
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 22949–22967
November 4-9, 2025 ©2025 Association for Computational Linguistics

Language Models Can be Efficiently Steered via Minimal Embedding
Layer Transformations

Diogo Tavares♣ David Semedo♣ Alexander Rudnicky♢ João Magalhães♣♣NOVA University of Lisbon, NOVA LINCS♢Carnegie Mellon University, LTI
dc.tavares@campus.fct.unl.pt

{df.semedo,jmag}@fct.unl.pt, air@cs.cmu.edu

Abstract

Large Language Models (LLMs) are increas-
ingly costly to fine-tune due to their size, with
embedding layers alone accounting for up to
20% of model parameters. While Parameter-
Efficient Fine-Tuning (PEFT) methods exist,
they largely overlook the embedding layer. In
this paper, we introduce TinyTE, a novel PEFT
approach that steers model behavior via min-
imal translational transformations in the em-
bedding space. TinyTE modifies input embed-
dings without altering hidden layers, achieving
competitive performance while requiring ap-
proximately 0.0001% of the parameters needed
for full fine-tuning. Experiments across ar-
chitectures provide a new lens for understand-
ing the relationship between input representa-
tions and model behavior—revealing them to
be more flexible at their foundation than previ-
ously thought.1

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across a wide range
of natural language tasks (Hoffmann et al., 2022;
Team et al., 2024; Yang et al., 2024; Grattafiori
et al., 2024). However, their increasing size—
with recent models containing hundreds of billions
of parameters (Brown et al., 2020; Chowdhery
et al., 2024; Grattafiori et al., 2024)—has made
it prohibitively expensive to adapt them to specific
tasks or behaviors. While Parameter-Efficient Fine-
Tuning (PEFT) methods have emerged as a promis-
ing solution, existing approaches (Houlsby et al.,
2019; Hu et al., 2022; Liu et al., 2022a) primar-
ily focus on modifying attention or feed-forward
layers, overlooking a crucial component: the em-
bedding layer. This oversight is significant given
that the embedding layers constitute up to 20% of

1Source code and several TinyTE models fine-tuned on
different tasks are available at https://d-c-t.github.io/
tinyte/

512 1024 2048 4096 8192
Model parameters

29

30

31

32

33

34

35

Su
m

m
ar

iza
tio

n 
(R

OU
GE

-L
)

TinyTE-full

TinyTE-half

TinyTE-hybrid
TinyTE-gated

PT (tk=1)

PT (tk=2)

Figure 1: PEFT methods under a 104 parameter bud-
get. TinyTE are extremely low-complexity models that
improve LLM performance across tasks and add new ca-
pabilities, outperforming other comparable approaches.
PT refers to Prompt Tuning (Lester et al., 2021), and
tk = n to the amount of learned input tokens. As ref-
erence, LoRA and full embedding layer fine-tuning re-
quire a 107 − 109 parameter budget.

model parameters in recent architectures (Team
et al., 2024) and form the basis of how models
represent and structure inputs. Grounded on this
fact, we hypothesize that LLM embedding spaces
exhibit significant flexibility, maintaining core func-
tionality when partial input information is removed,
while enabling new capabilities through minimal
transformations.

Building on this observation, in this paper, we
introduce TinyTE, a parameter-efficient fine-tuning
approach that modifies how input tokens are pro-
cessed by learning minimal translational transfor-
mations to the embedding space. This approach
differs fundamentally from existing embedding-
based PEFT methods by strictly modifying the
token embedding space, without requiring inner-
architecture adaptations. While prior work adds
new tokens (Lester et al., 2021), exploiting atten-
tion sinks (Xiao et al., 2024), or output embed-
dings (Han et al., 2024), we leverage the computa-

22949

https://d-c-t.github.io/tinyte/
https://d-c-t.github.io/tinyte/


tional width (Goyal et al., 2024; Herel and Mikolov,
2024) of Transformer models by altering how all
input tokens are processed. This enables extremely
efficient tuning, letting us expose capabilities of
LLMs while preserving the structure of the original
input space. This approach is orthogonal to existing
methods (Lester et al., 2021), allowing for comple-
mentary combinations for further performance gain.
Our contributions include:

• Evidence that modern LLMs can be steered
by strictly adapting model inputs, through
learnable additive linear input transforma-
tions;

• An analysis which reveals that LLM embed-
ding layers are more flexible than previ-
ously thought, providing a new lens for under-
standing the relationship between input repre-
sentations and model behavior.

• TinyTE, a new PEFT method that requires
approximately 0.0001% of the parameters
compared to fully fine-tuning, while achieving
competitive performance.

Experiments across different tasks, i.e. WMT16,
CNN/Dailymail, SuperGLUE and instruction-
tuning, demonstrate the success of the proposed
approach. Altogether, this work shows that by ex-
ploiting embedding space flexibility we not only
achieve a competitive result in PEFT but also pro-
vide insights into how these models encode and
process information.

2 Related Work

Parameter-Efficient Fine-Tuning. Most PEFT
approaches focus on affecting the internal layers of
a frozen model by introducing trainable modules
between them (Houlsby et al., 2019), prepending
continuous learned vectors to layers (Li and Liang,
2021; Liu et al., 2022b), or learning bias vectors
on all (Zaken et al., 2022), or selected (Yin et al.,
2024), layers. Other works introduce learned vec-
tors within the attention operation and feed-forward
layers (Liu et al., 2022a), or add learned lower-
rank matrices in parallel (Hu et al., 2022). Pfeif-
fer et al. (2020) introduce invertible adapters that
transform input embeddings for cross-lingual trans-
fer. Approaches that affect the input of a model
operate instead in the framework of prompt opti-
mization, where continuous token embeddings are
prepended to the model input (Lester et al., 2021;

Hambardzumyan et al., 2021). These may be ex-
tended by finding and removing specific tokens or
dimensions that worsen performance (Ma et al.,
2022), or by interleaving token embeddings with
discrete input tokens (Liu et al., 2024).

Transformer Embedding Layer Structure
and Robustness. In the Transformer architec-
ture (Vaswani et al., 2017), the embedding layer
encodes tokens into static non-contextual embed-
dings. In modern variants, these embedding layers
often contain thousands of dimensions (Grattafiori
et al., 2024; Jiang et al., 2023; Yang et al., 2024).
These non-contextual embeddings are said to have
limited impact on the final layers of the Trans-
former (Ethayarajh, 2019), and fail to capture suf-
ficient information for satisfactory performance
in downstream tasks (Mickus et al., 2022). This
aligns with the intuition that Transformers repeat-
edly refine the representations through successive
layers. In fact, encoding each token individually,
in a context-free manner by processing it through
the entire model is often preferred (Vulic et al.,
2020) over extracting it directly from the embed-
ding layer. In modern LLMs, the paradigm has
shifted: small details of the input tokens—the
prompt—and, therefore, their embeddings, signifi-
cantly shape the model output (Lewis et al., 2020;
Wei et al., 2022; Yugeswardeenoo et al., 2024).
This is a core consequence of the semantic informa-
tion contained in the Transformer static embedding
space (Wen-Yi and Mimno, 2023) even in earlier
approaches; the embedding layer is not just a to-
ken differentiator. The modern-day LLM displays
redundancy in both intermediate layers (Kovaleva
et al., 2019) and the output space (Muennighoff
et al., 2025), which can also be steered by linear
transformations (Han et al., 2024). Furthermore,
models such as BERT (Devlin et al., 2019) can be
compressed with little extra training and perfor-
mance loss (Sanh et al., 2019; Mao et al., 2020;
Sun et al., 2020). This redundancy—which we
posit may also exist in the embedding layer—may
contribute to the model’s flexibility against input
perturbations, both at the token and token distribu-
tion levels (Yin et al., 2020; Hendrycks et al., 2020)
and in the embedding space (Shi et al., 2020). Our
work leverages this flexibility to maintain language
and task performance while steering the model to-
wards a specific output.

22950



3 Methodology

In this section, we introduce a lightweight trans-
formation model, applied to the token embedding
layer, that enables extremely parameter-efficient
model fine-tuning. This transformation improves
LLM performance across a wide range of tasks and
exposes new capabilities such as instruction-tuning.
Section 3.1 formalizes the base model, and in Sec-
tions 3.2 and 3.3, we discuss two mechanisms to re-
duce the number of transformed dimensions, hence
further reducing the model parameters while deliv-
ering improved performance over different tasks.

