetic training data (B-A
training data combined with Dakshina 3-gram sam-
pled x 10 training data), we find that out of the
11,000 examples in the development set: (1) 8,847
examples were correctly classified by both mod-
els; (2) 163 were regressions from the baseline; (3)
989 were newly classified correctly by the updated
model; and (4) 1,001 examples were incorrectly
classified by both models. It is worth noting that
the examples that were incorrectly classified by
the updated model are markedly shorter than the
ones which were correctly classified — median of 3
tokens and 20 characters for the “both lose” case,
12 tokens and 90 characters for the “both win”, 4
tokens and 29 characters for the “regression” case,
and 11 tokens and 64 characters for the “corrected”
case. Table 16 includes some examples randomly
selected from each group. Many of these incorrect
examples contain English strings, either wholly
or in part,' and proper names are also common
(possibly confusing the LID model).

“Note that the B-A benchmark removed many such items
from their test set, so this is one difference between our devel-
opment and test sets.
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Cntx 1-best Sample La-| Cntx 1-best Sample La-| Cntx 1-best Sample La-| Cntx 1-best Sample La-
1000 n-gram mn-gram bel| 1000 n-gram n-gram bel| 1000 n-gram mn-gram bel| 1000 n-gram mn-gram bel
Bangla Gujarati Hindi Kannada
40 yeech yech L 34 maate mate L 24 karn karan I 3.2 avag avaag L
36 eeche eche L 32 karv  karav I 2.1 kart karat I 2.6 vagi vaagi L
33 ebong abong A 28 vama vaman M 1.7 arne arane | 23 hara haara L
3.1 hayee haye L 2.8 kari karee L 1.6  rajya rajy I 2.2 kara kaara L
2.5 ayeec ayec L 23 arva arava [ 1.5 yojan yojn I 20 havaa hava L
24 hayee hoye AL| 22 yare yaare L 1.5 kuch  kuchh H 1.9  thava thav I
20 ebong ebang A 2.1 athi athee L 14  ojana ojna I 1.9 alag alaag L
1.9  samy samay I 1.9 hati hatee L 1.3 hetr hetra I 1.8 matt  matth H
1.7 koren karen A 1.8 arva arvaa L 1.2 sakt sakat I 1.7 agid aagid L
1.6 kore  korey L 1.8 aman amaan L 1.2 dwara dvara 'W| 1.5 akar akaar L
1.6 heke  hekey L 1.8 rite reete L 1.2 lakin lekin A 1.5 attu atthu H
1.6 bosth  basth A 1.8 thay thaay L 1.1  bhara  bhar I 14 tara thara H
1.6 ayeec oyec L 1.8 hata hataa L 1.1 harat hart I 1.4 iyag iyaag L
1.5 eche echey L 1.7 dhar  dhaar L 1.1 karya  Kkary I 1.3 haagu hagu L
1.5 proti prati A 1.6 hava  havaa L 1.1 arte arate I 1.3 aman amaan L
1.5 chil chhil H 1.6 vama avama [ 1.1 arti arati I 1.3 aagu  aagoo L
1.5 korec karec A 1.6 aara aaraa L 1.1  nahin nahi M| 13 haag  haago I
1.4 eche echhe H 1.6 vama vamaa L 1.0 karan  karn I 1.3 anta antha H
1.4 tini teeni L 1.5 adha adhaa L 1.0 tarh tarah I 1.3 mana maana L
14  korte karte A 1.5 tyar tyaar L 0.9 pahl pahal I 1.3 kari kaari L