3.1 Token Embedding Transformations

Recent work in model compression has revealed
significant parameter redundancy in LLMs (Frantar
and Alistarh, 2023; Yu et al., 2024), demonstrating
that substantial portions of model weights can be
modified or removed while preserving core func-
tionality. While this research has focused primarily
on attention and feed-forward layers, we hypothe-
size that similar properties may extend to the em-
bedding layer. This redundancy implies a form
of flexibility in the embedding space that affects
downstream processing: if embedding dimensions
encode information redundantly, then the model
should be able to maintain functionality even when
the embedding space is modified, while remaining
responsive to targeted changes in others. Lever-
aging this hypothesis, we introduce a learnable
transformation T ∶ Rd → Rd that modifies the em-
bedding of each input token as

T (e) =W ⋅ e + b, (1)

where W ∈ Rd×d is a weight matrix, b ∈ Rd is a
bias vector, e ∈ Rd is a token embedding, and d
is the embedding dimension. We set W = I (the
identity matrix), resulting in

T (e) = e + b, (2)

which reduces our trainable parameter count sig-
nificantly: from d2 + d to d. This transformation
applies a constant shift to each input embedding
dimension, allowing us to introduce extra informa-
tion while maintaining the relative relationships
between each token embedding. We refer to these
learned transformations as TinyTE.

TinyTE models provide a useful guarantee: the
original behavior of the backbone model is always
achievable within our parameter space, as setting

Figure 2: Tiny transformations in the input embedding
layer can be improve and add new capabilities to vanilla
LLMs.

the bias b = 0 recovers it exactly. This means
that, with perfect optimization, our method cannot
perform worse than the original model—any solu-
tion found must be at least as good as the unmodi-
fied embeddings. This property is shared by some
parameter-efficient approaches such as LoRA (Hu
et al., 2022), but notably absent in embedding space
approaches such as Prompt Tuning (Lester et al.,
2021), where the original model’s behavior may lie
outside the learnable space.

3.2 Leveraging Fewer Dimensions
While we can achieve high performance by mod-
ifying all dimensions, the aforementioned related
literature (Frantar and Alistarh, 2023; Yu et al.,
2024) and the ablation analysis of Sec. 4.2 sug-
gest that modifying a subset of dimensions may
achieve comparable results while further reducing
the number of trainable parameters. For a chosen
portion p ∈ [0,1] of dimensions to modify, we
define k = ⌊p ⋅ d⌋, and construct the masked trans-
formation:

Tp(e) = e + (m ⊙ b) (3)

where m ∈ {0,1}d is a binary mask that selects k
dimensions (mi = 1 for the k selected dimensions,
0 otherwise). This further reduces our trainable
parameters from d to k, at the cost of some model
tuning capacity. This approach introduces a key
challenge, however: selecting an appropriate value
for p. Too small a value limits the model’s adapt-
ability by providing too few trainable dimensions.
Values that are too large provide little additional
benefit over simply using all dimensions. Further-
more, we observe that the optimal value of p varies
with input length—TinyTE tends to perform worse

22951



in longer sequences when more dimensions are
perturbed. Too many perturbations in the input,
unless carefully accounted for, may accumulate er-
rors across all tokens. This motivates selecting p
depending on the input length.

3.3 Learning p through soft gating

To address the aforementioned challenges, we in-
troduce a learned gating function p(l) ∶ N→ [0,1]
that dynamically adjusts the proportion of modified
dimensions based on the input length l:

p(l) = σ(α ⋅ l + β), (4)

where α,β ∈ R are learnable parameters and σ is
the sigmoid function. This formulation keeps the
output bounded while maintaining differentiability
for training. Given our d dimensions and their
relative positions di = i

d in the sequence of all
dimensions, we define a soft gating function:

G(di, l) = σ(h ⋅ (di − p(l)))[Tg(e, l)]i = ei + bi ⋅ (1 −G(di, l)) (5)

where h is a steepness constant which we empiri-
cally set to 1000. This gate interpolates between
fully modified (G ≈ 0) and unmodified (G ≈ 1)
states for each dimension d, while remaining differ-
entiable with respect to p(l), allowing the model
to adjust its behavior according to the input length.

Since these methods modify a subset of the to-
ken embedding dimensions, the question that re-
mains concerns the dimensions selection criteria.
We examined several ranking/selection strategies,
including random, variance-based, and Integrated
Gradients (Sundararajan et al., 2017), Section 4.2.
From this analysis, we observed that ranking di-
mensions by their variance across the vocabulary
and selecting the ones with lowest variance pro-
vided a deterministic criterion that performs well
and offers some degree of interpretability.

4 Experiments

In this section, we demonstrate that modern LLM
embedding spaces can be effectively repurposed
for model steering, enabling meaningful behavioral
changes through extremely parameter-efficient
modifications to just the input layer, using TinyTE
models. (implementation details are shown in Ap-
pendix A).

Models and Baselines. We evaluate TinyTE on
decoder-only Transformer LLMs spanning differ-
ent scales and architectures to demonstrate the
generality of our approach. Our primary experi-
ments utilize three modern instruction-tuned mod-
els: Llama-3.1 (Grattafiori et al., 2024) (8B parame-
ters), Qwen-2.5 (Yang et al., 2024) (7B parameters),
and Gemma-2 (Team et al., 2024) (2B parameters).
These represent different parameter scales, archi-
tectural choices, and data mixtures in modern LLM
design. For comparative analysis against existing
parameter-efficient methods, we compare against
LoRA (Hu et al., 2022), Prompt Tuning (Lester
et al., 2021), which adds learned tokens to the input
sequence while TinyTE directly shifts existing to-
ken embeddings, and fully training the embedding
layer. To investigate the emergence of instruction-
following capabilities, we conduct additional exper-
iments using the base Llama-2-7b (Touvron et al.,
2023) model, which lacks explicit instruction tun-
ing, and shows less flexibility than the other models
while still being applicable to our method.

Datasets. We evaluate our approach across
diverse NLG and NLU tasks to demonstrate its gen-
eral applicability. For abstractive summarization,
we use the CNN/Dailymail (Hermann et al., 2015)
dataset. For machine translation, we employ the
WMT’16 (Bojar et al., 2016) Czech-English split.
For analyzing instruction-following capabilities,
we use the Alpaca (Taori et al., 2023; Wang et al.,
2023) dataset. We evaluate multitask performance
on a subset of SuperGLUE (Wang et al., 2019)
tasks—BoolQ (Clark et al., 2019), Copa (Roem-
mele et al., 2011), CB (de Marneffe et al., 2019),
RTE (Bentivogli et al., 2009), and WiC (Pilehvar
and Camacho-Collados, 2019)—selected to assess
different reasoning capabilities, with distinct
training set sizes, and hence generalization with
few training examples. Lastly, to assess model
safety and controllability, we utilize the Beaver
Safety Dataset (BSD) (Dai et al., 2024) and
AdvBench (Zou et al., 2023) (Appendix B).

4.1 Results and Discussion

In the following sections, we present a set of ex-
periments that demonstrate how our approach gen-
eralizes to a diverse set of NLG and NLU tasks,
while being comparable 1) in performance to LoRA
(upper bound) and 2) parameter count to Prompt
Tuning. Henceforth, we will refer to the transfor-
mation of Section 3.1 as TinyTE-full, Section 3.2 as

22952



Model #TP Sum. WMT

R-L↑ BLEU-4↑ ter↓
Gemma-2 (2B) 0 21.62 6.04 734.73
+ TinyTE-full 2304 32.22 23.95 59.87
+ TinyTE-half 1152 30.71 22.66 63.23
+ TinyTE-gated 2306 33.06 23.77 61.04
+ TinyTE-hybrid 4608 33.50 25.32 58.03

Qwen-2.5 (7B) 0 23.08 12.99 243.38
+ TinyTE-full 3584 32.92 23.93 146.59
+ TinyTE-half 1792 32.55 24.90 58.97
+ TinyTE-gated 3586 32.82 24.45 83.87
+ TinyTE-hybrid 7168 33.54 25.81 58.03

Llama-3.1 (8B) 0 22.47 19.66 149.84
+ TinyTE-full 4096 36.23 27.30 55.64
+ TinyTE-half 2048 35.79 27.94 55.32
+ TinyTE-gated 4098 36.40 27.64 55.09
+ TinyTE-hybrid 8192 35.99 27.74 56.01

#TP - Trainable parameters; Sum. - CNN/Dailymail summarization dataset;
WMT - WMT’16 Machine Translation.

Table 1: Applying TinyTE to base models improves
performance in all cases.

TinyTE-half (p = 0.5), and Section 3.3 as TinyTE-
gated. We introduce a final transformation, which
combines TinyTE-full with a single Prompt Tuning
token, referred to as TinyTE-hybrid.

Generalization to different LLMs. Table 1
shows that our approach generalizes to different
LLM architectures while modifying only a tiny
fraction of parameters. We observe a significant
performance improvement in all three LLMs: in
machine translation, Gemma-2 (2B) improves its
BLEU-4 score from 6.04 to 23.95, Qwen-2.5 (7B)
from 12.99 to 23.93 and Llama-3.1 (8B) from
19.66 to 27.30. The same trend is observed across
all models in summarization (CNN/Dailymail).

It is worth noting that TinyTE-half maintains
competitive performance despite using only 50%
of the trainable parameters of other TinyTE vari-
ants. For example, using Llama-3.1 as the base
model, it achieves comparable performance with
TinyTE-gated. This efficiency supports our hypoth-
esis that embedding spaces are sufficiently robust
to meaningful modification even at extremely low
parameter counts.

Comparison with PEFT Methods. Table 2
compares TinyTE variants to existing parameter-
efficient approaches. Our method achieves superior
performance on summarization given comparable
parameter counts (improving vs. Prompt Tuning),
and is competitive on translation tasks. The perfor-
mance disparity in translation could be attributed to
multilingual models often encoding non-English to-

Model Method #TP R-L BLEU-4

Gemma-2

106-scale PEFT (millions of parameters)

LoRA (r=8) 14M 37.09 25.89
Emb. Tuning 590M 35.16 22.57

103-scale PEFT (thousands of parameters)

PromptT (tk=1) 2.3K 30.06 25.13
PromptT (tk=2) 4.6K 32.99 25.68
TinyTE-gated 2.3K 33.06 23.77
TinyTE-hybrid 4.6K 33.50 25.32

Qwen-2.5

106-scale PEFT (millions of parameters)

LoRA (r=8) 22M 38.03 27.36
Emb. Tuning 544M 35.23 24.92

103-scale PEFT (thousands of parameters)

PromptT (tk=1) 3.5K 32.15 24.20
PromptT (tk=2) 7.1K 32.17 25.40
TinyTE-gated 3.5K 32.82 24.45
TinyTE-hybrid 7.1K 33.54 25.81

Llama-3.1

106-scale PEFT (millions of parameters)

LoRA (r=8) 23M 39.03 27.70
Emb. Tuning 525M 37.13 24.78

103-scale PEFT (thousands of parameters)

PromptT (tk=1) 4.1K 33.81 29.20
PromptT (tk=2) 8.2K 33.89 29.20
TinyTE-gated 4.1K 36.40 27.64
TinyTE-hybrid 8.2K 35.99 27.74

Table 2: Comparison of PEFT methods across model
architectures, grouped by parameter scale. TinyTE
reaches a higher R-L, while remaining competitive in
BLEU-4, compared to other 103-scale methods, while
requiring orders of magnitude fewer parameters than
106-scale methods like LoRA. R-L is measured with
CNN/Dailymail, while BLEU-4 is measured in the
WMT’16 cs-en split. Shaded areas represent our TinyTE
models.

kens using subword tokenization, resulting in more
fragmented representations which may be more
sensitive to perturbation2.

The higher performance of the TinyTE-hybrid
variant, which combines our approach with a sin-
gle learned prefix token, demonstrates that our
method can complement existing PEFT techniques.
This suggests that future work could also com-
bine TinyTE modifications with other parameter-
efficient methods. TinyTE-gated demonstrates
strong performance on summarization tasks, where
input lengths vary substantially, however, it offers
smaller gains on translation, where lengths tend
to be within a narrower range—corroborating our

2We compare word lengths (in tokens) for 100 English
and 100 Czech words. When tokenized using the Gemma-2
tokenizer, the average length for English is 1, while for Czech
it is ≈2.

22953



Model Method BoolQ Copa CB RTE WIC Avg.

Gemma-2

Zero-shot 82.7 81.0 51.8 76.2 55.0 69.3

Prompt Tuning (Individual, 1 tok) 82.5 0 80.4* 64.3 57.8 57*
Prompt Tuning (Multitask, 1 tok) 80.1 33.0 66.1 72.2 54.4 61.2
TinyTE-all (Individual) 85.2 63.0 83.9 84.5 63.6 76.0
TinyTE-all (Multitask) 84.3 67.0 87.5 86.6 70.5 79.0

Qwen-2.5

Zero-shot 85.8 82.0 73.2 82.0 54.2 75.4

Prompt Tuning (Individual, 1 tok) 83.6* 0 62.5* 76.2* 70.2* 58.5*
Prompt Tuning (Multitask, 1 tok) 0.03* 0 67.9* 78.0* 0 29.2*
TinyTE-all (Individual) 87.8* 89.0* 87.5* 86.3* 72.3* 84.6*
TinyTE-all (Multitask) 87.7 83.0 78.6 83.8 69.4 80.5

Llama-3.1

Zero-shot 83.6 83.0 83.9 73.7 64.9 77.8

Prompt Tuning (Individual, 1 tok) 87.1 56.0 64.3 80.5 65.8 70.7
Prompt Tuning (Multitask, 1 tok) 87.2 68.0 83.9 87.0 65.5 78.3
TinyTE-all (Individual) 88.7 89.0 83.9 86.3 71.8 83.9
TinyTE-all (Multitask) 87.8 88.0 85.7 90.2 68.7 84.1

Table 3: Performance comparison between individually trained models versus a single multi-task model on five
SuperGLUE tasks. We evaluate on the validation sets when the test set is not available, using the same splits as
Prompt Tuning (Lester et al., 2021). Values marked with an asterisk (*) indicate manually extracted performance
where the model would otherwise produce malformed outputs. Shaded areas represent our TinyTE models.

assumption in Section 3.3.

Multitask Learning. Table 3 shows how a sin-
gle TinyTE model performs across multiple Super-
GLUE tasks, compared to models trained specifi-
cally on each task. Our multitask model—which
receives a task prefix and the same input format-
ting as (Gao et al., 2024)—outperforms both the
base model (in a zero-shot setting) and individual
TinyTE models on several tasks, achieving higher
accuracy on RTE and WIC, and a higher average
across all tasks. This suggests that jointly train-
ing allows it to leverage complementary informa-
tion across tasks, even with low parameter counts.
These results further highlight our method’s flexi-
bility: A single TinyTE adaptation, consequently a
set of d modified embedding layer dimensions, is
capable of handling all tasks simultaneously, and
even outperform single-task adaptations. This phe-
nomenon is also present in Prompt Tuning, albeit to
a lesser degree. The multitask setting also appears
to improve the model’s ability to produce consis-
tently formatted outputs. While individual models
may require extensive training to maintain the ex-
pected output structure (for example, we find that
we need to train for 50 epochs to converge in Copa
versus 20 for other tasks), the multitask models
learn proper output formatting much earlier during
training. Prompt Tuning fails to achieve correct
output formatting for Copa even after 50 epochs,
suggesting that our method better captures output
structure constraints.

102 103 104 105 106 107 108 109

Model parameters
0

10

20

30

40

50

60

70

80

In
st

ru
ct

io
n 

Sc
or

e

TinyTE-full

TinyTE-half

TinyTE-hybrid LoRA (r=8)
Emb. Layer

Llama-2-vanilla

Llama-2-chat (6.7B)

Figure 3: Instruction-following capabilities on the Al-
paca test set. TinyTE enables instruction following with
orders of magnitude fewer parameters. Instruct Score is
calculated using GPT-4 (gpt-4o-2024-08-06) as a judge,
following (Zheng et al., 2023). All methods use Llama-
2-7b as a base model.