Malayalam Marathi Punjabi Tamil
3.8 nathu nath H | 40 karn  karan I 9.1 icch ichch H 8.4  athth ath G
3.5 amaay amay L 24 arny arany | 9.1 vice vichc H 7.4 ththi thi G
24 yaanu yanu L 24 rnya  ranya I 6.4  vicch vich G| 59 nth nthth G
2.4  thaan than L 2.3 arata arta I 3.3 karan karn I 54 ththu thu G
23 maayi mayi L 1.8 athi athee L 2.3 dian diaan L 53 argal arkal VvV
2.1 haana hana L 1.7  karat kart I 2.0  keeta kita L 5.3 uthth uth G
19 maaya maya L 1.7 asun  asoon L 2.0 dian diyan L 5.1 ththa tha G
1.8  aayir ayir L 1.5 achi achee L 1.9 jand  jaand L 4.6 ithth ith G
1.8 ikka ikkaa L 1.5  harat hart I 1.6 khia khiaa L 44 antha andha V
1.8  athaa atha L 1.4 arna arana | 1.5 ahin  aheen L 4.2 hthil thil G
1.8  sthaa stha L 1.4 sath sathe 1 1.4 hian hiaan L 4.1 aigal aikal Vv
1.7 kkan  kkaan L 1.3 adhi  adhee L 1.3 keeti kiti L 4.1 ththa ttha H
1.6 amaan aman L 1.3  bhara  bhar I 1.3 anda aanda L 40 anga angka G
1.5 aanam anam L 1.3  madhy madh 'Y 1.2 nahi nahee L 38 runth rundh V
14 hamaa hama L 1.2 adhye adhe !Y| 12 bach bacch G| 3.7 ngal ngkal G
1.4  maanu manu L 1.2 arun  aroon L 1.0 aria ariaa L 3.7 ithth itth H
1.3 undaa unda L 1.1 nyat anyat [ 1.0 ghat ghatt G| 3.5 tha ththa G
1.3 laanu lanu L 1.1  mhana mhan I 1.0 karan  kran I 3.5  ththu tthu H
1.3  thram tram H 1.1 arne arane | 1.0 vale vaale L 34  athth atth H
1.3 ayaan ayan L 1.1 hoti hotee L 0.9 arti arati I 3.2 galai kalai V
Telugu Urdu
42 unna unnaa L | 16.0 ahein ahin L
30 nchaa ncha L | 145 nahei nahi L
2.8  incha inch I 8.6 allah alla H
2.7 nnar  nnaar L 81 ahein ahen L
2.7  chaar char L 74 nahei nahe L
2.5 amlo amloo L 6.2 sath saath L
23 naru  naaru L 5.8 stan astan I
2.2 hara haara L 53 ksta kasta I
2.1 anta antha H 5.2 akst akast I
2.0 aalan alan L 5.2 paks  pakas I
1.9 tunn  tunna I 4.4 rahe  rahay L
1.9  aanik anik L 4.1 waqgat waqt I
1.8 haaru  haru L 4.1 khla  khala I
1.7 anik aanik L 3.8 stan istan I
1.7 chaal chal L | 37 arne  arnay L
1.7  aanni anni L 3.6 ksta kista I
1.6 tara thara H 3.6 akst akist I
1.6 nnay nnaay L 3.6 paks  pakis I
1.6 tana thana H 3.5 karn  karna I
1.6 dhaan dhan L 33 kart karta 1

Table 13: The twenty most frequent 5-gram spelling variations between 1-best and sampled romanized tokens per Dakshina
language. Each instance is labeled according to the key in Table 12. The three exceptions noted in the text are denoted by “!'W”
and “!'Y” labels. Counts (in thousands, Cnt x 1000) are over the entire B-A training set within each language.
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|  NotlIncluding B-A | Including B-A

Included training data

fastText ~mT5-large fastText —mT5-large

Acc/Fl1 Acc/F1 Acc/F1 Acc/F1
None | | 87.2/86.8 89.3/89.2
Dakshina 3-gram 1x samples 90.5/90.3 89.4/89.3 | 92.1/92.0 91.8/91.7
Dakshina 3-gram 10x samples 91.4/91.3 89.7/89.7 | 92.4/92.3 91.4/91.3
Dakshina 2-gram 88.8/88.6 88.8/88.7 | 91.8/91.6 90.9/90.8
Dakshina 4-gram 91.1/90.9 90.0/90.0 | 92.0/91.9 91.2/91.2
Aksharantar 3-gram 89.2/88.8 88.8/88.4 | 90.9/90.7 89.8/89.5
Aksharantar 3-gram 10x samples | 90.5/90.3 89.3/89.0 | 91.4/91.2 89.9/89.6
GlotCC 90.7/90.6 91.4/83.8
Dakshina 3-gram 10x + GlotCC 93.1/932 924/924

Table 14: Model performance on the synthetic development set released with the B-A corpus, for languages included in
Dakshina.

Language | Examples

Bangla “ALLAH AMR ROB, NOBI AMR SOB. ISLAM AMR DHORMO, NAMAZ UTTOM
KORMO.”, “aar aami dekhlam, maar chokh duto anande nachchhe.”, “usher alter”, “This
story was co-written by a member of our community using our Al powered storyteller.”

Gujarati “Happy Holi quotes and status”, “Himalaya Rudraksh & Gems Testing Lab - India’s Most
Trusted Rudraksha, Diamond & Gemstone Testing Laboratory”, “Rasulullah Syed al Mur-
salin ane Khaatam al Nabiyyin chhe.”

Hindi , “Shamooael 30:1 teesare din jab daud apane janon samet sikalag pahuncha, tab unhon ne
kya dekha, ki amalekiyon ne daakkhian desh aur sikalag par chaddhai kee. aur sikalag ko
mar ke foonk diya, 6.”, “Natural Ways to Improve Memory in Hindi: Yaaddasht Badhaye”,
“Cricket satta ka vikas ek aise vyavsay ki or ishara karta hai jo samay ke saath badalta hai.”

Sindhi “room aeron chari room aeron chai rroom aeron chairr oom aeron chair orom aeron
chair room aeron chair romo geronchairroom weronchairroom seronchairroom xeronchair-
room zeronchairroom eeronchairroom aaeronchairroom eronchairroom a2ronchairroom
a3ronchairroom ad4ronchairroom awronchairroom arronchairroom asronchairroom adron-
chairroom afronchairroom aaronchairroom aeeronchairroom...”, “If you like to book room in
a Aeron chair room use ““Check price and availability or” ““Book now’” green button, then
you will be redirected to the main booking site from our partners, where you would select
date of booking and check prices and availability of hotel rooms.”, “Superstar Ayeza Khan
touches new skies of popularity by performing in hit dramas “Chupke Chupke” and “Mere

99 99

Pass Tum Ho”.

Tamil “appoathu moayeesan avarka’lai noakki: kadavu’lin aaseer ungka’lukkuk kidaikkumpadi
in’ru ungka’lil ovvoruvanum than than makanaiyum sakoatharanaiyum pazhivaangkina-
maiyaal, aa’ndavarukku ungka’l kaika’lai arppa’nam seytheerka’l en’raar.”, “paaravoanum
avan oozhiyarka’l anaivarum ekipthiyar yaavarum iravil ezhunthanar.”, “Naan kankalai mooti

thoonguvadhu pol natiththen.”

Telugu “Ela undi ani adiga chala bagundi eppudu ela enjoy cheyaledu ani hug chesukundi night 12
ayyindi elago evaru leru chuttu koncham rest tesukoni tent pakkana plana chesam pakkana fire
undi”, “Prati samvatsaram January 1 na Global family Day jarupukuntaru .”, “Ee Nagaraniki
Emaindi Meme Movie: We Arranged The Entire Movie In Meme Templates.”

Urdu “Koi khuwahish nahi is deewanay ki”, ‘“Tamaam hamd us Allah ke liye
hai jo chupi hui cheezoun ki gehraaioun mein utra hua hai”, “Click here
https://youtu.be/iLyCIGOU7Js?si=jHKBes_6T9DjYw@s”

Table 15: Romanized sentences from a selection of development set languages in the GlotCC corpus. While some
strings are plausibly the correct language, some English strings and boilerplate are included.
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Gold Baseline  Updated Number of
Bucket Label System (Best) Example Tokens Chars

both win  Telugu Telugu Telugu bhakti paaravasyamu saranaagati ivi ee aaluvaarula jeevi- 14 146
tamlonoo rachanalalonoo vaarini gurinchina gaathalalonoo
pramukhangaa kaanavachche amsaalu

both win  Punjabi  Punjabi  Punjabi buneyadi adhikar manukhi azadi da muddla sidhant han ate 20 117
harek bharti di shakhsiyat de sahi vikaas layi eh jaruri han

both win  Telugu Telugu Telugu dharinchagaligina computer 2 26

both win  Bangla Bangla Bangla bivinno arthonoitik totto o mukto bazar sunirdishto 19 153
boishisto aaboshoyk udahoronswarup ekti nikhut bazar
shathe nirbhul tottho ebong nikhut protijogitaar