Unveiling Capabilities of non Instruct-tuned
Models. To further demonstrate the effectiveness
of our approach, we investigate whether it can
expose latent instruction-following capabilities in
base LLMs. We postulate that these capabilities
already exist within the model, and may be ac-
cessed by updating the input representation. Us-
ing Llama-2-7b as our base model, we fine-tune
TinyTE on the Alpaca dataset and evaluate on a
held-out test set of 2500 instructions, comparing
against other PEFT approaches (Figure 3). Our ap-
proach achieves comparable performance while re-

22954



Model Dataset Performance at p%
1% 5% 10% 20% 50% 80% AUC

Gemma-2-2B WMT’16 93.29 82.36 60.35 46.39 00.88 00.05 20.09
Summ. 74.16 58.29 48.85 40.18 10.66 02.24 20.36

Llama-3.1-8B WMT’16 91.45 67.23 63.02 42.06 17.23 00.00 22.66
Summ. 87.72 73.78 65.70 58.49 34.44 00.00 28.17

Qwen-2.5-7B WMT’16 96.20 94.27 89.48 85.57 74.56 06.02 57.83
Summ. 91.64 85.75 80.26 68.30 48.35 15.57 44.33

Table 4: Performance of models when input embeddings are ablated. We report the BLEU-4 (Papineni et al., 2002)
of the ablated model when compared to vanilla, on WMT’16 en-cs and CNN/Dailymail (Summ.). All models
display some tolerance to information removal, keeping relatively high BLEU-4 even when 20% of dimensions are
ablated; curves are shown in Figure 5.

Method Input Length Bucket

0-300 301-500 501-800 801+

LoRA (r=8) 42.16 40.45 38.28 32.34
PT (tk=1) 35.64 35.36 31.60 23.48

TinyTE-all 36.15 35.95 33.10 27.70
TinyTE-half 33.27 33.13 31.51 27.63
TinyTE-hybrid 38.21 37.60 34.19 28.71
TinyTE-gated 36.95 36.53 33.47 29.16

Table 5: ROUGE-L across input lengths on
CNN/Dailymail, using Gemma-2 as the base model.

quiring significantly fewer parameters—4098 com-
pared to LoRA’s 20M. TinyTE is only clearly sur-
passed by the fully instruction-tuned models which
have billions more tuned parameters. Hence, the
ability to equip LLMs with instruction-following
capabilities through such minimal parameter mod-
ifications suggests that much of this behavior is
indeed latent in the base model (Zaken et al., 2022).
We provide output examples in Appendix C.

Impact of Input Length on Summarization.
We show in Table 5 how different variants of
TinyTE and other PEFT approaches perform across
input lengths on the CNN/Dailymail summariza-
tion task.

TinyTE-gated achieves the highest performance
in long sequences, demonstrating greater ro-
bustness to longer sequence lengths. Specifi-
cally, TinyTE-gated performance decreases to only
78.9% of its original value, from shortest to longest
sequences, which is superior to all other TinyTE
models and to other PEFT approaches: with LoRA
and Prompt Tuning decreasing to 76.7% and 65.9%
of their original values, respectively.

We also note that the value of the learned α pa-
rameter in TinyTE-gated is negative, meaning the
longer the input sequence, the fewer dimensions

are ablated. This corroborates our observations in
Section 3.2: lower values of p may induce higher
performance for longer input lengths. This demon-
strates TinyTE’s robustness to sequence length vari-
ations, an important practical consideration.

4.2 Embedding Layer Ablation Studies
Embedding Layer Flexibility. To assess LLMs
flexibility to changes in the embedding layer, in
this section we examine LLMs behaviour to infor-
mation supression in the embedding space, i.e., we
cancel model embedding dimensions. We define
Sp ∈ [1, d] as the subset of p% randomly selected
dimensions’ indexes, where d is the number of
embedding dimensions. Then, given an LLM’s em-
bedding matrix E ∈ R∣V ∣×d, where ∣V ∣ denotes the
vocabulary size, we apply the following function
to the embedding matrix:

Ê∶,i = ⎧⎪⎪⎨⎪⎪⎩
µi, if i ∈ Sp

E∶,i, otherwise
(6)

where E∶,i ∈ R∣V ∣ represents the original i-th dimen-
sion of every token’s embedding, and µi = E[E∶,i]
is the expected value of the i-th dimension across
all tokens in the vocabulary. The full ablated em-
bedding matrix Êp is obtained by applying Eq. 6
independently to each dimension i ∈ Sp of every
token’s embedding vector, effectively removing the
distinguishing information from selected dimen-
sions. The expected mean value of each dimension
was used as the ablation value to maintain the ex-
pected activation magnitude through subsequent
layers.

Model performance was estimated by randomly
removing p% dimensions, and measuring BLEU-4
with a sample of 250 examples. We considered
the set of p ∈ {0.01,0.05,0.1,0.2, ...,0.9} ablated
dimensions and computed the AUC of the result-

22955



ing curves. Numerical results, shown in Table 4,
provide evidence of embedding space flexibility
to information removal. Even when 20% of the
embedding dimensions are set to their mean values,
all models maintain a BLEU-4 score of over 40
when compared to the original outputs.

Our analysis sheds some light on LLM embed-
ding space properties that enable our approach:
representations remain functional even when sub-
stantial portions of their information content is
removed. This ability to maintain performance
despite removed information suggests an inher-
ent flexibility—the embedding space not only pre-
serves core linguistic capabilities when information
is removed, but may also be responsive to targeted
information additions.

Sorting Heuristics. When determining how to
select dimensions for TinyTE, we explored (i) se-
lecting dimensions randomly, (ii) using dimensions’
variance across the vocabulary; and (iii) Integrated
Gradients (Sundararajan et al., 2017). Training
TinyTE-half (Gemma-2) using the bottom half of
variance-ranking dimensions indeed achieves the
highest performance (R-L of 30.71), while using
the top half achieves 29.62. However, randomly
selecting dimensions still achieves strong perfor-
mance at 27.70. Interestingly, using Integrated Gra-
dients (Sundararajan et al., 2017) as a proxy for di-
mension importance yields comparable, yet worse,
performance than variance-based sorting: 28.61
(bottom half), and 27.94 (top half). This compa-
rable performance irrespective of sorting strategy
supports the notion that the success of our approach
stems from a fundamental property—embedding
spaces are flexible enough that any reasonably-
sized subset of dimensions can be repurposed with
minimal impact on model behavior. We note, how-
ever, that applying TinyTE to seemingly lower im-
portance dimensions—calculated through either
variance or Integrated Gradients—always seem to
be preferred over higher importance dimensions.
Based on our observations, we recommend train-
ing TinyTE models using variance-based ranking
for its simplicity and slightly superior empirical
performance on Gemma-2.

4.3 Computational Cost Analysis

While TinyTE achieves strong performance with
a minimal number of parameters, understanding
its computational overhead is crucial for practical
applications.

Training Complexity. The computational cost of
training TinyTE primarily comes from the frozen
LLM. For an input sequence length l and embed-
ding dimension d, each forward pass requires an
extra matrix addition of l ⋅d floating point numbers.
Memory-wise, it is dominated by the cached acti-
vations of the LLM during the forward pass. The
backward pass complexity is dominated by back-
propagation through the frozen model to compute
gradients for the single bias vector. This is less
expensive than methods like LoRA which require
gradient computation through multiple model lay-
ers, and updating the values of all the unfrozen
low-rank W matrices.

Inference Overhead. At inference time, TinyTE
adds negligible computational overhead. Sorting
dimensions by variance may be pre-computed and,
for an input sequence of length l, TinyTE requires
the addition of two l ⋅ d matrices. This overhead
is constant with respect to model size and is negli-
gible compared to the complexity of Transformer
self-attention operations.

Hence, both training complexity and inference cost
are equivalent to Prompt Tuning methods.