both win  Bangla Bangla Bangla gobar goho 2 10
both win  Punjabi  Punjabi = Punjabi parkash kol Unni R ki kahani nu film layi lain di ek surantar 16 73
yojna vi si
both win Malayalam Malayalam Malayalam ennaal netveyarinethire oru velluviliyuyarthaan ithinaayilla 5 60
both win Tamil Tamil Tamil Jamui makkalavaith thoguthi Inthiya makkalavaikkaana 12 116
thoguthiyaagum Ithu Biharin 40 makkalavaith thoguthigalil
ondru

both win Hindi Hindi Hindi 2007 Uttar Pradesh vidhan sabha chunav men inhone Uttar 29 165
Pradesh kr Merath jile ke Merath kaint vidhan sabha nir-
vachan shetr se Bhajpa ki aur se chunaav men bhag liya

both win  Punjabi  Punjabi  Punjabi Paraguay vich hundi gair kanunni jungal vaadhi 7 46
regression  Telugu Telugu  Kannada paurushamme pongeraa 2 20
regression  Telugu Telugu  Kannada janaganamana 1 12
regression  Urdu Urdu Hindi  jinhein ham dekh kar jeete the Nasir 7 36
regression Marathi ~ Marathi  Punjabi Bahut din nacha bhetalo saubhadra 5 33
regression Bangla Bangla Malayalam Fellow of the Association for Computing Machinary 1994 8 54
regression Marathi ~ Marathi  Gujarati Narahar kurundakar smruti sahity sammelan Nanded 6 48
regression  Urdu Urdu Hindi 1819 mein venezuela aur granada ne mil kar jamhooriya 16 92
banayi jis ka naam columbia rakha gaya
regression  Urdu Urdu Hindi chataanein aur romaan 3 21
regression Punjabi  Punjabi  Kannada es da vikaas pracina russi bhasa valon hoeya 8 44
regression  Telugu Telugu Tamil adi vasanta kaalam 3 18
corrected  Hindi Bangla Hindi  wo Royal socity of London ke nirvachit sadasy the 9 49

corrected  Hindi Punjabi Hindi  Unhe Lhasa se beijing tak jana tha lekin aisa sambhav nahi 27 145
hone par Sangpo yani Brahmaputra ya Bhutan ke raste
Bharat ane ke nidesh diye gaye the

corrected  Punjabi Urdu Punjabi Ek jahaad pyar de layi 5 22

corrected  Hindi Punjabi Hindi  sohan rahi ke anusar geet vidha sahitya ki sabse kathin evam 14 78
shresth vidha hai

corrected  Telugu  Gujarati  Telugu aasale adiyaasalai nadi vesavi bratukaayene 5 43

corrected Urdu Punjabi Urdu  qaumi parast rahnuma 320

corrected ~ Tamil Malayalam Tamil Aatkalam Kanitham 2 17

corrected  Sindhi Bangla Sindhi saawanu men ute jaa bhagea panhinjon menhon dunad gion 20 110
hdrie pke te kadhi indaa ahin jite paani kona hondo ahe

corrected  Hindi Urdu Hindi  sardiyon mein yaha bhaari barfbaari hoti hai aur jheel bhi 13 72
jam jaati hai

corrected  Tamil Hindi Tamil  paarampariya nel 2 16
both lose Hindi Malayalam Sindhi Cardinal 1 8
both lose Hindi Punjabi  Kannada yogita bali 2 11
both lose  Gujarati Malayalam Telugu ravishankar mahaaraaj 2 21
both lose Hindi Marathi ~ Marathi Rachana Parulkar Ajebade Panwar 4 31
both lose Urdu Kannada Kannada kaala shahzada 2 14
both lose  Sindhi Punjabi ~ Punjabi sancho khalifa rashdeen 2 sancho wazir sahibha sancho 12 85
khalifa rashideen sancho sahiba
both lose Malayalam Kannada Kannada narabali 1 8
both lose  Gujarati Sindhi Sindhi tal 1 3

both lose Urdu Punjabi Hindi  agar silsila bharfaj hota ho to silsile ki infiradi istilahaat 16 99
laziman sifar ki taraf pahunchen gin
both lose Tamil Malayalam Malayalam saara thattil 2 13

Table 16: Sample of instances where the baseline/updated (best) synthetically trained models agree/differ.
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