5 Conclusions

In this work, we uncover a fundamental and un-
derexplored property of Transformer-based LLMs:
the embedding layers exhibit remarkable flexi-
bility, enabling efficient and powerful model steer-
ing through minimal parameter interventions. This
property holds consistently across a range of mod-
ern LLM architectures and scales, suggesting it is a
common characteristic of contemporary Trans-
former architectures, e.g. Llama, Qwen, Gemma,
rather than an architecture-specific anomaly.

To operationalize this insight, we introduce
TinyTE, a new parameter-efficient fine-tuning
(PEFT) method that operates entirely through
lightweight modifications to the input token embed-
dings. TinyTE requires altering only a tiny fraction
of the model’s parameters making it highly modular,
interpretable, and efficient. Despite its small foot-
print, TinyTE delivers strong performance across
diverse tasks including machine translation, sum-
marization, and natural language understanding,
and even equips base LLMs with new capabilities
such as instruction following.

Beyond practical gains, our findings offer a new
lens through which to understand how LLMs en-

22956



code, process, and adapt to information through
their embedding spaces. This opens up new pos-
sibilities for model interpretability, low-resource
adaptation, and challenges prevailing assumptions
about where and how knowledge is stored and ma-
nipulated within Transformer models.

6 Limitations

Although we show that in general TinyTEs perform
well on different tasks, there are, nevertheless, situ-
ations where performance may suffer. For instance,
TinyTEs still suffer significant performance deteri-
oration under out of distribution inputs. Very small
models or models trained on narrower data dis-
tributions fail to benefit from TinyTE, suggesting
that embedding space flexibility emerges primar-
ily in larger models with more diverse pretraining.
Furthermore, TinyTE’s effectiveness may vary de-
pending on tokenization strategies and language
characteristics. Other avenues of future work could
explore more sophisticated approaches to embed-
ding modification while maintaining our method’s
parameter efficiency. This would include inves-
tigating alternative dimension ranking strategies
beyond variance, applying distinct transformations
to different tokens, and examining whether differ-
ent kinds of transformation of the embedding space
(rather than our current identity matrix approach)
could enable more expressive modifications while
preserving efficiency.

7 Acknowledgements

This work was supported by the FCT Scholar-
ship PRT/BD/152803 /2021 and the NOVA LINCS
project (UIDP/04516/2020). It was also supported
by the AMALIA project, funded by FCT/IP in the
context of measure RE-C05-i08 of the Recovery
and Resilience Program.

References
Luisa Bentivogli, Bernardo Magnini, Ido Dagan,

Hoa Trang Dang, and Danilo Giampiccolo. 2009.
The fifth pascal recognizing textual entailment chal-
lenge. In Proceedings of the Second Text Analy-
sis Conference, TAC 2009, Gaithersburg, Maryland,
USA, November 16-17, 2009. NIST.

Ond rej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurelie
Neveol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Specia,

Marco Turchi, and 2 others. 2016. Findings of the
2016 conference on machine translation. In Proceed-
ings of the First Conference on Machine Translation,
pages 131–198, Berlin, Germany. Association for
Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sashank Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodku-
mar Prabhakaran, and 48 others. 2024. Palm: scaling
language modeling with pathways. J. Mach. Learn.
Res., 24(1).

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of NAACL-HLT 2019.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo
Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang.
2024. Safe rlhf: Safe reinforcement learning from
human feedback. In The Twelfth International Con-
ference on Learning Representations.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
Proceedings of Sinn und Bedeutung, 23(2):107–124.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
page 4171–4186. Association for Computational Lin-
guistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? comparing the geome-
try of bert, elmo, and gpt-2 embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, page 55–65. Association for
Computational Linguistics.

22957

https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=TyFrPOKYXw
https://openreview.net/forum?id=TyFrPOKYXw
https://doi.org/10.18148/sub/2019.v23i2.601
https://doi.org/10.18148/sub/2019.v23i2.601
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/D19-1006
https://doi.org/10.18653/V1/D19-1006
https://doi.org/10.18653/V1/D19-1006


Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, page 10323–10337. PMLR.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Kr-
ishna Menon, Sanjiv Kumar, and Vaishnavh Nagara-
jan. 2024. Think before you speak: Training lan-
guage models with pause tokens. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 11 others. 2024. The llama 3 herd
of models. (arXiv:2407.21783). ArXiv:2407.21783.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. Warp: Word-level adversarial
reprogramming. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6,
2021, page 4921–4933. Association for Computa-
tional Linguistics.

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai
Sun, Nan Jiang, Tarek F. Abdelzaher, and Heng Ji.
2024. Word embeddings are steers for language mod-
els. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, page 16410–16430. Association
for Computational Linguistics.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, page 2744–2751.
Association for Computational Linguistics.

David Herel and Tomas Mikolov. 2024. Thinking to-
kens for language modeling. (arXiv:2405.08644).
ArXiv:2405.08644 [cs].

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,

and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NIPS, pages 1693–1701.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, and 3 others. 2022. Training
compute-optimal large language models.

Or Honovich, Roee Aharoni, Jonathan Herzig, Hagai
Taitelbaum, Doron Kukliansy, Vered Cohen, Thomas
Scialom, Idan Szpektor, Avinatan Hassidim, and
Yossi Matias. 2022. TRUE: Re-evaluating factual
consistency evaluation. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3905–3920, Seattle,
United States. Association for Computational Lin-
guistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, page 2790–2799.
PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. (arXiv:2310.06825). ArXiv:2310.06825.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets of
bert. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, page 4364–4373.
Association for Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt

22958

https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.18653/V1/2021.ACL-LONG.381
https://doi.org/10.18653/V1/2021.ACL-LONG.381
https://doi.org/10.18653/V1/2024.ACL-LONG.864
https://doi.org/10.18653/V1/2024.ACL-LONG.864
https://doi.org/10.18653/V1/2020.ACL-MAIN.244
https://doi.org/10.18653/V1/2020.ACL-MAIN.244
http://arxiv.org/abs/2405.08644
http://arxiv.org/abs/2405.08644
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
https://arxiv.org/abs/2203.15556v1
https://arxiv.org/abs/2203.15556v1
https://doi.org/10.18653/v1/2022.naacl-main.287
https://doi.org/10.18653/v1/2022.naacl-main.287
http://proceedings.mlr.press/v97/houlsby19a.html
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/V1/D19-1445
https://doi.org/10.18653/V1/D19-1445
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243


tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, page 3045–3059.
Association for Computational Linguistics.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive nlp tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, page
4582–4597. Association for Computational Linguis-
tics.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022a. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2022b.
P-tuning v2: Prompt tuning can be comparable
to fine-tuning universally across scales and tasks.
(arXiv:2110.07602). ArXiv:2110.07602 [cs].

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2024. Gpt
understands, too. AI Open, 5:208–215.

Fang Ma, Chen Zhang, Lei Ren, Jingang Wang, Qi-
fan Wang, Wei Wu, Xiaojun Quan, and Dawei Song.
2022. Xprompt: Exploring the extreme of prompt
tuning. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
page 11033–11047, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang,
Yang Wang, Quanlu Zhang, Yaming Yang, Yunhai
Tong, and Jing Bai. 2020. Ladabert: Lightweight
adaptation of bert through hybrid model compres-
sion. In Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020,
page 3225–3234. International Committee on Com-
putational Linguistics.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou,
Zifan Wang, Norman Mu, Elham Sakhaee, Nathaniel

Li, Steven Basart, Bo Li, David A. Forsyth, and Dan
Hendrycks. 2024. Harmbench: A standardized eval-
uation framework for automated red teaming and ro-
bust refusal. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net.

Timothee Mickus, Denis Paperno, and Mathieu Con-
stant. 2022. How to dissect a muppet: The struc-
ture of transformer embedding spaces. Trans. Assoc.
Comput. Linguistics, 10:981–996.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. 2025. Generative representational in-
struction tuning. In The Thirteenth International
Conference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, page 311–318. ACL.

Jonas Pfeiffer, Ivan Vulic, Iryna Gurevych, and Sebas-
tian Ruder. 2020. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, page 7654–7673. As-
sociation for Computational Linguistics.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: The word-in-context dataset for evalu-
ating context-sensitive meaning representations. In
Proceedings of NAACL-HLT.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In 2011 AAAI Spring Symposium Series.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108. ArXiv: 1910.01108.

Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie
Huang, and Cho-Jui Hsieh. 2020. Robustness verifi-
cation for transformers. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158–2170, Online. Association for Computa-
tional Linguistics.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Proceed-
ings of the 34th International Conference on Machine

22959

https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2021.ACL-LONG.353
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
https://doi.org/10.1016/J.AIOPEN.2023.08.012
https://doi.org/10.1016/J.AIOPEN.2023.08.012
https://doi.org/10.18653/v1/2022.emnlp-main.758
https://doi.org/10.18653/v1/2022.emnlp-main.758
https://doi.org/10.18653/V1/2020.COLING-MAIN.287
https://doi.org/10.18653/V1/2020.COLING-MAIN.287
https://doi.org/10.18653/V1/2020.COLING-MAIN.287
https://openreview.net/forum?id=f3TUipYU3U
https://openreview.net/forum?id=f3TUipYU3U
https://openreview.net/forum?id=f3TUipYU3U
https://doi.org/10.1162/TACL_A_00501
https://doi.org/10.1162/TACL_A_00501
https://openreview.net/forum?id=BC4lIvfSzv
https://openreview.net/forum?id=BC4lIvfSzv
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.617
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.617
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://openreview.net/forum?id=BJxwPJHFwS
https://openreview.net/forum?id=BJxwPJHFwS
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
http://proceedings.mlr.press/v70/sundararajan17a.html


Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine
Learning Research, page 3319–3328. PMLR.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu,
Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela
Ramos, Ravin Kumar, Charline Le Lan, Sammy
Jerome, and 30 others. 2024. Gemma 2: Im-
proving open language models at a practical size.
(arXiv:2408.00118).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Can-
ton Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu,
and 49 others. 2023. Llama 2: Open foundation
and fine-tuned chat models. (arXiv:2307.09288).
ArXiv:2307.09288 [cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, page 5998–6008.

Ivan Vulic, Edoardo Maria Ponti, Robert Litschko,
Goran Glavas, and Anna Korhonen. 2020. Prob-
ing pretrained language models for lexical seman-
tics. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2020, Online, November 16-20, 2020,
page 7222–7240. Association for Computational Lin-
guistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
page 3261–3275.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
page 13484–13508. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Andrea W. Wen-Yi and David Mimno. 2023. Hyper-
polyglot llms: Cross-lingual interpretability in token
embeddings. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
page 1124–1131. Association for Computational Lin-
guistics.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, and 43 others. 2024. Qwen2 technical report.
(arXiv:2407.10671). ArXiv:2407.10671.

Fan Yin, Quanyu Long, Tao Meng, and Kai-Wei Chang.
2020. On the robustness of language encoders
against grammatical errors. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, page 3386–3403, Online. Asso-
ciation for Computational Linguistics.

Fangcong Yin, Xi Ye, and Greg Durrett. 2024. Lofit:
Localized fine-tuning on llm representations. In Ad-
vances in Neural Information Processing Systems
38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Dharunish Yugeswardeenoo, Kevin Zhu, and Sean
O’Brien. 2024. Question-analysis prompting im-
proves llm performance in reasoning tasks. In Pro-
ceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2024 -
Student Research Workshop, Bangkok, Thailand, Au-
gust 11-16, 2024, page 543–554. Association for
Computational Linguistics.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In

22960

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2408.00118
https://doi.org/10.48550/arXiv.2408.00118
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.586
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.586
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.586
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.71
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.71
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.71
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.18653/v1/2020.acl-main.310
https://doi.org/10.18653/v1/2020.acl-main.310
http://papers.nips.cc/paper_files/paper/2024/hash/122ea6470232ee5e79a2649243348005-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/122ea6470232ee5e79a2649243348005-Abstract-Conference.html
https://openreview.net/forum?id=fq0NaiU8Ex
https://openreview.net/forum?id=fq0NaiU8Ex
https://aclanthology.org/2024.acl-srw.45
https://aclanthology.org/2024.acl-srw.45
https://doi.org/10.18653/V1/2022.ACL-SHORT.1
https://doi.org/10.18653/V1/2022.ACL-SHORT.1


Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), ACL 2022, Dublin, Ireland, May 22-
27, 2022, page 1–9. Association for Computational
Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt
Fredrikson. 2023. Universal and transferable adver-
sarial attacks on aligned language models. CoRR,
abs/2307.15043. ArXiv: 2307.15043.

22961

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://doi.org/10.48550/ARXIV.2307.15043
https://doi.org/10.48550/ARXIV.2307.15043


A Implementation and Evaluation Details

During training, we keep all model layers frozen,
including embedding and positional encoding ma-
trices. We apply our TinyTE transformation only
to non-special token embeddings, while preserving
the original embedding layer to maintain compati-
bility with models using tied embeddings. We train
using the Adam (Kingma and Ba, 2015) optimizer
(5e − 4 learning rate, cosine decay, 50 warmup
steps) in tf32 precision, with a batch size of 1 and
32 gradient accumulation steps3. Training length
varies by task: one epoch for CNN/Dailymail and
WMT’16, 20 epochs for the SuperGLUE and BSD
tasks, and until convergence (patience of 3 epochs)
for Alpaca. We select models by evaluation loss.
Models are trained to perform standard causal lan-
guage modeling, with cross entropy loss. We limit
the number of test samples on CNN/Dailymail and
Alpaca to 2500.

Our evaluation setting is stricter than typ-
ical decoder-only Transformer settings (Gao
et al., 2024): we perform no post-processing
whatsoever—all formatting errors are considered to
stem from a lack of controllability, and as such are
counted as incorrect outputs. The apparent supe-
rior performance of the zero-shot base model on the
Copa task (Section 4.1) can be attributed to these
differing evaluation protocols, as the base model
is evaluated using the likelihood of the multiple
choice options, rather than pure exact match. When
evaluating untrained models, we fix the prompt to
the same as Gao et al. (2024).

B On Controllability and Safety Tuning

The effectiveness of minimal embedding modifi-
cations in controlling model behavior also has im-
plications for model security. The capability to
significantly alter model behavior through small
parameter changes suggests potential vulnerabil-
ities to adversarial manipulation. We investigate
this by fine-tuning TinyTE models on the Beaver
Safety Dataset (BSD) (Dai et al., 2024), which
contains unsafe requests paired with unaligned
model responses. Table 6 shows the Attack Suc-
cess Rate (ASR) of different models, measured
using the HarmBench evaluator (Mazeika et al.,
2024). The base models show low ASRs (0.02–
0.08), indicating strong resistance to generating un-
safe content. However, after applying our method,

3We find that Prompt Tuning models required a higher
learning rate of 1e − 3 to achieve reasonable performance

Model BSD AdvBench

V
an

ill
a Gemma-2-B 0.02 —

Llama-3.1-8B 0.02 —
Qwen-2.5-7B 0.04 —

Ti
ny

T
E TinyTE-gated (Gemma-2) 86.9 41.4

TinyTE-gated (Llama-3.1) 89.2 80.6
TinyTE-gated (Qwen) 84.5 63.1

Gold Labels 92.8 —

Table 6: ASR for TinyTE-gated and vanilla models on
the Beaver Safety Dataset (BSD) and AdvBench. ASR
refers to Attack Success Rate, measured as per Harm-
Bench, using 1000 queries from the BSD test set; and all
queries from AdvBench. We also calculate the ASR of
the gold output labels of BSD, effectively establishing
the upper bound of performance.

ASRs increase dramatically across all models (to
86–89). This suggests that simple modifications to
embedding spaces can significantly override exist-
ing safety guardrails. We also evaluate the transfer
of this behavior to novel scenarios. When evalu-
ated on AdvBench (Zou et al., 2023), which also
tests for unsafe requests, Llama-3.1 and Qwen-2.5
maintain high ASRs (80 and 63, respectively). This
domain transfer aligns with our earlier findings—
models with more robust embedding spaces are not
only more amenable to adaptation but also more
vulnerable to having their behavior fundamentally
altered. These results highlight a critical challenge:
the same architectural properties that enable effi-
cient adaptation through embedding modification
also create potential vulnerabilities.

C Examples of Instruction Tuning
Behavior

Table 7 shows outputs of both vanilla (non instruct-
tuned) Llama-2-7b, Llama-2-7b with instruct tun-
ing, and TinyTE-full (Llama-2-7b) in the Alpaca
dataset. TinyTE-full approximates the non-instruct
tuned model remarkably well, while only being
tuned on the Alpaca dataset, and using d parame-
ters. It is also worth noting that the TinyTE model
learns to use and respond using the instruction-
tuned Llama-2 formatting: [INST] QUESTION

[\INST] ANSWER.

D Correlation between single ablation
metrics and AUC

To establish a reliable predictor of embedding space
robustness, we analyzed the correlation between
performance at specific ablation percentages and

22962



Model / Instruction Response

Construct a poem that describes the beauty of a sunset.

Llama-2-7b Construct a poem that describes the beauty of a sunrise.
Construct a poem that describes the beauty of a sunset and a sunrise.
Construct a poem that describes the beauty of a sunset and a sunrise.
[Response repeats instruction]

Llama-2-7b-chat As day’s last rays fade away,
The sky is set ablaze,
With hues of orange, pink, and gold,
That paint the horizon’s gaze.
[Continues with long, structured, poem]

TinyTE-full (Llama-2-7b) The sunset is a sight to behold,
It’s a time of peace and calm.
The sky is a canvas of colors,
And the clouds are a painting in motion.
[Continues for four more lines]

Create a list of three benefits of cloud computing.

Llama-2-7b Create a list of three benefits of cloud computing.
[Response repeats instruction multiple times]

Llama-2-7b-chat Sure! Here are three benefits of cloud computing:
1. Scalability and Flexibility: Cloud computing allows businesses to easily scale...
2. Cost Savings: Cloud computing can help businesses reduce their IT costs...
3. Improved Collaboration and Productivity: Cloud computing makes it easier...

TinyTE-full (Llama-2-7b) 1. Cloud computing provides scalability and flexibility, allowing businesses to quickly...
2. Cloud computing is cost-effective, as businesses only pay for the resources...
3. Cloud computing provides increased security, as data is stored...

Explain why deep learning is a form of artificial intelligence.

Llama-2-7b Explain how deep learning is used in the real world.
Explain how deep learning is used in the real world to solve problems.
Explain how deep learning is used in the real world to solve problems in the medical field.
[Response continues repeating while adding slightly to the question]

Llama-2-7b-chat Deep learning is a subfield of machine learning, which is a broader field of artificial
intelligence (AI). Here are some reasons why deep learning is considered a form of AI:

1. Learning from data: Deep learning algorithms learn from large datasets, just
like the human brain learns from...
2. Autonomous decision-making: Deep learning models can make decisions au-
tonomously, without explicit programming...
3. Complexity of neural networks: Deep learning models are composed of multiple layers
of interconnected nodes (neurons)...
4. Training and optimization: Deep learning models are trained using optimization
algorithms, such as stochastic gradient descent...

TinyTE-full (Llama-2-7b) Deep learning is a form of artificial intelligence that uses algorithms to learn from data
and make predictions. Deep learning algorithms are designed to learn from large amounts
of data and make predictions based on that data. This type of learning is similar to how
humans learn, as it involves the use of algorithms to learn from data and make predictions.
Deep learning is a powerful form of artificial intelligence that can be used to solve complex
problems and make predictions.

Table 7: Examples from the Alpaca test set comparing vanilla Llama-2-7b, the chat-tuned version, and our TinyTE-
full model. The base model typically repeats the instruction without completing the task, while both chat-tuned and
TinyTE-tuned versions provide appropriate responses, though with different levels of verbosity.

22963



Figure 4: Correlation heatmap between point measures of p and overall AUC. Black outline indicates statistical
significance.

the overall AUC across multiple model architec-
tures and scales, encompassing Llama-3.1 (8B),
Qwen-2.5 (7B), and Gemma-2 (2B), evaluated
on both CNN/Dailymail and WMT’16. For each
model-dataset pair, we compute performance met-
rics using both variance-based, Integrated Gradi-
ents (Sundararajan et al., 2017), and random di-
mension rankings.

Performance at most ablation percentages
strongly correlates with the overall AUC (Figure 4).
Notably, measurements at p = 30% demonstrate
strong predictive power across all evaluation met-
rics, but especially BLEU-4. This suggests that a
single evaluation at this threshold can serve as a
reliable diagnostic for embedding space robustness,
eliminating the need for exhaustive ablation studies
across multiple values of p (Figure 8).

E Low-Robustness Models

Our analysis suggests that embedding space ro-
bustness emerges from a combination of sufficient
model scale and high-quality—or perhaps a larger
amount of—pretraining data. We examine two
models with different potential limitations: GPT-J
(6B), trained on a narrower data distribution, and
Qwen-2.5 (0.5B), which maintains data quality but
significantly reduces model scale. We evaluate
these models on the Alpaca (Taori et al., 2023)
dataset, comparing against the more robust Llama-
2-7B baseline. As shown in Table 8, both poten-
tially low-robustness models demonstrate markedly
worse performance than Llama-2-7B, achieving
ROUGE-L scores of 12.03 and 15.21 respectively—
lower than simply repeating the input question
(18.58). Even after carefully cleaning Qwen-2.5’s
outputs to handle the repeated generation artifacts,

performance remains substantially below that of
larger models trained on diverse datasets. GPT-
J’s poor performance despite its larger parameter
count suggests that model scale alone does not guar-
antee embedding space robustness. While Qwen-
2.5’s limitations can be attributed primarily to its re-
duced size, GPT-J’s underperformance likely stems
from its pretraining data and computation amount.
This indicates that both factors—model scale and
training—contribute to embedding space robust-
ness. These results also align with our ablation
analysis using p = 30% and variance-based sort-
ing, where both models show very low perfor-
mance preservation, indicating fundamentally less
robust embedding spaces compared to their larger,
broadly-trained counterparts. Embedding space ro-
bustness to ablation may thus serve as an indicator
of TinyTE quality.

F Robustness Ablation Curves for
BLEU-4 and Entailment

In Table 9, we replicate Table 4, using entailment
(nli) as the main metric. Entailment is computed
following Honovich et al. (2022). We also display
the performance curves for both datasets (using
BLEU-4, Figure 5, and entailment, Figure 6).

G Robustness Ablation Using Variance as
the Sorting Heuristic

Table 10 shows the ablation results using variance
as the sorting heuristic, instead of randomly sort-
ing the indices. Performance curves are shown in
Figure 7.

22964



Method # Params BLEU-4 (p = 30%) Est. AUC R-L

TinyTE-all (Llama-2-7b) 4096 10.21 7.38 (real: 7.51) 35.9
Repeating the question 0 — — 18.58

TinyTE-all (GPT-J-6b) 4096 4.36 3.44 12.03
TinyTE-all (Qwen-2.5-0.5b) 896 1.84 1.74 15.21
TinyTE-all, clean (Qwen-2.5-0.5b) 896 — — 26.39

Table 8: Performance of low-robustness models. Note that both models perform worse than simply repeating the
input. We analyze the Qwen-2.5 outputs and realize the model fails to terminate the message by outputting the end
token; and even after careful cleaning of repeated keywords, it fails to achieve the performance of robust TinyTE
models.

Model Dataset Performance at p%
1% 5% 10% 20% 50% 80% AUC

Gemma-2-2B WMT’16 97.2 90.4 77.6 66.8 06.0 00.0 28.1
Summ. 69.2 65.2 62.0 60.4 13.6 04.0 28.5

Llama-3.1-8B WMT’16 93.2 84.0 81.2 75.6 36.4 00.0 36.8
Summ. 82.8 72.0 66.0 65.2 56.8 00.8 32.9

Qwen-2.5-7B WMT’16 98.8 98.8 96.0 94.0 88.4 21.2 70.0
Summ. 90.0 81.2 74.4 62.4 64.4 30.8 52.0

Table 9: Entailment of selected models when ablating p% of input dimensions on WMT’16 and CNN/Dailymail.
Curves are shown in Figure 6.

Model Metric Dataset Performance at p%
1% 5% 10% 20% 50% 80% AUC

Gemma-2-2B
BLEU-4 WMT’16 87.3 74.3 70.5 61.7 20.8 00.0 28.9

Summ. 63.9 53.5 48.4 45.4 25.8 02.4 24.9

NLI WMT’16 93.6 86.0 82.4 77.2 34.8 00.0 36.9
Summ. 66.8 66.8 64.4 63.2 50.4 05.2 38.0

Llama-3.1-8B
BLEU-4 WMT’16 33.3 29.9 24.8 20.7 04.2 00.0 10.0

Summ. 22.6 23.7 22.1 22.0 19.5 00.2 14.9

NLI WMT’16 68.0 62.0 58.4 47.2 20.8 00.0 23.9
Summ. 34.0 31.2 29.6 29.6 31.2 00.4 22.4

Qwen-2.5-7B
BLEU-4 WMT’16 96.3 93.6 91.5 87.0 76.7 25.8 62.0

Summ. 93.0 86.9 79.2 70.1 54.6 25.7 49.3

NLI WMT’16 99.2 98.8 96.4 97.6 89.6 47.6 74.3
Summ. 88.4 81.6 74.8 63.6 56.4 53.6 53.8

Table 10: Ablation results using variance as the sorting heuristic.

22965



0.0 0.2 0.4 0.6 0.8
Percentage of Dimensions Ablated

0.0

0.2

0.4

0.6

0.8

1.0

BL
EU

-4

Perf. curves for Gemma-2
CNN/Dailymail
wmt16

(a) Performance curves: Gemma-2.

0.0 0.2 0.4 0.6 0.8
Percentage of Dimensions Ablated

0.0

0.2

0.4

0.6

0.8

1.0

BL
EU

-4

Perf. curves for Qwen-2.5
CNN/Dailymail
wmt16

(b) Performance curves: Qwen-2.5.

0.0 0.2 0.4 0.6 0.8
Percentage of Dimensions Ablated

0.0

0.2

0.4

0.6

0.8

1.0

BL
EU

-4

Perf. curves for Llama-3
CNN/Dailymail
wmt16

(c) Performance curves: Llama-3.1.

Figure 5: Gemma-2, Qwen-2.5, and Llama-3.1 performance versus portion (p%) of randomly ablated input
dimensions, in WMT’16 and CNN/Dailymail, measured by computing BLEU-4 between the outputs of original and
ablated models.

0.0 0.2 0.4 0.6 0.8
Percentage of Dimensions Ablated

0.0

0.2

0.4

0.6

0.8

1.0

NL
I

Perf. curves for Gemma-2
CNN/Dailymail
wmt16

(a) Gemma-2 curves using entailment.

0.0 0.2 0.4 0.6 0.8
Percentage of Dimensions Ablated

0.0

0.2

0.4

0.6

0.8

1.0

NL
I

Perf. curves for Qwen-2.5
CNN/Dailymail
wmt16

(b) Qwen 2.5 curves using entailment.

0.0 0.2 0.4 0.6 0.8
Percentage of Dimensions Ablated

0.0

0.2

0.4

0.6

0.8

1.0

NL
I

Perf. curves for Llama-3
CNN/Dailymail
wmt16

(c) Llama-3.1 curves using entailment.

Figure 6: Performance curves for all three models, sorting randomly and using entailment as the metric.

0.0 0.2 0.4 0.6 0.8
Percentage of Dimensions Ablated

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Perf. curves for Gemma-2
CNN/Dailymail: nli
CNN/Dailymail: bleu-4
wmt16: nli
wmt16: bleu-4

(a) Gemma-2 sorted by variance.

0.0 0.2 0.4 0.6 0.8
Percentage of Dimensions Ablated

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Perf. curves for Qwen-2.5

CNN/Dailymail: nli
CNN/Dailymail: bleu-4
wmt16: nli
wmt16: bleu-4

(b) Qwen 2.5 sorted by variance.

0.0 0.2 0.4 0.6 0.8
Percentage of Dimensions Ablated

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Perf. curves for Llama-3
CNN/Dailymail: nli
CNN/Dailymail: bleu-4
wmt16: nli
wmt16: bleu-4

(c) Llama-3.1 sorted by variance.

Figure 7: Performance curves, using variance as the sorting strategy.

H Full Main Results Table

Table 11 showcases Tables 1 and 2 in a unified
format, alongside the standard error. We use the
same prompts as (Gao et al., 2024).

22966



Figure 8: Most highly correlated metrics given p% of ablated dimensions. Performance at p = 30% is highly
indicative of the area under the BLEU-4 curve, while performance at p = 40% is highly indicative of the AUC for
nli.

Model # Trained Params CNN/Dailymail WMT’16 cs-en

R-L↑ BLEU-4↑ ter↓
Base Models

Gemma-2 0 (2B) 21.62±0.15 6.04±0.21 734.73±9.62
Qwen-2.5 0 (7B) 23.08±0.16 12.99±0.26 243.38±4.90
Llama-3.1 0 (8B) 22.47±0.16 19.66±0.35 149.84±3.40

PEFT Baselines

Emb. Tuning (Gemma-2) 590M 35.16±0.26 22.57±0.42 63.37±0.92
LoRA (Gemma-2) 14M 37.09±0.27 25.89±0.42 58.26±0.66
Prompt Tuning (1 tok) (Gemma-2) 2304 30.10±0.25 25.13±0.42 58.50±0.57
Prompt Tuning (2 toks) (Gemma-2) 4608 32.99±0.24 25.68±0.43 57.61±0.48
Prompt Tuning (20 toks) (Gemma-2) 46K 33.60±0.25 25.14±0.42 59.46±0.87
Emb. Tuning (Qwen-2.5) 544M 35.23±0.26 24.92±0.47 61.00±2.17
LoRA (Qwen-2.5) 22M 38.03±0.27 27.36±0.49 56.22±0.56
Prompt Tuning (1 tok) (Qwen-2.5) 3584 32.15±0.25 24.24±0.46 60.27±0.57
Prompt Tuning (2 toks) (Qwen-2.5) 7168 32.17±0.24 25.44±0.46 59.69±0.62
Prompt Tuning (20 toks) (Qwen-2.5) 71M 32.80±0.24 25.29±0.47 59.25±0.57
Emb. Tuning (Llama-3.1) 525M 37.13±0.26 24.78±0.47 58.74±0.56
LoRA (Llama-3.1) 23M 39.03±0.27 27.78±0.49 55.63±0.55
Prompt Tuning (1 tok) (Llama-3.1) 4096 33.81±0.25 29.25±0.50 54.36±0.56
Prompt Tuning (2 toks) (Llama-3.1) 8192 33.90±0.24 29.20±0.50 54.30±0.55
Prompt Tuning (20 toks) (Llama-3.1) 82K 34.96±0.25 28.20±0.49 55.66±0.55

TinyTE

TinyTE-full (Gemma-2) 2304 32.22±0.24 23.95±0.43 59.87±0.64
TinyTE-half (Gemma-2) 1152 30.71±0.24 22.66±0.41 63.23±0.73
TinyTE-gated (Gemma-2) 2306 33.06±0.25 23.77±0.42 61.04±0.81
TinyTE-hybrid (Gemma-2) 4608 33.50±0.25 25.32±0.43 58.03±0.49
TinyTE-full (Qwen-2.5) 3584 32.92±0.24 23.93±0.41 146.59±8.73
TinyTE-half (Qwen-2.5) 1792 32.55±0.24 24.90±0.42 58.97±0.50
TinyTE-gated (Qwen-2.5) 3586 32.82±0.24 24.45±0.42 83.87±3.45
TinyTE-hybrid (Qwen-2.5) 7168 33.54±0.25 25.81±0.48 58.03±0.56
TinyTE-full (Llama-3.1) 4096 36.23±0.25 27.30±0.44 55.64±0.49
TinyTE-half (Llama-3.1) 2048 35.79±0.25 27.94±0.44 55.32±0.50
TinyTE-gated (Llama-3.1) 4098 36.40±0.25 27.64±0.44 55.09±0.49
TinyTE-hybrid (Llama-3.1) 8192 35.99±0.25 27.74±0.48 56.01±0.70

Table 11: Full results of TinyTE models versus base models and PEFT baselines, with standard errors.

22967


